Single-cell transcriptomics identifies Keap1-Nrf2 regulated collective invasion in a Drosophila tumor model

  1. Deeptiman Chatterjee  Is a corresponding author
  2. Caique Almeida Machado Costa
  3. Xian-Feng Wang
  4. Allison Jevitt
  5. Yi-Chun Huang
  6. Wu-Min Deng  Is a corresponding author
  1. Tulane University, United States
  2. Oklahoma Medical Research Foundation, United States

Abstract

Apicobasal cell-polarity loss is a founding event in Epithelial-Mesenchymal Transition (EMT) and epithelial tumorigenesis, yet how pathological polarity loss links to plasticity remains largely unknown. To understand the mechanisms and mediators regulating plasticity upon polarity loss, we performed single-cell RNA sequencing of Drosophila ovaries, where inducing polarity-gene l(2)gl-knockdown (Lgl-KD) causes invasive multilayering of the follicular epithelia. Analyzing the integrated Lgl-KD and wildtype transcriptomes, we discovered the cells specific to the various discernible phenotypes and characterized the underlying gene expression. A genetic requirement of Keap1-Nrf2 signaling in promoting multilayer formation of Lgl-KD cells was further identified. Ectopic expression of Keap1 increased the volume of delaminated follicle cells that showed enhanced invasive behavior with significant changes to the cytoskeleton. Overall, our findings describe the comprehensive transcriptome of cells within the follicle-cell tumor model at the single-cell resolution and identify a previously unappreciated link between Keap1-Nrf2 signaling and cell plasticity at early tumorigenesis.

Data availability

Both raw and processed sequencing data is available at GSE175435. Code necessary to replicate the main findings of this study is available at https://github.com/chatterjee89/09-06-2022-RA-eLife-80956.

The following data sets were generated

Article and author information

Author details

  1. Deeptiman Chatterjee

    Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, United States
    For correspondence
    dchatterjee@tulane.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2752-4640
  2. Caique Almeida Machado Costa

    Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xian-Feng Wang

    Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Allison Jevitt

    Cancer and Cell Biology Department, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yi-Chun Huang

    Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Wu-Min Deng

    Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, United States
    For correspondence
    wdeng7@tulane.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9098-9769

Funding

No external funding was received for this work.

Copyright

© 2022, Chatterjee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,756
    views
  • 263
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Deeptiman Chatterjee
  2. Caique Almeida Machado Costa
  3. Xian-Feng Wang
  4. Allison Jevitt
  5. Yi-Chun Huang
  6. Wu-Min Deng
(2022)
Single-cell transcriptomics identifies Keap1-Nrf2 regulated collective invasion in a Drosophila tumor model
eLife 11:e80956.
https://doi.org/10.7554/eLife.80956

Share this article

https://doi.org/10.7554/eLife.80956

Further reading

    1. Cancer Biology
    Phaedra C Ghazi, Kayla T O'Toole ... Martin McMahon
    Research Article

    Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRASG12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRASG12C-driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients who do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRASG12C, efforts are underway to develop effective combination therapies. Here, we report that the inhibition of KRASG12C signaling increases autophagy in KRASG12C-expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRASG12C-driven lung cancer cell proliferation in vitro and superior tumor control in vivo. Additionally, in genetically engineered mouse models of KRASG12C-driven NSCLC, inhibition of either KRASG12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRASG12C in lung cancer.

    1. Cancer Biology
    2. Medicine
    Anastasia D Komarova, Snezhana D Sinyushkina ... Marina V Shirmanova
    Research Article

    Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients’ tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients’ colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients’ tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.