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Abstract Brain-age can be inferred from structural neuroimaging and compared to chronolog-
ical age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found 
in neurodegenerative disorders like Alzheimer’s disease (AD), but its validation against markers of 
neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset 
(N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher 
risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available 
biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal 
amyloid-β, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was 
positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex 
differences in the brain effects of this marker were found. These results validate brain-age delta as 
a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of 
biomarkers of AD and axonal injury.

Editor's evaluation
The study has significance for the field of dementia research and neurodegenerative diseases more 
broadly. Using the brain-age paradigm, the main findings are that having an older-appearing brain 
is associated with more advanced stages of amyloid and tau pathology, higher white matter hyper-
intensities, higher plasma NfL and carrying the APOE-e34 allele. Findings were broadly similar 
in cognitively normal people and people with mild cognitive impairment and there is also some 
evidence for sex differences.

Introduction
Age is the main risk factor for Alzheimer’s Disease (AD) and most neurodegenerative diseases. 
However, the mechanisms underlying this association are still poorly understood (Fjell et al., 2014). 
Both normal aging and AD are associated with region-specific cerebral morphological changes char-
acterized by the occurrence of atrophy (Bakkour et al., 2013; Fjell et al., 2014). Both aging and AD 
have differential and partially overlapping effects on specific regions of the cerebral cortex like, for 
instance, the dorsolateral prefrontal cortex (Bakkour et al., 2013; Fjell et al., 2014; Pichet Binette 
et al., 2020). Conversely, some regions are predominantly affected by age (e.g. calcarine cortex) and 
some others are predominantly affected by AD (e.g. medial temporal cortex; Bakkour et al., 2013). A 
better understanding of the mechanistic links between the brain aging process and neurodegenera-
tive diseases is an urgent priority to develop effective strategies to deal with their rising burden amid 
an ageing population (Franke and Gaser, 2019). Therefore, a growing amount of research is focusing 
on using neuroimaging techniques to develop a biomarker of biological brain aging. In this framework, 
the concept of brain-age has emerged as an appealing comprehensive marker that enables deter-
mining on an individual basis, the risk for age-associated brain diseases (Cole and Franke, 2017a; 
Cole et al., 2017c; Franke et al., 2010; Franke and Gaser, 2019). However, this is a challenging task 
because, even though the cerebral structural changes related to aging are well established, the older 
population is characterized by substantial variation in neurobiological aging trajectories (Cole et al., 
2018; Fjell et al., 2014).

Recently, machine learning techniques have gained popularity as brain-age prediction models (Cole 
et al., 2017b; Dafflon et al., 2020; de Lange et al., 2019; Franke and Gaser, 2019), due to their 
ability in identifying relevant data-driven patterns within complex data (Zhavoronkov et al., 2019). 
These models learn the association between chronological age and cerebral morphological features 
derived from structural magnetic resonance imaging (MRI) in healthy individuals, yielding a predicted 
brain-age for each individual. Individuals with a predicted brain-age higher than their chronological 
age may have an ‘older’ brain than expected, whereas an individual with an estimated brain-age lower 
than their chronological age has a ‘younger’ brain. Subtracting chronological age from estimated 
brain-age hence provides an estimate of accelerated brain aging, namely the brain-age delta. Recent 
literature has shown the adequacy of using a brain-age predicted measurement in the assessment of 
the clinical severity of AD, by finding higher brain-age deltas in AD and individuals with mild cogni-
tive impairment (MCI) with respect to cognitively unimpaired (CU) individuals (Beheshti et al., 2018; 
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Kaufmann et al., 2019). A higher brain-age delta has also been reported in other diseases, such 
as multiple sclerosis, epilepsy and psychiatric disorders, with respect to healthy controls (Beheshti 
et al., 2018; Kaufmann et al., 2019). In addition, brain-age delta has also been associated with other 
biological measures such as: lifestyle factors (Cole, 2020), cognition (Beheshti et al., 2018; Cole, 
2020) hypertension (de Lange et al., 2020a) and prediction of mortality (Cole et al., 2018).

Even though these studies support the association of brain-age delta as a biomarker of biological 
aging with relevance to various brain diseases, it is of interest to further validate this measurement in 
association with specific biological markers of AD pathology (i.e. Amyloid-β[Aβ] and tau pathology), 
neurodegeneration and cerebrovascular disease in the earliest stages of AD. This is a very relevant 
aspect since the recent AD research framework criteria defines AD as a biological construct, namely 
the presence of both abnormal Aβ (A+) and tau (T+) biomarkers, regardless of clinical manifesta-
tions (Jack et al., 2018). The term ‘Alzheimer’s pathological change’ is proposed whenever there 
is evidence of Aβ but not tau pathology (A+T-). The umbrella term ‘Alzheimer’s continuum’ includes 
both ‘Alzheimer’s pathological change’ (A+T-) and ‘Alzheimer’s Disease’ (A+T + ). Under this defini-
tion, A-T +individuals would not fall into the AD continuum. Then, under this framework, neurodegen-
eration biomarkers (N) and cognitive status (i.e. CU, MCI and dementia syndromes) are used to stage 
disease progression.

Recent literature has studied the associations between brain-age delta and the above-mentioned 
biomarkers with different aims. Brain-age delta was recently associated with plasma biomarkers of 
neurodegeneration and with imaging biomarkers of cerebrovascular disease in the 1946 British Birth 
Cohort Wagen et al., 2022; however, it was not associated with CSF biomarkers of neurodegener-
ation (Millar et al., 2022). Moreover, although brain-age delta was significantly associated with AD 
biomarkers of amyloid and tau in MCI individuals, these associations were not found in CU individuals 
(Millar et al., 2022; Wagen et al., 2022). Conversely, Another study focusing on the impact of training 
the brain-age prediction model in individuals with Aβ pathology (Aβ+) showed that CU Aβ+individuals 
had a higher brain-age delta than CU Aβ- individuals (Ly et al., 2020). Other lines of research have 
employed brain-age delta to predict conversion to different disease stages. For instance, it was previ-
ously studied the impact of using brain-age, alone and in combination with several biomarkers, to 
predict progression from MCI to AD (Popescu et al., 2020). In addition, a recent study used brain-age 
measurements to identify amnestic MCI (aMCI), the typical clinical presentation of prodromal AD, 
from other individuals with MCI, by studying the association with AD risk factors such as apolipo-
protein Ε (APOE) and Aβ (Huang et al., 2021). The association of brain-age with these biomarkers 
have also been shown in other diseases, by which brain-age was associated with Aβ deposition in 
Down syndrome (Cole et al., 2017b). Nonetheless, there remains a need to replicate some of these 
results and to study the associations between brain-age prediction and abnormal biomarkers of AD 
and neurodegeneration in preclinical and prodromal AD stages in different and independent cohorts 
and in a larger sample size. These results would be particularly informative to potentially inform ther-
apeutic interventions.

Moreover, given that female individuals have a higher AD prevalence compared to males (Nebel 
et al., 2018) and display different lifetime trajectories in the brain morphological features (Gennatas 
et al., 2017), it is of interest to determine the effect of sex on brain age delta and its interaction 
with AD biomarkers. Literature describes sex differences in AD biomarkers, such as that females with 
abnormal Aβ who are APOE-ε4 carriers show greater subsequent increase in cerebrospinal fluid (CSF) 
tau than their male counterparts (Buckley et al., 2019), or that females with higher Aβ burden show 
higher entorhinal cortical tau than their male counterparts (Buckley et al., 2019). Conversely, levels 
of the neurodegeneration biomarker CSF neurofilament light (NfL) have been widely reported to 
be higher in males than in females (Mielke, 2020; Milà-Alomà et al., 2020). In line with this, sex 
differences in the brain-age delta have been also reported. For instance, AD risk factors have been 
associated with greater brain aging in women than men (Sanford et  al., 2022; Subramaniapillai 
et al., 2021) and a lower brain aging has been found in the lower in the prefrontal cortex and insula 
in females (Sanford et al., 2022). These results need to be replicated and further studied in different 
cohorts.

Therefore, in the present study, we aim to validate brain-age delta as a clinically relevant marker of 
brain aging, which can be impacted by AD pathology and neurodegeneration even in non-demented 
individuals. For this purpose, we determine the association between the predicted structural brain-age 
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delta with biomarkers and risk factors for AD and neurodegeneration in non-demented individuals, as 
well as to study the effect of sex on these associations. We trained a model to predict the brain-age 
separately for females and males, using machine learning on imaging-derived measures of cortical 
thickness, cortical volume, and subcortical volume from the UK Biobank cohort (N=22,661). Using this 
model, we then estimated brain-age in four independent cohorts: ALFA+ (N=380), ADNI (N=719), 
EPAD (N=808), and OASIS (N=407). In each cohort, we studied the associations of brain-age delta 
with biomarkers of AD pathology (CSF Aβ and p-tau as continuous values, as well as categorized in AT 
stages), the APOE-ε4 genotype which is the main genetic risk factor for AD, neurodegeneration (CSF 
and plasma NfL), and small vessel disease (White Matter Hyperintensities [WMH]). Finally, we studied 
the sex differences in brain age prediction and the sex effects with these biomarkers on brain-age 
delta.

Results
Participants’ characteristics
Table 1 summarizes the demographic characteristics of the cohorts included in the study. ADNI and 
EPAD cohorts included both CU and MCI individuals, while the UK Biobank, ALFA + and OASIS 
cohorts only included CU individuals. Table  2 summarizes the variables used to study the asso-
ciations with brain-age delta, which included biomarkers for AD (Aβ positron emission tomog-
raphy [PET] and CSF Aβ and p-tau), neurodegeneration (CSF and plasma NfL), and cerebrovascular 
pathology (WMH on MRI), as well as the aging signature composite (Bakkour et al., 2013), both 
cross-sectional and longitudinally. The aging signature composite is a map of specific brain regions 
that undergo cortical thinning in normal aging, which has been used as a proxy measurement for 
brain aging. These validation variables were correlated with chronological age for all cohorts (see 
Appendix  1—table 1). Some of the participants for ALFA+ (N=25), ADNI (N=116), and EPAD 
(N=71) fell into the A-T +group, corresponding to non-AD pathologic change. Since our aim was 
to specifically validate the brain-age delta measurements in the AD continuum, we excluded these 
participants from subsequent analyses; and they are reported within Table 1 and Table 2 solely for 
descriptive purposes. In addition, the number of MCI individuals with available data of CSF NfL and 
of aging signature change was relatively low and, therefore, these variables were excluded from the 
analysis in MCI individuals.

Brain-age prediction and chronological age
We trained the prediction model using the UK Biobank cohort and tested the model using four inde-
pendent cohorts (ALFA+, ADNI, EPAD, and OASIS), as shown in Figure 1. Table 3 shows the predic-
tion accuracy for the combined female and male predictions. The average prediction accuracy of the 
model run on UK Biobank using 10-fold cross-validation as measured by the mean absolute error 
(MAE) and by Pearson’s correlation were MAE = 4.19 and R=0.71 (Table 3 and Figure 1—figure 
supplement 1).

We then investigated the association of predicted brain-age with chronological age on each of the 
independent cohorts. All the cohorts showed a similar positive correlation and fitting performance 
metrics as measured by the MAE, R and root mean squared error (RMSE) between chronological age 
and predicted brain-age. Correlation coefficients were not different between cohorts (P>0.05, for 
all comparisons, see Appendix 1—table 2). We also studied the performance metrics for the two 
different diagnostic groups (CU and MCI) for each cohort, see Appendix 1—table 3.

In order to study the effect of sex on brain age prediction, we also computed the performance 
metrics stratified by females and males (Appendix 1—table 4 and Appendix 1—table 5). Correla-
tions and fitting performance metrics were not significantly different between females and males 
(Pearson’s r (William’s test), P>0.05; RMSE (F-test) P>0.05), see Appendix 1—table 6. Plots of the 
correlations between predicted brain-age and chronological age for females and males in each of 
the cohorts can be seen in the Figure 1—figure supplement 2. Additionally, results for a secondary 
analysis in which we compared the fitting performance of XGBoost brain-age and of the neuroana-
tomical aging signature (Bakkour et al., 2013) with respect to chronological age can be seen in 
Appendix 1—table 7.
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Figure 1. Overview of project steps. Illustration of the methods used to generate predicted brain-age and to study the associations between the brain-
age delta and the biomarkers and risk factors used. 3D T1-weighted MRI scans across all cohorts were segmented into volumes and thickness using the 
Desikan-Killiany and the aseg atlas. 1. Training phase: We trained XGBoost regressor models for females and males from the UK Biobank. For this we 
performed a cross-validation scheme with 10-folds and 10 repeats per fold. 2. Testing phase: We tested the age prediction models on unseen data from 
independent cohorts: ALFA+ (in blue), ADNI (in green), EPAD (in gray), and OASIS (in orange). 3 Analyses phase: We computed the brain-age delta for 
each cohort. We then studied the associations with the biomarkers and risk factors of AD, neurodegeneration, and cardiovascular risk. We performed 

Figure 1 continued on next page
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Brain regions associated with aging
We computed the SHapley Additive exPlanation (SHAP) values, which reflect the marginal contribution 
of each brain region to the brain-age prediction, using the UK Biobank dataset. SHAP values interpret 
the impact in the prediction of the values of volume or cortical thickness for a given brain region. In 
other words, they reflect the most important features that consistently influenced the prediction of 
brain-age and whether the decrease or increase of each region impacted into predicting a higher or 
lower brain-age. The SHAP values were computed separately for females and males. We compared 
the regions with higher SHAP values for females and males, and vice-versa, by averaging the SHAP 
values within each sex separately and then subtracting the mean SHAP of males to the mean SHAP 
of females.

There were regions whose SHAP values were high in both females and males, including the volumes 
of the amygdala, nucleus accumbens, cerebellar white matter, lateral ventricles and the insula, as well 
as the cortical thickness of the superior-temporal cortex. All the brain regions with consistent highest 
SHAP values for females and males are shown in Figure 2a–b, as well as the effect of each region 
(larger or lower value) on predicting a higher brain-age. Conversely, the thickness of regions such as 
the transverse temporal cortex, the pars triangularis, the inferior parietal cortex and the left frontal 
pole thickness, as well as the volume of the left entorhinal cortex had higher SHAP values in females 
than in males, while the opposite occurred with the thickness of the left isthmus cingulate and the right 
cuneus and the cortical volume of the superior frontal and right rostral middle regions (Figure 2c).

In Figure 2d, we can see the fit of three example regions whose SHAP values were different for 
females and males against chronological age. For example, the bi-lateral superior frontal volumes 
decreased more over the years within males than females. This result was seen as the interaction of sex 
with age (Pinteraction <0.001). We also found an interaction effect of sex and age for the isthmus cingulate 
thickness (Pinteratcion <0.001), by which the thickness of males decreased more over the years than from 
the females. On the contrary, we also found regions, such as the middle temporal thickness, whose 
slope was not different between for both sexes (Pinteraction = 0.671), but which appeared to be lower for 
females than for males. All the results of this exploratory analysis can be seen in Appendix 1—table 8.

Associations with AD biomarkers and risk factors
We studied the association between brain-age delta and AD biomarker classifications (Aβ status, 
AT stages) and APOE-ε4 status in all the independent cohorts pooled together, with a linear model 
adjusting for the effect of age and sex (Figure 3 and Table 4). Aβ status was defined by CSF (ALFA+, 
ADNI, and EPAD) or amyloid PET (OASIS) using pre-established cut-off values (Hansson et al., 2018; 
Milà-Alomà et al., 2020; Salvadó et al., 2019; Schindler et al., 2018). Brain-age delta was higher 
in MCI with respect to CU individuals (PFDR <0.001). In both CU and MCI, a higher brain-age delta 
was significantly associated with abnormal Aβ status (CU: PFDR <0.001 and MCI: PFDR <0.001) and with 
progressive AT stages (CU: PFDR <0.001 and MCI: PFDR <0.001) (see Table 4 and Appendix 1—table 
9 for more details). The mean brain-age delta values for the different Aβ status and AT stages can be 
found in Appendix 1—table 10. The brain-age effect on AT stages was progressive, as that of the 
A+T- group was larger than that of A-T-, while the brain-age delta of A+T + was larger than those of 
the other two previous stages (Table 4 and Figure 3a). Brain-age delta was also significantly asso-
ciated with APOE status (CU: PFDR = 0.002 and MCI: P=0.017, PFDR = 0.040). In particular, APOE-ε4 
carriers had larger brain-age deltas (i.e. older-appearing brains than expected for their chronological 
age) compared to APOE-ε33 individuals for both CU (β=0.173, PFDR = 0.003) and MCI (β=0.273, PFDR 
= 0.008; see Table 4 and Figure 3). The mean brain-age delta values for the different APOE status 
can be found in Appendix 1—table 7. These results were consistent with the results from the within-
cohort analyses (see Appendix 1—table 11).

these analyses within the whole sample and stratified by sex. The table on the bottom left shows the available biomarkers and risk factor available for 
which cohorts.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Predicted brain-age in validation subsamples of UK Biobank for females (blue) and males (orange).

Figure supplement 2. Predicted brain-age versus chronological age for (a) ALFA+, (b) ADNI, (c) EPAD, and (d) OASIS cohorts.

Figure 1 continued

https://doi.org/10.7554/eLife.81067
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Figure 2. Significant SHAP-selected brain regions most important in prediction for (a) females and (b) males separately. Significance was studied 
by assessing the stability of the region’s importance by performing subsampling of data over 1,000 permutations. Colored regions had a P < 0.05 
corrected for multiple comparisons using Bonferroni correction approach. Regions in red show larger volume or cortical thickness, while regions in 
blue show lower volume or cortical thickness. In (c), comparison for the regions with higher SHAP values that were significant for females (green) and 

Figure 2 continued on next page
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We next studied the association between brain-age delta and AD biomarkers and risk factors 
stratified by sex (Table 5). In general, the same associations found with the whole sample was seen for 
females and males separately. However, although a higher brain-age delta was significantly associated 
with progressive AT stages both for females (CU: PFDR = 0.002 and MCI: PFDR <0.001) and males (CU: 
PFDR = 0.019 and MCI: PFDR <0.001), brain-age delta of A+T + was significantly larger than those of the 
other two previous stages (A-T- and A+T-) in CU females (β=0.431, PFDR = 0.008) but not in CU males 
(β=0.139, PFDR = 0.424). Brain-age delta was only significantly associated with APOE status in CU males 
(PFDR = 0.028), while this association was not seen in the rest of subgroups (CU and MCI females and 
MCI males). The rest of the associations tested with AD biomarkers, such as the interactions with sex, 
not reported here were non-significant.

Associations with neurodegeneration biomarkers
We next tested the associations between brain-age delta and neurodegeneration biomarkers (Figure 3 
and Table 4). CSF NfL, plasma NfL and longitudinal change of the aging signature were available in 
ALFA + and ADNI. The positive associations between brain-age deltas and plasma NfL were signif-
icant within the CU (β=0.154, PFDR = 0.003) and MCI individuals (β=242, PFDR <0.001). CSF NfL was 
not significantly associated with brain-age delta (β=0.079, PFDR = 0.209). The association between the 
longitudinal change in the aging signature composite, which was obtained from the cortical thick-
ness in aging-vulnerable regions, and brain-age delta was not statistically significant (β=0.053, PFDR = 
0.415).

We next studied the association between brain-age delta and neurodegeneration biomarkers strat-
ified by sex (Table  5). The associations between brain-age delta and plasma NfL were significant 
within the CU and MCI females (CU: β=0.191, PFDR = 0.003 and MCI: β=0.342, PFDR = 0.003), but not 
within the males (CU: β=0.110, PFDR = 0.217 and MCI: β=0.141, PFDR = 0.137). However, the interaction 

males (purple). The color map shows the results from subtracting the males’ mean SHAP value to the female’s mean SHAP value for each region. 
In (d), examples of the fit of three significant SHAP-selected regions against chronological age for females and males. For visualization purposes, 
nonparametric smoothing spline functions were used to fit the data (mean ± 95%CI).

Figure 2 continued

Figure 3. In (a) and (b), the standardized associations (β±95% CI) between measures of brain-age delta validation variables for (a) CU individuals and 
(b) MCI individuals. Variables include AD biomarkers and risk factors: amyloid-β status, AT stages and APOE status; and neurodegeneration markers 
(available in ALFA + and ADNI): CSF NfL, plasma NfL and aging signature change. The analyses included age and sex as covariates. Sample size for 
each variable can be seen in Table 4.

https://doi.org/10.7554/eLife.81067
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effect of sex and CSF NfL on CU brain-age delta (Figure 4a) did not reach significance (CU: Pinterac-

tion_FDR=0.417 and MCI: Pinteraction_FDR=0.393).
The associations between brain-age delta and CSF NfL in CU females did not survive multiple 

comparisons correction (β=0.129, p=0.046, PFDR = 0.102), and was also not significant in CU males 
(β=0.006, PFDR = 0.999). There was not an interaction effect of sex and CSF NfL on CU brain-age delta 
(Figure 4a) (Pinteraction_FDR=0.425). In the same line, the associations between brain-age delta and longi-
tudinal aging signature in CU females and CU males were not significant (females: PFDR = 0.613 and 
males: PFDR = 0.417). The interaction effect of sex on this longitudinal biomarker was not significant 
(Pinteraction_FDR=0.924).

Table 4. Relationships between validation variables and brain-age delta for all CU and MCI 
individuals.

Model β SE P-Value [0.025] [0.975] N
Effect 
size

FDR corr 
P-Value

CU Individuals

Amyloid-β pathology (ref: A-) 0.234 0.047 <0.001 0.140 0.325 1634 0.222 <0.001

Amyloid-β / Tau 
pathology (ref: 
A-T-)

A+T- 0.2023 0.059 <0.001 0.015 0.394 1162 0.275 <0.001

A+T + 0.310 0.096 0.003 0.101 0.500 0.300 0.008

APOE status 
(ref: APOE-ε33)

APOE-ε2 –0.124 0.082 0.130 –0.321 0.334 1634 0.122 0.227

APOE-ε4 0.173 0.052 0.001 0.071 0.274 0.172 0.003

APOE-ε24 0.012 0.144 0.936 –0.271 0.294 0.011 0.999

WMH volume* 0.160 0.030 <0.001 0.111 0.231 972 0.028 <0.001

CSF NfL† 0.079 0.049 0.112 –0.019 0.176 378 0.006 0.209

Plasma NfL† 0.154 0.045 0.001 0.066 0.242 508 0.024 0.003

Brain Atrophy† 0.053 0.048 0.272 –0.041 0.146 152 0.003 0.415

MCI Individuals

Amyloid-β pathology 0.640 0.089 <0.001 0.465 0.816 218 0.665 <0.001

Amyloid-β / Tau 
pathology (ref: 
A-T-)

A+T- 0.564 0.109 <0.001 0.350 0.778 218 0.592 <0.001

A+T + 0.720 0.102 <0.001 0.519 0.920 0.720 <0.001

APOE status 
(ref: APOE-ε33)

APOE-ε2 0.007 0.167 0.968 –0.273 0.978 218 0.001 0.999

APOE-ε4 0.273 0.093 0.003 0.091 0.456 0.281 0.008

APOE-ε24 0.352 0.319 0.269 –0.273 0.978 0.359 0.415

WMH volume 0.222 0.054 <0.001 0.117 0.327 191 0.040 <0.001

Plasma NfL‡ 0.242 0.067 <0.001 0.110 0.374 134 0.046 <0.001

Notes: Relationships between validation variables and Brain-Age delta from all CU pooled subjects (including 
ALFA+, ADNI, EPAD and OASIS) and all MCI pooled subjects (including ADNI and EPAD). Results given by the 
linear model: brain-age delta ~each variable +chronological age+sex. The regression coefficients (β), standard 
errors (SE), P-value, 95% Confidence Interval, number of individuals (N) and effect size are depicted for each 
variable.
Significant values after FDR correction (P<0.05) are marked in bold.
Effect size in categorical variables was calculated as Cohen’s D, while Cohens f2 was calculated for continuous 
measurements. Amyloid-β status was defined by CSF (ALFA+, ADNI, and EPAD) or amyloid PET (OASIS). MCI 
individuals only contained individuals from ADNI and EPAD.
APOE, apolipoprotein E; WMH, White Matter Hyperintensities; CSF, cerebrospinal fluid; NfL, neurofilament light; 
ref, reference.
*Contains data from ALFA+, ADNI and EPAD.
†Contains data from ALFA +and ADNI.
‡Contains data from ADNI.
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In addition, we tested the interaction between age and brain age delta to predict these biomarkers, 
and further stratified these analyses by sex. We found a significant interaction effect of age and CU 
brain-age delta on CSF NfL (Pinteraction_FDR<0.001) within the CU individuals (Figure 5a), by which the 
measures of CSF NfL were higher with age and with larger brain-age deltas (older-appearing brain). 
When stratifying by sex, this interaction effect of age was seen in females (Pinteraction_FDR<0.001), but 
not in males (Pinteraction_FDR=0.393). Regarding plasma NfL (Figure  5b), although we found a similar 
direction in the associations by which the measures of plasma NfL were higher with age and with 
larger brain-age deltas for CU and MCI individuals, the interaction effects were not significant (Pinter-

action_FDR=0.118 and MCI: Pinteraction_FDR=0.421). When stratifying by sex, this interaction effect of age on 
plasma NfL was seen in CU females (Pinteraction_FDR=0.040) and not in CU males (Pinteraction_FDR=0.999). On 
the contrary, the interaction effect of age and plasma NfL on brain-age delta did not survive multiple 
comparisons in MCI males (Pinteraction = 0.022, Pinteraction_FDR=0.050). This interaction effect was also not 
found in MCI females (Pinteraction = 0.605, Pinteraction_FDR=0.761). The rest of the associations with neurode-
generation biomarkers not reported here were non-significant.

Figure 4. In (a) and (b), the associations of brain-age delta and continuous validation variables stratified by sex for (a) CU individuals and (b) MCI 
individuals. Scatter plots representing the associations of CSF NfL, plasma NfL, brain atrophy and WMH with brain-age delta in females (green) and 
males (purple). Each point depicts the value of the validation biomarkers of an individual and the solid lines indicate the regression line for each of the 
groups. 95% Confidence intervals are shown in the shaded areas. The standardized regression coefficients (β) and the corrected p-values are shown, 
which were computed using a linear model adjusting for age and sex. Additionally, we also computed the ‘brain-age delta x sex’ interaction term. The 
sample size for each variable can be seen in Table 5.
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Figure 5. The associations of brain-age delta and (a) CSF NfL and (b) plasma NfL with chronological age for all CU and, when available, MCI individuals. 
For visualization purposes, individuals were categorized into two groups according to their brain-age delta: ‘brain-age delta <0’ representing 
decelerated brain aging (blue); and ‘brain-age delta >0’ representing accelerated brain aging (red). Scatter plots representing the associations of 
CSF NfL, plasma NfL and WMH with age in individuals with brain-age delta >0 and brain-age delta <0. Each point depicts the value of the validation 
biomarkers of an individual and the solid lines indicate the regression line for each of the groups. The regression coefficients (β) and the FDR corrected 

Figure 5 continued on next page
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Associations with markers of cerebrovascular disease
We lastly tested the associations between brain-age delta and markers of cerebrovascular disease 
WMH; WMH data were available in ALFA+, ADNI and EPAD. In both CU and MCI, brain-age delta 
was significantly associated with WMH (CU: β=0.160, PFDR <0.001 and MCI: β=0.222, PFDR <0.001) 
(see Table  4). These results were consistent with the results from the within-cohort analyses (see 
Appendix 1—table 11).

When studying the association between brain-age delta and WMH stratified by sex (Table 5) we 
found that the brain-age delta was positively associated with WMH both in CU females (β=0.263, 
PFDR <0.001) and CU males (β=0.179, PFDR <0.001). The interaction effect of sex and WMH on CU 
brain-age delta (Figure  4a) was not significant (Pinteraction_FDR=0.223). Conversely, we found that the 
brain-age delta was positively associated with WMH MCI males (β=0.300, PFDR <0.001), but not in 
females (β=0.158, PFDR = 0.133). The interaction effect of sex and WMH on MCI brain-age delta 
(Figure 4b) was also not significant (Pinteraction_FDR=0.209). The rest of the associations tested with WMH 
not reported here were non-significant.

Discussion
In this study, we show that, in non-demented individuals, the predicted brain-age delta is associated 
with specific AD biomarkers (amyloid-‍β‍ PET, CSF Aβ42 and CSF pTau) and risk factors (APOE geno-
type), as well as with unspecific neurodegeneration biomarkers (plasma NfL), and markers of cerebro-
vascular disease (WMH volume). However, our results do not show that variation in cross-sectional 
brain-age delta was able to capture longitudinal atrophy and, therefore, it is solely a cross-sectional 
analysis. Our results also indicate that there might be sex differences in the development of brain 
aging trajectories, which must be further characterized. Taken together, our findings validate the use 
of machine learning predicted brain-age delta as a non-invasive biomarker of brain aging, which is 
associated to AD pathology in non-demented individuals with abnormal levels of biomarkers of AD 
and axonal injury. The capacity of brain-age delta to de detect accelerated aging must be further 
studied.

We have studied the associations between brain-age delta and different biomarkers of AD 
pathology and neurodegeneration in CU individuals. We are aware of the complexity of disentan-
gling the effects of aging and pathology in brain aging. In this work, we do not aim to disentangle 
to what extent the brain structural differences are caused by AD pathology (as measured by the 
biomarkers that we study) or aging. Here, we show that an unspecific estimation of biological brain 
aging, agnostic of the underlying mechanisms is associated with the specific biological process of AD.

Regarding the associations with AD biomarkers and risk factors, regression analyses revealed 
significant positive associations of brain-age delta with increased Aβ pathology and with AT stages 
for CU and MCI individuals. We also found significant associations with APOE status in the CU and 
MCI individuals, in which larger brain-age deltas were associated with the presence of APOE-ε4 allele. 
This result is in line with previous literature that has shown that APOE-ε4 carriership may accelerate 
AD-related brain atrophy (Evans et al., 2014; Filippini et al., 2011), as accelerated brain aging has 
also been found in MCI and AD patients (Beheshti et al., 2018; Kaufmann et al., 2019). The associ-
ation of brain-age delta with APOE-ε4 was also previously studied, for which significant associations 
were found in MCI individuals (Cole et al., 2018; Löwe et al., 2016). Taken together, our results 
advocate for an effect of APOE-ε4 in physiological brain aging, albeit of a lesser magnitude than when 
AD pathology is present. These results with AD biomarkers and risk factors were highly reproducible 
in within-cohort analyses.

p-values are shown, which were computed using a linear model adjusting for age and sex. Additionally, we also computed the ‘brain-age delta x sex’ 
interaction term. The sample size for each variable can be seen in Table 5.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The associations of (a) Aging signature change and (b) WMH with chronological age for all CU and, when available, MCI 
individuals.

Figure 5 continued
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With the aim of studying the associations between brain-age delta and neurodegeneration, we 
computed the associations with NfL, a marker of neuro-axonal damage (Khalil et al., 2018) which 
can be measured both in CSF and in plasma, and with longitudinal changes in the aging signature 
composite as marker of age-related brain atrophy. The particular use of NfL in this context is supported 
by its correlation with age throughout the lifespan, as well as its strong association with all-cause 
mortality in the elderly (Kaeser et  al., 2021). We found significant positive associations between 
brain-age delta and plasma NfL both in CU and MCI individuals, but we did not find significant asso-
ciations between CSF NfL and CU brain-age delta. Even though we found NfL to be positively asso-
ciated with chronological age in CU individuals, in line with previous studies (Beheshti et al., 2018; 
Kaufmann et al., 2019; Khalil et al., 2020; Milà-Alomà et al., 2020), the expected annual change 
of NfL in CU individuals whose mean age range was 65 years old is around 3.5% (Khalil et al., 2020). 
Therefore, we expected to find weak associations with brain-age delta. Still, we found a significant 
interaction effect of age and CSF NfL on CU brain-age delta, for which the individuals with larger 
brain-age delta had increased CSF NfL over the years, whereas the decelerated ones remained more 
stable. Taken together, a strong association between brain-age delta and plasma NfL was observed 
across all individuals whereas the association on CU brain-age delta and CSF NfL was milder and could 
only be detected as an interaction with age. Overall, these mild associations between brain-age delta 
and NfL suggest that the morphological effects of aging in the brain are not fully driven by neurode-
generation. In this regard, it is worth noting that cortical thinning with age has also been linked to loss 
of volume of the neuropil and other non-neuronal processes which are not necessarily implicated in 
neurodegeneration (Vidal-Pineiro et al., 2020). Conversely, brain-age delta was not associated with 
longitudinal change in aging signature. This might indicate, as previously shown (Vidal-Pineiro et al., 
2020), that brain-age delta might not reflect accelerated brain aging but instead early life factors. 
However, the lack of this association might also be influenced by the short amount of time between 
time visits (average of 3 years) or the measurement used to measure longitudinal atrophy (cortical 
aging signature). Therefore, further research is needed to determine the relative contribution of early 
life factors and accelerated aging to brain-age delta estimates.

We also studied the associations between brain-age delta and cerebrovascular disease. Regres-
sion analyses revealed significant associations of brain-age delta with increased WMH for both CU 
and MCI individuals. These results were expected, as the increase in WMH with age has been previ-
ously studied (Maniega et al., 2015) and it has been shown that individuals with high WMH burden 
display spatial patterns of atrophy that partially overlap with those of brain aging (Brugulat-Serrat 
et al., 2020a; Habes et al., 2016). In addition, WMH have been linked to cognitive dysfunction and 
dementia (Brugulat-Serrat et al., 2020b; Brugulat-Serrat et al., 2020a; Maniega et al., 2015) and a 
potential pathway has been proposed, in which small vessel cerebrovascular disease affects cognition 
by promoting neurodegenerative changes (Rizvi et al., 2018). In summary, our results support an 
effect of cerebrovascular disease in physiological brain aging.

Brain structure aging-associated changes have been widely studied (Bakkour et al., 2013; Fjell 
et al., 2014). In our study, the brain regions that had highest impact on the machine learning predic-
tion were similar to regions previously mentioned in literature (Arenaza-Urquijo et al., 2019; Bakkour 
et al., 2013). We found an overlap between some of our selected regions and regions included in the 
aging signature for both females and males, such as the precentral sulcus, insula, superior frontal and 
rostral middle frontal regions. In addition, the effect of sex on age-related changes in brain structure 
has also been studied in the recent years, with some studies reporting age–sex interactions in volumes 
of certain brain structures (Coffey et al., 1998; DeCarli et al., 2005), and others not finding such 
interactions (Greenberg et al., 2008). In our study, we found that, even though most of the regions 
with highest impact were the same for males and females, there were some regions that were sex 
specific. In particular, we found reduction in the superior-frontal, isthmus-cingulate and pars orbitalis 
regions within males and regions such as inferior-parietal, pars triangularis and paracentral within 
females. Most of these sex-specific regions were in concordance with previous studies (Armstrong 
et  al., 2019; Podgórski et  al., 2021). The mechanisms underlying these sex-specific brain aging 
differences are not well-known. Sexual hormones such as estrogen, progesterone and androgen could 
play a role in brain atrophy Armstrong et al., 2019; in the WHIMS-MRI study (Resnick et al., 2009), 
women under menopausal hormone therapy were associated with greater brain atrophy. Others, 
however, have proposed that estrogen and progesterone may play a protective effect in women 
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(Armstrong et al., 2019; Green and Simpkins, 2000). Other possible biological mechanisms influ-
encing these results could be developmental (Baron-Cohen et al., 2005) or the influence of a greater 
presence of adverse lifestyle-related factors in men (DeCarli et al., 2005).

In line with the effect of sex on age-related changes in brain structure, we studied the effect of 
sex on the associations between brain-age delta and the above-mentioned variables. Regarding the 
AD biomarkers and risk factors, we found that the association between brain-age delta and a larger 
proportion of A+T + was only seen in females for the CU individuals, but the interaction effect of sex 
and AT stages on brain-age delta was not significant. Regarding the neurodegeneration variables, we 
found a positive association between brain-age delta and plasma NfL in CU and in MCI females. These 
associations were not seen in their male counterparts. However, the interaction effect of sex and CSF 
and plasma NfL on CU and MCI brain-age delta was not significant. In addition, we found a significant 
interaction effect of age and CSF and plasma NfL on brain-age delta, for which the CU females with 
larger brain-age delta had increased CSF and plasma NfL over the years, whereas the decelerated 
ones remained more stable. These results were expected, as females have higher chances of under-
going neurodegeneration and have showed to undergo faster cognitive decline than males (Ferretti 
et al., 2018). Although the role of sex hormones still needs to be clarified, it has been suggested that 
the menopausal drop of estrogen increases vulnerability to neurological events (Green and Simpkins, 
2000; Maioli et al., 2021). On the contrary, results suggest that morphological effects of aging in 
the CU males’ brain are not fully driven by neurodegeneration. Lastly, regarding the cerebrovascular 
disease biomarkers, we found a positive association between brain-age delta and WMH for both CU 
females and males, while no interaction effect of sex was found. Conversely, in MCI individuals, we 
only found positive associations between brain-age delta and WMH on males, but no interaction effect 
of sex was found in MCI individuals. Overall, we found cross-sectional sex differences in the associa-
tions between brain-age delta and markers of neurodegeneration and cerebrovascular disease. NfL 
was only positively associated with brain-age delta in females, while WMH were positively associated 
with both CU females and males. Positive associations between NfL and WMH have been previously 
demonstrated, for both CU and MCI (Osborn et al., 2018), and the different AD stages (Walsh et al., 
2021). Moreover, it has been proposed that WMH may reflect two different pathological pathways, 
one including amyloid aggregation and another including axonal injury (Osborn et al., 2018). Our 
results may suggest that brain aging in males might be driven more strongly by the former pathway, 
while brain aging in females might be driven more by the latter one. However, the lack of signifi-
cant brain-age delta-by-sex interactions in our analyses reflect the limitations in the evidence for the 
above-mentioned sex-differences. Further work exploring these sex differences in detail is warranted.

Our purpose was to study the clinical validity of using the brain-age delta as a proxy biomarker of 
brain aging associated to AD and neurodegeneration. Therefore, our main aim was studying the char-
acteristics of the individuals whose brain age is more accelerated or decelerated. One of the strengths 
of this study was the robustness of the brain-age delta measurement using a widely used segmen-
tation atlas such as the Desikan-Killiany. Notably, we demonstrated the robustness of our method 
by training our model with one cohort and testing independently on four independent cohorts. The 
similar results obtained in all cohorts allowed us to seek associations in a large sample of participants 
with biomarker data and to further stratify the data by sex. This aspect is critical for this type of 
analyses as the effects of biological aging are necessarily very small, particularly in CU individuals of 
limited age range. This may explain why we could not detect significant effects versus longitudinal 
brain atrophy, as the available sample size for these analyses was smaller since this variable was not 
available in all cohorts. Another strength of our work was that we were able to include a wide range 
of different biomarkers of AD pathology allowing us to perform an in-depth analysis of the effect 
of these measurements with the brain-age delta. Conversely, our model used a smaller number of 
features and a training set with a more limited age range than other models seen in literature recently 
(Liem et al., 2017; Peng et al., 2021), leading to a performance which cannot be compared against 
these state-of-the-art models. However, the performance of age prediction was similar to other publi-
cations that used similar methodologies (Beheshti et al., 2018; Dafflon et al., 2020; de Lange et al., 
2020a) and, most importantly, was successful in studying the utility of brain-age delta as biomarker 
of brain aging in non-demented individuals, which is impacted by abnormal levels of biomarkers of 
AD and neurodegeneration. Moreover, using a relatively restricted number of features allowed us to 
visualize and interpret in an easier way the contribution of different brain regions to the brain age 
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prediction by means of SHAP values. This ensured that the model had neurobiological interpretability. 
However, it is important to note that SHAP values may not reflect the true relationship between the 
features and the model’s prediction in the presence of correlated features. This is an important consid-
eration to bear in mind for correctly interpreting our results. In addition, future work should also focus 
on developing a model with larger number of features or a 3D model and should study the effect of 
these validation measurements for AD and neurodegeneration, as well as longitudinal changes, with 
the brain-age delta more in depth.

In conclusion, we validated that machine-learning based brain age prediction obtained from a 
widely used segmentation atlas can be used as a biomarker of biological brain aging associated with 
AD pathology, risk factors, and neurodegeneration. Moreover, our results confirm the presence of 
sex-related brain aging structural changes and suggest the prevalence of different neuropatholog-
ical pathways involved in brain aging within females and males. Therefore, these results indicate the 
importance on considering different approaches for assessing aging and neurodegeneration differ-
ently for each sex.

Materials and methods
Participants
We used a collection of T1-weighted brain MRI scans included in the UK Biobank (https://www.ukbio-
bank.ac.uk) cohort for training the proposed model and for calculating cross-validated brain age 
predictions. The dataset consisted of CU individuals (‍N =‍ 22,661), after excluding subjects with ICD-9 
and ICD-10 diagnosis, covering individuals of ages 44–81.

We also used four different cohorts to investigate the association between brain-age deltas with 
different sets of biomarker and AD risk factor measurements. Inclusion criteria for the independent 
cohorts consisted of: (i) availability of T1-weighted MRI brain scans; (ii) and availability of apolipopro-
tein E (APOE) categories and of CSF or PET measures for amyloid-‍β‍ pathology acquired in less than 
a year from the MRI acquisition. These cohorts included individuals with different diagnosis: CU and 
MCI. ADNI cohort included CU and MCI individuals from ADNI 1,2 and 3 (N=751, CU = 253, MCI = 
498), the EPAD cohort included CU and MCI individuals (N=808, CU = 653, MCI = 155), the ALFA + 
cohort included only CU individuals (N=380) and the OASIS cohort included CU individuals (N=407). 
MCI individuals, which were only included from ADNI and EPAD cohorts, were specified by a Clinical 
Dementia Rating = 0.5. We did not include individuals with a dementia diagnosis in the AD continuum 
because we wanted to focus on assessing the impact of abnormal AD biomarkers and risk factors on 
brain-age estimates in preclinical and prodromal AD stages.

All the individuals had available data for the following clinical variables: chronological age, 
sex, MMSE and years of education, which will be referred as clinical variables from now on. A 
more detailed description of the clinical variables of these datasets is given in Table 1. Regarding 
AD-related variables, ALFA+, ADNI and EPAD cohorts included CSF Aβ42 measurements for catego-
rizing Aβ pathology status, AT status determined by CSF Aβ42 and CSF p-tau, APOE categories and 
WMH. OASIS, meanwhile, only had data available for Aβ PET and APOE categories. In addition, ALFA 
+ and ADNI included biomarkers of neurodegeneration such as CSF NfL, plasma NfL and cortical 
atrophy measured by longitudinal changes in the so-called aging signature (Bakkour et al., 2013). 
The combination of available AD-related variables and neurodegeneration biomarkers will be referred 
as validation variables from so on. A more detailed description of the validation variables can be seen 
in Table 2.

Image acquisition and preprocessing
The UK Biobank, ADNI and OASIS datasets had available T1-weighted magnetic resonance (MR) 
images that had already been segmented with Freesurfer and had been parcellated using the Free-
Surfer’s cortical Desikan-Killiany (Desikan et  al., 2006) and subcortical aseg (Fischl et  al., 2002) 
labeling pipelines, which had undergone a quality control procedure. Taking advantage of this avail-
able data, we decided to use the same segmentation pipeline with the ALFA + and EPAD cohorts. All 
the image acquisition and preprocessing done is as follows.

The UK Biobank dataset consisted of T1-weighted magnetic resonance (MR) images, all collected 
using a 3T Siemens Skyra scanner and preprocessed as previously explained in more detail (https://​
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biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). Images were previously segmented with 
Freesurfer 6.0 and underwent a quality control procedure.

For ADNI participants (Petersen et al., 2010), MRI acquisition methods are described in more 
detail elsewhere (http://adni.loni.usc.edu/methods/documents/). In brief, most of the T1-weighted 
MR were MP-RAGE, acquired with 1.5T or 3T scanners. Images were segmented with Freesurfer 5.1 
and 6.0 and subjected to a quality control procedure. When possible, we also included a second 
T1-weighted MRI image sequence for the participants that underwent another MRI visit 3 years later. 
These scans were also segmented following the previously explained procedure.

For the OASIS subjects (Marcus et al., 2007), the MRI scans were acquired on 1.5T or on 3.0T 
scanners. T1-weighted magnetization-prepared rapid gradient echo (MP-RAGE) scans were obtained 
according to previously explained protocol (https://theunitedconsortium.com/wp-content/uploads/​
2021/07/OASIS-3_Imaging_Data_Dictionary_v1.8.pdf). All MRI sessions were segmented using Free-
Surfer 5.1 or 5.3 and followed quality control measures. The PET images were acquired with [11 C]
PIB Pittsburgh’s compound 60-min dynamic PET scan in 3D mode and the corresponding analysis 
analyses were performed using the PET unified pipeline (PUP, https://github.com/ysu001/PUP) (Su, 
2018). Mean standardized uptake value (SUVR) values were converted to Centiloid scale as previously 
explained, using the whole cerebellum as reference region.

For the ALFA + participants, a high-resolution 3D T1-weighted MRI sequence was acquired in a 3T 
Philips Ingenia CX scanner (TE/TR = 4.6/9.9ms, Flip Angle = 8°; voxel size = 0.75 × 0.75 x0.75 mm). 
Images were segmented with Freesurfer 6.0 and subjected to a quality control procedure to identify 
and remove incidental findings (Brugulat-Serrat et al., 2017) and segmentation errors (Huguet et al., 
2021). Some of these ALFA + subjects (N=187) underwent a second MRI visit 3 years after the initial 
visit, where another T1-weighted MRI sequence was acquired and segmented following the same 
procedure as in the first visit.

For the EPAD cohort (Solomon et al., 2018), which is a multisite study, T1-weighted MRIs were 
inversion-recovery prepare 3D gradient-echo sequences, acquired with 3T scanners. Images were 
segmented with Freesurfer 6.0 and subjected to a quality control procedure (Lorenzini et al., 2021).

For all the cohorts, subsequent to the FreeSurfer segmentation, tissue regions were parcellated 
into 183 different anatomical regions of interest (ROI)s using the widely-used FreeSurfer’s cortical 
Desikan-Killiany (Desikan et al., 2006) and subcortical aseg (Fischl et al., 2002) labeling pipelines. 
As mentioned before, we used the available FreeSurfer segmentations from UK Biobank, ADNI, and 
OASIS cohorts. All volumes were residualized with respect to total intracranial volume (TIV) and to 
scanning site, while all cortical thicknesses were residualized with respect to scanning site, using 
linear models. Lastly, we performed a standardization procedure by computing z-score measurements 
feature-wise within each cohort, as previously performed (Casamitjana et al., 2018; Subramaniapillai 
et al., 2021; Ten Kate et al., 2018). We then assessed that there were not statistical differences in 
mean cortical thickness and volumes between the cohorts (see Appendix 1—figure 1).

Biomarkers
CSF and plasma collection, processing and biomarkers measurements
CSF and blood collection, processing and storage in the ALFA + study have been described previ-
ously (Milà-Alomà et al., 2020; Suárez-Calvet et al., 2020). CSF p-tau181 was measured using the 
Elecsys Phospho-Tau (181 P) CSF electrochemiluminescence immunoassay on a fully automated cobas 
e 601 instrument (Roche Diagnostics International Ltd, Rotkreuz, Switzerland). CSF Aβ42 and NfL 
were measured with the NeuroToolKit on a cobas e 411 or cobas e 601 instrument (Roche Diagnostics 
International Ltd, Rotkreuz, Switzerland). Plasma NfL was measured using the commercial Quanterix 
assay (Simoa NF-light Kit cat. no. 103186) on a HD-X analyzer following the manufacturer’s instructions 
(Quanterix, Billerica, MA, USA). All these measurements were previously reported (Milà-Alomà et al., 
2020; Suárez-Calvet et al., 2020). All measurements were performed at the Clinical Neurochem-
istry Laboratory, University of Gothenburg, Mölndal, Sweden, by laboratory technicians and scientists 
blinded to participants’ clinical information.

In the ADNI study, CSF samples were measured according to the kit manufacturer’s instructions and 
as described in previous studies (Bittner et al., 2016), using the Elecsys β-amyloid(1–42) CSF (Bittner 
et al., 2016), and the Elecsys Phospho-Tau (181 P) and Elecsys Total-Tau CSF immunoassays on a 
cobas e 601 analyzer at the Biomarker Research Laboratory, University of Pennsylvania, USA. Plasma 
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NfL was measured on an in-house immunoassay on the single-molecule array (Simoa) platform, using 
the same methodology as described previously, at the Clinical Neurochemistry Laboratory, University 
of Gothenburg, Mölndal, Sweden.

In the EPAD study, CSF was measured using the Elecsys β-amyloid (1–42) and the Elecsys Phos-
pho-Tau (181  P) CSF electrochemiluminescence immunoassay on a fully automated cobas e 601 
instrument (Roche Diagnostics International Ltd.). All measurements were performed at the Clinical 
Neurochemistry Laboratory, University of Gothenburg, Mölndal, Sweden, by laboratory technicians 
and scientists blinded to participants’ clinical information. Concentrations of CSF Aβ42 and p-tau181 
were determined according to the manufacturer’s instructions (Solomon et al., 2018).

Amyloid-β positivity cutoffs
For ALFA+, ADNI and EPAD, AT stages were defined by CSF Aβ42 and CSF p-tau, respectively. Previ-
ously used cut-offs were applied to each cohort, consisting of 1098 pg/mL for CSF Aβ42 for ALFA + 
and EPAD (Schindler et al., 2018) and of 880 pg/mL for CSF Aβ42 for ADNI (Hansson et al., 2018) 
and of 24 pg/mL for p-tau for the three cohorts (Milà-Alomà et al., 2020). For OASIS, we used the 
cut-off value of 17 Centiloids from literature (Salvadó et al., 2019).

WMH volumes
WMH volumes were generated for ALFA + and EPAD cohorts using Bayesian Model Selection (BaMoS) 
procedure (Sudre et al., 2015), which has been provided previously. We also obtained the already 
available WMH volumes for ADNI cohort, in which the method of WMH volumetric quantification was 
performed using probabilistic models in a Markov Random Field framework, as previously provided 
(Schwarz et al., 2009). For each cohort, total WMH volumes were derived by summing and multi-
plying the number of labeled voxels by voxel dimensions. Total WMH volumes were natural log trans-
formed and residualized with respect to TIV using linear models.

Aging signature measurements
For ALFA + and  ADNI, we computed the weighted Dickerson’s aging signature (Bakkour et  al., 
2013), which has been used as a proxy measurement for brain aging. The aging signature is a map 
of specific brain regions that undergo cortical atrophy in normal aging. This meta-ROI is composed 
of the surface-area weighted average of the mean cortical thickness in the following individual ROIs: 
calcarine, caudal fusiform, caudal insula, cuneus, inferior frontal gyrus, medial superior frontal and 
precentral cortices. A Z-score of this aging-specific measure was calculated based on the mean and 
standard deviation of the CU individuals, as done previously (Bakkour et al., 2013). This is referred 
as Aging Signature V1.

In addition, we also computed this measurement on the scanners from the second MRI visit, 
referred as Aging Signature V2. We then computed a longitudinal brain atrophy measurement by 
computing the aging signature change over the years between the MRI acquisitions. Therefore, longi-
tudinal aging signature change, or brain atrophy, was computed as:

	﻿‍ Aging signature change = aging signature Visit 2−aging signature Visit 1
Time between visits ‍�

For a secondary analysis shown in Appendix 1—table 7, we also computed the aging signature 
(Aging Signature V1) for the remaining independent cohorts: EPAD and OASIS.

Brain-age prediction
Regression model
Model workflow
For the current study, we used a gradient boosting framework: the XGBoost regressor model from 
the XGBoost python package (https://xgboost.readthedocs.io/en/) to run the brain age prediction. 
This regressor, which is based on a decision-tree based ensemble algorithm, was selected due to its 
speed and performance and its advanced regularization to reduce overfitting (Chen and Guestrin, 
2016). In addition, large-scale brain age studies have demonstrated its adequacy (Bashyam et al., 
2020; de Lange et al., 2019; de Lange et al., 2020b; Kaufmann et al., 2019). As it has been shown 
that there are sex-related trajectories in normal aging (Podgórski et al., 2021), we trained separate 
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models for females and males. For each model, we first performed Bayesian parameter optimization 
based on a cross-validation scheme with ten folds repeated ten times using the FreeSurfer volumes 
and thickness of the UK Biobank as input. For the optimization we used HYPEROPT (Bergstra et al., 
2013), with which we scanned for maximum depth, number of estimators, learning rate, alpha regular-
ization, lambda regularization, subsample, gamma and colsample by tree. The optimized parameters 
were maximum depth = 4, number of estimators = 800, learning rate = 0.03, alpha regularization = 4, 
lambda regularization = 1, subsample = 0.36, gamma = 3 and colsample by tree = 0.89 for the males 
model; and maximum depth = 4, number of estimators = 850, learning rate = 0.03, alpha regulariza-
tion = 8.5, lambda regularization = 14.5, subsample = 0.449, gamma = 3.5 and colsample by tree = 
0.72 for the females model. We trained these two models and performed the brain-age prediction 
on the independent cohorts. We decided to compute a ROI based model using these 183 FreeSurfer 
regions because they are widely used and available in most of the neuroimaging datasets. Therefore, 
our aim was not to compare our performance to the one achieved by a model trained with larger 
number of ROIs or with the full 3D images, but to study the generalizability and the relevance of our 
model in the AD field.

Contribution of brain regions in prediction
We computed SHAP (SHapley Additive exPlanation) values (https://github.com/slundberg/shap) 
(Lundberg et al., 2020) to measure the contribution of each brain region in the prediction of age for 
each subject. SHAP assigns an importance value within the prediction to each feature (in this case, 
brain region), which is based on its unique consistent and locally accurate attribution (Lundberg et al., 
2020). We calculated the average SHAP value for each region for all females and males of the UK 
Biobank cohort.

In addition, to assess that the regions with highest SHAP values were stable, we performed a 
permutation approach to study the significance of each region, separately for females and males. 
With this aim we compared the averaged SHAP value (region-specific) obtained when using the entire 
train set on the model to a null distribution calculated from 1,000 permutations performing subsa-
mple of the subjects, in which we trained and tested the model using 80% and 20% of the individuals, 
respectively.

Brain-age delta estimation
We predicted brain-age on the independent cohorts separately: ALFA+, EPAD, ADNI, and OASIS, 
using the previously trained model. To investigate the prediction performance, correlation analyses 
were run for predicted brain-age versus chronological age, R2, root mean square error (RMSE), and 
mean absolute error (MAE) were calculated for each independent cohort separately, as well as for 
females and males separate pooled from all independent cohorts. We also investigated the predic-
tion performance on the UK Biobank cohort by computing the average latter metrics from a cross-
validation with 10 splits and 10 repetitions.

As recent research has shown that brain-age estimation involves a proportional bias (de Lange et al., 
2020a; Le et al., 2018; Liang et al., 2019; Smith et al., 2019), we applied a well-established age-bias 
correction procedure to our data (de Lange et al., 2020a; Le et al., 2018). This correction, as origi-
nally proposed (de Lange and Cole, 2020c; Le et al., 2018), consists of a linear regression between 
age (Ω) and brain-predicted age (‍Y ‍) on each of the independent cohorts, ‍Y = α × Ω + β‍. The derived 
values of slope (α) and intercept (β) from the training set were used to correct the predicted brain-age 
in each test set by applying: ‍Corrected Predicted Brain Age = Predicted Brain Age +

[
Ω−

(
α× Ω + β

)]
‍. By 

subtracting the chronological age from the Corrected Predicted Brain Age, we obtained the brain-age 
delta which was used to test the associations with the validation measurements.

Statistical analyses
All statistical analyses were conducted using Python 3.7.0. We tested for normality of the distribution 
for each biomarker using the Kolmogorov-Smirnov test and visual inspection of histograms. CSF NfL 
and plasma NfL did not follow a normal distribution and were thus natural log transformed. In addi-
tion, to compare the measurements for CSF NfL and for plasma NfL coming from different cohorts 
(ALFA +and ADNI), CSF and plasma NfL was converted to z-scores.

https://doi.org/10.7554/eLife.81067
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To study the performance and accuracy of the brain-age prediction for each cohort, correlation 
analyses were run for predicted brain-age versus chronological age. We also computed R2, RMSE and 
MAE for each cohort, as well as the age bias of the prediction after bias correction. We assessed statis-
tically whether the accuracy of the predicted brain-age was different between cohorts by using Fisher’s 
z-transformation for correlation coefficients. In addition, we computed these performance metrics to 
assess the differences in the model for females and males in the pooled cohorts. Results from another 
secondary analysis are also shown in Appendix 1—table 7, in which we assessed the performance 
and accuracy of the aging signature for all cohorts, by performing correlation analyses between the 
aging signature versus chronological age and computing the R2 and RMSE. In this secondary analyses, 
we also studied whether the performance obtained for the predicted brain-age was better than the 
aging signature by performing the William’s test (Williams, 1959) for the Pearson’s correlation coeffi-
cient and a F-test to assess which model was statistically better (Appendix 1—table 7).

We used the brain-age delta as a measure of brain aging to study the associations between this 
measurement and the different AD and neurodegeneration biomarkers and risk factors. With this aim, 
we pooled all the subjects from all cohorts together and computed linear regression models for each 
validation variable, in which chronological age and sex were included as covariates. Local effect size of 
each of the continuous validation variables was calculated using Cohen’s f2 (Cohen, 2013). The mean 
brain age delta among Aβ pathology, AT stages and APOE status, were assessed by a one-way analysis 
of covariance (ANCOVA) adjusting for age and sex. Effect size of the different levels was calculated 
by dividing the estimated difference in the brain-age delta between the different categories by the 
estimated standard deviation. We also stratified the individuals by sex and studied the associations 
between brain-age delta and the different validation variables by computing linear regression models 
in which chronological age was included as covariate. We next tested for interactions between sex 
and the validation variables on brain-age delta using linear regression models and including chrono-
logical age as covariate. Lastly, we tested for interactions between age and the validation variables on 
brain-age delta for CU and MCI individuals, as well as for females and males. Correction for multiple 
comparisons was performed using false discovery rate correction (FDR) (Benjamini and Hochberg, 
1995). The number of tests for which we corrected was 125.

We also performed two different secondary and exploratory analyses. First, we assessed whether 
the brain regions (volumes and cortical thickness) that contributed the most to the prediction of 
females and males in the UK Biobank were different for each sex. With this aim we performed regres-
sion models to study the interaction effect of sex for each of the selected ROIs by including a sex-age 
interaction term.

Secondly, we wanted to identify the individuals whose predicted brain-age deviate the most from 
chronological aging, that is, individuals with the highest positive or lowest negative brain-age deltas, 
to study the above-mentioned associations. The aim of this secondary analysis was to examine the 
impact of these extreme individuals on the overall relationships observed in our sample, in the expec-
tation that the observed effect would be small. Even though this procedure implies that some of the 
data is discarded, we expected that the resulting analyses may be more sensitive. With this aim, we 
selected the individuals whose brain-age delta was included within the 10th and 90th percentile of 
the distribution for each independent cohort and studied the differences between these groups. The 
methodology and the results of this analysis can be found in Appendix 1.
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Appendix 1

Appendix 1—table 1. Correlations between validation variables and chronological age.

Aging signature Amyloid-β Log WMH Log Plasma NfL Log CSF NfL

R P-value R P-value R P-value R P-value R P-value

ALFA+ –0.23 <0.001 –0.12 0.026 0.25 <0.001 0.322 <0.001 0.403 0.352

ADNI –0.256 <0.001 –0.100 0.123 0.370 <0.001 0.441 <0.001 - -

EPAD –0.412 <0.001 –0.04 0.278 0.401 <0.001 - - - -

OASIS –0.455 <0.001 0.278 <0.001 - - - - - -

The Pearson’s correlation coefficient (R) between different validation variables (aging signature, amyloid-β, WMH, 
plasma NfL, CSF NfL) and chronological age for the independent cohorts used: ALFA+, ADNI, EPAD and OASIS.
Significant values (P<0.05) are marked in bold.
WMH, White Matter Hyperintensities; NfL, neurofilament light, CSF, cerebrospinal fluid.

Appendix 1—table 2. Comparison of prediction’s metrics across cohorts.

Fisher’s z P-Value

ALFA +vs ADNI –2.446 0.993

ALFA +vs_EPAD –5.291 1

ALFA +vs OASIS –8.630 1

ADNI vs EPAD –1.817 0.965

ADNI vs OASIS –4.955 1

EPAD vs OASIS –4.166 0.999

Testing whether the Pearson’s correlation coefficients from the brain-age prediction against the chronological age 
is similar across all cohorts, via Fisher’s transformation.

Appendix 1—table 3. Prediction metrics for different diagnostic groups in the different cohorts.

Cohorts Correlation with age MAE (y) R2 RMSE

R P-value

CU individuals

ADNI 0.575 <0.001 8.153 0.331 4.953

EPAD 0.634 <0.001 4.494 0.402 5.456

MCI individuals

ADNI 0.599 <0.001 6.739 0.358 5.760

EPAD 0.557 <0.001 5.22 0.311 5.871

The Pearson’s correlation coefficient (R) between predicted brain-age and chronological age, R2 , root mean square 
error (RMSE), and mean absolute error (MAE) for CU and MCI individuals from ADNI and EPAD.

Appendix 1—table 4. Prediction metrics for females and males in training set.

MAEorig RMSEorig R2
orig MAEcorr RMSEcorr R2

corr

Female 4.221 (0.059) 5.291 (0.062) 0.696 (0.006) 2.871 (0.062) 3.554 (0.066) 0.900 (0.004)

Male 4.175 (0.069) 5.222 (0.070) 0.728 (0.016) 3.029 (0.069) 3.764 (0.077) 0.897 (0.004)

The prediction metrics between predicted brain-age and chronological age for UK Biobank: R2, root mean square 
error (RMSE), and mean absolute error (MAE) for the train data using 10-fold cross validation with 10 repetitions 
per fold, given as mean (standard deviation).
Subindex orig refers to values before bias correction.
Subindex corr refers to values after bias correction.

https://doi.org/10.7554/eLife.81067
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Appendix 1—table 5. Prediction metrics for females and males in testing set.

Pooled cohorts

MAE RMSE R2

Female 5.481 6.013 0.316

Male 6.201 6.217 0.364

The prediction metrics before bias correction between predicted brain-age and chronological age for the testing 
cohorts pooled together: R2, root mean square error (RMSE), and mean absolute error (MAE) for females and 
males.

Appendix 1—table 6. Comparison of prediction’s metrics between females and males.

Fisher’s z P-Value

Females vs males 1.542 0.123

Testing whether the Pearson’s correlation coefficients from the brain-age prediction against the chronological age 
is similar between males and females pooled from all independent cohorts, via Fisher transformation.

Appendix 1—table 7. Prediction metrics for all independent cohorts using aging signature.

Aging Signature – performance for brain age prediction

Correlation with age MAE (y) R2 RMSE

Cohorts

ALFA+ –0.230 <0.001 3.83 0.06 4.61

ADNI –0.256 <0.001 4.60 0.07 5.85

EPAD –0.412 <0.001 5.26 0.17 6.43

OASIS –0.455 <0.001 6.64 0.21 8.41

We tested the linear association of the widely-used neuroanatomical aging signature (Bakkour et al., 2013) 
with chronological age, to compare its performance with the XGboost brain-age prediction. The aging signature 
is a map of specific brain regions that undergo cortical atrophy in normal aging. Our brain-age estimation 
outperformed the aging signature (Pearson’s r [William’s test], P<0.001; RMSE [F-test] P<0.001, for all cohorts). 
These analyses were computed on the Pearson’s correlation coefficient (R) between predicted brain-age 
and chronological age, R2, root mean square error (RMSE), and mean absolute error (MAE) for each of the 
independent cohorts after bias correction.

Appendix 1—table 8 Continued on next page

Appendix 1—table 8. Interaction affects between age and sex effects for each signiciant SHAP-selected ROI.

Cortical thickness Subcortical Volumes Cortical Volumes

ROI P>|t| ROI P>|t| ROI P>|t|

L_frontalpole <0.0001 3rd-Ventricle <0.0001 L_entorhinal 0,019

L_inferiorparietal 0,104 4th-Ventricle 0,976 L_insula <0.0001

L_isthmuscingulate <0.0001 Brain-Stem <0.0001 L_isthmuscingulate <0.0001

L_lateraloccipital 0,235 CC_Anterior <0.0001 L_middletemporal <0.0001

L_lateralorbitofrontal <0.0001 CC_Central 0,828 L_parsopercularis <0.0001

L_middletemporal 0,285 CC_Mid_Posterior 0,685 L_parsorbitalis <0.0001

L_paracentral 0,08 CC_Posterior 0,024 L_parstriangularis <0.0001

L_parstriangularis 0,014 CSF 0,136 L_pericalcarine 0,007

L_precentral <0.0001 Left-Accumbens-area <0.0001 L_rostralmiddlefrontal <0.0001

L_precuneus 0,007 Left-Amygdala <0.0001 L_superiorfrontal <0.0001

L_superiorfrontal <0.0001 Left-Caudate <0.0001 R_entorhinal 0,006

https://doi.org/10.7554/eLife.81067
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Cortical thickness Subcortical Volumes Cortical Volumes

L_superiortemporal 0,071 Left-Cerebellum-Cortex <0.0001 R_fusiform <0.0001

L_transversetemporal <0.0001 Left-Cerebellum-White-Matter <0.0001 R_insula <0.0001

R_caudalanteriorcingulate 0,452 Left-Hippocampus <0.0001 R_middletemporal <0.0001

R_cuneus 0,235 Left-Inf-Lat-Vent <0.0001 R_parsorbitalis <0.0001

R_frontalpole <0.0001 Left-Lateral-Ventricle <0.0001 R_parstriangularis <0.0001

R_inferiorparietal 0,379 Left-Putamen <0.0001 R_pericalcarine 0,258

R_lateraloccipital 0,212 Left-Thalamus-Proper <0.0001 R_postcentral <0.0001

R_lateralorbitofrontal <0.0001 Left-VentralDC <0.0001 R_rostralmiddlefrontal <0.0001

R_lingual 0,789 Left-choroid-plexus <0.0001 R_superiorfrontal <0.0001

R_middletemporal 0,205 Optic-Chiasm <0.0001 R_supramarginal <0.0001

R_paracentral 0,301 Right-Amygdala <0.0001 R_transversetemporal <0.0001

R_parstriangularis 0,088 Right-Caudate <0.0001

R_pericalcarine 0,086 Right-Cerebellum-Cortex <0.0001

R_posteriorcingulate 0,003 Right-Cerebellum-White-Matter <0.0001

R_precentral <0.0001 Right-Hippocampus <0.0001

R_precuneus 0,215 Right-Inf-Lat-Vent <0.0001

R_rostralmiddlefrontal <0.0001 Right-Lateral-Ventricle <0.0001

R_superiorfrontal 0,003 Right-Pallidum <0.0001

R_superiortemporal 0,183 Right-Putamen <0.0001

R_transversetemporal <0.0001 Right-Thalamus-Proper <0.0001

Right-VentralDC <0.0001

Right-choroid-plexus <0.0001

Appendix 1—table 8 Continued

Appendix 1—table 9. Comparison of brain-age deltas for the different amyloid-β, AT and APOE 
status.

Mean square F P-Value

CU

Amyloid-β status 35.787 39.369 <0.001

AT Stage 21.550 11.626 <0.001

APOE status 16.218 5.862 <0.001

MCI

Amyloid-β status 47.166 52.412 <0.001

AT Stage 50.064 27.701 <0.001

APOE status 10.049 3.425 0.017

Brain-age deltas for pooled CU and MCI individuals 
were compared for the different amyloid-β, AT and 
APOE status with ANCOVA models adjusted by age 
and sex.
Amyloid-β status was defined by CSF (ALFA+, ADNI 
and EPAD) or amyloid PET (OASIS).
Significant values (P<0.05) are marked in bold.
APOE, apolipoprotein E; ANCOVA, analysis of 
covariance.

https://doi.org/10.7554/eLife.81067
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Appendix 1—table 10. Mean brain-age delta values for the different amyloid-β, AT and APOE 
status.

CU brain-age delta, M (95% CI) MCI brain-age delta, M (95% CI)

Amyloid-β status

Aβ- –0.468 (-0.708,–0.228) –1.618 (-2.231,–1.005)

Aβ+ 0.802 (0.485, 1.119) 1.033 (0.577, 1.490)

AT Stage

A-T- –0.214 (-0.507, 0.078) –1.623 (-2.239,–1.007)

A+T- 0.916 (0.506, 1.325) 0.561 (-0.066, 1.188)

A+T + 0.945 (0.140, 1.750) 1.410 (-0.753, 2.066)

APOE status

APOE-ε2 –0.726 (-1.298,–0.153) –0.660 (-2.234, 0.914)

APOE-ε33 –0.225 (-0.506, 0.056) –0.522 (-1.0750, 0.031)

APOE-ε4 0.503 (0.193, 0.813) 0.617 (0.050, 1.184)

APOE-ε24 –0.092 (-1.109, 0.924) 1.257 (-1.067, 3.581)

Notes: brain-age delta are expressed as mean (M) and 95% confidence interval (CI).
Amyloid-β status was defined by CSF (ALFA+, ADNI and EPAD) or amyloid PET (OASIS). Abbreviations: APOE, 
apolipoprotein E.

Appendix 1—table 11. Relationships between validation variables and brain-age delta across 
independent cohorts.
Model β SE P-Value [0.025] [0.975] N Effect size

ALFA+

Amyloid-β pathology 0.796 0.377 0.035 0.056 1.537 355 0.217

Amyloid-β 
/ Tau 
pathology 
(ref: A-T-)

A+T- 1.028 0.409 0.013 0.222 1.832 355 0.225

A+T + 0.855 0.929 0.358 –0.973 2.682 355 0.225

APOE 
status (ref: 
APOE-e33)

APOE-ε2 –1.278 0.780 0.102 –2.811 0.255

355

0.325

APOE-ε4 0.002 0.397 0.996 –0.231 0.817 0.001

APOE-ε24 –0.294 1.273 0.817 –2.797 2.797 0.075

WMH 0.724 0.236 0.002 0.260 1.187 337 0.028

CSF NfL 0.106 0.199 0.593 –0.284 0.497 357 0.001

Plasma NfL 0.116 0.217 0.594 –0.311 0.543 343 0.001

Aging signature change 0.082 0.234 0.728 –0.378 0.542 236 0.001

ADNI

Amyloid-β 0.182 0.525 0.730 –0.852 1.216 233 0.047

Amyloid-β 
/ Tau 
pathology 
(ref: A-T-)

A+T- –0.375 0.620 0.546 –1.597 0.847 232 0.096

A+T + 0.855 0.711 0.230 –0.546 2.255 232 0.225

APOE 
status (ref: 
APOE-e33)

APOE-ε2 0.525 0.801 0.513 –1.055 2.104

233

0.142

APOE-ε4 0.137 0.579 0.813 –1.003 1.278 0.034

APOE-ε24 –1.183 2.811 0.674 –6.722 4.356 0.000

WMH 0.483 0.243 0.040 0.004 0.963 218 0.018

CSF NfL 0.707 0.784 0.380 –0.947 2.361 0.048

Plasma NfL 0.195 0.331 0.557 –0.459 0.849 165 0.002

Aging signature change 0.343 0.713 0.634 –1.108 1.794 0.007

EPAD

Amyloid-β 1.410 0.311 <0.001 0.800 2.020 601 0.377

Appendix 1—table 11 Continued on next page
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Model β SE P-Value [0.025] [0.975] N Effect size

Amyloid-β 
/ Tau 
pathology 
(ref: A-T-)

A+T- 1.109 0.348 0.002 0.474 2.719 575 0.298

A+T + 1.59 0.572 0.005 0.474 2.719 575 0.417

APOE 
status (ref: 
APOE-e33)

APOE-ε2 –0.318 0.573 0.573 –1.555 0.579

601

0.008

APOE-ε4 0.292 0.340 0.390 –0.375 0.959 0.076

APOE-ε24 –0.506 0.807 0.531 –2.090 1.078 0.131

WMH 0.783 0.182 <0.001 0.426 1.140 417 0.045

OASIS

Amyloid-β 0.917 0.441 0.038 0.051 1.784 407 0.246

APOE 
status (ref: 
APOE-e33)

APOE-ε2 –0.228 0.532 0.668 –1.272 0.817

407

0.060

APOE-ε4 1.238 0.419 0.003 0.415 2.061 0.335

APOE-ε24 0.412 1.086 0.702 –1.719 2.550 0.111

Notes: Relationships between validation variables and brain-age delta for all CU subjects from each cohort. Results given by the linear model: brain-age 
delta ~each variable +chronological age+sex. The regression coefficients (β), standard errors (SE), P-value, 95% Confidence Interval, number of individuals (N) 
and effect size are depicted for each variable.

Significant values (P<0.05) are marked in bold.

Effect size in categorical variables was calculated as Cohen’s D, while Cohens f2 was calculated for continuous measurements.

Amyloid-β status was defined by CSF (ALFA+, ADNI and EPAD) or amyloid PET (OASIS).

APOE, apolipoprotein E; WMH, White Matter Hyperintensities; CSF, cerebrospinal fluid; NfL, neurofilament light.

Appendix 1—figure 1. Median (and interquartile range) cortical thickness for all individuals from all cohorts 
(UK Biobank (UKB), ALFA+, ADNI, EPAD and OASIS), without any correction (left) and after the standardization 
procedure (right). The sample size can be seen in Table 1.

Secondary analysis: Selection of Extreme Subjects
Methods
The cohorts included in this study include mainly CU individuals with mean age 65–70 years and 
ranges of around 10 years. Therefore, we expected to find small differences in the biomarkers’ values 
used as validation measurements in these subjects. In addition, the effects of these biomarkers on 
the brain-age should be subtle, as many other processes and factors can influence the predicted 
brain age. Therefore, we wanted to identify the individuals whose predicted brain-age deviate the 
most from chronological aging, i.e., individuals with the highest positive or lowest negative brain-age 
deltas, to study the mentioned associations. With this aim, we selected the individuals whose brain-
age delta was included within the 10th and 90th percentile of the distribution for each independent 

Appendix 1—table 11 Continued
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cohort. We then pooled together these selected individuals, who will be referred from now on as 
extreme subjects with decelerated brain-aging and accelerated brain-aging.

Once selecting these extreme subjects, we performed between groups comparison for the clinical 
and validation measurements, between the decelerated brain aging subjects and the accelerated 
brain aging subjects. For this we performed independent t tests or Mann–Whitney U tests for 
continuous variables and chi-square tests for categorical variables. We also tested for interactions 
between age and the validation variables on brain-age delta. Lastly, we stratified the decelerated and 
the accelerated brain aging subjects by sex and performed the same between groups comparison to 
study the sex differences of the composition of the demographics and validation variables found in 
the decelerated and accelerated brain-aging subjects. We also tested for interactions between sex 
and the validation variables on brain-age delta.

Results
Finally, we investigated whether individuals with extreme brain age phenotypes differed in their 
demographical and clinical characteristics as well as in the AD and neurodegeneration-related 
biomarkers and risk factors. The extreme phenotypes were defined as those individuals at the 10th 
percentile of brain-age delta (henceforth, decelerated brain aging) and 90th percentile of brain-age 
delta (accelerated brain aging). The extreme groups were defined, firstly, including both sexes and, 
secondly, separately in females and males.

Across the four cohorts, including both sexes, we found that Mini-Mental State Examination 
(MMSE) was significantly lower in the accelerated brain aging group for both the CU and the MCI 
individuals (CU: P=0.006, D=0.300 and MCI: P<0.001, D=0.883). Years of education, percentage 
of females and males, and chronological age were not significantly different between the extreme 
groups.

For both CU and MCI, in the accelerated brain aging group, we found a higher proportion of Aβ-
positive individuals (CU: P<0.001, V=0.231 and MCI: P<0.001, V=0.502), more advanced AT stages 
(CU: P<0.001, V=0.239 and MCI: P<0.001, V=0.531), and larger WMH total volume (CU: P<0.001, 
D=0.707 and MCI: P=0.044, D=0.430). In the MCI group, a higher proportion of APOE-ε4 carriers 
in the accelerated brain aging group was found with respect to the decelerated brain aging group 
(P<0.001, D=0.455). When studying the differences of neurodegeneration markers across the two 
extreme groups, we found significantly higher plasma NfL in the accelerated brain aging group only 
among MCI individuals (MCI: P=0.007, D=0.696). In addition, we found a significant interaction 
effect of age and plasma NfL on CU brain-age delta (Pinteraction = 0.034) within the CU individuals, by 
which the measures of plasma NfL were higher with age in the accelerated brain-aging group. CSF 
NfL was only available in the ALFA +cohort (N=82) and a similar trend to that of plasma NfL was 
observed, but without reaching statistical significance.

We next compared the extreme brain age phenotypes calculated separately for CU females and 
males. In both CU females and males defined extreme groups, we found higher proportion of Aβ-
positive individuals, higher proportion of more advanced AT stages, larger WMH and lower aging 
signature values (that is, reduced cortical thickness in aging-vulnerable regions) in the accelerated 
brain aging groups. Effect sizes showed that the increased WMH in the accelerated brain aging 
group was larger in females than in males. On the contrary, the effect of the proportion of Aβ-
positive individuals in the accelerated brain aging group was stronger in males than in females. We 
also found lower MMSE scores in the CU accelerated brain aging males. In addition, we found a 
significant interaction effect of sex and plasma NfL on CU brain-age delta (Pinteraction = 0.038) within 
the CU extremes individuals, by which the measures of plasma NfL were larger in females in the 
accelerated brain-aging group.

https://doi.org/10.7554/eLife.81067
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