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Selection and the direction of 
phenotypic evolution
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Abstract Predicting adaptive phenotypic evolution depends on invariable selection gradients 
and on the stability of the genetic covariances between the component traits of the multivariate 
phenotype. We describe the evolution of six traits of locomotion behavior and body size in the 
nematode Caenorhabditis elegans for 50 generations of adaptation to a novel environment. We 
show that the direction of adaptive multivariate phenotypic evolution can be predicted from the 
ancestral selection differentials, particularly when the traits were measured in the new environment. 
Interestingly, the evolution of individual traits does not always occur in the direction of selection, nor 
are trait responses to selection always homogeneous among replicate populations. These observa-
tions are explained because the phenotypic dimension with most of the ancestral standing genetic 
variation only partially aligns with the phenotypic dimension under directional selection. These 
findings validate selection theory and suggest that the direction of multivariate adaptive phenotypic 
evolution is predictable for tens of generations.

Editor's evaluation
This is an important paper that takes advantage of a comprehensive evolutionary genetic dataset 
to tease apart the relationship between genetic variation, selection, and phenotypic divergence 
over 50 generations. The evidence supporting the conclusions is robust and aligns with a growing 
body of work that shows patterns of variation can predict divergence over long periods of time and 
also that evolution does not always occur in the direction of selection, particularly when selection is 
acting on genetically correlated traits. The questions addressed in this study will particularly appeal 
to evolutionary biologists and quantitative geneticists.

Introduction
Predicting adaptive phenotypic evolution is an important research goal in evolutionary biology, 
agronomy, or in conservation policy (Arnold, 2014; Nosil et  al., 2020; Wortel et al., 2023). It is 
generally accepted that predicting adaptive phenotypic evolution should be done in the context 
of the whole organism because organisms are not mere collections of genetically or environmen-
tally independent traits (Gould and Lewontin, 1979; Wagner, 2001). Many traits in natural popula-
tions are heritable across generations and under natural selection (Walsh and Lynch, 2018). Often, 
however, phenotypic evolution is not observed (Merilä et al., 2001; Pujol et al., 2018), or is of oppo-
site direction than predicted, because of environmental or genetic correlations between the traits of 
interest with unmeasured traits (Morrissey et al., 2012; Hajduk et al., 2020).

Current approaches to predict phenotypic evolution during adaptation to novel environments, at least 
for infinite sexual populations and under infinitesimal assumptions of trait inheritance (Barton et al., 2017), 
rely on Simpson’s adaptive landscape idea and its formalization by R. Lande: ‍∆z̄ = Gβ‍ (Simpson, 1944; 
Lande, 1979; Arnold et al., 2001). In Lande’s equation, the adaptive evolution of multiple traits’ means 
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over one generation (the column vector ‍∆z̄‍) is modeled as a function of the ‍G‍-matrix, which summarizes 
the genetic structure and heritable transmission of traits from parents to offspring, with the additive genetic 
variances of traits being represented in the diagonal entries and the additive genetic covariances between 
them in the off-diagonal entries. The direction and magnitude of phenotypic evolution depend on the 
size, due to genetic variances, and shape, due to genetic covariances, of the ‍G‍-matrix. In particular, trait 
combinations with more genetic variation (henceforth, called canonical traits), allow for faster and more 
directed responses to selection (Fisher, 1930; Lande, 1980; Schluter, 1996; Blows and McGuigan, 2015). 
In Lande’s equation, phenotypic evolution is also modeled as a function of the selection gradients on each 
trait (the vector ‍β‍), gradients that describe the strength of directional selection on each trait in populations 
that can be under stabilizing/disruptive selection on each trait and under correlated selection between traits 
(Lande and Arnold, 1983). Correlated selection determines the shape of the selection surface: when traits 
with genetic variation are not aligned with the directional selection gradients, phenotypic evolution will be 
slower and distorted, resulting in less direct responses (Phillips and Arnold, 1989; Arnold et al., 2001; 
Svensson et al., 2021).

Lande’s equation predicts adaptive phenotypic evolution but might fail when indirect selection 
is important. Indirect selection results from unmeasured traits being genetically correlated with the 
measured traits or when there is correlated selection between measured and unmeasured traits 
(Lande and Arnold, 1983; Rausher, 1992). Using Robertson’s Secondary Theorem of Natural Selec-
tion (STNS) (Robertson, 1968; Walsh and Lynch, 2018), ‍∆z̄ = s = σg(z, w)‍, trait changes over one 
episode of selection are accurately predicted because the selection differentials (‍s‍) equal the (addi-
tive) genetic covariance (‍σg‍) of the trait with relative fitness (‍w‍) and thus the trait’s breeding value 
change in one generation, regardless of unmeasured traits (Morrissey et al., 2010; Morrissey and 
Bonnet, 2019). However, distinguishing direct from indirect selection is not possible with Robertson’s 
STNS, which led Stinchcombe et al., 2014 to propose combining its merits with those of Lande’s 
equation in a single statistical framework to predict adaptive phenotypic evolution, see also Etterson 
and Shaw, 2001; Morrissey et al., 2012; Hajduk et al., 2020. Using Lande’s equation retrospectively, 
one can estimate ‘genetic’ selection gradients as ‍βg = G−1s = G−1(̄za‍ - ‍̄zg)‍, where the selection differ-
entials are defined by the difference between the trait measured in an ancestral population (‍̄za‍), and 
the trait of a diverging population (‍̄zg‍) as predicted by the STNS.

Unfortunately, using Lande’s equation with the genetic selection gradients to predict adaptive pheno-
typic evolution over several generations depends not only on invariable selection gradients but also on the 
stability of the ‍G‍-matrix. The input of genetic covariances by pleiotropic mutations could in the long-term of 
mutation-selection balance (time being scaled by the effective population size) be aligned with correlated 
selection and eventually explain phenotypic differentiation among populations and species (Lande, 1980; 
Jones et al., 2007; Jones et al., 2014; Chebib and Guillaume, 2017; Houle et al., 2017; Farhadifar et al., 
2015; Svensson et al., 2021). However, many studies find more standing genetic variation in natural popu-
lations than expected at mutation-selection balance (Walsh and Lynch, 2018; Sella and Barton, 2019). In 
part, this is because in the initial stages of adaptation selection might not be weak relative to recombination 
as required by theory (Lande, 1980; Nagylaki, 1992; Turelli and Barton, 1994), in part this is because selec-
tion is not constant or uniform in temporally changing or spatially heterogeneous environments (Gomulk-
iewicz and Houle, 2009; Chevin et al., 2010; de Villemereuil et al., 2020; Walter, 2023). In addition, the 
‍G‍-matrix is bound to evolve in the short-term because of selection (Cheverud, 1996; Barton and Turelli, 
1987; Turelli, 1988; Shaw et al., 1995), although there is mixed empirical evidence that the ‍G‍-matrix can 
evolve to align with the orientations of selection (Steppan et al., 2002; Arnold et al., 2008; Chenoweth 
et al., 2010; Ramakers et al., 2018; Johansson et al., 2021). The reduction in the size of the ‍G‍-matrix due 
to drift can be predicted because it is inversely proportional to the effective population size (Lande, 1976; 
Lynch and Hill, 1986; Barton et al., 2017), but the shape of the ‍G‍-matrix will change unpredictably because 
all populations are finite, and bottlenecks and founder effects are common (Phillips et al., 2001; Phillips 
and McGuigan, 2006). Hence, besides selection, drift might also impact ongoing phenotypic evolution long 
before the mutation-selection balance is reached (Whitlock et al., 2002; Mallard et al., 2022).

Here, we ask if Lande’s equation with the genetic selection gradients predicts the direction of adaptive 
phenotypic evolution for more than one generation. By adaptive phenotypic evolution we mean that multi-
variate trait responses to indirect or direct selection are correlated with adaptation to a novel and fixed 
target environment. We focus on the locomotion behavior and body size of the hermaphroditic nematode 
Caenorhabditis elegans in replicate populations gradually evolving to a high salt (NaCl) concentration in 
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their growth-media for 35 generations and then kept in the constant high salt environment for an extra 15 
generations. Our ancestral population was domesticated to constant low salt conditions for 140 genera-
tions and contains abundant but neutral standing genetic variation for locomotion behavior (Mallard et al., 
2022). Although replicate populations were maintained at high population sizes, our experimental regime 
exacerbates drift and inbreeding because of a slow rate of environmental change until reaching the target 
high salt environment (Guzella et al., 2018), and because high salt favors hermaphrodite self-fertilization 
(Theologidis et al., 2014).

Osmotic pressure from high salt concentration in the growth media shrinks individual body size 
because of water cell loss (Urso and Lamitina, 2021). For the ancestral population, and in our labora-
tory conditions, high salt also lowers embryo to adult survival and retards growth until maturity (Theolo-
gidis et  al., 2014). As hermaphrodites cannot mate with each other, delayed male development 
results in hermaphrodites reproducing mostly by self-fertilization. During domestication, movement 
was reduced from that observed among wild isolates (Mallard et al., 2022), and hermaphrodites can 
further reduce movement in high salt during experimental evolution as males become less frequent 
and cannot harass them (Barr et al., 2018; Cutter et al., 2019). We further know that the canonical 
trait of locomotion behavior with the most mutational variance in low salt conditions differs from that 
with the most standing genetic variation found after domestication (Mallard et al., 2023). Consistent 
with these observations, several studies have shown that C. elegans mutants insensitive to high salt 
have specific defects in backward or forward movement, in some of these mutants independently 
of body size effects (Fujiwara et al., 2002; Swierczek et al., 2011; Zhen and Samuel, 2015). On 
the other hand, movement can increase during experimental evolution due to more foraging and 
dwelling, as the bacterial food is not as dense in high salt (Gray et al., 2005). Both foraging, dwelling 
and mate interactions in C. elegans can be described as a complex collection of distinct behavioral 
states, which vary in the duration of activity and movement direction (Flavell et al., 2020). All these 
considerations suggest that multiple traits in locomotion behavior can respond to selection but that 
it is difficult to a priori define which ones are genetically or environmentally independent. For this 
reason, we mathematically define individual locomotion behavior in 1-dimensional space by six traits, 
the six transition rates between stillness, moving forward, and moving backward (Mallard et al., 2022, 
Mallard et al., 2023). Body size is also analyzed as a seventh trait.

In what follows, we ask whether the ancestral phenotypic plasticity between high and low salt envi-
ronments is aligned with the ancestral ‍G‍-matrix. We use selection differentials on the seven traits in 
low salt and high salt environments to predict phenotypic evolution by describing the phenotypic and 
genetic divergence in high salt. Using Lande’s retrospective equation, we ask if the genetic selection 
gradients measured in the ancestral population match the phenotypic selection gradients.

Results
Experimental design and analyses
The ancestral population for experimental evolution (A6140) was ultimately derived from a hybrid 
population of 16 isolates and domestication to a standard laboratory environment in low salt (25 mM 
NaCl) growth-media conditions for 140 generations (Teotonio et  al., 2012; Noble et  al., 2017). 
GA[1,2,4] replicate populations were derived from A6140, with limited founder effects, and inde-
pendently exposed for 35 generations to a gradual change in salt concentration (8 mM increase each 
generation) and then kept in constant high salt (305 mM NaCl) for 15 generations. During the exper-
iment, replicate populations were maintained at high population sizes (N=104), and from generation 
35 onwards, hermaphrodite self-fertilization became predominant (Theologidis et al., 2014). Using 
genomic data, effective population sizes have been estimated at Ne=103 in the domestication low salt 
environment and under partial selfing (Chelo and Teotónio, 2013).

From the ancestral population (A6140), and the three replicate populations at generation 50 
(GA[1,2,4]50), inbred lines were derived by self-fertilization of hermaphrodites (Noble et al., 2017; 
Chelo et al., 2019). Inbred lines were measured for hermaphrodite locomotion behavior and body 
size at the usual reproduction time of experimental evolution in low and high salt (186, 61, 61, and 
42 lines from the ancestral and evolved populations, respectively, with most lines being phenotyped 
twice; see Methods for details). Six traits defined locomotion behavior: the transition rates between 
movement states, stillness, forward, and backward (Mallard et al., 2022). For the inbred lines of the 
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ancestral population, we also use self-fertility data at the usual reproduction time of experimental 
evolution in high salt, as previously reported by Chelo et al., 2019. Finally, we measure the extent of 
adaptation to high salt conditions using the outbred experimental populations from which the inbred 
lines were derived. Assays were designed so that grandmaternal and maternal environmental effects 
were the same for all the samples being compared.

With this data (Figure 1—source data 1, Figure 1—source data 2), we model phenotypic plasticity 
(mean population differences between environments) and standing genetic variation for locomotion 
behavior and body size in the ancestral population, the evolution of locomotion behavior and body size, 
and ‍G‍-matrix evolution in the three replicate populations at generation 50. We estimated phenotypic plas-
ticity and phenotypic differentiation in a multivariate MANOVA model and compared it with a univariate 
response model similarly defined (see Methods). The MANOVA allows us to test for ancestral phenotypic 
plasticity and phenotypic divergence while accounting for potentially correlated trait variation. The univar-
iate approach allows us to estimate the inbred lines trait values and to test for the phenotypic divergence of 
each replicate population relative to the ancestral population but does not account for correlated variation 
in multivariate phenotypic space. Markov chain Monte Carlo methods were used in a Bayesian framework to 
estimate the ‍G‍-matrix as half the among-line variance (see Methods) and, for the ancestral population, the 
‍G‍-matrix together with the genetic (co)variances between traits and fitness. Table 1 defines the variables 
employed.

Ancestral population
Phenotypic plasticity between salt environments
Before experimental evolution to high salt, we started by characterizing phenotypic and genetic vari-
ation in low and high salt environments in the ancestral domesticated population. We find extensive 

Table 1. Notation.

Variable Definition

‍w‍ relative fitness in high salt, the self-fertility of hermaphrodites;
from Chelo et al., 2019

‍qi,j‍ transition rates between the movement states ‍i‍ and ‍j‍; see Equation 1

‍G‍ genetic (co)variance matrix of transition rates and body size; see Equation 2

‍Gqw‍ genetic (co)variance matrix of transition rates, body size, and self-fertility

‍Sk‍
ancestral selection differentials in high salt, with ‍k‍ the salt environment
where traits were measured; last column of ‍Gqw‍

‍βg‍ vector of genetic selection gradients; see Equation 6

‍β‍ vector of phenotypic selection gradients; see Equation 7

SSCP
Sum-of-Squares and Cross-Product matrices for the environment
and population factors; from MANOVA

‍dmax‍ 1st eigenvector of the population factor SSCP-matrix in high salt

‍δp‍ 1st eigenvector of the environment factor SSCP-matrix, for the ancestral population

‍gmax‍ 1st eigenvector of the ancestral ‍G‍-matrix, one for each salt environment

‍emax‍ first eigenvector of the random skewer ‍R‍-matrix representing the main canonical
trait differentiating the four ‍G‍-matrices in high salt

‍∆q̄k‍ Mean difference of the GA[1,2,4]50 populations from A6140,
with ‍k‍ the salt environment where traits were measured; from MANOVA

‍λi‍ eigenvalue of the ‍i‍th eigenvector

‍Θ‍ the angle between eigenvectors of ancestral genetic variation and
‍δp‍,‍dmax‍, or ‍emax‍; see Equation 3

‍Π‍ proportion of ‍G‍-matrix variance along ‍δp‍, ‍dmax‍, or ‍emax‍; see Equation 5
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phenotypic plasticity for locomotion behavior traits and body size (Figure 1, Table 2). Because we 
employed univariate and multivariate approaches to model phenotypic plasticity (see Methods), we 
compared the estimated environmental effects using both approaches. We find that univariate and 
multivariate modeling approaches give similar results (Figure 1—figure supplement 1, Figure 1—
source data 3, Figure 1—source data 4). Most transition rates are plastic with salt, except from 
forward to backward movement states. As expected, body size shrinks in high salt.

The multivariate approach (MANOVA) allows us to determine the phenotypic dimension of ances-
tral phenotypic plasticity (‍δp‍) that most responds to salt environmental variation (see Methods) as the 
first eigenvector of the MANOVA SSCP-matrix for the environment factor (Figure 1—source data 
5). Transition rates from still to forward or to backward (SF or SB) have opposite loading signs in ‍δp‍ 
(Table 3). Body size has the same sign of the transition rates from still and from forward to backward 
(SB and FB) and the opposite sign relative to the other transition rates.
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Figure 1. Phenotypic plasticity of the ancestral population. Gray dots indicate the trait values (BLUPs) estimated 
for each inbred line in the low and high salt environments: F for ‘forward,’ B for ‘backward’, and S for ‘still,’ left 
to right order indicating movement direction. Gray circles and bars indicate the mean 95% confidence intervals 
least-square estimates using the univariate approach (see Methods). Significant differences between environments 
are indicated with a line, when using the multivariate approach (Table 2). Figure source code is linked here - 
Multivariate analysis of variance (MANOVA) and figures/tables export scripts.

The online version of this article includes the following source data, source code, and figure supplement(s) for 
figure 1:

Source data 1. Raw data for analysis including all design and environmental covariates.

Source data 2. Sample sizes, see table.

Source data 3. Multivariate analysis of variance (MANOVA) results, see table.

Source data 4. Multivariate analysis of variance (MANOVA) results for the ancestral population by each trait, see 
table.

Source data 5. Eigendecomposition of the MANOVA SSCP matrix for the environment factor, see table.

Figure supplement 1. Multivariate and univariate models’ environmental effects.

Figure supplement 1—source code 1. See Figure script.

Figure supplement 1—source data 1. Univariate models’ contrasts. See table.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/08A_Export_Phenotypic_analysis_results.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/tree/main/output_files/formatted_tables/Samples_sizes.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/tree/main/output_files/formatted_tables/Manova_results.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/tree/main/output_files/formatted_tables/Manova_results_per_trait.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/tree/main/output_files/formatted_tables/SSCP_plasticity_ED.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/tree/main/Rcode/Figures/Figure1_figure_supplement1.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/tree/main/Rcode/Figures/Figure1_figure_supplement1.R
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Standing genetic variation
We next partitioned the phenotypic (co)variances among the inbred lines of the ancestor population 
into the genetic (‍G‍-matrix) and the residual error (co)variances of transition rates and body size (see 
Methods). Ancestral ‍G‍-matrices were estimated separately by salt environment, assuming genome-
wide homozygosity and no directional non-additive genetic effects. Our estimates are robust to 
changes in the prior distributions (Figure 2—figure supplement 1).

We find significant genetic variance for all transition rates and body size, in high and low salt 
environments, except for the transition rate from backward to still in low salt (Figure 2, Figure 2—
figure supplement 2). The genetic covariances between transition rates and/or body size show similar 
values, albeit of lower magnitude in low salt (Figure 2A). The ‍G‍-matrix size is similar between environ-
ments (Figure 2B). In both high and low salt environments, transition rates from still to forward or to 

Table 2. MANOVA results for ancestral phenotypic plasticity and phenotypic differentiation.

Factor Df Wilks approx.F num.DF den.Df Prob(>F)

Environment 1 0.137 523.4 7 583 2.20E-16

Population 3 0.310 40.2 21 1674.6 2.20E-16

Environment:Population 3 0.828 5.4 21 1674.6 3.99E-14

Residuals 589

Notes: The Environment factor refers to the phenotypic difference between high and low salt environments 
for the ancestral population (Figure 1). The Population factor refers to the phenotypic differences between 
the four populations in the high salt environment (A6140 and GA[1,2,4]50); (Figure 6). The interaction between 
Environment and Population refers to the change in phenotypic difference between the four populations between 
the two environments, that is, to the evolution of phenotypic plasticity (Figure 6—figure supplement 2). The 
intercept in this MANOVA model is the ancestral population trait values in the high salt environment. Full model 
results, including the effects of assay design and environmental covariates (block, temperature, density, etc.), can 
be found in Figure 1—source data 3.

Table 3. Canonical traits of ancestral standing variation, divergence, and selection in high salt.

Trait ‍δp‍(1) ‍gmax‍(1) g2(1) g3(1) ‍dmax‍(1) ‍emax‍(1) ‍βg‍(2) ‍mmax‍(3) m2(3)

SF 0.148 –0.360 –0.388 0.241 –0.225 –0.331 –0.93 –0.402 –0.125

SB –0.103 –0.459 –0.409 0.394 –0.365 –0.502 0.93 –0.224 –0.209

FS 0.161 0.267 0.303 0.129 0.284 0.378 0.35 0.607 0.257

FB –0.039 0.532 –0.502 –0.117 0.517 0.459 0.32 0.632 –0.518

BS 0.094 0.142 0.153 0.035 0.253 0.145 –0.96 0.077 0.106

BF 0.062 0.467 –0.496 0.150 0.473 0.498 –0.82 –0.096 –0.765

Size –0.963 –0.258 –0.264 –0.856 –0.425 –0.132 0.83 0.069 –0.102

99% 76% 9% 6% 95% - - 39% 37%

Notes: (1) trait loadings of eigenvectors defined in Table 1, for the high salt environment; (2) modes of genetic 
selection gradients posterior distributions from Figure 9; (3) trait loadings of the first two eigenvectors of the 
mutational (co)variances matrix in low salt, re-analysis of locomotion behavior data with body size, from mutation 
accumulation lines reported in Mallard et al., 2023 (see Discussion). The bottom row shows the percent variation 
each eigenvector explains, when relevant.

The online version of this article includes the following source data for table 3:

Source data 1. Eigendecomposition of environmental effects in the ancestral population, see table.

Source data 2. Eigendecomposition of the high salt G
-matrix, see table.

Source data 3. Eigendecomposition of phenotypic differentiation, see table.

Source data 4. Genetic selection gradients for traits measured in high salt, see table.

Source data 5. Eigendecomposition of the mutation variance-covariance matrix, see table.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/SSCP_plasticity_ED.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/A6140_Eigendecompositions.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/SSCP_divergence_ED.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/BetaG.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/MA_lines_Eigendecompositions.pdf
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backward (SF or SB) are negatively correlated with the other transition rates and positively correlated 
with each other. Body size shows positive genetic covariances with SF and SB.

Eigendecomposition of the ancestral ‍G‍-matrix in high or low salt reveals a similar structure between them 
(Figure 2C, Figure 2—source data 2). The first canonical trait (‍gmax‍, Table 3) encompasses most genetic 
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Figure 2. ‍G‍-matrix of the ancestral population in low salt and high salt environments. (A). The bottom seven 
estimates indicate the genetic variances in transition rates and body size, top 15 estimates are the genetic 
covariances between the seven traits. (B). Total genetic variance in each environment is the trace of the ‍G‍-matrices 
(C). Eigenvalues of the six eigenvectors for each ‍G‍-matrix. For all panels, red (gray) indicates estimates in low (high) 
salt, with dots, and colored intervals the mode and the 83% or 95% credible intervals of the posterior distribution.

The online version of this article includes the following source data, source code, and figure supplement(s) for 
figure 2:

Source code 1. See G-matrix computation, Figure 2 and table export scripts.

Source data 1. Ancestral ‍G‍-matrix in low and high salt environments, see table.

Source data 2. Eigendecomposition of the ancestral ‍G‍-matrices, see table.

Figure supplement 1. Varying priors for ‍G‍-matrix estimation in the ancestral population.

Figure supplement 1—source code 1. See Figure script.

Figure supplement 2. Null distributions of genetic variances in the ancestral population.

Figure supplement 3. Eigendecomposition of null distributions of the ancestral ‍G‍-matrix.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/01A_Produce_G_matrices_both_environments.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/08B_Export_G_matrices_eigendecomposition.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/tree/main/output_files/formatted_tables/A6140_G_matrices.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/tree/main/output_files/formatted_tables/A6140_Eigendecompositions.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/01B_Various_priors_effects_on_G.R
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variation (75% in high salt, 63% in low salt). The next two canonical traits contain less genetic variation (between 
6% and 20%) but are larger than null expectations (Figure 2—figure supplement 3). Only the first two canon-
ical traits of the ‍G‍-matrix have a similar trait loadings between environments (Figure 2—source data 2).

Ancestral plasticity and genetic variation are not aligned
We compared the main canonical trait of phenotypic plasticity with the canonical traits of the high salt 
‍G‍-matrix. Phenotypic plasticity is not aligned with the ‍G‍-matrix (Figure 3). This is because the amount of 
genetic variance along the dimension of phenotypic plasticity (‍δp‍) is not different than that expected by 
chance (Figure 3A), and also because the angle between ‍δp‍ and ‍gmax‍ is, if anything, larger than expected 
by chance (Figure 3B). ‍δp‍ appears to similarly summarize environmental variation as the third canonical trait 
from the high salt ‍G‍-matrix (Table 3), a trait that encompasses only 6% of standing genetic variation. As 
noted before, these differences stem from the association between still-to-forward and still-to-backward 
transition rates (SF and SB), which are genetically positive and environmentally negative, i.e., they have 
opposite signs in ‍gmax‍ and ‍δp‍, respectively. We suspect that positive associations between SF and SB reveal 
more dwelling, while negative association more individual foraging (Flavell et al., 2020).
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Figure 3. Aligment between phenotypic plasticity and standing genetic variation in high salt for the ancestral 
population. (A) Projection of the high salt ‍G‍-matrix along the phenotypic plasticity canonical trait ‍δp‍. Dots show 
the mean estimate with bars the 83% and 95% credible interval of the posterior ‍G‍-matrix distribution. Orange 
bar shows the null 95% CI of the posterior distribution of modes of 1000 ‍G‍-matrix randomized by inbred line and 
block identities (see Methods). (B). The angle (‍Θ‍, Equation 3) between ‍δp‍ and the first three eigenvectors of 
the ancestral ‍G‍-matrix (‍gmax‍, g2, and g3). ‍Θ‍ does not differ from the random expectations. Dots show the mean 
estimate with bars the 83% and 95% credible interval of the posterior ‍G‍-matrix distribution. The null expectation 
was obtained by computing the angle between pairs of random vectors sampled from a uniform distribution (see 
Methods).

The online version of this article includes the following source data for figure 3:

Source code 1. See Figure 3 script.

Source data 1. Projections and angles (including CI) are shown in Figure 3 as a table.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/Figure3_results.pdf
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Selection differentials are similar across environments
Selection differentials on transition rates and body size measured in the two salt environments are 
their genetic covariances with the self-fertility measured in the high salt environment (sk, Table 1). We 
used estimates of the ancestral ‍Gqw‍-matrices to obtain these selection differentials (see Methods). 
‍G‍-matrices and ‍Gqw‍-matrices estimates of genetic (co)variances in locomotion behavior and body 
size are similar (Figure 4—figure supplement 1). We find genetic variance for self-fertility in high salt 
(Figure 4, Figure 4—source data 1). We also find that the transition rates from still to forward or from 
still to backward (SF or SB) measured in high salt have positive genetic covariances with self-fertility, 
and all other transition rates have negative covariances (Figure 4). Small or no selection differentials 
exist in low salt transition rates, and only body size shows a clear positive selection differential in both 
environments. These results are robust to variation in self-fertility (Figure 4—figure supplement 2).

Genetic (co)variances
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Figure 4. Selection differentials in the ancestral population. Ancestral genetic covariances between transition rates 
and body size measured in high salt (gray) or low salt (red) with high salt self-fertility. Dots and colored intervals 
show the mode and the 83% or 95% credible intervals of the posterior ‍Gqw‍ distribution.

The online version of this article includes the following source data, source code, and figure supplement(s) for 
figure 4:

Source code 1. See ‍Gqw‍ computation and Figure 4 scripts.

Source data 1. Selection differentials’ estimates, see table.

Figure supplement 1. Genetic (co)variances estimate from the ‍G‍- and ‍Gqw‍-matrices.

Figure supplement 1—source code 1. See Figure script.

Figure supplement 2. Self-fertility variation effects on selection differentials’ estimates.

Figure supplement 2—source code 1. See Figure script.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/06A_Gqw.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/Selection_differentials.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/Figures/Figure4_figure_supplement1.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/Figures/Figure4_figure_supplement1.R
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Evolutionary divergence
Adaptation to the high salt environment
Having characterized ancestral standing variation, we describe the divergence of the three replicate 
populations after 50 generations of evolution. First, we measured the degree of adaptation to high 
salt by comparing the mean fitness of the GA[1,2,4]50 populations to the ancestral A6140 population 
in competition experiments against a tester GFP-strain (see Methods; Figure 5—source data 1). We 
find an increase in the mean fitness of all three replicate populations (Figure 5, Figure 5—source data 
2). By generation 50, populations adapted to the high salt environment.

Locomotion traits diverged in low and high salt environments
Concomitant with adaptation, there was phenotypic divergence for the locomotion traits and body size 
measured in high salt (Figure 6, Table 2). Estimates of phenotypic divergence are robust to multivariate 
and univariate modeling (Figure 6—figure supplement 1, Figure 6—source data 1). From the univar-
iate models, we find that for each transition rate, at least one replicate GA population differed from the 
ancestor and that the three replicates showed significant divergence for three transition rates (Figure 6, 
Figure 6—source data 2). For body size we find that only one replicate populations diverged from the 
ancestral population. The amount of genetic variance did not limit phenotypic divergence, as the back-to-
still and forward-to-still transition rates (BS and FS) diverged while showing the lowest genetic variances in 
the ancestral population (Figure 2). Eigendecomposition of the MANOVA SSCP-matrix for the population 
factor further reveals that a single canonical trait explains most phenotypic differentiation between the four 
populations (‍dmax‍; Figure 6—source data 3, Table 3).

In the low salt environment, there was less phenotypic divergence than in the high salt environ-
ment, with only three out of the six transition rates having at least two replicate populations signifi-
cantly different from the ancestor (Figure 6—figure supplement 2). Unlike in high salt, body size in 
low salt showed a marked increase after experimental evolution in all replicate populations.
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Figure 5. Adaptation to the high salt environment. Colored dots show the ratio of wild-type to green-fluorescent 
protein (GFP) alleles after one generation of pairwise competitions between the outbred experimental populations 
with a GFP-tester strain. Filled circles indicate the least-square mean estimates with 95% confidence intervals; 
asterisks indicate significant differences between each replicate population relative to the ancestral population.

The online version of this article includes the following source data for figure 5:

Source code 1. See data analysis and figure script.

Source data 1. Data for analysis, see table.

Source data 2. Population contrasts, see table.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/04_Competition.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/data/competition.txt
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/txt/Competition_contrasts.txt
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Genetic variance decreased during evolution
We next characterized genetic divergence by estimating the high salt ‍G‍-matrices of the GA[1,2,4]50 
populations and comparing them with the ancestral high salt ‍G‍-matrix. We did not model the evolu-
tion of the ‍G‍-matrix in the low salt environment. This analysis shows that the size of the high salt 
‍G‍-matrix was reduced during experimental evolution, independently of the replicate population 
(Figure 7, Figure 7—source data 1). However, we continue to find that most genetic variances for the 
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Figure 6. Phenotypic divergence in the high salt environment. Each panel shows the transition rates and body 
size as in Figure 1. Dots indicate the values estimated for each inbred line in a high salt environment, gray for 
the ancestral population, blues for the evolved replicate populations. Circles and bars indicate the mean and 
the 95% confidence intervals least-square estimates. Line shows significant differentiation between all four 
populations using the multivariate MANOVA approach (Table 2). Significant differences between each of the 
evolved populations and the ancestral population using the univariate approach are shown with asterisks (Figure 
6—source data 2).

The online version of this article includes the following source data, source code, and figure supplement(s) for 
figure 6:

Source code 1. Multivariate analysis of variance (MANOVA) and figures/tables export scripts (as for Figure 1, also 
produces Figure 6—figure supplement 2).

Source data 1. Multivariate analysis of variance results, see table.

Source data 2. Contrasts between evolved and ancestral populations in high salt, see table.

Source data 3. Eigendecomposition of the MANOVA SSCP matrix of the phenotypic divergence, see table.

Figure supplement 1. Multivariate and univariate models’ population estimates.

Figure supplement 1—source code 1. See Figure script.

Figure supplement 2. Phenotypic divergence in the low salt environment.

Figure supplement 2—source data 1. Contrasts between evolved and ancestral populations in low salt, see 
table.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/03_Manova.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/08A_Export_Phenotypic_analysis_results.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/Manova_results.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/Divergence_contrasts_High_Salt.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/SSCP_divergence_ED.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/Figures/Figure6_figure_supplement1.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/Divergence_contrasts_Low_Salt.pdf
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Figure 7. Genetic divergence in the high salt environment. (A) High salt ‍G‍-matrix evolution of ancestral (gray) and 
evolved GA populations (blues). Eigendecomposition of the ancestral ‍G‍-matrix (gray) can be found in Figure 2, 
those of the evolved GA populations in Figure 7—figure supplement 2. (B) Total ‍G‍-matrix variance for each 
experimental population. (C) Genetic variance along ‍emax‍, the main canonical trait of genetic differentiation 
obtained after the random skewers analysis (see Methods, Table 1). Dots and colored bars show the mode and 
the 83% or 95% credible intervals of the posterior distribution. Figure 7 sources linked here - matrix computation, 
random skewers analysis, and Figure 7 scripts. The Figure 7 scripts also produces all three figure supplements.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. ‍G‍ -matrices of evolved populations in the high salt environment, see table.

Figure supplement 1. Null distributions of high salt genetic variances in the evolved populations.

Figure supplement 1—source data 1. Eigendecomposition of the evolved -matrices.

See table.

Figure supplement 2. Eigendecomposition of the high salt ‍G‍-matrix of the evolved populations.

Figure supplement 3. Genetic variance of the high salt ‍G‍-matrix in the evolved populations along the eigentraits 
of the ancestral population.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/01A_Produce_G_matrices_both_environments.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/05_Random_skewers.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/Figures/Figure7.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/GA50_G_matrices.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/GA50_Eigendecompositions.pdf
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GA populations differ from null expectations (Figure 7—figure supplement 1). Eigendecomposition 
of the GA ‍G‍-matrices indicates that 3–5 canonical traits differ from null expectations (Figure 7—figure 
supplement 2). Furthermore, evolved populations continued to have significant genetic variances in 
the three canonical traits of ancestral standing genetic variation (Figure 7—figure supplement 3).

Random skewers analysis shows that when projecting the four high salt ‍G‍-matrices along 1000 random 
phenotypic directions, 250 of them showed a significant difference between the ancestral and at least one of 
the evolved populations (see Methods). Using these 250 vectors we build an ‍R‍-matrix of genetic divergence 
between the four populations. Eigendecomposition of the ‍R‍-matrix then revealed that a single canonical 
trait explains most divergence (‍emax‍, Table 1). In this canonical trait at least 2 of the 3 evolved populations 
showed a reduction in variance (Figure 7C). An alternative eigentensor analysis to detect genetic diver-
gence among the 4 populations confirms the random skewers analysis (see results in our GitHub appendix).

Divergence along ‘genetic lines of least resistance’
We asked whether phenotypic divergence (‍dmax‍) and genetic divergence (‍emax‍) occurred along the 
dimensions of most ancestral genetic variation (‍gmax‍). For this analysis, we calculated the angle (‍Θ‍, see 
Equation 3 in Methods) and the proportion of overlap (‍Π‍, see Equation 5) between these canonical 
traits. Table 3 summarizes the main canonical traits of ancestral standing variation, and of phenotypic 
and genetic divergence.

Most of the genetic variance of the ancestral high salt ‍G‍-matrix along ‍dmax‍ is higher than expected 
by chance (Figure 8A). This is because ‍dmax‍ and ‍gmax‍ are aligned and their angle is very small when 
compared with other canonical traits of ancestral standing genetic variation, or with a null expecta-
tions (Figure 8B). We do not find a significant proportion of genetic variance of the high salt ‍G‍-matrix 
along ‍emax‍ (Figure 8C), but find a small angle between ‍emax‍ and ‍gmax‍ (Figure 8D), which is indicative 
of a good alignment between these canonical traits.

Indirect selection and predicting phenotypic evolution
Expected and observed responses to selection are aligned in high salt
Using Lande’s retrospective equation, we compared the genetic selection gradients obtained with 
selection differentials on traits measured in high salt (‍βg‍; see Methods, Equation 6) to the pheno-
typic selection gradients obtained with the observed responses in high salt after 50 generations (‍β‍; 
see Methods, equation 7). The ancestral population’s high salt ‍G‍-matrix was assumed stable during 
experimental evolution. Credible intervals were obtained, however, by sampling the ‍G‍-matrix from 
its posterior distribution, with fixed ancestral selection differentials (sk; Figure 4), or fixed observed 
phenotypic divergence for each of the three replicate populations (‍∆q̄k‍; Figure  6 for high salt, 
Figure 6—figure supplement 2 for low salt).

We find that phenotypic selection gradients for all traits are highly heterogeneous because higher 
phenotypic divergence has an outsize effect on the mean and error estimates. Nonetheless, the 
phenotypic selection gradients overlap with the corresponding genetic selection gradients for at least 
one replicate population (Figure 9A; Figure 9—source data 1, Figure 9—source data 2). Evidence 
for a lack of overlap between selection gradients in two replicate populations is found for the transi-
tion rate backward-to-forward and for body size. Only for the transition rate SB is there an overlap of 
selection gradients for all three replicate populations.

Given replicate heterogeneity, testing whether selection theory predicts the direction of phenotypic 
evolution is possibly best estimated as the angle between expected and observed responses to selec-
tion. For traits measured in high salt, we find that the angle between selection differentials and observed 
phenotypic divergence is low for all replicates (Figure 9B). In contrast, when traits are measured in low salt, 
expected and observed responses are not aligned. Similarly, whether theory predicts the magnitude of 
phenotypic evolution can be estimated as the ratio between expected and observed responses. For all traits 
measured in high salt, and across replicate populations, observed phenotypic divergence is on average, 
across traits and replicates, 3.5 times the selection differentials (Figure 9C). For the traits measured in low 
salt, predictions about the magnitude of divergence further degenerate (not shown).

Indirect versus direct selection
There is evidence of direct selection on SB and backward-to-forward (BF), as well as on body size 
(Figure 9A, Figure 9—source data 1). We find a positive genetic selection gradient for SB and a 

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Elife_Tensor_Appendix.pdf
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Figure 8. Phenotypic and genetic divergence alignments with ancestral standing variation. (A) Projection of 
the total ancestral genetic variance along the phenotypic divergence canonical trait ‍dmax‍. Dots show the mean 
estimate with bars the 95% CI. Orange bar shows the null 95% CI after randomizing the ‍G‍-matrix (see Methods). 
Mean of the observed posterior distribution (0.93) is outside the 95% CI of the randomized posterior modes (0.80–
0.91). (B). The angle (‍Θ‍) between ‍dmax‍ and the first three eigenvectors of the ancestral ‍G‍-matrix (‍gmax,2,3‍). The 
null expectation was obtained by computing the angle between 1000 pairs of random vectors. (C and D) Similar 
projection and angles as shown in (A) and (B) but with ‍emax‍ - the vector of the main genetic divergence - instead of 

‍dmax‍. In (C), the null and observed projections do not differ. Because ‍emax‍ and ‍gmax‍ are almost aligned, both the 
observed and the null are very close to one (as ‍Π‍ is estimated relatively to ‍λmax‍, see Equation 5) and the relative 
phenotypic variance between traits is conserved in the randomized ‍G‍-matrices.

The online version of this article includes the following source data for figure 8:

Source code 1. See Figure AB and Figure CD scripts.

Source data 1. Projections and angles (including CI) shown in Figure 8 as a table.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/Figures/Figure8AB.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/Rcode/Figures/Figure8CD.R
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/Figure8_results.pdf
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Figure 9. Predicting phenotypic evolution with Lande’s equation. (A) Indirect and direct selection. Genetic 
selection gradients ‍βg‍ (gray) and phenotypic selection gradients ‍β‍ (blues) for each replicate population, see 
Equation 6 and Equation 7, respectively. ‍β‍ were divided by 3.5 for scaling (the average ratio observed/predicted 
divergence, panel C) rather than by 140 (the total number of generations in the experiment) for visual convenience. 
(B) The direction of phenotypic evolution. Angle between the expected phenotypic divergence (selection 
differentials, sk; Figure 4) and the observed phenotypic divergence at each replicate (‍∆q̄k‍; Figure 6). Circles show 
the results in the high salt environment and stars in the low salt environment. The expected angle by chance is in 
gray and was generated by computing 1000 angles between pairs of randomly generated vectors from a uniform 
distribution ‍U7(−1, 1)‍. (C) The magnitude of phenotypic evolution. The ratio phenotypic divergence at each 
replicate (‍∆q̄k‍) with expected divergence (sk). For all panels, dots/circles/stars and colored bars show the mode 
and the 83% or 95% credible intervals of the posterior distributions obtained by sampling in posterior distribution 
of the ancestral high salt ‍G‍-matrix (Figure 2).

The online version of this article includes the following source data, source code, and figure supplement(s) for 
figure 9:

Source code 1. See Figure 9 script that includes Figure 9—figure supplement 1 and Figure 9—figure 
supplement 2.

Source data 1. Genetic selection gradients, see table.

Source data 2. Phenotypic selection gradients, see table.

Figure supplement 1. Genetic selection gradients bias due to low variance traits.

Figure supplement 2. Genetic selection gradients with a sampling of ‍G‍-matrix and differentials.

Figure supplement 2—source data 1. Genetic selection gradients, see table.

https://doi.org/10.7554/eLife.80993
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/BetaG.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/formatted_tables/Beta_GA50.pdf
https://github.com/ExpEvolWormLab/Mallard_Robertson/blob/main/output_files/txt/Selection_gradients_bg.txt
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negative genetic selection gradient for BF. There is also a positive selection gradient for body size, 
opposite in sign to its association with other traits in the canonical traits of standing genetic variation, 
and in the canonical traits of phenotypic and genetic divergence (Table 3). Traits with low genetic 
variance, FS and BS (Figure 2—figure supplement 2), do not appear to bias the genetic selection 
gradient estimates (Figure 9—figure supplement 1). However, none of the genetic selection gradient 
estimates differ from zero when sampling both the G-matrix and the selection differentials from their 
respective posterior distributions to obtain credible intervals (Figure 9—figure supplement 2).

Discussion
Modeling approaches for predicting adaptive phenotypic evolution before mutation-selection balance 
is reached are based on Lande’s equation (see Introduction). In Lande’s equation, the trait change over 
one generation equals the ancestral ‍G‍-matrix times the directional phenotypic selection gradients, 
but might not be accurate in the presence of indirect selection. This can be remediated by replacing 
the phenotypic selection gradients with the genetic selection gradients obtained after measuring 
selection differentials in the ancestral population. For predicting phenotypic evolution over several 
generations, however, one must assume invariable selection gradients and that the ‍G‍-matrix is stable 
despite selection and drift. We sought to test the selection theory by finding whether we could predict 
phenotypic evolution for 50 generations of experimental evolution.

We followed seven traits with different environmental and genetic dependencies, the six transition 
rates between movement states and body size (Table 3). Our ancestral population was adapted to the 
low salt conditions (Chelo and Teotónio, 2013; Theologidis et al., 2014), before challenging three 
replicate populations to a gradual increase in the salt concentration in the growth media for 35 gener-
ations and 15 extra generations in high salt. Fifty generations of experimental evolution led to adapta-
tion (Figure 5) and to phenotypic and genetic divergence (Figure 6, Figure 7). Body size measured in 
high salt did not consistently evolve among replicate populations but individual movement increased. 
This is because the transition rates from the still state have increased while those to the still state 
have decreased. Adaptive phenotypic divergence followed the direction of the canonical trait with 
more ancestral standing genetic variation (Figure 8, Table 3), and therefore, we could predict pheno-
typic evolution, though only its direction and when the component traits of the multivariate pheno-
type were measured in the high salt environment (Figure 9). When considering the component traits 
of the multivariate phenotype individually, and due to replicate population heterogeneity, we could 
confidently predict the evolution of only one of the seven traits followed (SB). We could not predict 
the magnitude of evolution for any individual trait. These findings are relatively unique because we 
described ‍G‍-matrix evolution and measured the ancestral selection differentials to predict phenotypic 
evolution, but they add to the results of a growing number of experimental studies testing Lande’s 
equation across tens of generations. For example, a recent re-analysis of up to 60 generations in 
constant and homogeneous environments, for five wing traits in Drosophila melanogaster, showed 
an alignment between the main canonical trait of genetic variation in the evolved populations with 
adaptive phenotypic divergence (Yeaman et al., 2010; Walter, 2023).

As the canonical trait explaining most variation in the ancestral population, ‍gmax‍, also the second 
and third canonical traits differ from null expectations (‍g2,3‍, Figure 2, Figure 2—figure supplement 
3), and remain so after evolution (Figure 7—figure supplement 3), despite potential variance inflation 
problems due to the MCMC methods we employed (Morrissey et al., 2012; Sztepanacz and Blows, 
2017b). For these ancestral canonical traits, selection must have been responsible for the observed 
loss of genetic variance, particularly after generation 35 (Figure 7). Assuming an infinitesimal model of 
trait inheritance, drift is expected to lead to a loss of genetic variance by (1-1/2‍Ne‍) at each generation 
(Barton et al., 2017). Even in the unrealistic situation of complete selfing during the experiment, and 
considering effective population sizes on the order of 1000 (Chelo and Teotónio, 2013), less than 5% 
was expected to be lost by genetic drift by generation 50, values that were not observed (only about 
half of the genetic variance was lost, Figure 7B). Supporting loss of variation by selection we before 
showed that allelic diversity at neutral single-nucleotide polymorphisms is reduced relative to ances-
tral levels by 5% by generation 22 (Theologidis et al., 2014), and to 20% only by generation 50 (Chelo 
et al., 2019). We did not, however, test whether the direction of phenotypic divergence occurred 
along the ancestral ‍g2,3‍ traits because they together explain 15% of the variation and there is a poor 
statistical power to do so. Furthermore, our previous work suggests that variation in the ancestral ‍g2,3‍ 

https://doi.org/10.7554/eLife.80993
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might have been lost by drift during the first 35 generations of the experiment such that they were 
perhaps of little consequence later on when populations reached the high salt environment (Guzella 
et al., 2018). Few studies have demonstrated that canonical traits of little genetic variance can influ-
ence selection responses (Kirkpatrick, 2009; Blows and McGuigan, 2015; Sztepanacz and Blows, 
2017a). In one of the few examples, Hine et al., 2014 showed that low-variance canonical traits of 
eight cuticular hydrocarbons in Drosophila serrata respond to artificial selection during six genera-
tions, though inconsistently among replicate populations. In our experiment, we suspect that showing 
that canonical traits with a small amount of genetic variation impact adaptive phenotypic divergence 
will require finding the quantitative trait loci (QTL) responsible for their expression (Svensson et al., 
2021; Kelly, 2009). If these low-variance canonical traits influence adaptation then allele frequency 
dynamics at the relevant QTL because of selection might be detected when comparing genomic data 
between ancestral and derived populations (Long et al., 2015; Barghi et al., 2020).

Our findings also highlight the relationship between phenotypic plasticity and adaptation to novel 
environments (Ghalambor et al., 2007; Pfennig et al., 2010; Teotónio et al., 2009; Draghi and 
Whitlock, 2012; Noble et  al., 2019). While the discussion has been on showing that population 
persistence is more likely if plasticity is aligned with the direction of selection (Price et al., 2003; 
Lande, 2009; Chevin et al., 2010), our results show that plasticity only reveals the topography of the 
adaptive landscape. In high salt conditions, populations move away from the ancestral phenotypic 
optimum (Figure 1), with an associated fitness cost (Theologidis et  al., 2014). Adaptation to the 
high salt target environment after generation 35 presumably involved recovering a phenotype similar 
to that of the ancestral population that alleviated this fitness cost (Table 3). In particular, high salt 
in the ancestral population reduces body size and SB transition rates while increasing SF transition 
rates. Symmetrically, selection favors increased body size, increased SB, and decreased SF. However, 
because all three traits show positive genetic covariances with each other (Figure 2), even if plasticity 
is oriented with selection (but of the opposite sign), phenotypic evolution is constrained by a lack of 
genetic variation in the appropriate canonical trait. The ancestral population had genetic variation in 
the direction of selection (the canonical trait g3, Table 3), but as argued above it was probably lost 
during gradual salt evolution because of drift such that when reaching high salt populations could 
not have further responded to selection (Matuszewski et al., 2015; Guzella et al., 2018). Future 
evolution in the direction of the ancestral multivariate phenotypic optimum, or close to it, should 
then be conditional on the appearance of de novo pleiotropic mutations. Assuming that mutational 
covariances do not vary with the environment, it is unclear that there can be much further phenotypic 
evolution as elsewhere we characterized mutational covariances and did not find any in the direction 
of selection (see Table 3 and Mallard et al., 2023).

Ancestral phenotypic plasticity can thus be considered ‘non-adaptive’ (Ghalambor et al., 2007). 
Hence, it is unsurprising that we could not predict low salt phenotypic evolution. This is not explained 
because of a general lack of genetic variance in locomotion traits and body size in the ancestral 
population (Figure 2) but because their selection differentials were small or did not differ from zero 
(Figure 4). An exception is body size. Body size is reduced by high salt conditions (Figure 1), and 
there is probably direct selection for increased body size in high salt (Figure 9). However, there was 
little body size evolution in the high salt environment (Figure 6). In contrast, there was evolution of 
increased body size when it was measured in the low salt environment, as expected from the positive 
selection differentials in the ancestor population (Figure 4). Body size measured in low salt could 
only have evolved because of indirect selection by being genetically correlated with high salt body 
size or some other traits expressed in high salt. Hence, the evolution of plasticity in body size might 
be predictable although the evolution of plasticity in the multivariate phenotype is not. The fact that 
body size measured in low salt evolved further reveals that the evolved populations were in a region of 
the adaptive landscape that was not readily accessible to the ancestral population even if it had been 
domesticated to low salt conditions for 140 generations. In other words, body size evolution in low 
salt supports the long-held hypothesis that phenotypic plasticity facilitated the evolution of novelty 
(Wagner and Lynch, 2010; Moczek et al., 2011; Levis et al., 2018).

Robertson’s covariance [‍σg(z, w)‍] was originally found to describe an episode of selection (the selec-
tion differentials, ‍s‍) and later to predict adaptive phenotypic evolution over one generation (‍∆z̄‍) as the 
secondary theorem of natural selection (Walsh and Lynch, 2018; Hajduk et al., 2020). Applications so far 
have been mostly limited to explaining the evolution of individual traits and when time-series of trait and 

https://doi.org/10.7554/eLife.80993
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fitness are concurrently obtained with pedigrees such that estimates of trait breeding values and genetic 
selection gradients can be updated every few generations (Stinchcombe et al., 2014; Morrissey et al., 
2012; Hajduk et al., 2020; Hadfield, 2010). One problem that has received particular attention has been 
to ask whether indirect selection or phenotypic plasticity and robustness explain phenotypic stasis, despite 
trait heritability and a significant phenotypic selection gradient on the observed trait (Merilä et al., 2001; 
Kruuk et al., 2002). For example, Biquet et al., 2022 followed a blue tit population for more than 40 years, 
in which egg laying has changed to earlier spring dates, presumably because of climate change. Despite 
significant heritability of egg laying and directional selection for earlier dates, modeling the breeding values 
did not reveal any temporal trend, consistent with a lack of genetic covariance between egg laying date and 
fitness. There was thus no genetic divergence for laying date, which Biquet et al., 2022 could attribute to 
phenotypic robustness and the stochastic nature of individual development to maturity. Conversely, using 
a similar approach, Bonnet et al., 2017 found that evolution towards earlier parturition dates in a red 
deer population could be predicted and was consistent with the estimated change in breeding values. In a 
study following two traits, selection due to human harvesting of a prey species of wild salmon (for feeding 
domestic salmon) explained divergence in early maturity and small body sizes, despite directional selection 
for increased body size at maturity because of fishing (Czorlich et al., 2022). Our results suggest that when 
pedigrees are difficult to obtain, predicting the direction of adaptive multivariate phenotypic evolution for 
tens of generations may be possible without updating estimates of selection gradients and the ‍G‍-matrix 
every few generations. This is because although the environment changed for 35 generations in our experi-
ment directional selection was maintained and only the size of the ‍G‍-matrix was reduced.

In sum, we have shown that using Lande’s equation with genetic selection gradients is valid to 
predict the direction of phenotypic evolution in a new environment, after a gradual environmental 
change for 35 generations and 15 generations in the new environment. However, selection theory 
not necessarily predict the direction or magnitude of evolutionary change in all the component traits 
of the multivariate phenotype, especially if the traits are not measured in the new environment. This 
is because there are variable and complex genetic and environmental dependencies between indi-
vidual traits. There are few experimental tests of selection theory such as ours. Therefore, more will 
be needed to generalize our results to natural populations, particularly those challenged by changing 
and heterogeneous environments.

Materials and methods
Experimental populations and environmental conditions
The ancestral population is named A6140, where ‘A’ stands for androdioecious, ‘6’ for replicate six, 
and ‘140’ for the number of generations of domestication to a standard laboratory environment 
(Teotónio et al., 2017). A6140 resulted from the hybridization of 16 founder wild strains during 33 
generations followed by 140 generations characterized by 4 day discrete and non-overlapping life-
cycles at N=104census sizes and  ‍Ne‍=103effective population sizes (Teotonio et al., 2012; Chelo and 
Teotónio, 2013; Theologidis et al., 2014). Our standard laboratory environment involves popula-
tions being maintained in 10 × 9 cm Petri dishes NGM-lite agar media containing 25 mM NaCl and 
a homogenous lawn of E. coli HT115 that served as food from the L1 larval stage until reproduction. 
Each Petri dish contains 1000 individuals which are mixed during reproduction, with embryos being 
collected and synchronized at the L1 larval stage to start a new generation.

We report the evolution of locomotion behavior and body size in three independent replicate 
populations (named GA[1,2,4] populations: ‘G’ for gradual, ‘A’ for androdioecious, ‘#’ for replicate 
number). They were derived from splitting into three a single pool of at least 104 individuals sampled 
from the A6140 population. GA populations were maintained in the same conditions as during domes-
tication except that the NGM-lite media was supplemented with 8 mM of NaCl at each generation 
for 35 generations and then kept at constant 305 mM NaCl for an additional 15 generations. Details 
about the derivation of the GA populations can be found in Theologidis et al., 2014. We refer to the 
NGM-lite 305 mM NaCl environment as the ‘high salt’ target environment, while the domestication 
25 mM NaCl environment as the ‘low salt’ environment.

C. elegans is an androdioecious nematode, where hermaphrodites can self but outcross only when 
mated with males. Natural populations are depauperate of genetic diversity and males are rare due 
to a long history of selfing, selective sweeps, and background selection (Andersen et  al., 2012; 

https://doi.org/10.7554/eLife.80993
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Rockman et al., 2010). Under the domestication environment, however, outcrossing is readily main-
tained at frequencies between 60% and 100% (Teotonio et al., 2012, Mallard et al., 2022). In GA 
populations outcrossing is maintained at close to 100% for 35 generations, reduced to about 30% in 
GA1, 14% in GA2, and 5% in GA4, by generation 50 of the experiment (Theologidis et al., 2014).

As reported before, we derived inbred lines by selfing single hermaphrodites from the ancestor 
(A6140) and the three replicate populations at generation 50 (GA[1,2,4]50) for a minimum of 10 
generations (Noble et al., 2017; Noble et al., 2021). Male frequency in the inbred lines is low, on the 
order of the mutation rate for the non-disjunction of the X-chromosome (Teotónio et al., 2006) – sex-
determination is chromosomal with hermaphrodites XX and males X‍∅‍ –.

Populations and inbred lines were cryogenically stored (Stiernagle, 1999), allowing for contempora-
neous measurements of ancestral and evolved outbred populations and their inbred lines. Grandmaternal 
and maternal environmental effects are common to the samples being measured (Teotónio et al., 2017).

Adaptation to high salt
We measured the increase in mean relative fitness among the ancestral population (A6140) and 
evolved populations at generation 50 (GA[1,2,4]50) using pairwise competition experiments between 
them and a tester line (Teotónio et al., 2017). As a tester, we employed an inbred line (EEV1402) 
derived by selfing from the A6140 population, and that expressed a green-fluorescent-protein (GFP) 
morphological marker (Chelo et al., 2013). For the assays, we revived the four populations and the 
tester line (>1000 individuals each) and let individuals reproduce and starve for 10  days. Starved 
individuals were then seeded on fresh plates with food at a density of 1000 L1 larvae in low salt. We 
grew them for two complete generations in high salt, except the GFP tester which was only grown in 
high salt for one generation. At the third generation, we seeded 500 L1 larvae of the GFP tester line 
together with 500 L1 larvae of 1 of 4 experimental populations in high salt. For A6140, we seeded 
15 plates (technical replicates), for GA150 4 plates, for GA250 four plates, and for GA450 five plates. 
In each of these plates, 72  hr after L1 seeding, individuals were subject to the ‘bleach/hatch-off’ 
protocol, the standard of our life-cycle, to recover live embryos and, 24  hr later, synchronized L1 
larvae. We scored an average of 169 larvae for GFP expression in each technical replicate.

The relative proportion of non-GFP to GFP measures the relative fitness of the experimental popu-
lations to the tester after one generation of competition (Teotónio et al., 2017). To analyze this data, 
we used a generalized linear model in R (R Development Core Team, 2018), testing for the evolution 
of the ratio non-GFP/GFP, assuming a binomial error distribution (‘quasibinomial’ family option) and 
allowing for overdispersion of the data. Post-hoc pairwise comparisons were performed between 
the ancestral and the evolved populations with Tukey tests using the glht function in the multcomp 
package in R (Hothorn et al., 2008).

Locomotion behavior
Inbred lines were thawed from frozen stocks on 9 cm Petri plates and grown until exhaustion of food. 
This occurred 2–3 generations after thawing, after which individuals were washed, adults removed 
by centrifugation, and three plates per line seeded with 1000 larvae at mixed larval stages. Samples 
were then maintained in the standard domestication environment for two complete generations. At 
the assay generation (generation 4–6 generations post-thaw), starvation-synchronized L1 larvae were 
seeded in low and high salt. Adults were phenotyped for locomotion behavior 72 hr later at their usual 
reproduction time in one 9 cm plate (technical replicate). At the beginning of each assay we measured 
ambient temperature (T) and humidity (H) in the imaging room.

Given the number of lines to phenotype, we repeated the above protocol several times over 
several years, with each repetition defining a statistical ‘block’ on a given day. In total, we phenotyped 
186 lines from the A6140 population and 61, 61, and 42 lines from each of the GA[1,2,4] populations, 
respectively, with most lines being phenotyped twice and always in separate blocks (average of 1.9 in 
low salt, and of 2 in high salt).

We imaged adult hermaphrodites using the Multi-Worm Tracker [version 1.3.0; Swierczek et al., 
2011 and used the materials and protocols of Mallard et al., 2022]. Each movie contains about 1000 
tracks of hermaphrodites (called objects) with a mean duration of about 1 min. Standardized to a 
common frame rate (4 Hz), we filtered and extracted the number and persistence of tracked objects 
per movie and assigned movement states across consecutive frames as forward, still or backward 
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(assuming forward as the dominant direction of movement). Mean object density (D) per movie was 
also retrieved to be used as a covariate in modeling.

Locomotion behavior in 1-dimensional space is described by the transition rates between still (S), 
forward (F) and backward (B), plus the self-transition rates. Modeling is detailed in Mallard et al., 
2022. Transition rates between movement states are assumed to follow a continuous time Markov 
process. The Markov process is a stochastic process modeling changes in movement state as a matrix 
Q. In our data, the Markovian memoryless assumption is only marginally violated (Mallard et  al., 
2022). The elements in Q, noted ‍qi,j‍, are the transition rates from state i to state j (off-diagonal 
elements for ‍i ̸= j‍, and with ‍qi,j > 0‍). This definition constrains self-transition rates (diagonal elements) 
to be of the opposite sign to the sum of the two transition rates leaving the relevant movement state:

	﻿‍ qi,i = −
∑

j̸=i qi,j‍� (1)

This ensures that the probability of leaving a given movement state towards any other state during a 
waiting time ‍∆t‍ is one minus the probability of remaining in the same state (see Mallard et al., 2022 
for a more detailed explanation). Therefore, only the six transition rates between movement states are 
mathematically independent and we thus ignore self-transition rates.

For estimation, we used log-likelihood models as defined in Mallard et al., 2022 and specified 
them with the msm package (Jackson, 2011) in RStan [Stan Development Team, 2018, R version 
3.3.2, RStan version 2.15.1]. Because ‍qi,j > 0‍, all analyses were performed on the natural log scale to 
ensure normality. We used multi-log normal prior distributions with the mean transition rate and a 
coefficient of variation ‍ln(qi,j) ∼ N (ln(2), 0.6)‍. We retained the means of the posterior distributions as 
the per-plate transition rates for all the subsequent analyses.

Body size
We included the measurements of body size obtained from the Multi-Worm Tracker movies as a 
seventh trait. Movie frames were sampled only for forward tracked-objects to minimize posture vari-
ation. We then extracted the per-track object mean area (Swierczek et al., 2011). These values were 
summarized as the per-plate median of all track mean values. We then re-scaled these measurements 
so that the averaged phenotypic variance in each environment is roughly similar to the average tran-
sition rates phenotypic variance. This was done by multiplying the body size by a factor of 50. We 
chose this procedure rather than dividing all the phenotypic values by their mean, cf. Houle et al., 
2011, because our transition rates’ means are close to zero while spanning both negative and positive 
values. Dividing these transition rates by their means would lead to an artificial increase in phenotypic 
variance.

Self-fertility
To estimate selection differentials, we used previously-published data on hermaphrodite self-fertility of the 
A6140 inbred lines in high salt (Chelo et al., 2019). Self-fertility was measured under environmental condi-
tions that closely followed those of experimental evolution. An average of 42 hermaphrodites were scored 
for self-fertility per inbred line (minimum 22 and maximum 85 individuals). Self-fertility includes the fecundity 
of hermaphrodites at the usual time of reproduction by selfing and the viability of their progeny until the L1 
larval stage. The log-transformed, covariate-adjusted self-fertility values (best linear unbiased prediction esti-
mates, BLUPs) for each inbred line were downloaded from Chelo et al., 2019, exponentiated, and divided 
by the mean to obtain a proxy for relative fitness (noted ‍w‍; Table 1).

Phenotypic plasticity and phenotypic divergence
We used a multivariate analysis of variance (MANOVA) to model ancestral phenotypic plasticity and 
the divergence of locomotion behavior and body size. The six transition rates and body sizes were 
fitted as a multivariate response variable, with fixed effects of temperature and humidity at the time of 
movie recording and the log of object density in each Petri plate. These three environmental variables 
were centered and standardized before the analysis to mean=0 and sd=1. We further modeled a fixed 
effect of block and a fixed effect of year accounting for when the different lines were measured. The 
main factors of interest were the fixed effects of the salt environment and the fixed effects of evolu-
tion, together with their interaction; the last factor with four population ID levels (A6140, GA[1,2,4]50). 
The residual error was assumed to follow a multivariate normal distribution. We used the manova 
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function in the stats package in R for computation (R Development Core Team, 2018), with Wilks 
tests are being used for the significance.

From the MANOVA results, we extracted the Sums-of-Squares and Cross-Products (SSCP) matrices 
for the fixed effects of environment and population and eigendecomposed these matrices to describe 
the orthogonal canonical traits maximizing phenotypic variation in each (Walter, 2023). For the SSCP-
matrix of the environment, the first eigenvector is the dimension containing the most phenotypic 
plasticity in the ancestral population and is here named ‍δp‍. For the SSCP-matrix of evolution, the first 
eigenvector is the dimension of divergence among the four populations in high salt and is here called 
‍dmax‍ are the eigenvalues measuring the variation explained by each eigenvector. Estimated mean-
least square divergence per replicate population is here called ‍∆q̄k‍, with ‍k‍ being the environment.

Additionally, we modeled the traits individually using linear mixed-effects models to estimate the 
best linear unbiased predictions (BLUPs) of transition rates and body size per inbred line (used only 
for visualization purposes in the figures). This univariate approach allowed testing the divergence of 
transition rates for each replicate GA population from the ancestral A6140 population. This univariate 
model was similarly formulated as the MANOVA, except the block was included as having random 
effects. For model fitting, we employed the lme4 package in (Bates et al., 2015) in R. Post-hoc pair-
wise contrasts employed Tukey tests with the emmeans package (Lenth, 2021).

G-matrices and genetic divergence
Using the same model, we estimated the ‍G‍-matrices of the ancestral population A6140 and the three 
evolved replicate populations GA[1,2,4] separately for the traits measured in the low and high salt 
environments.

The six transition rates and body size were fitted as a multivariate response variable column-vector 

‍y‍ in the model:

	﻿‍ y = µ +
∑7

n=1 α× [T, H, D] + γ + ζ + η + ϵ‍� (2)

where ‍µ‍ are the intercepts and ‍α‍ are the environmental fixed effects of temperature (T), humidity 
(H), and log density (D). We denote ‍[T, H, D]‍ to simplify notation of the product (×) among the envi-
ronmental variables (fitting all three variables as fixed effects, the three two ways interactions, and 
the three-way interaction for a total of seven fixed effects). ‍γ‍ was defined as the fixed effect of year 
when the assays were conducted, ‍ζ ∼ N (0,σ2)‍ and ‍η ∼ N (0,σ2)‍ the random effects of line and block 
identity, respectively. ‍ϵ ∼ N (0,σ2)‍ defines the residual error.

The ‍G‍-matrix is half the line identity (co)variance matrix (‍ζ‍), as we have measured homozygous 
diploid inbred lines and assume codominance. As estimated here, the broad-sense ‍G‍-matrix should 
be an adequate surrogate for the narrow-sense ‍G‍-matrix. This is because there is no inbreeding 
depression for self-fertility in high salt due to the self-fertilization of hermaphrodites from the experi-
mental outbred populations (Chelo et al., 2019), and because, at least in low salt, we failed to detect 
average (genome-wide) directional dominance or epistasis when comparing the means of transition 
rates in the outbred populations with those among the inbred lines (Mallard et al., 2022).

Models were fit with the R package MCMCglmm (Hadfield, 2010). We used improper flat priors 
(nu=0). Model convergence was verified by visual inspection of the posterior distributions and an 
autocorrelation below 0.05. 100,000 burn-in iterations were done with a thinning interval of 2000 and 
over 2 million MCMC iterations. The A6140 ‍G‍-matrix in high salt was estimated using different prior 
distributions, chosen among the literature as the most representative including parameter-expanded 
priors (see Figure 2—figure supplement 1).

Because the variance estimates resulting from the MCMCglmm models are positive definite, null 
expectations for the ‍G‍-matrices were obtained by randomizing 1000 times the phenotypic data 
set. Randomization was done by shuffling inbred line and block identities and refitting the model at 
each iteration (Equation 2). We then computed the posterior mode for each of the 1000 models to 
construct a null distribution of genetic variances.

Eigendecomposition of each ‍G‍-matrix was done in R as above for phenotypic (co)variances. We define 
the main canonical dimension of genetic variation ‍gmax‍ as the first eigenvector of the A6140 ‍G‍-matrix (with 

‍λgmax‍ its eigenvalue). We calculate the angle between the two ‍gmax‍ in high and low salt as the mean of the 
estimated posterior distribution modes (this angle is defined in the next section, see Equation 3).

https://doi.org/10.7554/eLife.80993
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We used the random skewers method described by Aguirre et al., 2014; Hine et al., 2009 to describe 
the genetic divergence during experimental evolution. In this method, random vectors are projected 
through the four ‍G‍-matrices to estimate the genetic variance in all phenotypic directions (Equation 5, see 
below). Using the ‍G‍-matrix posterior distributions, we tested for significant differences in genetic variance 
between matrices for each random vector. The vectors that showed a significant difference (i.e. no overlap 
between the 95% CI of the two matrices projected variance) were retained to construct an ‍R‍-matrix with the 
(co)variances of differentiation. The eigendecomposition of the ‍R‍-matrix then describes the canonical traits 
of genetic differentiation among the ‍G‍-matrices. The first eigenvector the ‍R‍-matrix is here called the vector 
of genetic divergence (‍emax‍, Table 1) because the A6140 ancestral population drives most differentiation. 
An alternative ‍G‍-matrix differentiation analysis can be done with the eigentensor approach (Aguirre et al., 
2014). Eigentensor analysis of the four A6140, GA[1,2,4]50 ‍G‍-matrices in high salt gave similar results (see 
methods and results in the GitHub appendix).

Selection differentials
For the ancestral population A6140, we also computed the ‍Gqw‍-matrices as defined in Stinchcombe 
et al., 2014, which is the ‍G‍-matrix of the 6 traits of locomotion behavior and body size expanded to 
include self-fertility. The last column-vector entries of the ‍Gqw‍-matrix are thus the covariances between 
traits and relative fitness, the selection differentials (sk).

Different individuals in separate assays were measured for self-fertility and transition rates/body 
size. To assess for a statistical bias on selection differential estimates when using self-fertility BLUP 
estimates (Hadfield et al., 2010), we generated 500 ancestral ‍Gqw‍-matrices in high salt with within-
line self-fertility variability across the replicated measurements of transition rates. For each transition 
rate measurement (one per Petri dish, see above), one inbred line self-fertility value was sampled from 
a normal distribution using the line’s mean and, as standard deviation, the standard error of the mean 
multiplied by ‍

√
2‍. In each line mean self-fertility was calculated from multiple individuals (at least 22 

and up to 85) and on average there are two transition rate values per line. Our protocol thus mimics 
a random split of self-fertility into two groups of identical size. The ‍Gqw‍-matrix is stable to within-line 
self-fertility variation and subsequent analysis was done with the initial ‍Gqw‍-matrix estimates. We also 
ensured that the ‍G‍-matrix contained in the ‍Gqw‍-matrix is similar to the one computed above for the 
ancestral population.

Phenotypic and genetic alignments
We used the metrics introduced by Noble et al., 2019 to compare the alignment of ancestral standing 
genetic variation with the first canonical dimension of phenotypic plasticity (‍δp‍), or with the first canon-
ical dimensions of adaptive phenotypic (‍dmax‍) or genetic (‍emax‍) divergence. The first metric is the angle 
between two vectors. The angle between the i-th eigenvector of the A6140 ‍G‍-matrix, gi, and ‍δp‍ is 
defined as:

	﻿‍
Θ = 180

π
cos−1( δp · gi

∥δp∥ ∗ ∥gi∥
).

‍�
(3)

As both gi and ‍−gi‍ are eigenvectors of the ‍G‍-matrix, ‍Θ‍ values between 90° and 180° were transformed 
so that ‍Θ‍ always remains between 0° and 90° (‍Θ′‍=180°-‍Θ‍, results from using ‍−gi‍ instead of gi in Equa-
tion 3). Angles comparing the alignment of the ancestral gi with the axis of phenotypic and genetic 
divergence were calculated, by replacing ‍δp‍ in Equation 3 with ‍dmax‍ and ‍emax‍, respectively.

For each angle, we sampled the posterior distribution of the A6140 ‍G‍-matrix to create a credible 
interval. ‍δp‍ and ‍dmax‍ were obtained as the first eigenvectors of the SSCP matrices from the MANOVA 
model, as described above. The null expectation for ‍Θ‍ is calculated as the angle between 1000 pairs 
of random vectors sampled from a uniform distribution ‍U7(−1, 1)‍.

The second metric computes the proportion of ancestral genetic variance along the main canonical 
trait of ancestral phenotypic plasticity:

	﻿‍
r = δpT · G · δp

∥δp∥2 ‍
 
�

(4)
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where ‍pmax‍ is replaced by ‍dmax‍ when computing the proportion of ancestral genetic variance in the 
main canonical trait of phenotypic divergence in high salt, or by ‍emax‍ when relative to the main canon-
ical trait of genetic divergence in high salt.

‍Π‍ is the ratio between the amount of genetic variance in ‍r‍ that maximizes plasticity, phenotypic or 
genetic divergence, over the maximum possible amount of genetic variance in any phenotypic dimen-
sion (‍λgmax‍, the first eigenvalue of the ‍G‍-matrix):

	﻿‍
Π = r

λgmax ‍�
(5)

‍Π‍ values are comprised between 0 (no genetic variance along the plasticity/divergence canonical 
traits) and 1 (when the plasticity/divergence canonical traits contain all the genetic variance in ‍gmax‍). 
The null distributions for ‍Π‍ were obtained by randomizing 1,000 ancestral ‍G‍-matrices through shuf-
fling inbred line and assay block identities.

Selection differentials and gradients
Selection differentials were estimated above with the ancestral matrix ‍Gqw‍ in high or low salt as the 
genetic covariance between transition rates and body size with self-fertility in high salt (sk). Comparing 
observed and expected responses to selection was done by estimating directional selection gradients 
using Lande’s retrospective equation, equation 9 in Lande, 1979. This is unlike Stinchcombe et al., 
2014 or Hajduk et al., 2020, where phenotypic selection gradients were obtained by regression of 
fitness onto the traits, following Lande and Arnold, 1983. In our case, genetic selection gradients on 
each transition rate were defined as:

	﻿‍ βg = G−1sk‍ � (6)

and the phenotypic selection gradients as:

	﻿‍ β = G−1∆qk‍� (7)

The ‍G‍-matrix of the ancestral population was assumed constant during experimental evolution. The 
credible intervals of both selection gradients were estimated by sampling the posterior distribution of 
the ‍G‍-matrix, assuming fixed high salt sk in Equation 6 or fixed ‍∆q̄k‍ for each replicate population in 
equation 7. We have also obtained credible intervals for ‍βg‍ by sampling the ‍G‍-matrix and the poste-
rior distribution of sk.

Whether selection theory predicts the direction of phenotypic evolution amounts to an alignment 
between expected and observed phenotypic divergence. We thus calculated the angle (as above, ‍Θ‍) 
between the selection differentials on transition rates and body size in high or low salt (sk), with the 
observed phenotypic divergence in high or low salt (‍∆q̄k‍). The null expectations for the angle were 
obtained by calculating the angles between 1000 pairs of random vectors sampled from a uniform 
distribution ‍U7(−1, 1)‍. Similarly, whether selection theory predicts the magnitude of phenotypic evolu-
tion in high salt can be calculated as the ratio of observed phenotypic divergence over selection differ-
entials (‍∆q̄k‍/sk). We sampled the posterior distribution of ‍G‍-matrix for these comparisons to obtain 
credible intervals.

Contrasts between posterior distributions
The ‘significance’ of the posterior mode estimates are based on its overlap with the posterior null 
distribution of the posterior modes (Walter et al., 2018). For all comparisons of posterior distribu-
tions, significance can be inferred when their 83% credible intervals do not overlap (Austin and Hux, 
2002), assuming homoscedasticity.

Archiving
Self-fertility data has been previously published by Chelo et al., 2019, and locomotion behavior data 
in low salt for the ancestral population in Mallard et al., 2022. New data (adaptation, locomotion 
behavior and body size in high salt), R code, and modeling results are in our GitHub repository and 
will be archived in a public repository upon publication.

https://doi.org/10.7554/eLife.80993
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The following previously published dataset was used:
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Chelo IM, Afonso 
B, Carvalho S, 
Theologidis I, Goy 
C, Pino-Querido A, 
Proulx SR, Teotónio H

2019 Genotype and phenotype 
data sets

https://​figshare.​com/​
articles/​dataset/​Data/​
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Appendix 1

Appendix 1—key resources table 
Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (C. 
elegans, male and 
hermaphro dite) A6140 DOI: 10.1186/s12915-014-0093-1 A6140

Ancestor, outbred 
population

Strain, strain 
background (C. 
elegans, hermaphro 
dite) A6140L# DOI: 10.1534/ genetics.117.300406 A6140L# A6140 inbred lines

Strain, strain 
background (C. 
elegans, male and 
hermaphro dite) GA150 DOI: 10.1186/ s12915-014-0093-1 GA150 Outbred population

Strain, strain 
background (C. 
elegans, hermaphro 
dite) GA150L# DOI: 10.1534/genetics.117.300406 GA150L# GA150 inbred lines

Strain, strain 
background (C. 
elegans, male and 
hermaphro dite) GA250 DOI: 10.1186/s12915-014-0093-1 GA250 Derived from A6140

Strain, strain 
background (C. 
elegans, hermaphro 
dite) GA250L# DOI: 10.1534/genetics.117.300 406 GA250L# GA250 inbred lines

Strain, strain 
background (C. 
elegans, male and 
hermaphro dite) GA450 DOI: 10.1186/ s12915-014-0093-1 GA450 Outbred population

Strain, strain 
background (C. 
elegans, hermaphro 
dite) GA450L# DOI: 10.1534/genetics.117.300406 GA450L# GA250 inbred lines

Strain, strain 
background (C. 
elegans, hermaphro 
dite) EEV1402 DOI : 10.1038/ncomms3417

EEV wormbase 
lab line 1402

A6140 inbred line with 
GFP transgene ccIs4251

Software, algorithm MTW DOI: 10.1038/nmeth.1625 - -

Software, algorithm R http://www.Rproject.org - version 3.3.2

Software, algorithm RStan http://mc-stan.org/ - R package version 2.18.2

Software, algorithm stats https://www.Rproject.org/ - R package version 3.3.2

Software, algorithm lme4 doi: 10.18637/jss.v067.i01 - R package version 1.1-32

Software, algorithm emmeans doi:10.1080/00031305.1980.10483031 -
R package version 
1.7.1-1

Software, algorithm multcomp 10.1002/bimj.200810425 - R package version 1.4-23

Software, algorithm msm DOI: 10.18637/jss.v038.i08. - R package version 1.7

Software, algorithm MCMCgl mm DOI: 10.18637/jss.v033.i02. - R package version 2.34

Software, algorithm R scripts
https://github.com/ExpEvolWormLab/​
Mallard_Robertson - This paper

https://doi.org/10.7554/eLife.80993
http://www.Rproject.org
http://mc-stan.org/
https://www.Rproject.org/
https://github.com/ExpEvolWormLab/Mallard_Robertson
https://github.com/ExpEvolWormLab/Mallard_Robertson
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