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Abstract Thalamocortical interaction is a ubiquitous functional motif in the mammalian brain. 
Previously (Hwang et al., 2021), we reported that lesions to network hubs in the human thalamus are 
associated with multi-domain behavioral impairments in language, memory, and executive functions. 
Here, we show how task-evoked thalamic activity is organized to support these broad cognitive 
abilities. We analyzed functional magnetic resonance imaging (MRI) data from human subjects that 
performed 127 tasks encompassing a broad range of cognitive representations. We first investigated 
the spatial organization of task-evoked activity and found a basis set of activity patterns evoked to 
support processing needs of each task. Specifically, the anterior, medial, and posterior-medial thal-
amus exhibit hub-like activity profiles that are suggestive of broad functional participation. These 
thalamic task hubs overlapped with network hubs interlinking cortical systems. To further determine 
the cognitive relevance of thalamic activity and thalamocortical functional connectivity, we built a 
data-driven thalamocortical model to test whether thalamic activity can be used to predict cortical 
task activity. The thalamocortical model predicted task-specific cortical activity patterns, and outper-
formed comparison models built on cortical, hippocampal, and striatal regions. Simulated lesions to 
low-dimensional, multi-task thalamic hub regions impaired task activity prediction. This simulation 
result was further supported by profiles of neuropsychological impairments in human patients with 
focal thalamic lesions. In summary, our results suggest a general organizational principle of how the 
human thalamocortical system supports cognitive task activity.

Editor's evaluation
This valuable study examines a largely ignored brain structure (the thalamus) in functional brain 
imaging studies. The study shows that localized thalamic regions show hub properties in terms 
of their activation properties and connectivity to cortical regions. While some open questions 
regarding the robustness and validity of measure that defines the hub properties may remain, the 
evidence in the paper is generally convincing, especially as converging evidence across two large 
datasets is presented.

Introduction
Distributed neural activity supports a broad range of perceptual, motor, affective, and cognitive func-
tions. Discovering how brain systems implement this broad behavioral repertoire is critical for eluci-
dating the neural basis of human cognition. Past studies have revealed two organizational principles 
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– low-dimensional architecture and multi-task hubs – that connect distributed neural activity with task 
performance across functional domains.

The application of dimensionality reduction techniques on whole-brain imaging data has revealed a 
relatively low-dimensional organization of cortical neural activity. Specifically, the number of variables 
required to explain a large amount of variance in distributed neural activity is far lower than the total 
number of variables in the data (MacDowell and Buschman, 2020; Nakai and Nishimoto, 2020; Shine 
et al., 2019b). The spatiotemporal patterns of these variables are commonly referred to as intrinsic 
networks in task-free conditions, or manifolds, motifs, and latent components in task contexts. This 
low-dimensional organization may reflect an elementary set of information processes implemented 
by distributed brain systems (Cunningham and Yu, 2014; Yeo et al., 2016), in which different tasks 
selectively engaged selective latent activity patterns depending on the specific processing require-
ments of individual tasks.

The anatomical overlap between spatiotemporal components predicts that some brain regions 
broadly participate in multiple tasks. In support of this prediction, studies have found that associative 
regions in frontal and parietal cortices are involved in executing a wide array of tasks (Cole et al., 
2013; Duncan, 2010). These task-flexible regions, also commonly referred to as brain hubs (Gratton 
et al., 2018; van den Heuvel and Sporns, 2013), have diverging connectivity with multiple brain 
systems, and are thought to perform integrative functions that allow perceptual inputs to interact 
with contextual task representations for adaptive task control (Bertolero et  al., 2018; Bertolero 
et al., 2015; Ito et al., 2022; Nee, 2021). The behavioral significance of brain hubs is affirmed by 
lesion studies demonstrating that lesions to hub regions are associated with task impairments across 
multiple functional domains (Hwang et al., 2021; Reber et al., 2021; Warren et al., 2014).

However, a prevailing assumption is that diverse human behavior depends on the organization of 
cortical activity, and the contribution from subcortical regions, particularly the thalamus, is not well 
understood. Our previous studies demonstrated that the human thalamus contains a complete repre-
sentation of intrinsic cortical functional networks, and additionally, exhibits a hub-like connectivity 
profile interlinking multiple cortical systems (Hwang et al., 2021; Hwang et al., 2017). Furthermore, 
lesions to the anterior and the medial thalamus in human patients are associated with behavioral 
impairments across functional domains (Hwang et  al., 2020a; Hwang et  al., 2021). Given that 
every cortical region receives projections from multiple thalamic nuclei and that the thalamus medi-
ates striatal and cerebellar influences on cortical (Shine, 2020), the thalamocortical system is ideally 
suited to shape cortex-wide activity patterns that instantiate cognitive representations. The rela-
tionship between thalamic task activity and cortical cognitive representations, however, are not well 
understood.

Given the observations described above, we expect that task functional magnetic resonance 
imaging (fMRI) data obtained from the human thalamus to exhibit a similar low-dimensional orga-
nization like the cortical system. Furthermore, there should be task hub regions within the human 
thalamus that broadly participate in multiple cognitive tasks. The current study applied a dimension 
reduction technique to determine how thalamic task-evoked activity and thalamic hubs are organized 
to support cognitive functions across diverse functional domains. To this end, we analyzed fMRI data 
where human subjects performed a rich battery of tasks designed to elicit neural activity for a wide 
range of cognitive functions. Our study addressed the following two specific questions. First, are there 
thalamic hub regions that exhibit task-evoked activity by multiple tasks across domains? Second, can 
thalamic task-evoked activity be used to predict cortical task-evoked activity patterns? Answering 
these questions would reveal a general principle of how the human thalamocortical system contrib-
utes to higher-order, multi-domain cognitive task activity.

Results
To determine the organization of task-evoked thalamic activity, we analyzed two fMRI datasets, both 
of which utilized rich batteries of tasks designed to elicit a wide range of processes encompassing 
perceptual, affective, memory, social, motor, language, and cognitive domains (Figure 1A). In the 
first dataset, the multi-domain task battery (MDTB) dataset, 21  subjects performed 25 behavioral 
tasks (King et al., 2019). In the second dataset, the Nakai and Nishimoto (N&N) dataset, 6 subjects 
performed 103 tasks (Nakai and Nishimoto, 2020).

https://doi.org/10.7554/eLife.81282
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Low-dimensional organization of thalamic task-evoked activity
We sought to determine the organization of task-evoked responses in the human thalamus using a 
dimension reduction technique. We first used a general linear modeling (GLM) approach to char-
acterize the task-evoked blood-oxygen-level-dependent (BOLD) activity patterns and estimated the 
magnitude of BOLD-evoked responses for every task (‘task betas’). Task betas were extracted for every 
thalamic voxel and every task, then compiled into a voxel-by-task activity matrix for each dataset. The 
cross-subject averaged matrix was subjected to a principal component analysis (PCA) to decompose 
multi-task BOLD activity patterns into a linear summation of a voxel-by-component weight matrix 
multiplied by a component-by-task loading matrix (Figure  1A). The voxel-by-component weight 
matrix can be conceptualized as sets of basis patterns of thalamic BOLD activity components engaged 
by different tasks. Similar to previous studies that focused on cortical activity patterns (Nakai and 
Nishimoto, 2020; Shine et al., 2019a), we found that the top 3 thalamic activity components can 
explain up to 50% of the variance across tasks for the MDTB dataset and 36% for the N&N dataset, in 
which each task is associated with a weighted sum of these components (Figure 1B, Figure 1—figure 
supplements 1–2). Repeating the PCA for each subject (without averaging across subjects) revealed 
similar findings, where up to 57% of variances across task activity patterns in the human thalamus can 
be explained by 10 components (Figure 1C; 73% for MDTB, 57% for N&N).

Hub organization of thalamic task-evoked activity
Examining the spatial patterns of thalamic components (Figure 1B) revealed that several thalamic 
subregions showed spatial overlap across multiple components, which suggests that these thalamic 

Figure 1. Low-dimensional organization of thalamic task-evoked response that supports multi-task performance. (A) We decomposed the high-
dimensional multi-task evoked activity matrix into low-dimensional spatial components in the human thalamus and a task-wide loading matrix. For 
a list of all tasks, see Supplementary file 1. (B) Spatial topography of the top 3 components from the multi-domain task battery (MDTB) dataset 
that explained 50% of the variance in the group averaged task activity matrix. For top components for the Nakai and Nishimoto (N&N) dataset, see 
Figure 1—figure supplement 1. For the loadings between tasks and components, see Figure 1—figure supplement 2. (C) Results from applying 
principal component analysis (PCA) to single subjects. For both the MDTB and N&N datasets, for individual subjects up to 57% of the variance across 
multiple tasks can be explained by the top 10 components. Error bars and shaded areas indicate standard error of the mean.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Spatial topography of the top three components from the Nakai and Nishimoto (N&N) dataset that explained about 50% of the 
variance in the group averaged task activity matrix.

Figure supplement 2. Loadings between individual tasks and thalamic activity components.

https://doi.org/10.7554/eLife.81282
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subregions may support multiple tasks. We reasoned that if a thalamic voxel is broadly participating in 
multiple tasks, it will express stronger weights for top thalamic activity components that explained a 
large amount of variance in evoked activity patterns across tasks. Therefore, to further map ‘task hub’ 
regions in the human thalamus, we calculated a metric by summing each voxel’s absolute component 
weight for the top 10 components. Results showed that for the MDTB dataset, the anterior, medial, 
medio-posterior, and dorsal thalamus exhibited strong task hub properties (Figure 2A). For the N&N 
dataset, the posterior thalamus did not exhibit strong task hub property, and the spatial correlation 
between task hub metrics from the two datasets was r=0.36. We then recalculated the task hub metric 
using lower ranked components (components number 11th to 20th, explained less than 2% of vari-
ances), and results revealed a different anatomical pattern (Figure 2—figure supplement 1). These 
results suggest that the anterior, medial, and posterior thalamic task hub patterns we identified were 
primarily driven by component weights summed across top components that explained large portion 
of variance in task-evoked activity.

Network hubs in the human thalamus exhibit diverse functional connectivity (FC) patterns inter-
linking multiple cortical systems (Greene et al., 2020; Hwang et al., 2017). To determine whether 
the tasks hubs we identified correspond to network hub regions previously identified in the thalamus, 
we compared the spatial similarity of task hubs with FC hubs. We calculated a network hub metric, 
the participation coefficient (Gratton et al., 2012; Guimerà and Nunes Amaral, 2005; Figure 2—
figure supplement 2), using every thalamic voxel’s FC matrix with 400 cortical regions (Schaefer 
et al., 2018). When calculating FC matrices, we used timeseries after removing task-evoked variances 
from the preprocessed fMRI data, to reduce shared variances in task-evoked activations biasing FC 
estimates (see Methods for details). The task hubs showed significant spatial correspondence with FC 
hubs (Figure 2A; spatial correlation: MDTB mean = 0.17, SD = 0.083, p<0.001; N&N mean = 0.17, 
SD = 0.05, p<0.001; spatial correlation between MDTB and N&N: r=0.55). One discrepancy was 
the posterior thalamus, which showed strong task hub but not network hub property for the MDTB 
dataset. We then projected the task hubs estimates onto the cortex by calculating the dot product 
between each thalamic voxel’s task hub estimate and its thalamocortical FC matrix. We found that 

Figure 2. Hub regions in the thalamus. (A) Task hubs (CompW) and functional connectivity (FC) hubs (PC) in the thalamus. PC = participation coefficient. 
(B) Projecting task hub metrics onto the cortex via thalamocortical FC.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Control analyses for the task hub metric.

Figure supplement 2. Conceptual explanation of the participation coefficient metric.

https://doi.org/10.7554/eLife.81282
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tasks hubs were most strongly coupled with associate regions in the frontal and parietal cortex, for 
example, the lateral frontal, the insula, the dorsal medial prefrontal, and the intraparietal cortices 
(Figure 2B; spatial correlation between MDTB and N&N: r=0.46).

Given that the thalamus is not a homogenous structure and can be divided into different subdi-
visions or nuclei based on its functional and histological properties, we summarized the spatial 
distribution of task hub estimates (CompW) using two different thalamic atlases (Figure  3). First, 
the Morel atlas was used to determine the location of different thalamic nuclei Krauth et al., 2010; 
this atlas maps human thalamic nuclei based on cyto- and myelo-architecture information in stained 
slices from five postmortem human brains, and further transformed to the template space. Second, 
for the network atlas, we assigned each thalamic voxel to one of the seven canonical cortical func-
tion networks (Schaefer et al., 2018) that we used for calculating network hubs. We then averaged 
the task hub estimates within each thalamic nucleus or functional parcellation. In both datasets, we 
found the task hub values to be highest in the anterior and mediodorsal nuclei. These nuclei groups 
are known to have strong reciprocal connectivity with frontal regions (Giguere and Goldman-Rakic, 
1988; Selemon and Goldman-Rakic, 1988). We also found the medial pulvinar to show high task hub 
value but only in the MDTB dataset, likely because the N&N dataset did not show high task hub value 
in the posterior thalamus. For the functional network parcellation atlas, between datasets discrepan-
cies were also found in posterior thalamus. For example, in the MDTB dataset, the DF parcellation 
(which overlapped with the anterior medial, medial, and posterior medial thalamus) was found to 
show the highest task hub value. For the N&N dataset, the posterior thalamus did not exhibit high 
task hub value, but the FP parcellation, which covered the dorsal bank of the medial thalamus, showed 
the highest task hub value. Overall, these results suggest that thalamic task hubs do not overlap with 
one functional network parcellation or thalamic nucleus, instead overlap with multiple thalamic parcel-
lations and nuclei.

Predict cortical task activity with thalamic task-evoked activity
To further test whether thalamic task-evoked activity is related to diverse cognitive functions putatively 
implemented by distributed cortical activity, we adapted the activity flow mapping procedure (Cole 
et al., 2016; Ito et al., 2017) to test whether thalamic task-evoked responses can be used to predict 
cortical task activity (Figure  4A). Briefly, for every thalamic voxel, we calculated the dot product 
between the thalamic-evoked response pattern of each task and the thalamocortical FC matrix, using 
a split-half cross-validation procedure (see Methods). This calculation yielded a predicted cortex-wide 
activity pattern for every task, and prediction accuracy was calculated by comparing the predicted 
pattern to the observed cortical activity pattern using Pearson correlation. We then compared the 
model performance against three null models. The first null model randomly shuffled thalamic-evoked 

Figure 3. Anatomical distribution of task hub estimates in the thalamus. AN = anterior nucleus, VM = ventromedial, MD = mediodorsal, IL = 
intralaminar, VA = ventral anterior, VL = ventrolateral, VP = ventroposterior, PuM = medial pulvinar, LP = lateral posterior, LGN = lateral geniculate 
nucleus, MGN = medial geniculate nucleus; V=visual network, SM = somoatomotor, DA = dorsal attention, CO = cingulo-opercular, FP = frontoparietal, 
DF = default mode. Error bar indicates standard error of the mean.

https://doi.org/10.7554/eLife.81282
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responses (the ‘null model’), which assumed no spatial structure in thalamic task-evoked responses. 
The second null model set all thalamic-evoked responses to the same value (‘1’) across all voxels 
(the ‘uniformed evoked model’), which assumed that cortical activity patterns are determined only 
by the summated inputs from thalamocortical FC patterns. The third null model was constructed by 
averaging the evoked response amplitudes across tasks for every thalamic voxel, which assumed that 
there is no difference in thalamic activity patterns between tasks. Finally, activity flow model perfor-
mance is limited by the reliability of the data used to calculate the predicted pattern. Therefore, we 
calculated the noise ceiling that accounted for the split-half reliability of thalamic-evoked responses, 
thalamocortical FC, and cortical-evoked responses (see Methods for details). All prediction accuracy 
was normalized by the noise ceiling. For the null models, prediction accuracy was normalized by the 
thalamocortical model’s noise ceiling.

The mean prediction accuracy of the thalamocortical activity flow model was 0.29 for the MDTB 
dataset and 0.15 for the N&N dataset (Figure 4B). As described above, the prediction accuracy is 
limited by the reliability of the thalamic and cortical data (noise ceiling). After accounting for the noise 
ceiling (Figure 4—figure supplement 1), the normalized prediction accuracy was 0.5 for MDTB and 
0.62 for N&N (Figure 4C), which indicates that the thalamocortical model was able to account for up 
to 38% of variance in task-evoked activity patterns in the cortex. We further found that thalamocortical 
activity flow model outperformed the null models, except for the N&N dataset when compared to 
the averaged evoked pattern model (Figure 4C; MDTB thalamocortical model vs. null model: t(20) = 
11.22, p<0.001; MDTB thalamocortical model vs. uniformed evoked model: t(20) = 12.05, p<0.001; 
MDTB thalamocortical model vs. averaged pattern model: t(20) = 6.88, p<0.001; N&N thalamocortical 
model vs. null model: t(5) = 11.22, p=0.018; N&N thalamocortical model vs. uniformed evoked model: 
t(5) = 4.75, p=0.005; N&N thalamocortical model vs. averaged pattern model: t(5) = 1.61, p=0.17). 
These results indicate that thalamic task-evoked responses can predict cortical activity patterns.

Figure 4. Activity flow model predicts cortical task-evoked response patterns. (A) Model for testing whether thalamic task-evoked activity can predict 
patterns of cortical task-evoked responses. (B) Unnormalized prediction accuracy. Cortical regions divided by seven cortical functional networks: Vis = 
visual, SM = somatomotor, DA = dorsal attention, CO = cingulo-opercular, DF = default mode, FP = frontal parietal; Null model: randomly permute the 
evoked pattern in the thalamus. (C) Noise normalized prediction accuracy. (D) Prediction accuracy normalized by the noise ceiling. (E) Unnormalized 
activity flow model prediction for 100 cortical regions of interests (ROIs). (E) Noise normalized activity flow model prediction for 100 cortical ROIs.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Noise ceiling of different brain regions and null models.

https://doi.org/10.7554/eLife.81282
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We then sought to compare our thalamocortical activity flow model to other cortical and subcor-
tical regions. We constructed a series of comparison models by applying the same split-half cross-
validation activity flow mapping procedure to 100 cortical regions of interests (ROIs) that had similar 
size as the thalamus (Schaefer et  al., 2018), as well as to other subcortical regions including the 
hippocampus, the caudate, the putamen, and the globus pallidus. We found that several cortical 
regions also showed strong prediction performance, including the insula, the inferior frontal cortex, 
the dorsal medial frontal cortex, the intraparietal sulcus, and the lateral occipital cortex (Figure 4D for 
unnormalized prediction accuracy, Figure 4E for noise normalized prediction accuracy). However, the 
thalamocortical model outperformed all comparison models. For example for both datasets, lateral 
ROIs in the visual network showed the highest normalized prediction accuracy, but still statistically 
weaker than the thalamocortical activity flow model (MDTB: t(20) = 2.91, p=0.008; N&N: t(5) = 3.3, 
p=0.021). These results indicate that the thalamocortical activity flow model is a strong predictor of 
cortical task activity.

Lesions to task hubs in the thalamus are associated with impaired 
prediction of task reorientations and representational geometry
The results presented in Figure  4 demonstrated that thalamic task-evoked responses can predict 
cortical activity patterns that putatively support cognitive representations. However, it is unclear to 
what degree task hubs in the thalamus contribute to these results. One possibility is that all thalamic 
voxels contribute equally to cortical task activity patterns. Another possibility is that, since thalamic 
task hubs are broadly engaged by multiple tasks and exhibited diverging connectivity patterns with 
multiple cortical systems, thalamic task hubs have a stronger contribution to predicting cortical task 
activity patterns. To evaluate this prediction, we performed virtual lesion simulations. Specifically, we 
systematically removed 20% of thalamic voxels based on their percentile rank of task hub estimates 
and calculated the percentage of reduction in prediction accuracy from the activity flow analysis. For 
both datasets, we found that removing voxels with strong task hub estimates decreased the predic-
tion accuracy in cortical task-evoked activity patterns (Figure 5A). We fitted a regression model to test 
the relationship between reduction in prediction and percentile rank of task hub metrics removed, and 
found significant negative associations (MDTB activity flow prediction: b=–0.43, SE = 0.019, t=–22.63, 
p<0.001; N&N activity flow prediction: b=–0.1, SE = 0.028, t=–3.79, p<0.001). These results indicate 
that virtual lesioning of thalamic task hubs had a stronger impact on reducing the model’s ability to 
predict cortical activity patterns. Furthermore, thalamic voxels with the strongest impact on predic-
tion performance were spatially located in the anterior, medial, mediodorsal, and medial posterior 
thalamus that we previously identified as task hubs (Figure 5B; spatial correlation between MDTB and 
N&N r=0.29).

We compared these simulation results with neuropsychological impairments found in 20 human 
patients with focal thalamic lesions. Neuropsychological profiles of these patients were described 
in detail in our previous publication (Hwang et al., 2021). Briefly, patients performed a battery of 
neuropsychological tests to assess executive, language, memory, learning, visuospatial, and construc-
tion functions (Lezak et  al., 2012). Test performance was then compared to published, standard-
ized norms and converted to z-scores quantify the severity of impairment (Figure 6A). Patients were 
grouped into two groups, those that showed impairment (z-score <–1.695, worse than 95 percentile 
of the normative population) in single or fewer domains (the SM group) vs. those showed impairment 
across multiple domains (the MM group; Figure 6B). There were no statistically significant differences 
in the lesion volumes between these two groups of patients (MM group: mean = 1559 mm3, SD = 
1370 mm3; SM group: mean = 1073 mm3, SD = 925 mm3; group difference in lesion size, t(18) = 
0.87, p=0.39).

Lesion sites from each group were compared to the effects of the simulated lesions presented in 
Figure 5. Specifically, we compared the percentages of reduction in voxels from these two groups of 
lesions. We found that simulated lesions to voxels that overlapped with lesion sites in the MM patient 
group showed larger reductions in task activity predictions for the N&N dataset but not the MDTB 
dataset (Figure 6C; MDTB: Komogorov-Smirnov test D=0.048, p=0.065; N&N: Komogorov-Smirnov 
test D=0.25, p<0.001). These empirical results from human patients support our simulated lesion 
analyses, suggesting that lesioning task hubs in the human thalamus are associated with behavioral 
deficits across functional domains.

https://doi.org/10.7554/eLife.81282
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Discussion
It was hypothesized that the thalamus influences cognitive representations beyond sensory and motor 
domains (Halassa and Sherman, 2019; Wolff and Vann, 2019). Anatomically, every cortical region 
receives inputs from one or many thalamic subregions, and most thalamic subregions send signals to 
one or many cortical systems (Jones, 2001; Sherman, 2007). Functionally, resting-state fMRI studies 

Figure 5. Simulating the thalamic lesion’s effect on activity flow model prediction. (A) Artificial lesion of 20% of the thalamus voxels based on their 
percentile rank of task hub property: examination of the impact on cortical task-evoked activity prediction. (B) Subregions that showed greater reduction 
in prediction accuracy were primarily located in anterior, medial, and posterior thalamus. Shaded error indicates standard error of the mean.

https://doi.org/10.7554/eLife.81282
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have found a complete representation of intrinsic cortical networks in the human thalamus (Greene 
et al., 2020; Hwang et al., 2017; Yuan et al., 2016; Zhang et al., 2008). Several of these networks, 
such as the FP, CO, and DF, have been implicated in multiple cognitive functions (Sadaghiani et al., 
2010; Seeley et al., 2007). These observations raised a broader question of if and how the human 
thalamus contributes to cognitive task activity across functional domains. The current study addressed 
this question by investigating how thalamic task-evoked activity are organized and how it can predict 
cortical cognitive task activity.

We identified several key organizational characteristics. First, the anterior, medial, and posterior-
medial thalamus participated in multiple tasks, and these ‘task hubs’ spatially overlapped with FC 
hubs mapped in our previous studies (Hwang et al., 2021; Hwang et al., 2017). Second, thalamic 
task-evoked activity can predict task-specific activity patterns in the cortex via a linear thalamocor-
tical activity flow model. Critically, when compared to comparison models and models built on other 
brain structures, this thalamocortical activity flow model performed the best in predicting cortical 
task activity, highlighting the capacity of the thalamus in influencing distributed activity patterns 

Figure 6. Neuropsychological evaluations from 20 patients with focal thalamic lesions. (A) Twelve patients exhibited multiple-domain (MM) impairment 
(negative z-scores) across multiple neuropsychological assessments. Eight patients exhibited no multi-domain (SM) impairment. (B) Lesion sites from 
patients with and without multi-domain impairment. (C) Mean and standard error of the mean of the reduction in activity flow model prediction after 
virtual lesions, plotted separately for virtual lesion sites that overlapped with MM or SM lesions. Error bar indicates standard error of the mean. Panel A 
reproduced from Figure 2B from Hwang et al., 2021, with permission.

https://doi.org/10.7554/eLife.81282
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that may instantiate cognitive representations. Finally, findings from the thalamocortical activity flow 
model were further corroborated by simulated lesions and neuropsychological impairments observed 
in patients with focal thalamic lesions, affirming the behavioral significance of thalamocortical inter-
actions. Collectively, these findings highlight a general and critical role the human thalamocortical 
system supporting cognitive functions.

Neural systems support a rich and diverse behavioral repertoire. Human functional neuroimaging 
and studies of animal models found a low-dimensional organization scheme in cortical neural activity 
(Beam et al., 2021; Karolis et al., 2019; MacDowell and Buschman, 2020; Nakai and Nishimoto, 
2020; Shine et al., 2019b). Given this finding, multi-task fMRI data obtained from the human thal-
amus should exhibit similar property. In our study, we applied a dimension reduction procedure to 
decompose multi-task thalamic activity into low-dimensional task components. Notably, we found 
thalamic task components that explained large amount of variances across tasks expressed strongest 
weights in anterior, medial, and posterior thalamus, but not in lateral thalamic regions that overlap 
with first-order thalamic relays such as the lateral geniculate nucleus and the ventrolateral nucleus.

Because of its unique connectivity profile, the thalamus may be in an ideal position to influence 
cortex-wide task activity and the diverse cognitive functions cortical activity patterns instantiate. 
Because every cortical region receives inputs from one or multiple thalamic regions, thalamocortical 
connectivity may be more effective in pushing cortical activity patterns to the desired task state. 
We speculate that the thalamus may be at the nexus where specific activity patterns in the thalamus 
can be selectively down- or up-regulated to meet the specific information processing demands of 
different tasks. Functions that may be influenced by the thalamocortical system suggested by previous 
studies include selection and gain control (Halassa and Kastner, 2017), adjustment of inter-regional 
communication (Hwang et al., 2020b; Saalmann et al., 2012), and modulation of cortical excitability 
(Kosciessa et al., 2021). The small size of the thalamus further suggests a potential role in modu-
lating the dimensionality of task-evoked cortical activity – for instance, previous studies have found 
that thalamic activity correlates with the dimensionality and the strength of cross-system coupling 
between cortical regions (Garrett et al., 2018; Shine et al., 2019b), and thalamic lesions disrupt the 
low-dimensional cortical network organization (Hwang et al., 2017).

The studies described above suggest a strong relationship between thalamic activity and cortical 
cognitive activity. We further tested whether we can predict cortical activity patterns based on thalamic 
task-evoked activity and thalamocortical FC pattern with cortical systems. We found that our data-
driven thalamocortical activity flow model can indeed successfully predict task-specific activity patterns 
observed in the cortex, better than null models that assumed that the thalamocortical system does 
not carry task-specific information. While the observed prediction accuracy was lower than previous 
studies that focused on cortico-cortical activity flow models (Cole et al., 2016), most of those studies 
included multiple cortical regions to build the prediction model. Our study tested a different question 
to evaluate the predictive power of a single region, the thalamus, relative to other brain regions. We 
found that after accounting for the noise ceiling, thalamic activity alone was able to predict approx-
imately 38% of the systematic variance of cortical activity patterns across tasks. Critically, we found 
that the thalamocortical model outperformed comparison models constructed with other cortical and 
subcortical structures, including frontal (the insula and the inferior frontal sulcus), parietal, and striatal 
regions previously implicated in adaptive control of tasks (Badre and Nee, 2018; Ito et al., 2022). 
This result suggests that the thalamocortical system exerts a strong influence on cortical activity that 
instantiates cognitive representations.

Placing the thalamus in a central position for influencing cortex-wide cognitive activity has several 
benefits. For instance, the thalamus consists of two classes of thalamocortical projection cells, ‘matrix’ 
and ‘core’ cells, where core cells target specific granular cortical structures, and matrix cells diffusely 
project to multiple brain regions (Jones, 2001). Given that different brain regions may be encoding 
different perceptual and cognitive information (Christophel et  al., 2017), selectively modulating 
thalamic activity may facilitate targeted activations of cortical representations via associated thalam-
ocortical interactions. The diffuse projection pattern of matrix cells in the thalamus may simultane-
ously activate multiple cortical regions and promote inter-system integration when required (Hwang 
and D’Esposito, 2022; Jones, 2001). Furthermore, the thalamus is modulated by inputs from other 
subcortical structures, such as the reticular nucleus, the basal ganglia, the superior colliculus, and the 
cerebellum (Bostan and Strick, 2018; Hwang et al., 2020b). This anatomical feature suggests that 

https://doi.org/10.7554/eLife.81282
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the thalamus may be an efficient target for exerting neuromodulatory (e.g., dopaminergic) influences 
on cognitive processes when required (Castro-Alamancos and Gulati, 2014; Garrett et al., 2022). 
Several computation models have leveraged these characteristics to explain the functions of basal-
ganglia-thalamic circuits for higher-order cognitive functions (Jaramillo et  al., 2019; O’Reilly and 
Frank, 2006).

In our previously study (Hwang et al., 2017), we found that the anterior, medial, and poste-
rior thalamus to have strong network hub properties, exhibiting strong FC with multiple cortical 
systems in frontal and parietal cortices. Network hubs in the frontal and parietal cortices have 
also been found to broadly participate in cognitive tasks across different functional domains 
(Bertolero et al., 2015; Yeo et al., 2016), likely reflect its role in instantiating task representations 
(Schumacher and Hazeltine, 2016) and support cross-domain cognitive functions that arise from 
brain-wide network interactions (Gratton et al., 2018; van den Heuvel and Sporns, 2013). We 
hypothesized that network hubs in the thalamus may share this property with cortical network 
hubs. However, our previous study utilized resting-state FC, and multi-task fMRI data are needed 
to test task participation. In the current study, we analyzed task-evoked activity patterns in the 
thalamus and found task hub regions overlapped with network hubs in the anterior, medial, and 
posterior thalamic regions.

We found that thalamic task hubs were most strongly coupled with multiple regions across frontal 
and parietal associative cortices, including subregions that found to exhibit functional specialization 
for specific tasks as well as task-flexible regions (Yeo et al., 2016). Several selective regions within 
the frontal and parietal cortices have been hypothesized to be part of a flexible multiple-demand 
system (Assem et al., 2020) and thus, these thalamic subregions may be part of a core system whose 
functions are required to perform specific computations that are common across many different task 
contexts. One strong test of the behavioral relevance of these thalamic task hubs is to examine the 
effects of lesions. If thalamic task hubs are part of a domain-general core, lesioning task hubs should 
be associated with broad behavioral deficits not confined to a specific behavioral domain. Indeed, 
we found that simulated lesions to thalamic task hubs impaired prediction accuracy in cortical activity 
pattern across tasks, and stroke lesions to the anterior-medial thalamus in human patients were asso-
ciated with behavioral deficits across functional. At this point we are agnostic to the specific function 
these thalamic task hubs perform. One hypothesis, suggested by findings from rodent models, is that 
the medial thalamus excites task-relevant and inhibits task-irrelevant cortical activity that encodes 
working memory representations (Mukherjee et  al., 2021; Rikhye et  al., 2018). Thus, in human 
subjects, thalamocortical interactions between thalamic task hubs and frontoparietal systems may 
control task representations that bind sensory, motor, and contextual information that are necessary 
for adaptive behavior across tasks (Schumacher and Hazeltine, 2016). This is an open question that 
should be evaluated in future studies.

On important limitation of our study is that our thalamocortical activity flow model cannot estab-
lish the directionality of thalamic activity influencing cortical activity. It is more likely that brain 
systems instantiate cognitive representations via recurrent connectivity among cortical regions 
and the thalamus, as well as integrating inputs from other brain structures. As discussed above, 
including all brain regions into the activity flow model can substantially improve model perfor-
mance in predicting task-specific activity patterns (Cole et al., 2016). Nevertheless, our findings 
suggest that, across the whole brain, the thalamus likely has one of the strongest contributions to 
cortical task activity. Another important limitation is that the posterior thalamus exhibited strong 
task hub property in the MDTB dataset but not the N&N dataset. We suspect this could be related 
to differences in behavioral tasks across the two datasets, and speculatively, to the increased noise 
in the N&N dataset, given the lower number of observations per task and lower subcortical signal-
to-noise ratio. One strong test of mapping task hubs is the lesion methods, and in our previous 
study (Hwang et al., 2021) we did not have good lesion coverage on the pulvinar nucleus. Future 
studies should test whether patients with pulvinar lesions have cognitive deficits beyond visual 
attention tasks (Snow et al., 2009). To conclude, our study reported important organizational prin-
ciples of how thalamic task-evoked activity and thalamocortical connectivity supports cognitive 
tasks. These results highlight how the thalamus is in a central position for supporting cognitive task 
representations.

https://doi.org/10.7554/eLife.81282
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Methods
Datasets
We analyzed two datasets, the MDTB dataset (King et al., 2019 at https://openneuro.org/datasets/​
ds002105/) and the N&N dataset (Nakai and Nishimoto, 2020 at https://openneuro.org/datasets/​
ds002306/). We selected these datasets because both include fMRI data from subjects that performed 
a large number of tasks across functional domains (Figure 1A). The MDTB dataset included fMRI data 
from 21 subjects (13 women, 8 men; mean age = 23.28 years, SD = 2.13; we excluded 3 out of the 
original 24 subjects that did not have all tasks available after removing high noise datapoints). MRI 
data were collected on a 3T Siemens Prisma with the following parameters: repetition time (TR)=1 s; 
48 slices with 3 mm thickness; in-plane resolution 2.5×2.5 mm2; multi-band acceleration factor = 3; 
in-plane acceleration factor = 2; echo time and flip angle were not reported in the original paper. 
Structural T1 images were acquired using magnetization-prepared rapid acquisition gradient echo 
sequence (MPRAGE; field-of-view [FOV]=15.6 × 24 × 24 cm3, at 1 × 1 × 1 mm3 voxel size). The 
N&N dataset included fMRI data from six subjects (two females, four males, age range 22–33 years) 
collected on a 3T Siemens Tim Trio system. fMRI data were collected with the following parameters: 
TR = 2 s; 72 slices with 2 mm slice thickness; in-plane resolution = 2 × 2 mm2; echo time = 30 ms; 
flip angle = 62 degrees; multi-band factor = 3. Structural MRI data were collected with an MPRAGE 
sequence (TR = 2530 ms; TE = 3.26 ms; flip angle = 9 degrees; FOV = 256 × 256 mm2; voxel size = 1 
× 1 × 1 mm3).

MRI data preprocessing
Both datasets were preprocessed using fMRIPrep version 20.1.1 (Esteban et al., 2019) to reduce 
noise and transform data from subject native space to the ICBM 152 Nonlinear Asymmetrical 
template version 2009c for group analysis (Fonov et al., 2011). Preprocessing steps include bias field 
correction, skull-striping, co-registration between functional and structural images, tissue segmenta-
tion, motion correction, and spatial normalization to the standard space. As part of preprocessing, 
we obtained nuisance regressors including rigid-body motion estimates, cerebral spinal fluid (CSF), 
and white matter (WM) noise components from the component-based noise correction procedure 
(Behzadi et al., 2007). These nuisance regressors were entered in the regression model to reduce the 
influences from noise and artifacts (see below). We did not perform any spatial smoothing.

Task-evoked responses
The MDTB dataset contained 24 cognitive tasks and a resting condition collected across four scan-
ning sessions; each session consisted of eight runs. Each task started with a 5 s instruction and was 
followed by 30 s of continuous task performance. The N&N dataset contained 103 tasks collected 
across 18 MRI scanning runs in 3 days. Each task trial lasted 6–12 s where task instruction was on 
screen throughout the trial, and each task repeated 12 times distributed across runs. For a complete 
list of behavioral tasks, see Figure 1A and Figure 1—figure supplement 1. The detailed design of 
each task for both datasets was reported in King et al., 2019, and in Nakai and Nishimoto, 2020.

We employed a voxel-wise GLM approach to estimate task-evoked responses, using AFNI’s 
3dDeconvolve (Cox, 1996). For every voxel, a generalized least squares regression model was 
constructed and fitted to the preprocessed timeseries with the following regressors: task regressors, 
rigid body motion regressors and their derivatives, and the top 5 CSF and WM noise components. 
High motion volumes (framewise displacement >0.2 mm) were removed from data analyses via the 
censoring option, and subjects with tasks with more than 40% of the data censored were dropped 
from further analyses (three MDTB subjects dropped). For each subject, all imaging runs were concat-
enated, and signal drifts were modeled separately for each run, including run-specific constant 
and polynomial regressors. All task regressors were created by convolving a gamma hemodynamic 
response function with the stimulus duration. The stimulus duration was determined by the specific 
block or trial design sequence of each task (see Figure  1—figure supplement 1 for the specific 
duration used for all tasks). For the MDTB dataset, several tasks contained different sub-conditions, 
and the GLM estimates of sub-conditions were averaged to obtain one estimate per task. Repeating 
our analyses without averaging sub-conditions did not change our results. For the MDTB dataset, the 
5 s instruction period at the start of each task block was modeled but not included into subsequent 
analyses. For the N&N dataset, the task instruction was presented simultaneously during all trials, and 
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as a result it could not be separated from the GLM analyses. The residuals from this GLM were saved 
for subsequent FC analysis.

Low-dimensional organization of task-evoked activity in the thalamus
To probe the of task-evoked activity in the thalamus, we first applied a thalamus mask from the 
Harvard-Oxford subcortical atlas, which mask was used to extract task-specific evoked response esti-
mates from 2445 thalamus voxels. These estimates were then compiled into a task-by-voxel evoked 
activity matrix for each subject. This evoked activity matrix was then z-scored by subtracting the grand 
mean from the whole matrix and divided by the standard deviation across all elements. A PCA decom-
posed the evoked activity matrix into a linear summation of a voxel-by-component weight matrix 
multiplied by a component-by-task loading matrix (Figure  1A). The voxel-by-component weight 
matrix can be conceptualized as sets of basis patterns of thalamic activity components engaged by 
different tasks. The loading matrix described the relationship between each voxel-wise component 
map and tasks. We then summated the percentage of variances explained to determine how many 
components were required to explain more than 50% of the variance observed in the evoked activity 
matrix. We performed the PCA with and without averaging the evoked activity matrix across subjects. 
We averaged the matrix before PCA to visualize the voxel patterns of each component and repeated 
the PCA without averaging separately for each subject to test whether a low-dimensional organization 
can be replicated at the level of individual subjects.

Thalamic task hubs
Some thalamic subregions could participate in multiple tasks across functional domains, exhibiting 
‘task hub’ properties. To map these task hub regions, for every voxel we calculated a CompW metric:

	﻿‍ CompW =
∑n

i=1
��Wi

��
‍�

where ‍
∣∣Wi

∣∣
‍ is the absolute value of weight for component i, and n is the number of components. For 

the main analysis, we calculated this metric for the top 10 components. For the supplemental analysis 
(Figure 2—figure supplement 1), we calculated CompW for the 10th to the 20th component. We 
reasoned that a task hub region would be more strongly recruited by the top 10 components that 
explained a large amount of the variances in the evoked activity matrix, exhibiting a higher CompW 
estimate.

To compare the task hubs to the FC hubs that we had mapped previously (Hwang et al., 2017), 
we first obtained a thalamocortical FC matrix using principal component linear regression (Ito et al., 
2017) to estimate patterns of FC between each thalamic voxel and 400 cortical ROIs (Schaefer et al., 
2018). We estimated this FC matrix using residuals after task regression. Note that one advantage of 
principle component linear regression is that its estimates are similar to partial correlation, accounting 
for shared variances among signals. We then calculated a connector hub metric participation coeffi-
cient for each voxel (Gratton et al., 2012):

	﻿‍
PC = 1 −

∑N
s=1

(
Kis
Ki

)2

‍�

where Ki is the sum of total FC weight between voxel i and all cortical ROIs, Kis is the sum of FC 
weight between voxel i and cortical ROIs in cortical network s, and N is the total number of cortical 
networks. If a voxel has connectivity uniformly distributed to all cortical networks, then its PC value 
will be close to 1; otherwise, if its connectivity is concentrated within a specific cortical network, its 
PC value will be close to 0. To perform this calculation, we assigned the 400 cortical ROIs to seven 
cortical functional networks, that is, to the FP, DF, CO, DA, limbic, SM, and visual networks (Schaefer 
et al., 2018; Yeo et al., 2011). We calculated participation coefficient values across a range of density 
thresholds of the thalamocortical FC matrix (density = 0.01–0.15) and averaged across thresholds.

To determine which cortical regions showed the strongest coupling with thalamic task hubs, we 
calculated the dot product between CompW and thalamocortical FC matrix, yielding a project task 
hub matrix on the cortical space:

	﻿‍ Cortical CompW = CompW · FCThxCtx‍�
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where CompW is the 2445 voxel-wise task hub metrics, and ‍FCThxCtx‍ is the 2445×400 thalamocor-
tical FC matrix.

Thalamocortical activity flow mapping
To determine whether thalamic task-evoked activity can predict cortical task activity patterns, we 
modified the activity flow mapping procedure (Cole et al., 2016; Ito et al., 2017), and for each task 
and each subject we calculated:

	﻿‍ Actx = Bt · FCThxCtx‍�

where ‍Bt‍ is the evoked response estimate for every thalamic voxel, ‍FCThxCtx‍ is the thalamocor-
tical FC matrix, and ‍Actx‍ is the predicted cortical activity pattern. ‍Actx‍ was calculated with a split-half 
cross-validation procedure. For both datasets, we split the data into two halves to calculate two sets 
of ‍Bt‍ , ‍FCThxCtx‍ , and ‍Actx‍ estimates. ‍Actx‍ was then empirically compared to the observed activity 
patterns from the other half of the data (cross-validation), using Pearson correlation. Pearson correla-
tion was calculated across cortical ROIs separately for each task, then averaged across tasks. The 
correlation values were then averaged across the two split-half estimates. For calculating ‍FCThxCtx‍ 
, we used principal component linear regression (as described above) to estimate patterns of FC 
between timeseries. Critically, we used residuals from the GLM instead of the preprocessed functional 
timeseries to minimize the potential confound of averaged evoked responses inflating estimates of 
FC (Cole et al., 2019). To verify that task-evoked activations have been successfully removed from 
the timeseries, we correlated the task regressor (stimulus timing convolved with the gamma response 
function) with the thalamus and cortical timeseries that we used for calculating ‍FCThxCtx‍ . We found 
the correlations to be weak (with cortical ROI timeseries, mean r=−2.02 * 10–10, SD = 1.06* 10–8; with 
thalamic voxel timeseries, mean r=4.37 * 10–10, SD = 1.27* 10–10). These weak correlations suggest that 
task-evoked activations likely did not bias our activity flow analysis.

To evaluate our thalamocortical activity flow mapping procedure, we compared its results to three 
different null models and to comparison models. The first null model randomly shuffled the voxel 
order in ‍Wt‍ , which assumed no task-specific information in thalamic-evoked activity pattern. The 
second null model set ‍Wt‍ to a uniform value (1 for every voxel), which assumed that there is no 
spatial variance in the thalamic-evoked response pattern and thus ‍Actx‍ was entirely determined by 
the summed of connectivity weights in ‍FCThxCtx‍ . The third null model was constructed by calculating 
an averaged estimate across all conditions for every voxel, which assumed there is no difference in 
evoked response patterns between conditions. We also constructed a series of comparison models 
by repeating the same analysis on other source ROIs, including the hippocampus, the caudate, the 
putamen, and the pallidus, and 100 cortical ROIs (Schaefer et al., 2018) that were similar in size to the 
thalamus. For these comparison models, we replaced ‍Wt‍ with voxel-wise evoked responses from other 
source ROIs, and recalculated the FC matrix by calculating FC between every voxel in the source ROI 
and 400 cortical ROIs using PCA linear regression.

To evaluate the activity flow model, it is important to interpret model performance relative to the 
noise ceiling of the data (i.e., the reliability), which is limited by the reliability of the source ROI, the FC 
matrix, and cortical task-evoked activity patterns. Thus, following the procedures developed by King 
et al., 2022, we estimated the noise ceiling of every model, task, and source ROI with the following:

	﻿‍
NoiseCeiling =

√
Reliability

(
Modeled_Actx

)
× Reliability

(
Observed_Actx

)
‍�

where ‍Reliability
(
Modeled_Actx

)
‍ is the split half reliability of ‍Actx‍ of the source ROI, and ‍Observed_Actx‍ 

is the split half reliability of the observed cortical-evoked responses. We quantified the noise ceiling of 
each model, source ROI, task, and subject, and then normalized the activity flow prediction accuracy 
by dividing Actx by the estimated noise ceiling.

Lesion analyses
We performed additional simulated and empirical lesion analyses to test which thalamic subregions 
contribute to predicting cortical task activity. For simulated lesions, we ranked thalamic voxels by 
their task hub (CompW) metrics, then set the evoked responses in 20% of thalamic voxels to zero 
and repeated the thalamocortical activity flow analysis. We repeated this virtual lesioning procedure 
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for voxels ranking from 0% to 80% in steps of 1%, window size of 20%, and calculated the effects of 
virtual lesioning of thalamic voxels on predicting individual task activity pattern. The percentage of 
prediction reduction (relative to the original observed value) after virtual lesioning was assigned to 
each voxel to construct voxel-wise maps that depict the effects of simulated lesions.

We then compared the effects of simulated lesions to lesions observed in human patients with focal 
thalamic lesions. Details of these patients were reported in our previous study (Hwang et al., 2021). 
Briefly, these patients were selected from the Iowa Neurological Patient Registry, and had focal lesions 
caused by ischemic or hemorrhagic strokes restricted to the thalamus (age = 18–70 years, mean = 
55.8 years, SD = 13.94 years, 13 males). The lesion sites of these patients were manually traced and 
normalized to the MNI-152 template using a high-deformation, nonlinear, enantiomorphic, registra-
tion procedure that we described in detail in our previous papers (Hwang et al., 2020a; Hwang et al., 
2021). All participants gave written informed consent, and the study was approved by the University 
of Iowa Institutional Review Board (IRB protocol #200105018).

We further tested whether voxels associated with stronger virtual lesioning effects overlapped 
with lesion sites associated with more pronounced behavioral deficits in human stroke patients. 
Behavioral deficits were assessed using a set of standardized neuropsychological tests: (1) exec-
utive function using the Trail Making Test Part B (TMT Part B); (2) verbal naming using the Boston 
Naming Test (BNT); (3) verbal fluency using the Controlled Oral Word Association Test (COWA); 
(4) immediate learning using the first trial test score from the Rey Auditory-Verbal Learning Test 
(RAVLT); (5) total learning by summing scores from RAVLT, trials 1 through 5; (6) long-term memory 
recall using the RAVLT 30 min delayed recall score; (7) long-term memory recognition using the 
RAVLT 30 min delayed recognition score; (8) visuospatial memory using the Rey Complex Figure 
delayed recall score; (9) psychomotor function using the Trail Making Test Part A (TMT Part A); 
and (10) construction using the Rey Complex Figure copy test. To account for age-related effects, 
all test scores were converted to age-adjusted z-scores using the mean and standard deviation 
from published population normative data. We determined the functional domain that each 
test assessed, described in Neuropsychological Assessment (Lezak et al., 2012). Twelve out of 
20 patients had significant impairment (z<–1.645) reported in more than two functional domains, 
and thus were classified as the MM patient group. The rest of the 8 patients had significant impair-
ment in one or fewer domains, and classified as the SM group. We predicted that lesion sites in 
the MM group would show stronger virtual lesioning effects, when compared to lesion sites in the 
SM group.
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(copy archived at swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037; Hwang, 2022).

Acknowledgements
ES and KH were supported by National Institute of Mental Health R01MH122613. The content is 
solely the responsibility of the authors and does not represent the official views of the National Insti-
tutes of Health.

Additional information

Funding

Funder Grant reference number Author

National Institute of Mental 
Health

R01MH122613 Kai Hwang 

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

https://doi.org/10.7554/eLife.81282
https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs
https://archive.softwareheritage.org/swh:1:dir:192178129b4458e3587eae8e0a629abc176bd8ea;origin=https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs;visit=swh:1:snp:95f89e7b5c34e4265b78df160571de038dcb3820;anchor=swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Hwang et al. eLife 2022;11:e81282. DOI: https://​doi.​org/​10.​7554/​eLife.​81282 � 16 of 19

Author contributions
Kai Hwang, Conceptualization, Resources, Software, Formal analysis, Supervision, Funding acquisi-
tion, Validation, Investigation, Visualization, Methodology, Writing – original draft, Project administra-
tion, Writing – review and editing; James M Shine, Conceptualization, Methodology, Writing – review 
and editing; Michael W Cole, Software, Methodology, Writing – review and editing; Evan Sorenson, 
Resources, Data curation, Software, Formal analysis, Investigation, Visualization, Methodology, 
Writing – review and editing

Author ORCIDs
Kai Hwang ‍ ‍ http://orcid.org/0000-0002-1064-7815
James M Shine ‍ ‍ http://orcid.org/0000-0003-1762-5499
Michael W Cole ‍ ‍ http://orcid.org/0000-0003-4329-438X

Ethics
All participants gave written informed consent, and the study was approved by the University of Iowa 
Institutional Review Board (IRB protocol #200105018).

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.81282.sa1
Author response https://doi.org/10.7554/eLife.81282.sa2

Additional files
Supplementary files
•  Supplementary file 1. List of task conditions.

•  MDAR checklist 

Data availability
Raw data are available at ​OpenNeuro.​org (https://openneuro.org/datasets/ds002105/ 
and https://openneuro.org/datasets/ds002306/). Code and data are available at (https://​
github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs; copy archived at 
swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037).

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

King M, Hernandez-
Castillo CR, 
Poldrack RA, Ivry RB, 
Diedrichsen J

2019 multi-domain task battery https://​openneuro.​
org/​datasets/​
ds002105/​versions/​
1.​1.0

OpenNeuro, 10.18112/
openneuro.ds002105.v1.1.0

Nakai T, Nishimoto S 2020 Over 100 Task fMRI Dataset https://​openneuro.​
org/​datasets/​
ds002306/​versions/​
1.​1.0

OpenNeuro, 10.18112/
openneuro.ds002306.v1.0.3

References
Assem M, Glasser MF, Van Essen DC, Duncan J. 2020. A domain-general cognitive core defined in multimodally 

parcellated human cortex. Cerebral Cortex 30:4361–4380. DOI: https://doi.org/10.1093/cercor/bhaa023, 
PMID: 32244253

Badre D, Nee DE. 2018. Frontal cortex and the hierarchical control of behavior. Trends in Cognitive Sciences 
22:170–188. DOI: https://doi.org/10.1016/j.tics.2017.11.005, PMID: 29229206

Beam E, Potts C, Poldrack RA, Etkin A. 2021. A data-driven framework for mapping domains of human 
neurobiology. Nature Neuroscience 24:1733–1744. DOI: https://doi.org/10.1038/s41593-021-00948-9, PMID: 
34764476

Behzadi Y, Restom K, Liau J, Liu TT. 2007. A component based noise correction method (compcor) for BOLD 
and perfusion based fMRI. NeuroImage 37:90–101. DOI: https://doi.org/10.1016/j.neuroimage.2007.04.042, 
PMID: 17560126

Bertolero MA, Yeo BTT, D’Esposito M. 2015. The modular and integrative functional architecture of the human 
brain. PNAS 112:E6798–E6807. DOI: https://doi.org/10.1073/pnas.1510619112, PMID: 26598686

https://doi.org/10.7554/eLife.81282
http://orcid.org/0000-0002-1064-7815
http://orcid.org/0000-0003-1762-5499
http://orcid.org/0000-0003-4329-438X
https://doi.org/10.7554/eLife.81282.sa1
https://doi.org/10.7554/eLife.81282.sa2
https://openneuro.org/datasets/ds002105/
https://openneuro.org/datasets/ds002306/
https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs
https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs
https://archive.softwareheritage.org/swh:1:dir:192178129b4458e3587eae8e0a629abc176bd8ea;origin=https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs;visit=swh:1:snp:95f89e7b5c34e4265b78df160571de038dcb3820;anchor=swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037
https://openneuro.org/datasets/ds002105/versions/1.1.0
https://openneuro.org/datasets/ds002105/versions/1.1.0
https://openneuro.org/datasets/ds002105/versions/1.1.0
https://openneuro.org/datasets/ds002105/versions/1.1.0
https://openneuro.org/datasets/ds002306/versions/1.1.0
https://openneuro.org/datasets/ds002306/versions/1.1.0
https://openneuro.org/datasets/ds002306/versions/1.1.0
https://openneuro.org/datasets/ds002306/versions/1.1.0
https://doi.org/10.1093/cercor/bhaa023
http://www.ncbi.nlm.nih.gov/pubmed/32244253
https://doi.org/10.1016/j.tics.2017.11.005
http://www.ncbi.nlm.nih.gov/pubmed/29229206
https://doi.org/10.1038/s41593-021-00948-9
http://www.ncbi.nlm.nih.gov/pubmed/34764476
https://doi.org/10.1016/j.neuroimage.2007.04.042
http://www.ncbi.nlm.nih.gov/pubmed/17560126
https://doi.org/10.1073/pnas.1510619112
http://www.ncbi.nlm.nih.gov/pubmed/26598686


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Hwang et al. eLife 2022;11:e81282. DOI: https://​doi.​org/​10.​7554/​eLife.​81282 � 17 of 19

Bertolero MA, Yeo BTT, Bassett DS, D’Esposito M. 2018. A mechanistic model of connector hubs, modularity 
and cognition. Nature Human Behaviour 2:765–777. DOI: https://doi.org/10.1038/s41562-018-0420-6, PMID: 
30631825

Bostan AC, Strick PL. 2018. The basal ganglia and the cerebellum: nodes in an integrated network. Nature 
Reviews. Neuroscience 19:338–350. DOI: https://doi.org/10.1038/s41583-018-0002-7, PMID: 29643480

Castro-Alamancos MA, Gulati T. 2014. Neuromodulators produce distinct activated states in neocortex. The 
Journal of Neuroscience 34:12353–12367. DOI: https://doi.org/10.1523/JNEUROSCI.1858-14.2014, PMID: 
25209276

Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes JD. 2017. The distributed nature of working memory. 
Trends in Cognitive Sciences 21:111–124. DOI: https://doi.org/10.1016/j.tics.2016.12.007, PMID: 28063661

Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. 2013. Multi-task connectivity reveals 
flexible hubs for adaptive task control. Nature Neuroscience 16:1348–1355. DOI: https://doi.org/10.1038/nn.​
3470, PMID: 23892552

Cole MW, Ito T, Bassett DS, Schultz DH. 2016. Activity flow over resting-state networks shapes cognitive task 
activations. Nature Neuroscience 19:1718–1726. DOI: https://doi.org/10.1038/nn.4406, PMID: 27723746

Cole M.W, Ito T, Schultz D, Mill R, Chen R, Cocuzza C. 2019. Task activations produce spurious but systematic 
inflation of task functional connectivity estimates. NeuroImage 189:1–18. DOI: https://doi.org/10.1016/j.​
neuroimage.2018.12.054, PMID: 30597260

Cox RW. 1996. AFNI: software for analysis and visualization of functional magnetic resonance NeuroImages. 
Computers and Biomedical Research, an International Journal 29:162–173. DOI: https://doi.org/10.1006/cbmr.​
1996.0014, PMID: 8812068

Cunningham JP, Yu BM. 2014. Dimensionality reduction for large-scale neural recordings. Nature Neuroscience 
17:1500–1509. DOI: https://doi.org/10.1038/nn.3776, PMID: 25151264

Duncan J. 2010. The multiple-demand (MD) system of the primate brain: mental programs for intelligent 
behaviour. Trends in Cognitive Sciences 14:172–179. DOI: https://doi.org/10.1016/j.tics.2010.01.004, PMID: 
20171926

Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre E, 
Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ. 2019. FMRIPrep: a robust 
preprocessing pipeline for functional MRI. Nature Methods 16:111–116. DOI: https://doi.org/10.1038/​
s41592-018-0235-4, PMID: 30532080

Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative Group. 
2011. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54:313–327. DOI: https://​
doi.org/10.1016/j.neuroimage.2010.07.033, PMID: 20656036

Garrett DD, Epp SM, Perry A, Lindenberger U. 2018. Local temporal variability reflects functional integration in 
the human brain. NeuroImage 183:776–787. DOI: https://doi.org/10.1016/j.neuroimage.2018.08.019, PMID: 
30149140

Garrett DD, Kloosterman NA, Epp S, Chopurian V, Kosciessa JQ, Waschke L, Skowron A, Shine JM, Perry A, 
Salami A, Rieckmann A, Papenberg G, Wåhlin A, Karalija N, Andersson M, Riklund K, Lövdén M, Bäckman L, 
Nyberg L, Lindenberger U. 2022. Dynamic regulation of neural variability during working memory reflects 
dopamine, functional integration, and decision-making. [bioRxiv]. DOI: https://doi.org/10.1101/2022.05.05.​
490687

Giguere M, Goldman-Rakic PS. 1988. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents 
and efferents in the frontal lobe of rhesus monkeys. The Journal of Comparative Neurology 277:195–213. DOI: 
https://doi.org/10.1002/cne.902770204, PMID: 2466057

Gratton C, Nomura EM, Pérez F, D’Esposito M. 2012. Focal brain lesions to critical locations cause widespread 
disruption of the modular organization of the brain. Journal of Cognitive Neuroscience 24:1275–1285. DOI: 
https://doi.org/10.1162/jocn_a_00222, PMID: 22401285

Gratton C, Sun H, Petersen SE. 2018. Control networks and hubs. Psychophysiology 55:13032. DOI: https://doi.​
org/10.1111/psyp.13032, PMID: 29193146

Greene DJ, Marek S, Gordon EM, Siegel JS, Gratton C, Laumann TO, Gilmore AW, Berg JJ, Nguyen AL, 
Dierker D, Van AN, Ortega M, Newbold DJ, Hampton JM, Nielsen AN, McDermott KB, Roland JL, Norris SA, 
Nelson SM, Snyder AZ, et al. 2020. Integrative and network-specific connectivity of the basal ganglia and 
thalamus defined in individuals. Neuron 105:742–758.. DOI: https://doi.org/10.1016/j.neuron.2019.11.012, 
PMID: 31836321

Guimerà R, Nunes Amaral LA. 2005. Functional cartography of complex metabolic networks. Nature 433:895–
900. DOI: https://doi.org/10.1038/nature03288, PMID: 15729348

Halassa MM, Kastner S. 2017. Thalamic functions in distributed cognitive control. Nature Neuroscience 
20:1669–1679. DOI: https://doi.org/10.1038/s41593-017-0020-1, PMID: 29184210

Halassa MM, Sherman SM. 2019. Thalamocortical circuit motifs: a general framework. Neuron 103:762–770. 
DOI: https://doi.org/10.1016/j.neuron.2019.06.005, PMID: 31487527

Hwang Kai, Bertolero MA, Liu WB, D’Esposito M. 2017. The human thalamus is an integrative hub for functional 
brain networks. The Journal of Neuroscience 37:5594–5607. DOI: https://doi.org/10.1523/JNEUROSCI.0067-​
17.2017, PMID: 28450543

Hwang K, Bruss J, Tranel D, Boes AD. 2020a. Network localization of executive function deficits in patients with 
focal thalamic lesions. Journal of Cognitive Neuroscience 32:2303–2319. DOI: https://doi.org/10.1162/jocn_a_​
01628, PMID: 32902335

https://doi.org/10.7554/eLife.81282
https://doi.org/10.1038/s41562-018-0420-6
http://www.ncbi.nlm.nih.gov/pubmed/30631825
https://doi.org/10.1038/s41583-018-0002-7
http://www.ncbi.nlm.nih.gov/pubmed/29643480
https://doi.org/10.1523/JNEUROSCI.1858-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25209276
https://doi.org/10.1016/j.tics.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/28063661
https://doi.org/10.1038/nn.3470
https://doi.org/10.1038/nn.3470
http://www.ncbi.nlm.nih.gov/pubmed/23892552
https://doi.org/10.1038/nn.4406
http://www.ncbi.nlm.nih.gov/pubmed/27723746
https://doi.org/10.1016/j.neuroimage.2018.12.054
https://doi.org/10.1016/j.neuroimage.2018.12.054
http://www.ncbi.nlm.nih.gov/pubmed/30597260
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1006/cbmr.1996.0014
http://www.ncbi.nlm.nih.gov/pubmed/8812068
https://doi.org/10.1038/nn.3776
http://www.ncbi.nlm.nih.gov/pubmed/25151264
https://doi.org/10.1016/j.tics.2010.01.004
http://www.ncbi.nlm.nih.gov/pubmed/20171926
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
http://www.ncbi.nlm.nih.gov/pubmed/30532080
https://doi.org/10.1016/j.neuroimage.2010.07.033
https://doi.org/10.1016/j.neuroimage.2010.07.033
http://www.ncbi.nlm.nih.gov/pubmed/20656036
https://doi.org/10.1016/j.neuroimage.2018.08.019
http://www.ncbi.nlm.nih.gov/pubmed/30149140
https://doi.org/10.1101/2022.05.05.490687
https://doi.org/10.1101/2022.05.05.490687
https://doi.org/10.1002/cne.902770204
http://www.ncbi.nlm.nih.gov/pubmed/2466057
https://doi.org/10.1162/jocn_a_00222
http://www.ncbi.nlm.nih.gov/pubmed/22401285
https://doi.org/10.1111/psyp.13032
https://doi.org/10.1111/psyp.13032
http://www.ncbi.nlm.nih.gov/pubmed/29193146
https://doi.org/10.1016/j.neuron.2019.11.012
http://www.ncbi.nlm.nih.gov/pubmed/31836321
https://doi.org/10.1038/nature03288
http://www.ncbi.nlm.nih.gov/pubmed/15729348
https://doi.org/10.1038/s41593-017-0020-1
http://www.ncbi.nlm.nih.gov/pubmed/29184210
https://doi.org/10.1016/j.neuron.2019.06.005
http://www.ncbi.nlm.nih.gov/pubmed/31487527
https://doi.org/10.1523/JNEUROSCI.0067-17.2017
https://doi.org/10.1523/JNEUROSCI.0067-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28450543
https://doi.org/10.1162/jocn_a_01628
https://doi.org/10.1162/jocn_a_01628
http://www.ncbi.nlm.nih.gov/pubmed/32902335


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Hwang et al. eLife 2022;11:e81282. DOI: https://​doi.​org/​10.​7554/​eLife.​81282 � 18 of 19

Hwang K, Shine JM, Cellier D, D’Esposito M. 2020b. The human intraparietal sulcus modulates task-evoked 
functional connectivity. Cerebral Cortex 30:875–887. DOI: https://doi.org/10.1093/cercor/bhz133, PMID: 
31355407

Hwang K, Shine JM, Bruss J, Tranel D, Boes A. 2021. Neuropsychological evidence of multi-domain network 
hubs in the human thalamus. eLife 10:e69480. DOI: https://doi.org/10.7554/eLife.69480, PMID: 34622776

Hwang K. 2022. Thalamocortical contribution to cognitive task activity. 
swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037. Software Heritage. https://archive.softwareheritage.​
org/swh:1:dir:192178129b4458e3587eae8e0a629abc176bd8ea;origin=https://github.com/HwangLabNeur​
oCogDynamics/ThalamicTaskHubs;visit=swh:1:snp:95f89e7b5c34e4265b78df160571de038dcb3820;anchor=​
swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037

Hwang K, D’Esposito M. 2022. Cognitive control functions of the human thalamus. Halassa M (Ed). The 
Thalamus. New York: Oxford University Press. p. 307–323.

Ito T, Kulkarni KR, Schultz DH, Mill RD, Chen RH, Solomyak LI, Cole MW. 2017. Cognitive task information is 
transferred between brain regions via resting-state network topology. Nature Communications 8:1027. DOI: 
https://doi.org/10.1038/s41467-017-01000-w, PMID: 29044112

Ito T, Yang GR, Laurent P, Schultz DH, Cole MW. 2022. Constructing neural network models from brain data 
reveals representational transformations linked to adaptive behavior. Nature Communications 13:673. DOI: 
https://doi.org/10.1038/s41467-022-28323-7, PMID: 35115530

Jaramillo J, Mejias JF, Wang XJ. 2019. Engagement of pulvino-cortical feedforward and feedback pathways in 
cognitive computations. Neuron 101:321–336.. DOI: https://doi.org/10.1016/j.neuron.2018.11.023, PMID: 
30553546

Jones EG. 2001. The thalamic matrix and thalamocortical synchrony. Trends in Neurosciences 24:595–601. DOI: 
https://doi.org/10.1016/s0166-2236(00)01922-6, PMID: 11576674

Karolis VR, Corbetta M, Thiebaut de Schotten M. 2019. The architecture of functional lateralisation and its 
relationship to callosal connectivity in the human brain. Nature Communications 10:1417. DOI: https://doi.org/​
10.1038/s41467-019-09344-1, PMID: 30926845

King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. 2019. Functional boundaries in the human 
cerebellum revealed by a multi-domain task battery. Nature Neuroscience 22:1371–1378. DOI: https://doi.org/​
10.1038/s41593-019-0436-x, PMID: 31285616

King M, Shahshahani L, Ivry R, Diedrichsen J. 2022. A Task-General Connectivity Model Reveals Variation in 
Convergence of Cortical Inputs to Functional Regions of the Cerebellum. bioRxiv. DOI: https://doi.org/10.​
1101/2022.05.07.490946

Kosciessa JQ, Lindenberger U, Garrett DD. 2021. Thalamocortical excitability modulation guides human 
perception under uncertainty. Nature Communications 12:2430. DOI: https://doi.org/10.1038/s41467-021-​
22511-7, PMID: 33893294

Krauth A, Blanc R, Poveda A, Jeanmonod D, Morel A, Székely G. 2010. A mean three-dimensional atlas of the 
human thalamus: generation from multiple histological data. NeuroImage 49:2053–2062. DOI: https://doi.org/​
10.1016/j.neuroimage.2009.10.042, PMID: 19853042

Lezak MD, Howieson DB, Bigler ED, Tranel D. 2012. Neuropsychological Assessment. Oxford University Press.
MacDowell CJ, Buschman TJ. 2020. Low-Dimensional spatiotemporal dynamics underlie cortex-wide neural 

activity. Current Biology 30:2665–2680.. DOI: https://doi.org/10.1016/j.cub.2020.04.090, PMID: 32470366
Mukherjee A, Lam NH, Wimmer RD, Halassa MM. 2021. Thalamic circuits for independent control of prefrontal 

signal and noise. Nature 600:100–104. DOI: https://doi.org/10.1038/s41586-021-04056-3, PMID: 34614503
Nakai T, Nishimoto S. 2020. Quantitative models reveal the organization of diverse cognitive functions in the 

brain. Nature Communications 11:1142. DOI: https://doi.org/10.1038/s41467-020-14913-w, PMID: 32123178
Nee DE. 2021. Integrative frontal-parietal dynamics supporting cognitive control. eLife 10:e57244. DOI: https://​

doi.org/10.7554/eLife.57244, PMID: 33650966
O’Reilly RC, Frank MJ. 2006. Making working memory work: a computational model of learning in the prefrontal 

cortex and basal ganglia. Neural Computation 18:283–328. DOI: https://doi.org/10.1162/​
089976606775093909, PMID: 16378516

Reber J, Hwang K, Bowren M, Bruss J, Mukherjee P, Tranel D, Boes AD. 2021. Cognitive impairment after focal 
brain lesions is better predicted by damage to structural than functional network hubs. PNAS 
118:e2018784118. DOI: https://doi.org/10.1073/pnas.2018784118, PMID: 33941692

Rikhye RV, Gilra A, Halassa MM. 2018. Thalamic regulation of switching between cortical representations 
enables cognitive flexibility. Nature Neuroscience 21:1753–1763. DOI: https://doi.org/10.1038/s41593-018-​
0269-z, PMID: 30455456

Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S. 2012. The pulvinar regulates information transmission between 
cortical areas based on attention demands. Science 337:753–756. DOI: https://doi.org/10.1126/science.​
1223082, PMID: 22879517

Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, Kleinschmidt A. 2010. Intrinsic connectivity 
networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic 
resonance imaging study. The Journal of Neuroscience 30:10243–10250. DOI: https://doi.org/10.1523/​
JNEUROSCI.1004-10.2010, PMID: 20668207

Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, Eickhoff SB, Yeo BTT. 2018. Local-global 
parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex 28:3095–
3114. DOI: https://doi.org/10.1093/cercor/bhx179, PMID: 28981612

https://doi.org/10.7554/eLife.81282
https://doi.org/10.1093/cercor/bhz133
http://www.ncbi.nlm.nih.gov/pubmed/31355407
https://doi.org/10.7554/eLife.69480
http://www.ncbi.nlm.nih.gov/pubmed/34622776
https://archive.softwareheritage.org/swh:1:dir:192178129b4458e3587eae8e0a629abc176bd8ea;origin=https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs;visit=swh:1:snp:95f89e7b5c34e4265b78df160571de038dcb3820;anchor=swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037
https://archive.softwareheritage.org/swh:1:dir:192178129b4458e3587eae8e0a629abc176bd8ea;origin=https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs;visit=swh:1:snp:95f89e7b5c34e4265b78df160571de038dcb3820;anchor=swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037
https://archive.softwareheritage.org/swh:1:dir:192178129b4458e3587eae8e0a629abc176bd8ea;origin=https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs;visit=swh:1:snp:95f89e7b5c34e4265b78df160571de038dcb3820;anchor=swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037
https://archive.softwareheritage.org/swh:1:dir:192178129b4458e3587eae8e0a629abc176bd8ea;origin=https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs;visit=swh:1:snp:95f89e7b5c34e4265b78df160571de038dcb3820;anchor=swh:1:rev:d876ea93f1174ffdfe35c60f1f8b0ba8b637b037
https://doi.org/10.1038/s41467-017-01000-w
http://www.ncbi.nlm.nih.gov/pubmed/29044112
https://doi.org/10.1038/s41467-022-28323-7
http://www.ncbi.nlm.nih.gov/pubmed/35115530
https://doi.org/10.1016/j.neuron.2018.11.023
http://www.ncbi.nlm.nih.gov/pubmed/30553546
https://doi.org/10.1016/s0166-2236(00)01922-6
http://www.ncbi.nlm.nih.gov/pubmed/11576674
https://doi.org/10.1038/s41467-019-09344-1
https://doi.org/10.1038/s41467-019-09344-1
http://www.ncbi.nlm.nih.gov/pubmed/30926845
https://doi.org/10.1038/s41593-019-0436-x
https://doi.org/10.1038/s41593-019-0436-x
http://www.ncbi.nlm.nih.gov/pubmed/31285616
https://doi.org/10.1101/2022.05.07.490946
https://doi.org/10.1101/2022.05.07.490946
https://doi.org/10.1038/s41467-021-22511-7
https://doi.org/10.1038/s41467-021-22511-7
http://www.ncbi.nlm.nih.gov/pubmed/33893294
https://doi.org/10.1016/j.neuroimage.2009.10.042
https://doi.org/10.1016/j.neuroimage.2009.10.042
http://www.ncbi.nlm.nih.gov/pubmed/19853042
https://doi.org/10.1016/j.cub.2020.04.090
http://www.ncbi.nlm.nih.gov/pubmed/32470366
https://doi.org/10.1038/s41586-021-04056-3
http://www.ncbi.nlm.nih.gov/pubmed/34614503
https://doi.org/10.1038/s41467-020-14913-w
http://www.ncbi.nlm.nih.gov/pubmed/32123178
https://doi.org/10.7554/eLife.57244
https://doi.org/10.7554/eLife.57244
http://www.ncbi.nlm.nih.gov/pubmed/33650966
https://doi.org/10.1162/089976606775093909
https://doi.org/10.1162/089976606775093909
http://www.ncbi.nlm.nih.gov/pubmed/16378516
https://doi.org/10.1073/pnas.2018784118
http://www.ncbi.nlm.nih.gov/pubmed/33941692
https://doi.org/10.1038/s41593-018-0269-z
https://doi.org/10.1038/s41593-018-0269-z
http://www.ncbi.nlm.nih.gov/pubmed/30455456
https://doi.org/10.1126/science.1223082
https://doi.org/10.1126/science.1223082
http://www.ncbi.nlm.nih.gov/pubmed/22879517
https://doi.org/10.1523/JNEUROSCI.1004-10.2010
https://doi.org/10.1523/JNEUROSCI.1004-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20668207
https://doi.org/10.1093/cercor/bhx179
http://www.ncbi.nlm.nih.gov/pubmed/28981612


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Hwang et al. eLife 2022;11:e81282. DOI: https://​doi.​org/​10.​7554/​eLife.​81282 � 19 of 19

Schumacher EH, Hazeltine E. 2016. Hierarchical task representation: task files and response selection. Current 
Directions in Psychological Science 25:449–454. DOI: https://doi.org/10.1177/0963721416665085

Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. 2007. Dissociable 
intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience 
27:2349–2356. DOI: https://doi.org/10.1523/JNEUROSCI.5587-06.2007, PMID: 17329432

Selemon LD, Goldman-Rakic PS. 1988. Common cortical and subcortical targets of the dorsolateral prefrontal 
and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving 
spatially guided behavior. The Journal of Neuroscience 8:4049–4068. DOI: https://doi.org/10.1523/​
JNEUROSCI.08-11-04049.1988, PMID: 2846794

Sherman SM. 2007. The thalamus is more than just a relay. Current Opinion in Neurobiology 17:417–422. DOI: 
https://doi.org/10.1016/j.conb.2007.07.003, PMID: 17707635

Shine JM, Breakspear M, Bell PT, Ehgoetz Martens KA, Shine R, Koyejo O, Sporns O, Poldrack RA. 2019a. 
Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nature 
Neuroscience 22:289–296. DOI: https://doi.org/10.1038/s41593-018-0312-0, PMID: 30664771

Shine JM, Hearne LJ, Breakspear M, Hwang K, Müller EJ, Sporns O, Poldrack RA, Mattingley JB, Cocchi L. 
2019b. The low-dimensional neural architecture of cognitive complexity is related to activity in medial thalamic 
nuclei. Neuron 104:849–855. DOI: https://doi.org/10.1016/j.neuron.2019.09.002, PMID: 31653463

Shine JM. 2020. The thalamus integrates the macrosystems of the brain to facilitate complex, adaptive brain 
network dynamics. Progress in Neurobiology 199:101951. DOI: https://doi.org/10.1016/j.pneurobio.2020.​
101951, PMID: 33189781

Snow JC, Allen HA, Rafal RD, Humphreys GW. 2009. Impaired attentional selection following lesions to human 
pulvinar: evidence for homology between human and monkey. PNAS 106:4054–4059. DOI: https://doi.org/10.​
1073/pnas.0810086106, PMID: 19237580

van den Heuvel MP, Sporns O. 2013. Network hubs in the human brain. Trends in Cognitive Sciences 17:683–
696. DOI: https://doi.org/10.1016/j.tics.2013.09.012, PMID: 24231140

Warren DE, Power JD, Bruss J, Denburg NL, Waldron EJ, Sun H, Petersen SE, Tranel D. 2014. Network measures 
predict neuropsychological outcome after brain injury. PNAS 111:14247–14252. DOI: https://doi.org/10.1073/​
pnas.1322173111, PMID: 25225403

Wolff M, Vann SD. 2019. The cognitive thalamus as a gateway to mental representations. The Journal of 
Neuroscience 39:3–14. DOI: https://doi.org/10.1523/JNEUROSCI.0479-18.2018, PMID: 30389839

Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, 
Polimeni JR, Fischl B, Liu H, Buckner RL. 2011. The organization of the human cerebral cortex estimated by 
intrinsic functional connectivity. Journal of Neurophysiology 106:1125–1165. DOI: https://doi.org/10.1152/jn.​
00338.2011, PMID: 21653723

Yeo BTT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner RL, Asplund CL, Chee MWL. 2016. Functional 
specialization and flexibility in human association cortex. Cerebral Cortex 26:465. DOI: https://doi.org/10.​
1093/cercor/bhv260, PMID: 26508334

Yuan R, Di X, Taylor PA, Gohel S, Tsai YH, Biswal BB. 2016. Functional topography of the thalamocortical system 
in human. Brain Structure & Function 221:1971–1984. DOI: https://doi.org/10.1007/s00429-015-1018-7, PMID: 
25924563

Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME. 2008. Intrinsic functional relations 
between human cerebral cortex and thalamus. Journal of Neurophysiology 100:1740–1748. DOI: https://doi.​
org/10.1152/jn.90463.2008, PMID: 18701759

https://doi.org/10.7554/eLife.81282
https://doi.org/10.1177/0963721416665085
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17329432
https://doi.org/10.1523/JNEUROSCI.08-11-04049.1988
https://doi.org/10.1523/JNEUROSCI.08-11-04049.1988
http://www.ncbi.nlm.nih.gov/pubmed/2846794
https://doi.org/10.1016/j.conb.2007.07.003
http://www.ncbi.nlm.nih.gov/pubmed/17707635
https://doi.org/10.1038/s41593-018-0312-0
http://www.ncbi.nlm.nih.gov/pubmed/30664771
https://doi.org/10.1016/j.neuron.2019.09.002
http://www.ncbi.nlm.nih.gov/pubmed/31653463
https://doi.org/10.1016/j.pneurobio.2020.101951
https://doi.org/10.1016/j.pneurobio.2020.101951
http://www.ncbi.nlm.nih.gov/pubmed/33189781
https://doi.org/10.1073/pnas.0810086106
https://doi.org/10.1073/pnas.0810086106
http://www.ncbi.nlm.nih.gov/pubmed/19237580
https://doi.org/10.1016/j.tics.2013.09.012
http://www.ncbi.nlm.nih.gov/pubmed/24231140
https://doi.org/10.1073/pnas.1322173111
https://doi.org/10.1073/pnas.1322173111
http://www.ncbi.nlm.nih.gov/pubmed/25225403
https://doi.org/10.1523/JNEUROSCI.0479-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30389839
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
http://www.ncbi.nlm.nih.gov/pubmed/21653723
https://doi.org/10.1093/cercor/bhv260
https://doi.org/10.1093/cercor/bhv260
http://www.ncbi.nlm.nih.gov/pubmed/26508334
https://doi.org/10.1007/s00429-015-1018-7
http://www.ncbi.nlm.nih.gov/pubmed/25924563
https://doi.org/10.1152/jn.90463.2008
https://doi.org/10.1152/jn.90463.2008
http://www.ncbi.nlm.nih.gov/pubmed/18701759

	Thalamocortical contributions to cognitive task activity
	Editor's evaluation
	Introduction
	Results
	Low-dimensional organization of thalamic task-evoked activity
	Hub organization of thalamic task-evoked activity
	Predict cortical task activity with thalamic task-evoked activity
	Lesions to task hubs in the thalamus are associated with impaired prediction of task reorientations and representational geometry

	Discussion
	Methods
	Datasets
	MRI data preprocessing
	Task-evoked responses
	Low-dimensional organization of task-evoked activity in the thalamus
	Thalamic task hubs
	Thalamocortical activity flow mapping
	Lesion analyses
	Code and data availability statement

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


