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Abstract Predicting the function of a protein from its amino acid sequence is a long-standing 
challenge in bioinformatics. Traditional approaches use sequence alignment to compare a query 
sequence either to thousands of models of protein families or to large databases of individual 
protein sequences. Here we introduce ProteInfer, which instead employs deep convolutional neural 
networks to directly predict a variety of protein functions – Enzyme Commission (EC) numbers 
and Gene Ontology (GO) terms – directly from an unaligned amino acid sequence. This approach 
provides precise predictions which complement alignment-based methods, and the computational 
efficiency of a single neural network permits novel and lightweight software interfaces, which 
we demonstrate with an in-browser graphical interface for protein function prediction in which 
all computation is performed on the user’s personal computer with no data uploaded to remote 
servers. Moreover, these models place full-length amino acid sequences into a generalised func-
tional space, facilitating downstream analysis and interpretation. To read the interactive version of 
this paper, please visit https://google-research.github.io/proteinfer/.

Editor's evaluation
The authors describe with the newly developed software, ProteInfer, an important new tool that 
analyses protein sequences to predict their functions. It is based on a single convolutional neural 
network scan for all known domains in parallel. This software provides a convincing approach for all 
computational scientists as well as experimentalists working near the interface of machine learning 
and molecular biology.

Introduction
Every day, more than a hundred thousand protein sequences are added to global sequence databases 
(UniProt Consortium, 2019a). However, these entries are of limited use to practitioners unless they 
are accompanied by functional annotations. While curators diligently extract annotations from the 
literature, assessing more than 60,000 papers each year (UniProt Consortium, 2019b), the time-
consuming nature of this task means that only ~0.03% of publicly available protein sequences are 
manually annotated. The community has a long history of using computational tools to infer protein 
function directly from amino acid sequence. Starting in the 1980s, methods such as BLAST (Altschul 
et al., 1990) relied on pairwise sequence comparisons, where a query protein is assumed to have 
the same function as highly similar sequences that have already been annotated. Signature-based 
approaches were later introduced, with the PROSITE database (Bairoch, 1991) cataloguing short 
amino acid ‘motifs’ found in proteins that share a particular function. Subsequently, a crucial refine-
ment of signature-based approaches was the development of profile hidden Markov models (HMMs) 
(Krogh et al., 1994; Eddy, 1998). These models collapse an alignment of related protein sequences 
into a model that provides likelihood scores for new sequences, which describe how well they fit 
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the aligned set. Critically, profile HMMs allow for longer signatures and fuzzier matching and are 
currently used to update popular databases such as Interpro and Pfam (Bateman et al., 2019; Blum 
et al., 2021). Subsequent refinements have made these techniques more sensitive and computation-
ally efficient (Altschul et al., 1997; Eddy, 2011; Bateman et al., 2019; Söding, 2005; Steinegger 
et al., 2019), while their availability as web tools allows practitioners to easily incorporate them into 
workflows (Johnson et al., 2008; Soding et al., 2005; Potter et al., 2018; Bernhofer et al., 2021).

These computational modelling approaches have had great impact; however, one-third of bacte-
rial proteins still cannot be annotated (even computationally) with a function (Price et al., 2018). It is 
therefore worthwhile examining how new approaches might complement existing techniques. First, 
current approaches conduct entirely separate comparisons for each comparator sequence or model, 
and thus may not fully exploit the features shared across different functional classes. An ideal classifi-
cation system, for example, might have a modular ATP-binding region detector used in detection of 
both kinases and ABC transporters (Ramakrishnan et al., 2002). Separately modelling these targets 
in each family, like standard HMM approaches, increases the computational cost and may also be 
less accurate. In addition, the process of creating many of these signatures is not fully automated 
and requires considerable curatorial efforts (El-Gebali et al., 2018b; El-Gebali et al., 2018a), which 
at present are spread across an array of disparate but overlapping signature databases (Blum et al., 
2021).

Deep neural networks have recently transformed a number of labelling tasks, including image 
recognition – the early layers in these models build up an understanding of simple features such as 
edges, and later layers use these features to identify textures, and then entire objects. Edge-detecting 
filters can thus be trained with information from all the labelled examples, and the same filters can be 
used to detect, for instance, both oranges and lemons (Carter et al., 2019).

In response, recent work has contributed a number of deep neural network models for protein 
function classification (Dalkiran et  al., 2018; Kulmanov et  al., 2018; Cao et  al., 2017; Almagro 
Armenteros et al., 2017; Schwartz et al., 2018; Sureyya Rifaioglu et al., 2019; Li et al., 2018; Hou 
et al., 2018; Littmann et al., 2021). These approaches train a single model to recognise multiple 
properties, building representations of different protein functions via a series of layers, which allow the 
same low-level features to be used for different high-level classifications. Of special note is the layer 
preceding the final layer of the network, which constructs an ‘embedding’ of the entire example in a 
high-dimensional vector space, and often captures semantic features of the input.

Beyond functional annotation, deep learning has enabled significant advances in protein structure 
prediction (AlQuraishi, 2019; Senior et al., 2020; Yang et al., 2020; Du et al., 2019; Rao et al., 
2021), predicting the functional effects of mutations (Riesselman et al., 2018; Rives et al., 2021; Rao 
et al., 2019; Frazer et al., 2021), and protein design (Yang et al., 2019; Mazurenko et al., 2020; 
Biswas et al., 2021; Madani et al., 2020; Elnaggar et al., 2020; Anishchenko et al., 2021; Bryant 
et al., 2021). A key departure from traditional approaches is that researchers have started to incorpo-
rate vast amounts of raw, uncurated sequence data into model training, an approach which also shows 
promise for functional prediction (Brandes et al., 2022).

Of particular relevance to the present work is Bileschi et al., 2022, where it is shown that models 
with residual layers (He et al., 2015) of dilated convolutions (Yu and Koltun, 2015) can precisely 
and efficiently categorise protein domains. Dohan et al., 2021 provide additional accuracy improve-
ments using uncurated data. However, these models cannot infer functional annotations for full-length 
protein sequences since they are trained on pre-segmented domains and can only predict a single 
label. The full-sequence task is of primary importance to biological practitioners.

To address this challenge we employ deep dilated convolutional networks to learn the mapping 
between full-length protein sequences and functional annotations. The resulting ProteInfer models 
take amino acid sequences as input and are trained on the well-curated portion of the protein universe 
annotated by Swiss-Prot (UniProt Consortium, 2019b). We find that (1) ProteInfer models reproduce 
curator decisions for a variety of functional properties across sequences distant from the training 
data, (2) attribution analysis shows that the predictions are driven by relevant regions of each protein 
sequence, and (3) ProteInfer models create a generalised mapping between sequence space and 
the space of protein functions, which is useful for tasks other than those for which the models were 
trained. We provide trained ProteInfer networks that enable other researchers to reproduce the anal-
ysis presented and explore embeddings of their proteins of interest via both a command line tool 

https://doi.org/10.7554/eLife.80942
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(https://github.com/google-research/proteinfer, copy archived at Sanderson et al., 2023), and also 
via an in-browser JavaScript implementation that demonstrates the computational efficiency of deep 
learning approaches.

Results
A neural network for protein function prediction
In a ProteInfer neural network (Figures  1 and 2), a raw amino acid sequence is first represented 
numerically as a one-hot matrix and then passed through a series of convolutional layers. Each layer 
takes the representation of the sequence in the previous layer and applies a number of filters, which 
detect patterns of features. We use residual layers, in which the output of each layer is added to its 
input to ease the training of deeper networks (He et al., 2015), and dilated convolutions (Yu and 
Koltun, 2015), meaning that successive layers examine larger sub-sequences of the input sequence. 
After building up an embedding of each position in the sequence, the model collapses these down 
to a single ‍n‍-dimensional embedding of the sequence using average pooling. Since natural protein 
sequences can vary in length by at least three orders of magnitude, this pooling is advantageous 
because it allows our model to accommodate sequences of arbitrary length without imposing restric-
tive modelling assumptions or computational burdens that scale with sequence length. In contrast, 
many previous approaches operate on fixed sequence lengths: these techniques are unable to make 
predictions for proteins larger than this sequence length, and use unnecessary resources when 
employed on smaller proteins. Finally, a fully connected layer maps these embeddings to logits for 
each potential label, which are the input to an element-wise sigmoid layer that outputs per-label 
probabilities. We select all labels with predicted probability above a given confidence threshold, and 
varying this threshold yields a tradeoff between precision and recall. To summarise model perfor-
mance as a single scalar, we compute the ‍Fmax‍ score, the maximum ‍F1‍ score (the geometric mean of 
precision and recall) across all thresholds (Radivojac et al., 2013).

Each model was trained for about 60 hr using the Adam optimiser (Kingma and Ba, 2015) on 8 
NVIDIA P100 GPUs with data parallelism (Jeffrey, 2012; Shallue et al., 2018). We found that using 

Input: amino acid sequence

- Amylase activity

- Exported protein
Output: annotation with a subset
 of >10,000 multi-hot labels
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Figure 1. Three approaches for mapping from an amino acid sequence to inferred function: (1) finding similar 
sequences in a large database of sequences with known annotation (e.g. BLAST), (2) scoring against a large 
database of statistical models for each family of sequences with known function (e.g. InterProScan), and (3) 
applying a single deep neural network trained to predict multiple output categories (e.g. this work).
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more than one GPU for training improved training time by allowing an increased batch size, but did 
not have a substantial impact on accuracy compared to training for longer with a smaller learning rate 
and smaller batch size on one GPU. The models have a small set of hyperparameters, such as the 
number of layers and the number of filters in each layer, which were tuned using random sampling to 
maximise ‍Fmax‍ on the random train-test split. Hyperparameter values are available in Table 1.

A machine-learning-compatible dataset for protein function prediction
The UniProt database is the central global repository for information about proteins. The manually 
curated portion, Swiss-Prot, is constructed by assessing 60,000 papers each year to harvest 35% 
of the theoretically curatable information in the literature (UniProt Consortium, 2019b). We focus 
on Swiss-Prot to ensure that our models learn from human-curated labels, rather than labels gener-
ated by a computational annotation pipeline. Each protein in Swiss-Prot goes through a six-stage 
process of sequence curation, sequence analysis, literature curation, family-based curation, evidence 
attribution, and quality assurance. Functional annotation is stored in UniProt largely through data-
base cross-references, which link a specific protein with a label from a particular ontology. These 
cross-references include Enzyme Commission (EC) numbers, representing the function of an enzyme; 
Gene Ontology (GO) terms relating to the protein’s molecular function, biological process, or subcel-
lular localisation; protein family information contained in the Pfam (Bateman et al., 2019), SUPFAM 
(Pandurangan et al., 2019), PRINTS (Attwood et al., 2003), TIGR (Haft et al., 2013), PANTHR (Mi 
et al., 2016) databases, or the umbrella database InterPro (Hunter et al., 2009), as well as other 
information including ortholog databases and references on PubMed. Here, we focus on EC and GO 
labels, though our model training framework can immediately extend to other label sets.

We use two methods to split data into training and evaluation sets. First, a random split of the 
data allows us to answer the following question: suppose that curators had randomly annotated only 
80% of the sequences in Swiss-Prot. How accurately can ProteInfer annotate the remaining 20%? 
Second, we use UniRef50 (Suzek et al., 2015) clustering to split the data to model a challenging use 
case in which an unseen sequence has low sequence similarity to anything that has been previously 
annotated. Note that there are alternative methods for splitting (Brandes et al., 2022; Zhou et al., 
2019; Gillis and Pavlidis, 2013), such as reserving the most recently annotated proteins for evalu-
ating models. This approach, which is used in CAFA and CASP (Zhou et al., 2019; Gillis and Pavlidis, 
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Figure 2. A deep dilated convolutional architecture for protein function prediction. Amino acids are one-hot 
encoded, then pass through a series of convolutions implemented within residual blocks. Successive filters are 
increasingly dilated, allowing the top residual layer of the network to build up a representation of high-order 
protein features. The positional embeddings in this layer are collapsed by mean-pooling to a single embedding 
of the entire sequence, which is converted into probabilities of each functional classification through a fully 
connected layer with sigmoidal activations.
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2013), helps ensure a fair competition because labels for the evaluation data are not available to 
participants, or the scientific community at large, until after the competition submissions are due. Such 
a split is not available for EC classification, which is the primary focus of our analyses below. Finally, 
note that all of the above approaches typically lack reliable annotation for true negatives (Warwick 
Vesztrocy and Dessimoz, 2020).

To facilitate further development of machine learning methods, we provide TensorFlow (Abadi 
et al., 2016) TFrecord files for Swiss-Prot (https://console.cloud.google.com/storage/browser/brain-​
genomics-public/research/proteins/proteinfer/datasets/). Each example has three fields: the UniProt 
accession, the amino acid sequence, and a list of database cross-reference labels. UniProt annotations 
include only leaf nodes for hierarchical taxononomies such as EC and GO. To allow machine learning 
algorithms to model this hierarchy, we added all parental annotations to each leaf node during dataset 
creation.

Prediction of catalysed reactions
We initially trained a model to predict enzymatic catalytic activities from amino acid sequence. This 
data is recorded as EC numbers, which describe a hierarchy of catalytic functions. For instance, ‍β‍ 
amylase enzymes have an EC number of EC:3.2.1.2, which represents the leaf node in the following 
hierarchy (Scheme 1):

Scheme 1. The EC hierarchy.

Individual protein sequences can be annotated with zero (non-enzymatic proteins), one (enzymes 
with a single function), or many (multi-functional enzymes) leaf-level EC numbers. These are drawn 
from a total of 8162 catalogued chemical reactions. Our best ‍Fmax‍ was achieved by a model containing 
five residual blocks with 1100 filters each (full details in ‘Materials and methods’). For the dev set, 
‍Fmax‍ converged within 500,000 training steps. On the random split, the model achieves  ‍Fmax‍ = 0.977 
(0.976–0.978) on the held-out test data. At the corresponding confidence threshold, the model 
correctly predicts 96.7% of true labels, with a false-positive rate of 1.4%. Results from the clustered 
test set are discussed below. Performance was roughly similar across labels at the top of the EC hier-
archy, with the highest ‍Fmax‍ score observed for ligases (0.993), and the lowest for oxidoreductases 
(0.963). For all classes, the precision of the network was higher than the recall at the threshold maxi-
mising ‍Fmax‍. Precision and recall can be traded off against each other by adjusting the confidence 
threshold at which the network outputs a prediction, creating the curves shown in Figure 3B.

We implemented an alignment-based baseline in which BLASTp is used to identify the closest 
sequence to a query sequence in the train set. Labels are then imputed for the query sequence 
by transferring those labels that apply to the annotated match from the train set. We produced a 
precision–recall curve by using the bit-score of the closest sequence as a measure of confidence, 
varying the cutoff above which we retain the imputed labels (Zhou et al., 2019; Eddy, 2011). We 
also considered an ensemble of neural networks (Bileschi et al., 2022), where the average of the 
ensemble elements’ predicted probabilities is used as a confidence score, and a naive control, where 
the number of proteins annotated with a specific term in the training set plays this role (Radivojac 
et al., 2013; see Figure 3B, Figure 3—figure supplement 7, Figure 3—figure supplement 8).

We found that BLASTp was able to achieve higher recall values than ProteInfer for lower precision 
values, while ProteInfer was able to provide greater precision than BLASTp at lower recall values. The 
high recall of BLAST is likely to reflect the fact that it has access to the entirety of the training set, 
rather than having to compress it into a limited set of neural network weights. In contrast, the lack 
of precision in BLAST could relate to reshuffling of sequences during evolution, which would allow a 
given protein to show high similarity to a trainining sequence in a particular subregion, despite lacking 
the core region required for that training sequence’s function. We wondered whether a combination 

https://doi.org/10.7554/eLife.80942
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of ProteInfer and BLASTp could synergise the best properties of both approaches. We found that even 
the simple ensembling strategy of rescaling the BLAST bit-score by the averages of the ensembled 
CNNs’ predicted probabilities gave a ‍Fmax‍ score (0.991, 95% confidence interval [CI]: 0.990–0.992) that 
exceeded that of BLAST (0.984, 95% CI: 0.983–0.985) or the ensembled CNN (0.981, 95% CI: 0.980–
0.982) alone (see ‘Materials and methods’ for more details on this method). On the clustered train-
test split based on UniRef50 (see clustered in Figure 3B), we see a performance drop in all methods: 
this is expected, as remote homology tasks are designed to challenge methods to generalise farther 
in sequence space. The ‍Fmax‍ score of a single neural network fell to 0.914 (95% CI: 0.913–0.915, 
precision: 0.959 recall: 0.875), substantially lower than BLAST (0.950, 95% CI: 0.950–0.951), though 
again an ensemble of both BLAST and ProteInfer outperformed both (0.979, 95% CI: 0.979–0.980). 
These patterns suggest that neural network methods learn different information about proteins to 
alignment-based methods, and so a combination of the two provides a synergistic result. All methods 
dramatically outperformed the naive frequency-based approach (Figure 3—figure supplement 9).

We also examined the relationship between the number of examples of a label in the training 
dataset and the performance of the model. In an image recognition task, this is an important consid-
eration since one image of, say, a dog, can be utterly different to another. Large numbers of labels 
are therefore required to learn filters that are able to predict members of a class. In contrast, for 
sequence data we found that even for labels that occurred less than five times in the training set, 
58% of examples in the test set were correctly recalled, while achieving a precision of 88%, for an 
F1 of 0.7 (Figure 3—figure supplement 12). High levels of performance are maintained with few 
training examples because of the evolutionary relationship between sequences, which means that 
one ortholog of a gene may be similar in sequence to another. The simple BLAST implementation 
described above also performs well, and better than a single neural network, likely again exploiting 
the fact that many sequence have close neighbours in sequence space with similar functions. We 

Table 1. Hyperparameters used in convolutional neural networks.
We note that hyperparameters for single-GPU training are available in github.com/google-research/
proteinfer/blob/master/hparams_sets.py.

CNN

Concurrent batches (data parallelism) 8

Batch size
40 (per each GPU)
Dynamic based on sequence length

Dilation rate 3

Filters 1100

First dilated layer 2

Gradient clip 1

Kernel size 9

Learning rate 1.5E-3

Learning rate decay rate 0.997

Learning rate decay steps 1000

Learning rate warmup steps 3000

Adam‍β1‍ .9

Adam‍β2‍ .999

Adam‍ϵ‍ 1E-8

Number of ResNet layers 5

Pooling Mean

ResNet bottleneck factor 0.5

Train steps 500,000

https://doi.org/10.7554/eLife.80942
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Figure 3. ProteInfer performance (A) for all seven top-level enzyme groups from a single CNN model (B) compared between methods: a single 
ProteInfer CNN, an ensemble of ProteInfer CNNs, a BLAST-based baseline, and an ensemble of BLAST predictions combined with ProteInfer CNNs.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Histogram of number of labels per sequence, including hierarchical labels, on the random dataset.

Figure supplement 2. Histogram of number of labels per sequence, including hierarchical labels, on the random dataset.

Figure supplement 3. Number of sequences annotated with a given functional label (Enzyme Commission [EC] class) in the random dataset.

Figure supplement 4. Number of sequences annotated with a given functional label (Gene Ontology [GO] label) in the random dataset.

Figure supplement 5. Number of sequences annotated with a given functional label (Enzyme Commission [EC] class) in the clustered dataset.

Figure supplement 6. Number of sequences annotated with a given functional label.

Figure supplement 7. Bootstrapped precision–recall curves for Enzyme Commission (EC) number prediction and Gene Ontology term prediction for 
random and clustered splits for four methods: BLAST top pick, single ProteInfer CNN, ensembled ProteInfer CNNs, and ensembled ProteInfer CNNs 
scaled by BLAST score.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.80942
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again find that ensembling the BLAST and ProteInfer outputs provides performance exceeding that 
of either technique used alone.

Deep models link sequence regions to function
Proteins that use separate domains to carry out more than one enzymatic function are particularly 
useful in interpreting the behaviour of our model. For example, Saccharomyces cerevisiae fol1 (acces-
sion Q4LB35) catalyses three sequential steps of tetrahydrofolate synthesis using three different 
protein domains (Figure 4A). This protein is in our held-out test set, so no information about its labels 
was directly provided to the model.

To investigate what sequence regions the neural network is using to make its functional predic-
tions, we used class activation mapping (CAM) (Zhou et  al., 2015) to identify the sub-sequences 
responsible for the model predictions. We found that separate regions of sequence cause the predic-
tion of each enzymatic activity, and that these regions correspond to the known functions of these 
regions (Figure 4B). This demonstrates that our network identifies relevant elements of a sequence 
in determining function.

We then assessed the ability of this method to more generally localise function within a sequence, 
even though the model was not trained with any explicit localisation information. We selected all 
enzymes from Swiss-Prot that had two separate leaf-node EC labels for which our model predicted 
known EC labels, and these labels were mappable to corresponding Pfam labels. For each of these 
proteins, we obtained coarse-grained functional localisation by using CAM to predict the order of the 
domains in the sequence and compared to the ground-truth Pfam domain ordering (see Methods). 
We found that in 296 of 304 (97%) of the cases, we correctly predicted the ordering, though we note 
that the set of bifunctional enzymes for which this analysis is applicable is limited in its functional diver-
sity (see ‘Materials and methods’). Although we did not find that fine-grained, per-residue functional 
localisation arose from our application of CAM, we found that it reliably provided coarse-grained 

Figure supplement 8. Full precision–recall curves for Enzyme Commission (EC) number prediction and Gene Ontology term prediction for random and 
clustered splits for four methods: BLAST top pick, single ProteInfer CNN, ensembled ProteInfer CNNs.

Figure supplement 9. Enzyme Commission (EC) random task with different methods compared against a naive baseline where the predictor is simply 
the frequency in the training set.

Figure supplement 10. Gene Ontology (GO) performance stratified by method and ontology type.

Figure supplement 11. Performance of Enzyme Commission (EC) model stratified by number of training examples available for each test example.

Figure supplement 12. The ProteInfer algorithm is set up to allow any desired training vocabulary to be used.

Figure 3 continued

Figure 4. Linking sequence regions to function with class activation mapping for C-1-tetrahydrofolate synthase (accession P11586). (A) Ground-truth 
annotation of function on UniProt (UniProt Consortium, 2019b). (B) The three horizontal bars are the sequence region ProteInfer predicts are most 
involved in each corresponding reaction. This concurs with the known function localisation.

https://doi.org/10.7554/eLife.80942
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annotation of domains’ order, as supported by Pfam. This experiment suggests that this is a promising 
future area for research.

Neural networks learn a general-purpose embedding space for protein 
function
Whereas InterProScan compares each sequence against more than 50,000 individual signatures and 
BLAST compares against an even larger sequence database, ProteInfer uses a single deep model to 
extract features from sequences that directly predict protein function. One convenient property of this 
approach is that in the penultimate layer of the network each protein is expressed as a single point in 
a high-dimensional space. To investigate to what extent this space is useful in examining enzymatic 
function, we used the ProteInfer EC model trained on the random split to embed each test set protein 
sequence into a 1100-dimensional vector. To visualise this space, we selected proteins with a single 
leaf-level EC number and used UMAP to compress their embeddings into two dimensions (McInnes 
et al., 2018).

The resulting representation captures the hierarchical nature of EC classification, with the largest 
clusters in embedding space corresponding to top level EC groupings (Figure 5A). These clusters 
in turn are further divided into sub-regions on the basis of subsequent levels of the EC hierarchy 
(Figure 5B). Exceptions to this rule generally recapitulate biological properties. For instance, Q8RUD6 
is annotated as Arsenate reductase (glutaredoxin) (EC:1.20.4.1) (Chao et al., 2014) was not placed 
with other oxidoreductases (EC:1.-.-.-) but rather with sulfurtransferases (EC:2.8.1.-). Q8RUD6 can, 
however, act as a sulfurtransferase (Bartels et al., 2007).

Note that the model is directly trained with labels reflecting the EC hierarchy; the structure in 
Figure  5 was not discovered automatically from the data. However, we can also ask whether the 
embedding captures more general protein characteristics, beyond those on which it was directly 
supervised. To investigate this, we took the subset of proteins in Swiss-Prot that are non-enzymes, 
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Figure 5. Embedding reflects enzyme functional hierarchy. UMAP projection of embeddings for the subset of test set sequences which have only one 
leaf-level Enzyme Commission (EC) classification. Points are colour-coded at successive levels of the EC hierarchy in each panel. (A) colours denote top 
level EC groups, (B) colours denote second level EC groups within EC2*, (C) colours denote third level EC groups within EC:2.7*, and (D) colours depict 
terminal EC groups within EC:2.7.4*.

https://doi.org/10.7554/eLife.80942
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and so lack any EC annotations. The network would achieve perfect accuracy on these examples if it, 
for example, mapped all of them to a single embedding that corresponds to zero predicted proba-
bility for every enzymatic label. Do these proteins therefore share the same representation in embed-
ding space? The UMAP projection of these sequences’ embeddings revealed clear structure to the 
embedding space, which we visualised by highlighting several GO annotations which the network was 
never supervised on. For example, one region of the embedding space contained ribosomal proteins, 
while other regions could be identified containing nucleotide binding proteins, or membrane proteins 
(Figure 6). To quantitatively measure whether these embeddings capture the function of non-enzyme 
proteins, we trained a simple random forest classification model that used these embeddings to 
predict whether a protein was annotated with the intrinsic component of membrane GO term. We 
trained on a small set of non-enzymes containing 518 membrane proteins and evaluated on the rest of 
the examples. This simple model achieved a precision of 97% and recall of 60% for an F1 score of 0.74. 
Model training and data-labelling took around 15 s. This demonstrates the power of embeddings to 
simplify other studies with limited labelled data, as has been observed in recent work (Alley et al., 
2019; Biswas et al., 2021).

Rapid client-side in-browser protein function prediction
Processing speed and ease of access are important considerations for the utility of biological soft-
ware. An algorithm that takes hours or minutes is less useful than one that runs in seconds, both 
because of its increased computational cost, but also because it allows less immediate interactivity 
with a researcher. An ideal tool for protein function prediction would require minimal installation and 
would instantly answer a biologist’s question about protein function, allowing them to immediately 
act on the basis of this knowledge. Moreover, there may be intellectual property concerns in sending 
sequence data to remote servers, so a tool that does annotation completely client-side may also be 
preferable.

There is arguably room for improvement in this regard from classical approaches. For example, the 
online interface to InterProScan can take 147 s to process a 1500 amino acid sequence (Protein used 
was Q77Z83. It should be noted that the individual databases that make up InterProScan may return 
matches faster, with the online interface to Pfam taking 14–20 s for a 1500 amino acid sequence.), 
while running the tool may make the search faster, doing so requires downloading a 9 GB file, with 
an additional 14 GB for the full set of signatures, which when installed exceeds 51 GB. Meanwhile, 
conducting a BLAST search against Swiss-Prot takes 34 s for a 1500 amino acid sequence (a target 
database with decreased redundancy could be built to reduce this search time, and other optimisa-
tions of BLAST have been developed).

An attractive property of deep learning models is that they can be run efficiently using consumer 
graphics cards for acceleration. Indeed, recently, a framework has been developed to allow models 
developed in TensorFlow to be run locally using simply a user’s browser (Smilkov et al., 2019), but 

(a) Nucleotide binding (b) Structural constituent of ribosome (c) Intrinsic component of membrane

Figure 6. A neural network trained on enzyme function learns general protein properties, beyond enzymatic activity. This figure shows Enzyme 
Commission (EC)-trained ProteInfer embeddings for all non-enzymatic sequences in the test set, projected using UMAP. To illustrate the structure 
contained in these embeddings, we highlight genes based on Gene Ontology (GO) labels (on which this network was never trained) - (a): Nucleotide 
binding, (b): Structural constituent of ribosome and (c): Intrinsic component of membrane .

https://doi.org/10.7554/eLife.80942
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to our knowledge this has never been deployed 
to investigate biological sequence data. We 
therefore built a tool to allow near-instantaneous 
prediction of protein functional properties in the 
browser. When the user loads the tool, light-
weight EC (5 MB) and GO model (7 MB) predic-
tion models are downloaded and all predictions 
are then performed locally, with query sequences 
never leaving the user’s computer. We selected 
the hyperparameters for these lightweight models 
by performing a tuning study in which we filtered 
results by the size of the model’s parameters and 
then selected the best performing models. This 
approach uses a single neural network rather 
than an ensemble. Inference in the browser for a 
1500 amino acid sequence takes <1.5 s for both 
models (see supplement).

Comparison to experimental data
Despite its curated nature, SwissProt contains 
many proteins annotated only on the basis of 
electronic tools. To assess our model’s perfor-
mance using an experimentally validated source 

of ground truth, we focused our attention on a large set of bacterial genes for which functions have 
recently been identified in a high-throughput experimental genetic study (Price et al., 2018). In partic-
ular, this study listed newly identified EC numbers for 171 proteins, representing cases when there was 
previously either misannotation or inconsistent annotation in the SEED or KEGG databases. Therefore, 
this set of genes may be enriched for proteins whose functions are difficult to assess computationally. 
We examined how well our network was able to make predictions for this experimental dataset at 
each level of the EC hierarchy (Figure 7) using as a decision threshold the value that optimised F1 
identified during tuning. The network had high accuracy for identification of broad enzyme class, with 
90% accuracy at the top level of the EC hierarchy. To compute accuracy, we examined the subset of 
these 171 proteins for which there was a single enzymatic annotation from Price et al., 2018, giving us 
predictions for 119 enzymes. At the second level of the hierarchy, accuracy was 90% and the network 
declined to make a prediction for 12% of classes. Even at the third level, accuracy was 86% with the 
network making a prediction in 77% of cases. At the finest level of classification, the proportion of 
examples for which a prediction was made fell to 28%, with 42% of these predictions correct.

As an example, the Sinorhizobium meliloti protein Q92SI0 is annotated in UniProt as a Inosine-
uridine nucleoside N-ribohydrolase (EC 3.2.2.1). Analysing the gene with InterProScan (Jones et al., 
2014) also gives this prediction, but our model instead predicts it to be a uridine nucleosidase (EC 
3.2.2.3), and this was indeed the result found in this experimental work. Similarly, Pseudomonas fluo-
rescens A0A166Q345 was correctly classified by our model as a D-galacturonate dehydrogenase (EC 
1.1.1.203) as opposed to a misannotation on UniProt and with InterProScan.

It was notable that for many of these proteins the network declined to make a prediction at the 
finest level of the EC hierarchy. This suggests that by training on this hierarchical data, the network is 
able to appropriately make broad or narrow classification decisions. This is similar to the procedure 
employed with manual annotation: when annotators are confident of the general class of reaction that 
an enzyme catalyses but not its specific substrate, they may leave the third or fourth position of the EC 
number blank (e.g. EC:1.1.-.-). Due to training on hierarchical data, our network is able to reproduce 
these effects by being more confident (with higher accuracy) at earlier levels of classification.

A model predicting the entire Gene Ontology
Given the high accuracy that our deep learning model was able to achieve on the more than 5000 enzy-
matic labels in Swiss-Prot, we asked whether our networks could learn to predict protein properties 
using an even larger vocabulary of labels, using a similar test-train setup. GO (Ashburner et al., 2000; 

Figure 7. ProteInfer predictions for a set of genes 
recently experimentally reannotated by high-
throughput phenotyping. ProteInfer makes confident 
and largely accurate predictions at the earliest levels 
of the Enzyme Commission (EC) hierarchy. Accuracy 
falls at the finest levels of classification (for this set of 
challenging genes) but fortunately the network declines 
to make a prediction in most cases, with every label 
failing to meet the threshold for positive classification.

https://doi.org/10.7554/eLife.80942
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Consortium, 2019; Carbon et al., 2009) terms describe important protein functional properties, with 
32,109 such terms in Swiss-Prot that cover the molecular functions of proteins (e.g. DNA-binding, 
amylase activity), the biological processes they are involved in (e.g. DNA replication, meiosis), and the 
cellular components to which they localise (e.g. mitochondrion, cytosol). These terms are arranged in 
a complex directed acyclic graph, with some nodes having as many as 12 ancestral nodes.

We note that there has been extensive work in GO label prediction evaluated on a temporally 
split dataset (constructing a test set with the most recently experimentally annotated proteins), for 
example, Zhou et al., 2019, and stress that our comparison is based on the random and clustered 
splits of Swiss-Prot described above. This approach to splitting the data into train and test has advan-
tages and disadvantages compared to a temporal split, which depend on the desired application for 
the method being evaluated.

We trained a single model to predict presence or absence for each of these terms and found that 
our network was able to achieve a precision of 0.918 and a recall of 0.854 for an F1 score of 0.885 
(95% CI: 0.882–0.887).

An ensemble of multiple CNN elements was again able to achieve a slightly better result with an 
F1 score of 0.899 (95% CI: 0.897–0.901), which was exceeded by a simple transfer of the BLAST top 
pick at 0.902 (95% CI: 0.900–0.904), with an ensemble of both producing the best result of 0.908 (95% 
CI: 0.906–0.911).

The same trends for the relative performance of different approaches were seen for each of the 
direct-acyclic graphs that make up the GO (biological process, cellular component, and molecular 
function), but there were substantial differences in absolute performance (Figure 3—figure supple-
ment 10). Performance was highest for molecular function (max F1: 0.94), followed by biological 
process (max F1:0.86) and then cellular component (max F1:0.84).

To benchmark against a common signature-based methodology, we used InterProScan to assign 
protein family signatures to each test sequence. We chose InterProScan for its coverage of labels 
as well as its use of multiple profile-based annotation methods, including HMMER and PROSITE, 
mentioned above. We note that while InterProScan predicts GO labels directly, it does not do so for 
EC labels, which is why we did not use InterProScan to benchmark our work on predicting EC labels. 
We found that InterProScan gave good precision, but within this UniProt data had lower recall, giving 
it a precision of 0.937 and recall of 0.543 for an F1 score of 0.688. ProteInfer’s recall at a precision of 
0.937 is substantially higher (0.835) than InterProScan at assigning GO labels.

There are multiple caveats to these comparisons. One challenge is that the completeness of Swiss-
Prot’s GO term annotations varies (Jiang et al., 2014). As an extreme example, Pan paniscus (Pygmy 
Chimpanzee) and Pan troglodytes (Chimpanzee) have an identical Apolipoprotein A-II protein, (acces-
sions P0DM95 and Q8MIQ5), where the first protein has 24 GO annotations, while the latter has 143 
GO annotations (this count is done using not only the set of all labels that appear in Swiss-Prot, but 
also any parents of those labels). One way this is reflected in the performance of the models is that 
some BLAST matches that have extremely large bit-scores are not annotated identically, and thus 
reduce the precision of the BLAST model. It is also important to note that our model has the advan-
tage of being specifically trained on the UniProt labelling schema upon which it is being evaluated. 
InterPro works quite differently, with GO terms being assigned to families, and so inconsistencies in 
terms of how these are assigned can explain reduced performance – for instance, InterPro families 
simply do not feature all of the GO terms found in UniProt. Thus these results should be seen as 
specific to the task of reproducing the curated results in UniProt.

We also tested how well our trained model was able to recall the subset of GO term annotations 
which are not associated with the ‘inferred from electronic annotation’ (IEA) evidence code, indicating 
either experimental work or more intensely curated evidence. We found that at the threshold that 
maximised F1 score for overall prediction, 75% of molecular function annotations could be success-
fully recalled, 61% of cellular component annotations, and 60% of biological process annotations.

Discussion
We have shown that neural networks trained and evaluated on high-quality Swiss-Prot data accurately 
predict functional properties of proteins using only their raw, unaligned amino acid sequences. Further, 
our models make links between the regions of a protein and the function that they confer, produce 
predictions that agree with experimental characterisations, and place proteins into an embedding 

https://doi.org/10.7554/eLife.80942
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space that captures additional properties beyond those on which the models were directly trained. 
We have provided a convenient browser-based tool, where all computation runs locally on the user’s 
computer. To support follow-up research, we have also released our datasets, code for model training 
and evaluation, and a command-line version of the tool.

Using Swiss-Prot to benchmark our tool against traditional alignment-based methods has distinct 
advantages and disadvantages. It is desirable because the data has been carefully curated by experts, 
and thus it contains minimal false-positives. On the other hand, many entries come from experts 
applying existing computational methods, including BLAST and HMM-based approaches, to identify 
protein function. Therefore, the data may be enriched for sequences with functions that are easily 
ascribable using these techniques which could limit the ability to estimate the added value of using an 
alternative alignment-free tool. An idealised dataset would involved training only on those sequences 
that have themselves been experimentally characterised, but at present too little data exists than 
would be needed for a fully supervised deep-learning approach. Semi-supervised approaches 
that combine a smaller number of high-quality experimental labels with the vast set of amino acid 
sequences in TrEMBL may be a productive way forward.

Further, our work characterises proteins by assigning labels from a fixed, predefined set, but there 
are many proteins with functions that are not covered by this set. These categories of functions may 
not even be known to the scientific community yet. There is a large body of alternative work that iden-
tifies groups of related sequences (e.g. Li et al., 2003), where a novel function could be discovered, 
for example, using follow-up experiments.

Finally, despite the successes of deep learning in many application domains, a number of trouble-
some behaviours have also been identified. For example, probabilities output by deep models are 
often over-confident, rather than well-calibrated (Guo et al., 2017), and networks perform poorly 
on out-of-distribution data without being aware that they are outside their own range of expertise 
(Amodei et al., 2016). Though these issues still need to be addressed and better understood by both 
the machine learning and bioinformatics communities, deep learning continues to make advances in 
a wide range of areas relating to the understanding protein function. We thus believe deep learning 
will have a central place in the future of this field.

Our code, data, and notebooks reproducing the analyses shown in this work are available online 
at https://github.com/google-research/proteinfer (Sanderson et al., 2023) and https://console.cloud.​
google.com/storage/browser/brain-genomics-public/research/proteins/proteinfer/datasets/.

Materials and methods
Implementation details
Label inheritance
Our data processing pipeline takes as input UniProt XML entries and outputs training data for the 
neural network. Some types of annotations, such as GO terms and EC numbers, exist within directed 
acyclic graphs (which take the form of simple trees for EC numbers). Typically in such cases the anno-
tation provided on UniProt is the most specific that is known. For example, if a protein is known to 
exhibit sequence-specific DNA binding (GO:0043565). It will not separately be annotated with the 
ancestral term DNA binding (GO:0003677); this is simply assumed from the ontology. Using such an 
annotation directly, however, is likely to be problematic in a deep learning setting. Failing to annotate 
an example with the parental term demands that the model predict that the example is negative for 
this term, which is not the effect we want. To address this, our datasets include labels for all ances-
tors of applied labels for EC, GO, and InterPro datasets. In the case of GO, we restrict these to is_a 
relationships.

Class activation mapping
Many proteins have multiple functional properties. For example, we analyse the case of the bifunc-
tional dhfr/ts of Toxoplasma gondii. Such bifunctional enzymes are often not unique – it is function-
ally advantageous for these enzymes to be fused, which facilitates channelling of substrate between 
their active sites. Since there are a number of such examples within Swiss-Prot, the mere existence 
of a TS domain in a protein is (mild) evidence for possible DHFR function. To increase the interpret-
ability of the network, we normalise the results of class-activation mapping for proteins with multiple 

https://doi.org/10.7554/eLife.80942
https://github.com/google-research/proteinfer
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/proteins/proteinfer/datasets/
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predicted functions. We initially calculate first-pass localisations for each predicted function using 
class-activation mapping. Then we make the localisation of each function more specific by taking the 
score for each residue and subtracting the scores at the same residues for all other functions. In the 
case of DHFR-TS, the TS activations in the TS domain are much greater than the DHFR activations 
in the TS domain and so this subtraction prevents the TS domain from being associated with DHFR 
function, increasing interpretability.

Model architecture
To create an architecture capable of receiving a wide range of input sequences, with computational 
requirements determined for each inference by the length of the individual input sequence, we 
employed a dilated convolutional approach (Yu and Koltun, 2015). Computation for both training 
and prediction in such a model can be parallelised across the length of the sequence. By training on 
full-length proteins, in a multi-label training setting, we aimed to build networks that could extract 
functional information from raw amino acid sequences. One helpful feature of this architecture is 
its flexibility with regards to sequence length. Natural protein sequences can vary in length by at 
least three orders of magnitude, but some architectures have computational requirements that scale 
with the maximum sequence they are capable of receiving as input, rather than the sequence being 
currently examined. These fixed-length approaches reduce efficiency as well as place a hard limit on 
the length of sequences that can be examined.

Hyperparameters
We tuned over batch size, dilation rate, filters, first dilated layer, kernel size, learning rate, number of 
layers, mean vs. max pooling, and Adam ‍β1‍, ‍β2‍ and ‍ϵ‍ (Kingma and Ba, 2015) over a number of studies 
to determine the set of parameters that optimised ‍Fmax‍. We found, as in Bileschi et al., 2022, that the 
network was relatively unresponsive to slight changes in hyperparameters and that many of the hyper-
parameters that performed well in Bileschi et al., 2022 also performed well for this task. We chose to 
keep identical hyperparameters for the EC and GO tasks across both the random and clustered splits 
for simplicity, and we note that parameters with good performance on the random task performed 
respectively well on the clustered split.

Table 2. In our random split of the training data, 
we allocate about 80% to the training fold, 10% 
to the development fold, and 10% to the test 
fold.

Fold Number of sequences

Train 438,522

Dev 55,453

Test 54,289

All together 548,264

Table 3. In our clustered split of the 
training data, we use UniRef50 and allocate 
approximately equal numbers of sequences to 
each fold.

Fold Number of sequences

Train 182,965

Dev 180,309

Test 183,475

All together 546,749

Table 4. Clustered dataset statistics for Enzyme 
Commission (EC) labels.

Type Number

Train labels 3411

Test labels 3414

Impossible test labels 1043

Train example-label pairs 348,105

Test example-label pairs 348,755

Impossible test example-label 
pairs 3415

Table 5. Clustered dataset statistics for Gene 
Ontology (GO) labels.

Type Number

Train labels 26,538

Test labels 26,666

Impossible test labels 3739

Train example-label pairs 8,338,584

Test example-label pairs 8,424,299

Impossible test example-label 
pairs 11,137

https://doi.org/10.7554/eLife.80942
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Predicting coarse-grained 
functional localisation with CAM
The goal of this experimental methodology is to 
measure whether or not we correctly order the 
localisation of function in bifunctional enzymes. 
As such, first we have to identify a set of candi-
dates for experimentation.

Candidate set construction
We note that no functional localisation informa-

tion was available to our models during training, so we can consider not just the dev and test sets, 
but instead the entirety of Swiss-Prot for our experimentation. As such, we take all examples from 
Swiss-Prot that have an EC label and convert these labels to Pfam labels using a set of 1515 EC-Pfam 
manually curated label correlations from InterPro (Mitchell et al., 2015), omitting unmapped labels. 
We then take the set of 3046 proteins where exactly two of their ground-truth labels map to corre-
sponding Pfam labels. In our Swiss-Prot random test-train split test set, on bifunctional enzymes, we 
get 0.995 precision and 0.948 recall at a threshold of 0.5, so we believe this set is a reasonable test 
set for ordering analysis.

We then predict EC labels for these proteins with one of our trained convolutional neural network 
classifiers, considering only the most specific labels in the hierarchy. Then, we map these predicted 
EC labels to Pfam labels using the InterPro mapping again, and retain only the proteins on which we 
predict exactly two labels above a threshold of 0.5, and are left with 2679 proteins. In 2669 out of 
2679 proteins, our predictions are identical to the Pfam-mapped ground-truth labels. We take these 
2669 that have two true and predicted Pfam labels, and look at their current Pfam labels annotated in 
Swiss-Prot. Of these 2669 proteins, 304 of them contain both of the mapped labels. We note that this 

Table 6. Vocabulary sizes in models trained for 
Enzyme Commission (EC) and Gene Ontology 
(GO).

Vocabulary Number of terms

EC 5134

GO 32,109

Table 7. In Swiss-Prot, there are 16 candidate domain architectures available for our Enzyme 
Commission (EC) functional localisation experiment.
Among these, all domain architectures with more than three instances in Swiss-Prot (seven of them) 
are 100% correctly ordered by our class activation mapping (CAM) method.
Domain architecture diversity in bifunctional enzymes.

First domain Second domain Number ordered correctly Number times seen Percent correct

EC:2.7.7.60 EC:4.6.1.12 94 94 100

EC:4.1.99.12 EC:3.5.4.25 83 83 100

EC:3.5.4.19 EC:3.6.1.31 59 59 100

EC:1.8.4.11 EC:1.8.4.12 20 20 100

EC:4.1.1.48 EC:5.3.1.24 18 18 100

EC:5.4.99.5 EC:4.2.1.51 12 12 100

EC:5.4.99.5 EC:1.3.1.12 4 4 100

EC:4.2.1.10 EC:1.1.1.25 3 3 100

EC:2.7.7.61 EC:2.4.2.52 0 3 0

EC:2.7.1.71 EC:4.2.3.4 0 2 0

EC:1.1.1.25 EC:4.2.1.10 0 1 0

EC:2.7.2.3 EC:5.3.1.1 1 1 100

EC:4.1.1.97 EC:1.7.3.3 1 1 100

EC:4.1.3.1 EC:2.3.3.9 1 1 100

EC:5.1.99.6 EC:1.4.3.5 0 1 0

EC:1.8.4.12 EC:1.8.4.11 0 1 0

https://doi.org/10.7554/eLife.80942
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difference between 2669 and 304 is likely due in 
part to Pfam being conservative in calling family 
members, potential agreements at the Pfam clan 
vs. family level, as well as database version skew 
issues.

Computation of domain ordering
On these 304 proteins, we have the same 
predicted-EC-to-Pfam labels and the same true-
Pfam labels. For each of these proteins, we can 
get an ordering of their two enzymatic domains 
from Pfam, giving us a true ordering. It is now our 
task to produce a predicted ordering.

We use CAM to compute a confidence for each 
class at each residue for every protein in this set of 
304. We then filter this large matrix of values and 

only consider the families for which our classifier predicted membership, giving us a matrix of shape 
sequence length by predicted classes (which is two in this case). For each class, we take the CAM 
output and compute a centre of mass. Then we order the two classes based on where their centre of 
mass lies. Further data is available in Table 2.

Input data statistics
We use Swiss-Prot version 2019_01 in our analysis, which gives us 559,077 proteins, or 548,264 after 
filtering for only 20 standard amino acids and filtering fragments (Table 3). Because different protein 
functions have differing prevalence, we note the number of proteins that have a given function for 
Pfam, EC, and GO labels, as well as noting the number of labels per protein. Further statistics on 
dataset size for different data splits are provided in Tables 2, 4–7.

When assigning examples to folds in our clustered dataset, we note that there are test examples 
that have labels that are never seen in the training data. We report these cases below as ‘Impossible’ 
test example-label pairs (Table 8).

Timing ProteInfer browser models
We timed the performance of the ProteInfer model by running the code found at https://github.com/​
google-research/proteinfer/blob/gh-pages/latex/timing_code.js in the browser console.

Combining CNN and BLAST
We noticed a clear difference between the performance of CNN models and BLAST models. The 
CNN models were able make predictions with higher precision than BLAST for a given recall value, 
but achieved lower overall recall, while BLAST gave high recall at the expense of precision. This 
suggested that combining the two methods would be beneficial. A CNN, or an ensemble of CNNs, 
produces a metric that is notionally a probability (though often imperfectly calibrated), while BLAST 
bit-score produces a bit-score metric indicating the significance of the match. We reasoned that one 
approach to combining the two would simply be to multiply the values together – improving the preci-
sion of BLAST predictions by reducing bit-scores in cases where the CNN model lacked confidence 
in a prediction. This approach performed well and was the best that we evaluated. To implement this 
method, all labels associated with the top hit from BLAST with a sequence are initially assigned iden-
tical scores, determined by the bit-score of the top match, but these are then rescaled according to 
the output of the ProteInfer command-line interface.

Whether this approach is worth the additional infrastructure required to maintain two different 
methods of prediction will depend on the scale of analysis being conducted. Further sophistication 

Table 8. Clustered dataset statistics for EC 
labels.

Type Number

Train labels 3411

Test labels 3414

Impossible test labels 1043

Train example-label pairs 348,105

Test example-label pairs 348,755

Impossible test example-
label pairs 3415

https://doi.org/10.7554/eLife.80942
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in how the CNN and BLAST are combined, perhaps with a learnt model, might further improve 
performance.
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