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Abstract Precise, repeatable genetic access to specific neurons via GAL4/UAS and related 
methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented 
using light microscopy of full GAL4 expression patterns, which generally lack the single- cell reso-
lution required for reliable cell type identification. Here, we use stochastic GAL4 labeling with the 
MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are 
releasing aligned images of 74,000 such adult central nervous systems. An anticipated use of this 
resource is to bridge the gap between neurons identified by electron or light microscopy. Identi-
fying individual neurons that make up each GAL4 expression pattern improves the prediction of 
split- GAL4 combinations targeting particular neurons. To this end, we have made the images search-
able on the NeuronBridge website. We demonstrate the potential of NeuronBridge to rapidly and 
effectively identify neuron matches based on morphology across imaging modalities and datasets.

Editor's evaluation
This study bridges the gap between connectomic data from the fly hemibrain and driver lines 
needed for functional experiments. The large collection of labeled single cells clones from a large 
number of samples now provides the community to search both light microscopic and electron 
microscopic databases for matches using single cells, or cell types. Overall, this manuscript does a 
compelling job of describing an important resource for the community, which will hopefully be built 
upon via the collaborative science of many groups as the field develops.

Introduction
Many experimental approaches to understanding the nervous system require the ability to repeatedly 
target- specific neurons in order to efficiently explore their anatomy, physiology, gene expression, or 
function. In Drosophila melanogaster, the dominant approaches to targeting cells have been GAL4/
UAS and related binary systems (Brand and Perrimon, 1993; Lai and Lee, 2006; Pfeiffer et al., 2010; 
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Potter et al., 2010). The GAL4 protein, expressed from one transgene, binds upstream activation 
sequence (UAS) elements inserted in a separate transgene and activates the expression and transla-
tion of an adjacent functional protein. An extensive toolkit of UAS transgenes has been developed 
(reviewed in Guo et al., 2019). Large collections of GAL4 driver lines have been created, including 
collections (referred to here as ‘Generation 1’ or ‘Gen1’ GAL4 lines) in which GAL4 expression is typi-
cally controlled by 2–4 kilobase fragments of enhancer and promoter regions (Pfeiffer et al., 2008; 
Jenett et al., 2012; Tirian and Dickson, 2017). Published image libraries of the expression patterns 
of these GAL4 lines are available and provide a basis for visual or computational searches for driver 
lines with expression in cell populations of interest.

Despite these extensive resources, obtaining precise experimental access to individual neuronal cell 
types remains challenging. A GAL4 driver line from one of the above collections typically expresses in 
tens or more neuronal cell types and even more individual neurons, which is not sufficiently specific for 
many experiments. Several intersectional approaches have been designed to improve targeting spec-
ificity (reviewed in Guo et al., 2019), the most widely used of which is the split- GAL4 system (Luan 
et al., 2006; Pfeiffer et al., 2010). In brief, to create a split- GAL4 driver, the activation domain (AD) 
and DNA- binding domain (DBD) of GAL4 are individually placed under control of separate enhancer 
fragments. The AD and DBD are attached to leucine zipper motifs that further stabilize binding. 
Only in those neurons where both enhancer fragments are active is a functional GAL4 reassembled 
to activate the UAS, resulting in a positive intersection between enhancer expression patterns. The 
split- GAL4 system provides the required targeting specificity and has been used at an increasingly 
large scale (e.g., Gao et al., 2008; Tuthill et al., 2013; Aso et al., 2014a; Wu et al., 2016; Namiki 
et al., 2018; Wolff and Rubin, 2018; Dolan et al., 2019; Davis et al., 2020; Sterne et al., 2021), but 
good split combinations remain challenging to predict.

Split- GAL4 construction typically begins with the identification of GAL4 driver lines with expression 
in the cell type of interest. While the stereotyped shape of fly neurons can sometimes be directly 
distinguished by visual inspection, the specific features of a neuron are often obscured by other cells 
in a GAL4 expression pattern. Several stochastic labeling methods that reveal single cells present in 
broader expression patterns have been developed (reviewed in Germani et al., 2018). While large 
libraries of single- cell images exist (Chiang et al., 2011), these were mainly generated using a few 
widely expressed GAL4 lines. MultiColor FlpOut (MCFO; Nern et al., 2015) enables the labeling of 
stochastic subsets of neurons within a GAL4 or split- GAL4 pattern in multiple colors. In brief, MCFO 
can use several UAS reporters that are independently stochastically activated by low levels of Flp 
recombinase. Flp levels can be adjusted to tailor MCFO labeling density for different GAL4 lines or 
purposes. Labeling a GAL4 pattern using MCFO allows for the efficient determination of a significant 
fraction of the neurons present within it.

The need for resources to identify single cells of interest using genetic tools (GAL4 lines) has 
become more urgent due to recent advances in connectomics. Comprehensive electron microscopy 
(EM) mapping of specific brain regions or whole nervous systems is transforming neuroscience (e.g., 
Zheng et al., 2018; Maniates- Selvin et al., 2020; Scheffer et al., 2020) by providing anatomy at 
unparalleled resolution, near complete cell type coverage, and connectivity information. Leveraging 
these new datasets to understand more than pure anatomy will be greatly facilitated by the ability to 
genetically target- specific neurons and circuits. Light microscopy (LM) data also complement EM data-
sets by revealing features outside a reconstructed EM volume or by providing independent validation 
of cell shapes with a greater sample size. To integrate these formats requires datasets and methods 
for matching EM neurons with LM- derived GAL4/split- GAL4 data.

Recently developed techniques allow searching for neuron shapes (including neuron fragments, 
whole neurons, or overlapping groups of neurons) in coregistered LM and EM data. Two leading 
approaches are NBLAST (Costa et  al., 2016), which performs comparisons between segmented 
neurons, and Color Depth Maximum intensity projection (CDM) search (Otsuna et al., 2018), which 
efficiently compares bitmap images using color to represent depth within the samples. NBLAST was 
recently expanded upon with the combination of PatchPerPix neuron segmentation (Hirsch et al., 
2020) and PatchPerPixMatch search (PPPM; Mais et al., 2021). PPPM identifies neuron segments 
with similar color and high NBLAST scores that best cover a target neuron of interest, allowing the 
use of partial segments from densely labeled MCFO samples. Overlapping neurons remain chal-
lenging to segment manually or algorithmically, making this an area of rapid development. Advanced 
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anatomical templates such as JRC2018 improve point- to- point mapping between samples and modal-
ities (Bogovic et al., 2020). These search tools and templates bridge the EM/LM gap but require 
single- cell- level image collections that cover many neurons present within Gen1 GAL4 patterns to 
reach their maximum utility. In particular, to identify multiple Gen1 GAL4s that can be combined to 
make a split- GAL4 driver, the morphologies of individual neurons within many GAL4 lines must be 
available.

Here, we used MCFO to dissect Gen1 GAL4 line patterns at scale to create a resource for linking 
EM- reconstructed neurons to GAL4 lines, and to improve the process of making split- GAL4 reporters 
to target neurons, whether they were first identified in EM or LM. We therefore focused on 5155 
Gen1 GAL4 lines, most of which have been converted into split- GAL4 hemidrivers, performing three 
rounds of MCFO labeling to improve coverage of neurons. The resource includes images of 74,337 
fly samples, with an average of 14 brain and 7 ventral nerve cord (VNC) images per line. We have 
released the image data and made it searchable on the NeuronBridge website together with data 
from the FlyEM Hemibrain and published split- GAL4 lines.

Results
We used the MCFO approach on Generation 1 GAL4 lines (Figure 1A) to visualize individual neurons 
(Figure 1B) making up the GAL4 expression pattern. These neurons can be matched to EM neurons 
(Figure 1C, D) in order to predict split- GAL4 combinations for an EM neuron of interest (Figure 1E). 
We generated two collections of Gen1 MCFO images (Table 1). The collection imaged with 20× and 
63× microscope objectives targeted particular neurons of interest to collaborators annotating regions 
primarily in the brain and optic lobes. The collection imaged with 40× objectives broadly canvassed 
neurons in the central brain and VNC.

EM R

C1

EM L*

C2

MCFOGAL4 MCFO

A B1 B2

D

EM/MCFO split-GAL4

E

Figure 1. Generation 1 MultiColor FlpOut (MCFO) and electron microscopy (EM)/light microscopy (LM) comparison overview. (A) Overall GAL4 
expression pattern of a driver line containing a cell type of interest, shown as a color depth maximum intensity projection (MIP) (Otsuna et al., 2018). 
Original images are from published datasets (Jenett et al., 2012). (B1) Example MCFO labeled cells from the driver line in (A). MCFO labeling reveals 
a prominent descending neuron. (B2) An additional MCFO labeled cell of the same type but from a different line. The color depth MIPs in B1 and B2 
represent data from one of the three MCFO markers, so color changes indicate changes in the z- dimension rather than differential MCFO labeling. 
(C1, C2) Matching EM reconstructions for the cell type. Both panels show reconstructions from the right- side Hemibrain; the lower panel is mirrored to 
facilitate comparison to the LM data. (D) PatchPerPixMatch (PPPM) overlay of MCFO from (B1) and EM reconstruction from (C2). (E) Split- GAL4 made 
from split hemidrivers derived from GAL4 lines in A and B. Driver lines used are R56H09 (A, B1), R23E11 (B2), and SS01588 (E). Hemibrain body IDs are 
571346836 (C1) and 1786496543 (C2). All scale bars, 50 µm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Generation 1 MultiColor FlpOut (MCFO) expression density categories.

https://doi.org/10.7554/eLife.80660
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A challenge with any stochastic neuron labeling approach is to optimize the number of identifiable 
neurons in each sample: too sparse and samples are empty or have few labeled neurons; too dense 
and the neurons overlap, making it difficult to fully isolate individual neurons even if they are labeled in 
different colors. MCFO allows for control of labeling density by optimizing the amount of Flp activity, 
either by selecting different Flp drivers, or altering heat shock duration for hs- Flp (Nern et al., 2015). 
GAL4 lines with broader expression typically require lower Flp activity to yield isolated neurons. In the 
20×/63× MCFO collection, labeling density was customized for collaborators focused on annotating 
particular central nervous system (CNS) regions, iterating on prior results (Nern et al., 2015). In the 
40× MCFO collection, labeling density was initially standardized (Phase 1), then optimized based on 
overall GAL4 expression density (Phase 2; Figure 1—figure supplement 1A). For many lines, there 
is no globally ideal level of Flp activity, as they have varying levels of expression density in different 
CNS regions.

The 20×/63× and 40× datasets differed in several other respects (Table 1). The 20×/63× collection 
was imaged with 20× objectives, followed by 63× imaging of specific regions of interest, whereas the 
40× collection was uniformly imaged at 40×. The 20×/63× collection was focused on a smaller set 
of lines visualized primarily in female brains (94.2%), whereas the 40× collection covered more lines 
(4575 vs. 2463), a mixture of male and female samples (44.9% female), and both brains and VNCs (7.1 
VNCs per line vs. 0.9 in the 20×/63× dataset).

Finally, as the 20×/63× dataset and existing publications (e.g., Fischbach and Dittrich, 1989; 
Morante and Desplan, 2008; Takemura et al., 2013; Nern et al., 2015; Takemura et al., 2015) 
effectively documented the largely repetitive structure of the optic lobes, the 40× dataset excluded 
them. Collections of split- GAL4 driver lines for many optic lobe cell types are already available (Tuthill 
et al., 2013; Wu et al., 2016; Davis et al., 2020). Many neurons that connect the optic lobe with 
the central brain can still be identified in the 40× dataset based on their central brain arborizations. 
The optic lobe anatomy of such cells could be further characterized in follow- up experiments with the 
identified GAL4 lines.

40× Gen1 MCFO collection
After performing extensive MCFO labeling for the 20×/63× dataset, we performed comprehensive 
MCFO mapping of Gen1 GAL4 lines across most of the CNS. MCFO labeling of Drosophila neurons 
was performed with a pan- neuronal Flp recombinase (R57C10- Flp) on 4562 Generation 1 GAL4 lines in 
Phase 1. We generated images of 27,226 central brains and 26,512 VNCs from 27,729 flies. The CNS 
was typically dissected from six flies per line. A medium- strength Flp transgene (R57C10- Flp2::PEST 
in attP18; Nern et al., 2015) was used for almost all lines, yielding a wide range of neuronal labeling 
in each MCFO sample. 238 of the sparser lines were crossed to an MCFO reporter with a stronger Flp 
transgene (R57C10- FlpL in su(Hw)attP8), and 71 lines were crossed to both reporters.

Table 1. Image collection statistics.

20×/63× collection 40× collection Total

Gen1 GAL4 lines 2463 4575 5155

Samples 27,546 46,791 74,337

Average samples/line 11.2 10.2 14.4

Std. Dev. samples/line 7.6 4.6 8.7

Average brain/line 11.2 10.1 14.3

Average VNC/line 0.9 7.1 6.8

Female % 94.2% 44.9% 63.2%

20×/40× image tiles 29,784 111,380 141,164

63× image tiles 22,775 – 22,775

Lines with 63× images 1748 – 1748

Samples with 63× images 8447 – 8447

https://doi.org/10.7554/eLife.80660
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GAL4 lines were qualitatively categorized into rough groups by density of expression within the 
central brain and VNC, ranging from Category 1 yielding no unique neurons per sample, to Category 
5 being so dense that it overwhelmed our immunohistochemical approach, leaving a shell of partially 
labeled neurons around the outside of each sample (Figure 1—figure supplement 1A). Category 2 
lines were characterized by sparse, easily separable neurons, whereas Category 3 yielded denser but 
identifiable neurons. Category 4 displayed densely labeled neurons that were challenging to distin-
guish. Most lines ranged between Categories 2 and 4 (Figure 1—figure supplement 1B).

In order to increase the number of identifiable neurons, a subset of lines was re- examined with 
altered parameters. Phase 2 of the 40× pipeline generated images of an additional 18,894 central 
brains and 6235 VNCs from 19,062 flies. Phase 2 GAL4 expression density was optimized by (1) 
selecting lines with expression most likely useful for split halves, (2) adjusting MCFO parameters to 
maximize separable neurons obtained per sample, and (3) limiting brains and VNCs processed per 
line to minimize the diminishing returns associated with oversampling. Phase 2 focused on Category 
2 and 3 lines as most likely to be useful for split- GAL4 creation. Category 1 and 5 lines were outside 
our effective labeling range and were therefore excluded from further work. High neuron density 
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hs-Flp MCFO

R
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Figure 2. Phase 1 and 2 overview and labeling examples. R14E12- GAL4 in attP2 crossed to (A) pJFRC2- 10XUAS- IVS- mCD8::GFP, (B) R57C10- Flp 
MCFO, or (C) hs- Flp MCFO. Adult central nervous system (CNS) maximum intensity projections (MIPs) are shown, with neuropil reference in gray and 
neuronal signal in green (A) or full MultiColor FlpOut (MCFO) colors (B, C). Multiple examples are shown for B, C. Scale bars, 50 µm. (D) Glia are seen 
with VT008658- GAL4 in attP2 crossed to (D1) pJFRC2- 10XUAS- IVS- mCD8::GFP and (D3) hs- Flp MCFO, but not (D2) R57C10- Flp MCFO. (E) Kenyon cell 
labeling is not seen with R86H02- GAL4 in attP2 crossed to (E1) pJFRC2- 10XUAS- IVS- mCD8::GFP or (E2) R57C10- Flp MCFO, but is seen when crossed to 
(E3) hs- Flp MCFO. (F) Kenyon cell labeling is seen with R91B01- GAL4 in attP2 crossed to (F1) pJFRC2- 10XUAS- IVS- mCD8::GFP and (F3) hs- Flp MCFO, 
but is not seen when crossed to (F2) R57C10- Flp MCFO. (G) An ascending neuron (sparse T) is commonly seen with many Gen1 GAL4 lines crossed to 
different reporters. VT010592- GAL4 in attP2 crossed to R57C10- Flp MCFO is shown as an example. A single neuron channel plus reference are shown 
for clarity. The inset shows a lateral (y- axis) MIP of the brain. All scale bars, 50 µm.
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within Category 4 means that although the theoretical neuron yield from each sample is high, our 
ability to distinguish individual neurons is low (although future improvements to neuron segmentation 
approaches are expected to improve yields).

Heat- shock Flp (hs- Flp) was used in Phase 2 rather than R57C10- Flp (Figure  2). While both 
R57C10- Flp and hs- Flp are theoretically expected to label all neurons, in practice each is likely to have 
subtle biases as previously proposed (Nern et al., 2015; see also below). By switching Flp enhancers 
in Phase 2, we attempted to mitigate the impact of these biases. The 37°C heat shock duration for 
hs- Flp was optimized for each density category. Prior results reported by Nern et al., 2015 indicated 
that heat shock effectiveness is nonlinear: limited to background activity up to ~10 min, a somewhat 
linear range between 10 and 20 min, and gradually diminishing returns up to ~40 min; heat shocks 
longer than an hour begin to harm fly survival. We chose a heat shock duration of 40 min for Category 
2 lines to yield as many neurons as possible per sample. For Category 3 a 13 min heat shock provided 
the desired labeling density similar to Category 3 in Phase 1. To increase the chance of obtaining sex- 
specific neurons and neuronal morphology, we randomly choose one sex for each half of the lines in 
Phase 1 and then in Phase 2 switched them to the opposite sex.

As the number of MCFO samples for a given GAL4 line increases, the probability of labeling addi-
tional unique neurons diminishes until every neuron labeled by that GAL4 line is represented within 
the MCFO dataset. Sparser lines approach saturation more rapidly, especially because we can use 
higher Flp activity to label a greater fraction of available GAL4 neurons per sample without over-
whelming detection. Thus, in Phase 2 we processed fewer samples for Category 2 GAL4 lines than 
for Category 3. In addition to diminishing returns within each GAL4 line, there are diminishing returns 
within each region of the CNS. Although recent estimates vary (37–100k neurons for the central brain 
including subesophageal ganglion but not the optic lobes, 15–20k for the VNC; Bates et al., 2019; 
Godfrey et al., 2021; Mu et al., 2021; Raji and Potter, 2021), the adult Drosophila central brain 
has many more neurons than the VNC, suggesting earlier diminishing returns in the VNC. Thus, we 
focused Phase 2 more heavily on the brain than the VNC, which together with the above density 
adjustment led to imaging on average 6.0 brains in Category 2 or 9.1 brains in Category 3, and 2.5 
VNCs per line across both categories.

MCFO labeling observations
The large number of lines processed under mostly uniform MCFO conditions provided an opportunity 
to observe, at scale, some features of MCFO labeling with the specific Flp recombinase drivers used 
here. Similar observations were noted previously (Nern et al., 2015). As with R57C10- GAL4, which 
contains the same fragment of the synaptobrevin enhancer region (Pfeiffer et al., 2008), R57C10- Flp 
is thought to be exclusively expressed in postmitotic neurons. In contrast, hs- Flp is expected to label 
most if not all cells in the fly, including neurons, glia, and trachea, as reviewed in Ashburner and 
Bonner, 1979. Thus, glial patterns were obtained in 8% of lines (36 of 460 lines tabulated) in Phase 2 
with pBPhsFlp2::PEST in attP3. This obscured neurons in maximum intensity projections (MIPs), but 
typically did not impair three- dimensional visualization or searching, and may prove of use for future 
glial studies (Figure 2D). For example, the split- GAL4 approach has also been successfully applied to 
several types of glia in the optic lobe (Davis et al., 2020).

Kenyon cells of the mushroom body were labeled at different rates with each reporter. We scored 
for the presence of Kenyon cell labeling in a random sample of 10% of the total lines imaged (n = 460 
lines). Labeling manifested as either distinctly labeled neurons, a relatively faint hazy labeling or both. 
Kenyon cells were much more commonly labeled using hs- Flp MCFO (430 lines, or 93%) than with 
R57C10- Flp MCFO (44 lines, or 10%) or UAS- GFP (111 lines, or 24%; Figure 2). Most frequently lines 
had unlabeled Kenyon cells with GFP and R57C10- Flp MCFO and labeled Kenyon cells with hs- Flp 
(253 lines, or 55%; Figure 2E). Lines were also observed with labeled Kenyon cells using GFP and 
hs- Flp MCFO, but not R57C10- Flp (59 lines, or 13%; Figure 2F). As the Kenyon cells are well charac-
terized (and thus an unlikely target for new split- GAL4s), compact, and easily identified, this labeling 
can be ignored except when substantially brighter than other neurons of interest.

A characteristic ascending neuron (sometimes referred to as ‘sparse T’) was observed at very high 
frequency. The neuron(s) has a cell body near the metathoracic ganglion and projections ascending 
to the anterior then the posterior brain, loosely resembling the letter ‘T’ in MIP images (Figure 2G). 
It was observed in at least one sample from over 60% of lines crossed to either MCFO reporter (67 
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lines in Phase 1 and 64 lines in Phase 2, out of 107 lines scored) and was likely present but obscured 
in other lines. The greater density of labeling in full GAL4 patterns (when crossed to UAS- GFP) made 
scoring more difficult, yet a similar neuron was seen in 22 of the same 107 lines. This suggests that the 
high labeling frequency of this neuron in our dataset is a property of the GAL4 collections rather than 
an artifact of our sampling methods. No other neurons were observed to be so frequently labeled.

Neuron searching across image collections
This image collection makes it possible to identify GAL4 driver lines with expression in identified 
single neurons using manual or computational searches without the need for new anatomical experi-
ments. The cellular resolution of the data enables many analyses that are impossible with the existing 
libraries of full GAL4 driver expression patterns. The single- cell data are particularly useful for identi-
fying a neuron in both EM and LM datasets.

Although LM images do not match the synaptic resolution of EM data, they can provide additional, 
complementary anatomical information. First, identification of LM matches provides an independent 
quality check for EM reconstructions (e.g., Scheffer et al., 2020; Phelps et al., 2021). Second, the 
LM data often include multiple examples of a cell type and thus provide insights into variable features 
of cell shapes. Finally, except for the optic lobes, our LM data include the full brain and (for many 
specimens) VNC and thus provide the full shape of cells that are only partly contained in current EM 
volumes. For example, the Hemibrain dataset does not fully include neurons that span both brain 
hemispheres or project to or from the VNC (see Figure 1). It is thus important to be able to perform 
EM/LM matching.

While accurate matching of EM reconstructions with single- cell LM images can sometimes be 
achieved by direct visual inspection (e.g., Takemura et al., 2013), automated approaches for image 
alignment, segmentation, and search are essential for efficient use of these large datasets. Alignment 
here was accomplished by registering all LM and EM data to JRC2018 brain and VNC templates 
(Bogovic et al., 2020). We have also made the neuron search tool NeuronBridge (https://neuron-
bridge.janelia.org/) (Clements et al., 2022) publicly available.

NeuronBridge currently allows the user to perform anatomical similarity searches between 
published datasets reported by Janelia’s FlyLight and FlyEM Team Projects. Searching is based on 
two approaches: (1) Color Depth MIP (CDM), which allows direct comparisons of expression similarity 
in registered images without the need for a complete skeletonization (Otsuna et al., 2018) and (2) 
PatchPerPixMatch (PPPM), which enhances NBLAST to find groups of neuron segments (identified 
in our samples by PatchPerPix segmentation) that best match a target neuron (Costa et al., 2016; 
Hirsch et al., 2020; Mais et al., 2021).

The basic strategy of CDM searching is to represent neuronal expression with a two- dimensional 
MIP, using color to indicate the third depth dimension. Two aligned brain images can then be compared 
by looking for pixels of similar color at similar x–y coordinates of their color depth MIPs. The color 
depth MIP search approach used for NeuronBridge was extended in several ways to improve matches 
for denser MCFO data (Otsuna et al., 2023). These include (1) preprocessing the MCFO images with 
direction selective local thresholding (Kawase et al., 2015) 3D segmentation to create a separate 
color depth MIP for each fully connected component; (2) color depth searching using mirrored EM 
Hemibrain neurons as masks and MCFO images as target libraries; and (3) weighting of match scores 
based on signal outside of the search masks.

PPPM searching is based on the evaluation of fully (but often imperfectly) segmented neurons 
(Hirsch et al., 2020; Mais et al., 2021). The underlying NBLAST algorithm compares the similarity in 
3D location and neuronal arbor orientation at many points along two neuron segments. PPPM looks 
for an optimal combination of neuron segments that together maximize an NBLAST- derived similarity 
score for the target neuron. It includes optimizations for identifying non- overlapping segments that 
tile a target, along with positive weighting for segments of similar color, as would be expected from 
an MCFO neuron broken into multiple segments.

These comparisons are currently pre- computed as data are added or updated in NeuronBridge, 
so searching is fast. Searches can begin at NeuronBridge given a GAL4 line name or EM body ID, or 
from FlyEM’s neuPrint (https://neuprint.janelia.org/) (Clements et al., 2020; Scheffer et al., 2020) 
and FlyLight’s Gen1 MCFO (https://gen1mcfo.janelia.org/) and Split- GAL4 anatomy (https://splitgal4. 
janelia.org/) websites, leading directly to potential matches in the complementary modality. Search 

https://doi.org/10.7554/eLife.80660
https://neuronbridge.janelia.org/
https://neuronbridge.janelia.org/
https://neuprint.janelia.org/
https://gen1mcfo.janelia.org/
https://splitgal4.janelia.org/
https://splitgal4.janelia.org/
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results are sorted by match quality and displayed for easy comparison (Clements et al., 2022). The 
color depth MIP format is also well suited for fast visual inspection of search results, simplifying the 
exclusion of false positives, which are difficult to avoid without compromising search sensitivity. Search 
results are linked directly to corresponding data in other online resources such as Virtual Fly Brain 
(Milyaev et al., 2012).

In addition to pre- computed search results for published datasets, we have also made custom 
search capability available in NeuronBridge (Clements et al., 2022). An unaligned 3D image stack 
can be uploaded, and the service will register it to the JRC2018 standard reference template (Bogovic 
et al., 2020). CDMs are automatically generated from the aligned image, and an interactive selection 
tool allows the user to choose a channel and mask a target neuron for the search. Targets can be 
searched against either the EM or LM image database, in a highly parallel (~3000 threads) cloud- 
based implementation that completes within a few minutes. Custom search results are browsed in the 
same way as pre- computed results.

Figure 3. Electron microscopy (EM)/light microscopy (LM) search for split- GAL4 creation. Neuron search 
techniques allow for the identification of Gen1 MultiColor FlpOut (MCFO) images containing an EM body of 
interest. The corresponding Gen1 GAL4 lines should label the same neuron with other upstream activation 
sequence (UAS) reporters, as should split- GAL4 hemidrivers constructed with the same enhancer fragment. The 
two hemidrivers can then be combined into a split- GAL4 with the aim of generating a driver that specifically 
targets that neuron. An example is shown of the anticipated search process, from a neuron identified via EM to the 
creation of a split- GAL4 driver. As in Figure 1, NeuronBridge displays color depth maximum intensity projections 
(MIPs) of single MCFO markers rather than the full MCFO image, so color changes indicate depth rather than 
different neurons. NeuronBridge result order was reformatted for display purposes. The example shown includes 
FlyEM Hemibrain body ID 733036127 (Scheffer et al., 2020), Generation 1 GAL4 lines R17C11- GAL4, R52G04- 
GAL4, and split- GAL4 MB310C (MBON07) (Jenett et al., 2012; Aso et al., 2014b).

https://doi.org/10.7554/eLife.80660
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Search approach evaluation
We performed limited evaluations of CDM and PPPM search performance between the EM Hemibrain 
(Scheffer et al., 2020) and the Gen1 MCFO dataset in the context of making split- GAL4 lines specif-
ically targeting EM bodies of interest (Figure 3).

Search performance can be evaluated in several ways depending on the application (Costa et al., 
2016; Otsuna et al., 2018; Mais et al., 2021). We refer here to ‘forward’ and ‘reverse’ analysis in 
the context of split- GAL4 creation. Forward analysis consisted of direct qualitative evaluation of EM 
to LM search results, determining whether top LM results appeared to contain the searched for EM 
body. Forward analysis is best performed with detailed knowledge of the examined neurons to avoid 
false positives, and we restricted our analyzed set of neurons accordingly. Reverse analysis made use 
of previously documented associations between split- GAL4 lines and EM bodies. If a split- GAL4 line 
labels a neuron, its constituent split hemidrivers should as well, as should some MCFO of Gen1 GAL4 
lines with the same enhancers. We thus evaluated whether known EM/LM matches were highly ranked 
within the search results. Due to the stochastic nature of MCFO, not every sample of a valid matching 
GAL4 line will contain the target neuron.

Evaluation of the search approaches also addressed neuron coverage of the Gen1 MCFO dataset. 
For both search directions the total number of correct matching samples and GAL4 lines gave a 
measure of how completely the Gen1 MCFO dataset labels each queried neuron.

We performed forward analysis on the top 100 CDM and PPPM Phase 1 Gen1 MCFO search results 
for 10 Hemibrain bodies (Figure 4). Both CDM and PPPM correctly identified many highly ranked 
matches in the dataset for each examined EM body. CDM identified 17.6 ± 8.3 (average ± standard 
deviation) correct lines per Hemibrain body, whereas PPPM identified 20.1 ± 10.6.

For cell type LC18, PPPM outperformed CDM, with 24 and 13 correct matches in the top 100, 
respectively (Figure 4B). For cell type CT1, on the other hand, CDM correctly found 8 results in the 
top 100, compared to 3 for PPPM (Figure 4C). More generally, CDM and PPPM each identified many 
lines in the top 100 results that were not identified by the other search approach (Figure 4—source 
data 1). CDM uniquely identified 8.2 ± 6.1 and PPPM uniquely identified 10.7 ± 8.7 lines, respectively.

Thus, at least for this limited set of neurons, the Gen1 MCFO collection isolates enough exam-
ples of each neuron to likely create a split- GAL4 combination. CDM and PPPM successfully identify 
these correct matches, although they are interspersed with a larger number of false matches. Both 
approaches varied widely by neuron, without obvious correlation to neuron morphology (Figure 4—
figure supplement 1). Although all 10 neurons examined here yielded at least 9 matching lines, we 
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Figure 4. Forward analysis: direct evaluation of Color Depth Maximum intensity projection (CDM) and PatchPerPixMatch (PPPM) search results. 
EM bodies were searched for in Phase 1 40× Gen1 MultiColor FlpOut (MCFO) light images using CDM and PPPM approaches. Search results were 
qualitatively evaluated by an anatomical expert for the presence of the sought neuron. Most results were scored based on color depth maximum 
intensity projection (MIP) images. Full image stacks were used to score about 20% of samples, including the majority of samples scored as containing 
the sought neuron. The cumulative number of correct matches found is plotted against the depth of searching for CDM (green) and PPPM (magenta). 
(A) Average results for each search approach are plotted in bold on top of individual results. (B) Cell type LC18 (Hemibrain body 1722342048) search 
result evaluation. (C) Cell type CT1 (Hemibrain body 1311993208) search result evaluation.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Table of forward analysis results by cell type.

Figure supplement 1. Forward analysis individual plots for Color Depth Maximum intensity projection (CDM) and PatchPerPixMatch (PPPM).

https://doi.org/10.7554/eLife.80660
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do not expect this to hold for every neuron. It remains likely that expanding the MCFO collection with 
more samples or more drivers would improve the chances of obtaining a good set of matches.

We extended the PPPM reverse analysis in Mais et al., 2021 with a comparison to CDM (Table 2). 
We examined nine Hemibrain bodies, each with 2–13 published split- GAL4 associations (Schretter 
et al., 2020; Wang et al., 2020b). The best rank of each known- matching line was recorded, with 
Table 2 showing the median line rank and the percentage of lines with ranks in the top 50 results. 
PPPM and CDM both had median line ranks under 100 for most EM bodies. PPPM was somewhat 
more consistent, with 33–80% of known matches in the top 50 results, compared to 0–100% for 
CDM. As with the forward analysis, each approach performed better on some neurons than the other 
approach.

Discussion
We have described an extensive MCFO image resource from Generation 1 GAL4 lines, providing 
single- cell- level resolution of the neurons labeled by each line. The NeuronBridge website allows 
rapid searching of this resource from published EM datasets or uploaded images. CDM and PPPM 
search approaches both find valid EM/LM matches for several tested neurons, supporting their effec-
tiveness and the good coverage of the brain by the Gen1 MCFO collection. NeuronBridge has already 
seen frequent usage (Bidaye et  al., 2020; Morimoto et  al., 2020; Nojima et  al., 2021; Sareen 
et al., 2021; Zolin et al., 2021; Israel et al., 2022; Tanaka and Clark, 2022; Laturney et al., 2022). 
Together these tools allow for the rapid determination of likely split- GAL4 lines and other enhancer- 
based approaches to target most neurons initially found in the FlyEM Hemibrain and eventually in the 
full Drosophila CNS.

While performing these analyses and practically applying the tools to screen split- GAL4 combi-
nations, we made some qualitative observations: (1) In general, both CDM and PPPM are compli-
mentary and best used in combination, although PPPM tended to bring good matches closer to 
the top of search results. (2) CDM occasionally struggled with occluded neurons and benefited from 
examination of full 3D stacks of matching MCFO samples. (3) PPPM correspondingly showed the most 
improvement in samples with occluded neurons. (4) Both techniques return some highly ranked false 
positives with clear flaws, such that rankings alone are insufficient for algorithmic association of EM 
and LM neurons. (5) We estimate the image collection and search techniques can lead to good split 

Table 2. Reverse analysis: scoring known match search ranks in Color Depth Maximum intensity 
projection (CDM) and PatchPerPixMatch (PPPM) results.
PPPM and CDM search results on nine Hemibrain bodies were scored for the presence of known 
GAL4 matches from the literature (Schretter et al., 2020; Wang et al., 2020a). Only the top- 
ranking sample for each line and EM body comparison was considered. Searches were performed 
across only Phase 140× Gen1 MCFO collection data. vpoDN PPPM median line ranks were 7, 49, 
>400, and >400. Results for bodies 514850616 and 5813063587 are reformatted from Mais et al., 
2021 Figure 9.

Name
Hemibrain body 
ID Known- matching lines

PPPM 
median line 
rank

CDM median 
line rank

PPPM % in 
top 50

CDM % in 
top 50

pC1e 514850616 13 14 58 69% 46%

pC1d 5813063587 12 28 41 58% 50%

aIPg 645456880 5 6 3 80% 100%

oviDN 550655668 4 70 42 50% 75%

oviDN 519949044 4 95 41 50% 50%

SAG 517587356 2 49 78 50% 0%

SAG 5812981862 2 44 118 50% 0%

vpoDN 5813057864 4 NA 95 50% 50%

DNp13 887195902 3 84 53 33% 33%

https://doi.org/10.7554/eLife.80660
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combinations for 50–80% of cell types, depending on how clean a combination is needed. More split 
hemidrivers would likely be needed to increase this rate. The search techniques do not significantly 
change which cell types can be targeted, but greatly simplify identifying candidate split combinations 
without requiring as much anatomical expertise.

There are several caveats for why close EM/LM matches do not always lead to successful split- GAL4 
combinations: (1) Many CNS cell types contain multiple neurons that are indistinguishable based on 
morphology. Thus, two matches for a cell type may label different neurons within the cell type and 
fail as a split combination. Information from connectomic approaches and other modalities are also 
continuing to refine cell type definitions. (2) Although split- GAL4 hemidrivers are made with the same 
enhancer fragments as Gen1 GAL4 lines, they can differ in vector sequence and genomic insertion 
site. These differences can alter expression patterns and hence split- GAL4 effectiveness. (3) UAS 
reporters can vary in genomic insertion site, number of UAS elements, and other factors that affect 
how well they label particular cell types. MCFO reporters in particular can tend to brightly label 
neurons that are weakly labeled by reporters for the full GAL4 pattern. An examination of the full 
Gen1 GAL4 patterns (if not too dense) can help predict likely effectiveness of a split combination. 
(4) GAL4 driver expression can vary temporally, so there could be spatial but not temporal overlap 
between two split hemidrivers.

In creating the image resource, we have optimized driver line selection, sample preparation, and 
imaging to yield the maximum identifiable neurons per sample, per line, and across the central brain 
and VNC. For the search resource, we have implemented two complementary search approaches 
that effectively identify neuron matches in an easy to use interface. The image resource should be 
amenable to analysis with future search approaches as they continue to develop.

While our focus has been on the EM to split- GAL4 use case, we described other uses, including 
guiding EM proofreading and extending EM analyses beyond limited regions or sample sizes currently 
available. We anticipate other uses will be found for this resource.

Materials and methods
Fly stocks
The 5155 Generation 1 GAL4 stocks included in this resource (Supplementary file 1) were from 
Jenett et  al., 2012; Tirian and Dickson, 2017. Lines in the 20×/63× (Annotator) collection were 
selected by collaborators for individual projects. For the 40× collection we focused on driver lines 
with available AD or DBD hemidrivers (Tirian and Dickson, 2017; Dionne et al., 2018). Split- GAL4 
stock MB310C consists of R52G04- p65ADZp in VK00027 and R17C11- ZpGdbd in attP2 (Aso et al., 
2014b). UAS reporters are described in key resources table. ‘R57C10- Flp MCFO’ in the text was JRC 
stock 3023701 for 94% of such samples, and JRC stock 3023700 for 6% of samples from sparser lines. 
‘hs- Flp MCFO’ was JRC stock 3023951. See Supplementary file 1 for details of individual samples.

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Genetic reagent 
(Drosophila 
melanogaster)

MCFO- 1; hsPESTOPT_attP3_ 3stop1_X_0036; 
(w, pBPhsFlp2::PEST in attP3;; pJFRC201- 
10XUASFRT >STOP > FRT- myr::smGFP- HA in 
VK00005,pJFRC240- 10XUAS- FRT>STOP > FRT- 
myr::smGFP- V5- THS- 10XUASFRT >STOP > FRT- 
myr::smGFPFLAG in su(Hw)attP1/TM3,Sb)

Nern et al., 2015 RRID:BDSC_64085 
(Janelia stock 
1117734)

Genetic reagent 
(Drosophila 
melanogaster)

MCFO- 2; pBPhsFLP_PEST_ HAV5_FLAG_OLLAS_ 
X3_0095; (w, pBPhsFlp2::PEST in attP3;; pJFRC210- 
10XUASFRT >STOP > FRT- myr::smGFP- OLLAS 
in attP2, pJFRC201- 10XUAS- FRT>STOP > FRT- 
myr::smGFP- HA in VK0005, pJFRC240- 10XUAS- 
FRT>STOP > FRT- myr::smGFP- V5- THS10XUAS- 
FRT>STOP > FRT- myr::smGFPFLAG in su(Hw)attP1/
TM2)

Nern et al., 2015 RRID:BDSC_64086 
(Janelia stock 
3022015)

https://doi.org/10.7554/eLife.80660
https://identifiers.org/RRID/RRID:BDSC_64085
https://identifiers.org/RRID/RRID:BDSC_64086


 Tools and resources      Neuroscience

Meissner et al. eLife 2023;12:e80660. DOI: https:// doi. org/ 10. 7554/ eLife. 80660  12 of 20

Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Genetic reagent 
(Drosophila 
melanogaster)

MCFO- 4; 57C10wt_attp8_ 3stop1; (w, R57C10- Flp2 
in su(Hw)attP8;; pJFRC201- 10XUASFRT >STOP > 
FRT- myr::smGFP- HA in VK00005,pJFRC240- 10XUAS- 
FRT>STOP > FRT- myr::smGFP- V5- THS- 10XUASFRT 
>STOP > FRT- myr::smGFP- FLAG in su(Hw)attP1)

Nern et al., 2015 RRID:BDSC_64088 
(Janelia stock 
1116898)

Genetic reagent 
(Drosophila 
melanogaster)

MCFO- 5; 57C10PEST_attp8_ 3stop1; (w, R57C10- 
Flp2::PEST in su(Hw)attP8;; pJFRC201- 10XUAS- 
FRT>STOP > FRT- myr::smGFPHA in VK00005, 
pJFRC240- 10XUAS- FRT>STOP > FRTmyr::smGFP- 
V5- THS- 10XUAS- FRT>STOP > FRTmyr::smGFP- 
FLAG in su(Hw)attP1/TM2)

Nern et al., 2015 RRID:BDSC_64089 
(Janelia stock 
1116876)

Genetic reagent 
(Drosophila 
melanogaster)

MCFO- 6; 57C10L_attp8_ 4stop1; (w, R57C10- FlpL in 
su(Hw)attp8;; pJFRC210- 10XUASFRT >STOP > FRT- 
myr::smGFP- OLLAS in attP2, pJFRC201- 10XUAS- 
FRT>STOP > FRT- myr::smGFP- HA in VK00005, 
pJFRC240- 10XUAS- FRT>STOP > FRT- myr::smGFP- 
V5- THS10XUAS- FRT>STOP > FRT- myr::smGFPFLAG 
in su(Hw)attP1/TM2)

Nern et al., 2015 RRID:BDSC_64090 
(Janelia stock 
1116894)

Genetic reagent 
(Drosophila 
melanogaster)

MCFO- 7; 57C10PEST_attp18_ 4stop1; (w, R57C10- 
Flp2::PEST in attp18;; pJFRC210- 10XUASFRT >STOP 
> FRT- myr::smGFP- OLLAS in attP2, pJFRC201- 
10XUAS- FRT>STOP > FRT- myr::smGFPHA in 
VK00005, pJFRC240- 10XUAS- FRT>STOP > 
FRTmyr::smGFP- V5- THS- 10XUAS- FRT>STOP > 
FRTmyr::smGFP- FLAG in su(Hw)attP1/TM2)

Nern et al., 2015 RRID:BDSC_64091 
(Janelia stock 
1116875)

Genetic reagent 
(Drosophila 
melanogaster)

MCFO- 3 derivative; 57C10L_brp_SNAP_ 
MCFO_X23_0117; (w, R57C10- FlpL in su(Hw)attP8; 
brp::Snap / CyO; pJFRC201- 10XUAS- FRT>STOP > 
FRT- myr::smGFPHA in VK00005,pJFRC240- 10XUAS- 
FRT>STOP > FRTmyr::smGFP- V5- THS- 10XUAS- 
FRT>STOP > FRTmyr::smGFP- FLAG in su(Hw)attP1/
TM6B)

Nern et al., 2015; 
Kohl et al., 2014

RRID:BDSC_64087 
(Janelia stock 
3023700)

Genetic reagent 
(Drosophila 
melanogaster)

57C10PEST_brp_SNAP_ MCFO_X23_0099; (w, 
R57C10- Flp2::PEST in attP18; brp::Snap / CyO; 
pJFRC201- 10XUASFRT >STOP > FRT- myr::smGFP- 
HA in VK00005,pJFRC240- 10XUAS- FRT>STOP > 
FRT- myr::smGFP- V5- THS- 10XUASFRT >STOP > FRT- 
myr::smGFP- FLAG in su(Hw)attP1/TM6B)

Nern et al., 2015 (Janelia stock 
3023701)

Genetic reagent 
(Drosophila 
melanogaster)

MCFO- 1 derivative; pBPhsFlp2_PEST_ brp_SNAP_ 
MCFO_0128; (w, pBPhsFlp2::PEST in attP3; 
brp::Snap / CyO; pJFRC201- 10XUAS- FRT>STOP > 
FRT- myr::smGFPHA in VK00005,pJFRC240- 10XUAS- 
FRT>STOP > FRTmyr::smGFP- V5- THS- 10XUAS- 
FRT>STOP > FRTmyr::smGFP- FLAG in su(Hw)attP1/
TM6B)

Nern et al., 2015; 
Kohl et al., 2014

RRID:BDSC_64085 
(Janelia stock 
3023951)

Genetic reagent 
(Drosophila 
melanogaster)

pJFRC2- 10XUAS- IVS- mCD8::GFP Pfeiffer et al., 
2010

RRID:BDSC_32185 
(Janelia stock 
1115125)

Antibody Anti- Brp mouse monoclonal nc82 Developmental 
Studies Hybridoma 
Bank (DSHB)

RRID: AB_2314866 1:30

Antibody Anti- HA rabbit monoclonal C29F4 Cell Signaling 
Technologies: 
3724S

RRID: AB_1549585 1:300

Antibody Anti- FLAG rat monoclonal DYKDDDDK Epitope Tag 
Antibody

Novus Biologicals: 
NBP1- 06712

RRID: AB_1625981 1:200

Antibody DyLight 550 conjugated anti- V5 mouse monoclonal AbD Serotec: 
MCA1360D550GA

RRID: AB_2687576 1:500

Antibody Anti- RAT IgG (H&L) Goat Polyclonal Antibody ATTO 
647N Conjugated

Rockland: 612- 
156- 120

RRID: 
AB_10893386

1:300

Antibody Alexa Fluor 594 AffiniPure Donkey Polyclonal Anti- 
Rabbit IgG (H+L)

Jackson 
ImmunoResearch 
Labs: 711- 585- 152

RRID: AB_2340621 1:500

 Continued

 Continued on next page

https://doi.org/10.7554/eLife.80660
https://identifiers.org/RRID/RRID:BDSC_64088
https://identifiers.org/RRID/RRID:BDSC_64089
https://identifiers.org/RRID/RRID:BDSC_64090
https://identifiers.org/RRID/RRID:BDSC_64091
https://identifiers.org/RRID/RRID:BDSC_64087
https://identifiers.org/RRID/RRID:BDSC_64085
https://identifiers.org/RRID/RRID:BDSC_32185
https://identifiers.org/RRID/RRID:AB_2314866
https://identifiers.org/RRID/RRID:AB_1549585
https://identifiers.org/RRID/RRID:AB_1625981
https://identifiers.org/RRID/RRID:AB_2687576
https://identifiers.org/RRID/RRID:AB_10893386
https://identifiers.org/RRID/RRID:AB_2340621
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Antibody Anti- Green Fluorescent Protein (GFP) Rabbit 
Polyclonal Antibody, Unconjugated

Thermo Fisher 
Scientific: A- 11122

RRID: AB_221569 1:1000

Antibody Goat Polyclonal anti- Rabbit IgG (H+L) Highly Cross- 
Adsorbed Antibody, Alexa Fluor 488

Thermo Fisher 
Scientific: A- 11034

RRID: AB_2576217 1:800

Antibody Goat Polyclonal anti- Mouse IgG (H+L) Highly Cross- 
Adsorbed Antibody, Alexa Fluor 568

Thermo Fisher 
Scientific: A- 11031

RRID: AB_144696 1:800

Software, 
algorithm

Janelia Workstation Rokicki et al., 
2019; https:// 
github.com/ 
JaneliaSciComp/ 
workstation; 
Howard Hughes 
Medical Institute, 
2023

RRID: SCR_014302

Software, 
algorithm

NeuronBridge codebase Clements et al., 
2022; Clements 
et al., 2021

https://doi. 
org/10.
25378/janelia.
12159378.v2

Software, 
algorithm

Fiji https://fiji.sc RRID: 
SCR_0022852

Software, 
algorithm

Affinity Designer https://affinity.serif. 
com/designer/

RRID: SCR_016952

Other MCFO Hybrid Chemical Tag & IHC for Adult CNS https://doi.org/10. 
17504/protocols.io. 
nyhdft6

Protocol

Other FlyLight protocols for dissection, 
immunohistochemistry, and mounting

https: //www. 
janelia.org/project- 
team/flylight/ 
protocols

Protocol

 Continued

Fly crosses, heat shock, and dissection
Flies were raised on standard corn meal molasses food, typically in at least partial- brightness 24 hr 
light. All crosses were performed at 21–25°C, with a few exceptions (~2.5% of all samples) performed 
at 18°C when scheduling necessitated. Crosses with hs- Flp in particular were held at 21°C until adult-
hood, when they were heat shocked at 37°C for 40 min (Category 2 lines) or 13 min (Category 3 lines). 
Flies were generally dissected at 5–14 days of adulthood, giving time for R57C10- Flp and then MCFO 
reporter expression.

Tagging and immunohistochemistry
After dissection of the brain or full CNS, samples were fixed for 55 min in 2% paraformaldehyde.

For the 40× pipeline a hybrid labeling protocol was used, in which a chemical tag (Brp- SNAP 
and SNAP- tag ligand) labels the neuropil reference, and immunohistochemistry of MCFO markers 
labels specific GAL4 neurons (Kohl et al., 2014; Nern et al., 2015; Meissner et al., 2018). See Key 
resources table for specific antibodies and concentrations. Chemical tag labeling of the Brp reference 
was not as bright as Brp antibody staining with nc82, but was more consistent and had lower back-
ground. 40× pipeline samples were washed one to four times for 15 min and then tagged with 2 µM 

https://doi.org/10.7554/eLife.80660
https://identifiers.org/RRID/RRID:AB_221569
https://identifiers.org/RRID/RRID:AB_2576217
https://identifiers.org/RRID/RRID:AB_144696
https://github.com/JaneliaSciComp/workstation
https://github.com/JaneliaSciComp/workstation
https://github.com/JaneliaSciComp/workstation
https://github.com/JaneliaSciComp/workstation
https://identifiers.org/RRID/RRID:SCR_014302
https://doi.org/10.25378/janelia.12159378.v2
https://doi.org/10.25378/janelia.12159378.v2
https://doi.org/10.25378/janelia.12159378.v2
https://doi.org/10.25378/janelia.12159378.v2
https://fiji.sc
https://identifiers.org/RRID/RRID:SCR_0022852
https://affinity.serif.com/designer/
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Cy2 SNAP- tag ligand to visualize the Brp- SNAP neuropil the same day, after which immunohistochem-
istry and DPX mounting followed.

20×/63× samples used nc82 for neuropil reference labeling, as in Nern et al., 2015, and typically 
received four washes of 10 min each after fixation. See https://www.janelia.org/project-team/flylight/ 
protocols for full MCFO protocols with either nc82 or hybrid Brp- SNAP neuropil labeling.

Imaging and image processing
Imaging was performed using eight Zeiss LSM 710 or 780 laser scanning confocal microscopes over 
a combined capture time of 11 years. 20×/63× imaging was performed with 20× air and 63× oil 
objectives to combine rapid scanning of all samples with detailed scanning of regions of interest. 40× 
imaging was performed with 40× oil objectives to cover the central brain and VNC with good axial 
resolution in a single pass. Confocal stacks were captured at 0.52 × 0.52 × 1.00 µm (20× objective), 
0.19 × 0.19 × 0.38 µm (63×), or 0.44 µm isotropic resolution (40×). 40× resolution was selected to 
maximize effective z- resolution while limiting the size of the full dataset (about 100 TB combined). 
The field of view was set to the widest 0.7 zoom for 40× and 63× objectives, resulting in heightened 
lens distortion at the edges of images, which was corrected before stitching (Bogovic et al., 2020). 
The whole brain and VNC (where present) were captured in separate 20× tiles for 20×/63× samples, 
followed by selected 63× tiles of regions of interest. The central brain and two VNC tiles (where 
present) were captured for each 40× sample. After merging and distortion correction, overlapping 
40×/63× tiles were automatically stitched together, as described (Yu and Peng, 2011). Brains and 
VNCs were aligned to the JRC2018 sex- specific and unisex templates using CMTK software, and color 
depth MIPs were generated (Rohlfing and Maurer, 2003; Otsuna et al., 2018; Bogovic et al., 2020).

Four- color imaging was configured as described in Nern et al., 2015. Briefly, two LSM confocal 
stacks were captured at each location, one with 488 and 594 nm laser lines and one with 488, 561, and 
633 nm laser lines. Stacks were merged together after imaging. Imaging was performed using Zeiss’s 
ZEN software with a custom MultiTime macro. The macro was programmed to automatically select 
appropriate laser power for each sample and region, resulting in independent image parameters 
between samples and between brains and VNCs. Gain was typically set automatically for the 561 and 
633 nm channels and manually for 488 and 594 nm. Imaging parameters were held constant within 
tiles covering a single brain or VNC.

The image processing pipeline (distortion correction, normalization, merging, stitching, alignment, 
MIP generation, file compression) was automated using the open- source Janelia Workstation soft-
ware (Rokicki et al., 2019), which was also used to review the secondary results and annotate lines 
for publishing. Images for published lines were uploaded to AWS S3 (Amazon Web Services) and 
made available in a public bucket (https://registry.opendata.aws/janelia-flylight/) for download or 
further analysis on AWS. Original LSM (i.e., lossless TIFF) imagery is available alongside the processed 
(merged/stitched/aligned) imagery in H5J format. H5J is a ‘visually lossless’ format developed at 
Janelia, which uses the H.265 codec and differential compression ratios on a per- channel basis to 
obtain maximum compression while minimizing visually relevant artifacts (see http://data.janelia.org/ 
h5j).

The open- source NeuronBridge tool (Clements et  al., 2021; Clements et  al., 2022) is a web 
application designed for ease of use and accessibility to neuron mappings across large multi- modal 
datasets. It hosts precomputed matches for publicly available EM and LM datasets originating at 
Janelia, and also supports ad hoc searches against those datasets based on user data. NeuronBridge 
was constructed as a single- page application built on the React framework for fast performance, 
responsiveness, and ease of deployment. The web app and backend services are both deployed to 
AWS to ensure scalability and reliability, and they use only serverless components to minimize costs. 
NeuronBridge also takes advantage of the innovative ‘burst- parallel’ compute paradigm (Fouladi 
et al., 2019) to massively scale color depth MIP search by leveraging micro VMs (virtual machines) 
on AWS Lambda, thereby enabling rapid ad hoc searches across a nominally petabyte- scale dataset.

Quality control and expression density categorization
Samples had to pass quality control at several stages to be included in the final collection. Samples 
lacking visible neuron expression or too dense for IHC were in most cases excluded prior to imaging. 
Samples were excluded that contained damage, distortion, debris, or low neuropil reference quality 
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causing a failure to align or an error in the image processing pipeline. Samples with minor issues in 
neuron channels were typically included if neurons could be distinguished. Every effort was made to 
accurately track and correct line and sample metadata, but the dataset may still contain occasional 
errors.

Selected Drosophila lines were qualitatively grouped into Categories 1 through 5 by expression 
density, primarily using MCFO and less often by full GFP patterns. Category boundaries were selected 
based on our estimation of the utility of the lines and their anticipated performance for neuron 
segmentation. Category 1 and 5 samples were excluded due to lack of information, either no unique 
neurons or too many to label, respectively. Categories 3 and 4 were divided based on estimated diffi-
culty of manual segmentation combined with intuition about future segmentation algorithm improve-
ments, such that Category 3 lines are expected to be tractable for segmentation, whereas Category 
4 lines are more challenging. Categories 2 and 3 were divided such that Category 2 mostly contained 
neurons that could easily be ‘segmented’ by eye, whereas Category 3 had more instances of overlap-
ping neurons that were harder to distinguish.

Search approach evaluation
For the forward analysis, the top 100 NeuronBridge search results were examined for one Hemib-
rain body in each cell type. About 20% of the samples were checked by opening the image stacks, 
including the majority of the samples annotated as including the cell type in question.

Reverse analysis was performed as in Mais et al., 2021.
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