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Deep proteome profiling reveals 
signatures of age and sex differences in 
paw skin and sciatic nerve of naïve mice
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Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of 
Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, 
Austria

Abstract The age and sex of studied animals profoundly impact experimental outcomes in 
biomedical research. However, most preclinical studies in mice use a wide-spanning age range from 
4 to 20 weeks and do not assess male and female mice in parallel. This raises concerns regarding 
reproducibility and neglects potentially relevant age and sex differences, which are largely unknown 
at the molecular level in naïve mice. Here, we employed an optimized quantitative proteomics work-
flow in order to deeply profile mouse paw skin and sciatic nerves (SCN) – two tissues implicated in 
nociception and pain as well as diseases linked to inflammation, injury, and demyelination. Remark-
ably, we uncovered significant differences when comparing male and female mice at adolescent 
(4 weeks) and adult (14 weeks) age. Our analysis deciphered protein subsets and networks that 
were correlated with the age and/or sex of mice. Notably, among these were proteins/biological 
pathways with known (patho)physiological relevance, e.g., homeostasis and epidermal signaling 
in skin, and, in SCN, multiple myelin proteins and regulators of neuronal development. Extensive 
comparisons with available databases revealed that various proteins associated with distinct skin 
diseases and pain exhibited significant abundance changes in dependence on age and/or sex. Taken 
together, our study uncovers hitherto unknown sex and age differences at the level of proteins 
and protein networks. Overall, we provide a unique proteome resource that facilitates mechanistic 
insights into somatosensory and skin biology, and integrates age and sex as biological variables – a 
prerequisite for successful preclinical studies in mouse disease models.

Editor's evaluation
This study sheds light on the importance of appropriate experimental design for mouse disease 
models which has been overlooked so far. The authors provide solid evidence for dynamic changes 
of proteomes in mouse tissues according to age and sex. This type of work is extremely valuable to 
many biomedical scientists in the field for conducting reproducible research, especially in preclinical 
studies.

Introduction
The age and sex of mice are major confounders in preclinical studies, affecting experimental outcomes 
across scales: from molecular, morphological, and physiological to behavioral parameters (Flórez-
Vargas et al., 2016; Flurkey et al., 2007; Fu et al., 2013; Jackson et al., 2017). In mice, the first 
12 weeks of life are characterized by pronounced changes in terms of growth and development of 
all organs and systems. Therefore, the Jackson Laboratory (https://www.jax.org) considers the widely 
used mouse strain C57BL/6J of mature adult physiology only at 12 weeks of age (Flurkey et  al., 
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2007). Similarly, the sex of mice needs to be considered when comparing experimental outcomes. 
Despite recently enforced policies by funding agencies to include animals of both sexes, most preclin-
ical studies still do not perform experiments on male and female rodents in parallel, exhibit gaps in 
data analysis by sex, and often pool animals of both sexes and a wide range of ages (between 4 and 
20 weeks) (Flórez-Vargas et al., 2016) given time and financial constraints (Garcia-Sifuentes and 
Maney, 2021; Woitowich et al., 2020). These practices may negatively impact reproducibility across 
studies, increase data variability, conceal differences or generate artifactual results, and, consequently, 
hamper translationally oriented preclinical research (Flórez-Vargas et al., 2016; Jackson et al., 2017; 
Oliva et al., 2020).

A prominent example of the enormous diversity of age ranges in publications are studies on rodent 
(mainly mice and rats) skin and peripheral sensory neurons (e.g., the sciatic nerve [SCN]) in the context 
of somatosensation and pain. Here, it is particularly noteworthy that often different age ranges were 
used for in vivo versus in vitro investigations. Mouse behavior experiments assessing paw sensitivity 
have routinely been performed in mice aged between 6 and 20 weeks (Hanack et al., 2015; Moeh-
ring et al., 2018; Zheng et al., 2019). Studies in cultured peripheral sensory neurons or keratinocytes 
have used mice aged 4–6 weeks (Hanack et al., 2015; Poole et al., 2014), 4–8 weeks (Zheng et al., 
2019), 7–10 weeks (Narayanan et al., 2018; Narayanan et al., 2016), or 8–16 weeks (Sadler et al., 
2020). Similarly, myelination of the SCN has been studied biochemically in mice aged 3 weeks (Siems 
et  al., 2020), 10 weeks, and up to several months (depending on disease severity) (Siems et  al., 
2021). In contrast, cultured Schwann cells are generally derived from newborn rats (Siems et  al., 
2020). We have recently discovered a previously unknown age dependence of tactile sensitivity in 
the back skin and hind paws of mice (Michel et al., 2020). In particular, 4-week-old adolescent mice 
were more sensitive to innocuous tactile stimulation than 12-week-old adult mice. Interestingly, these 
observations correlated with similar changes in the activity of the mechanically activated ion channel 
Piezo2 and age-dependent transcriptome changes in peripheral sensory neurons.

Even so, to date, we still lack comprehensive knowledge about the differential molecular setup of 
the somatosensory system in dependence on age and sex, in particular on the level of the proteome. 
This is highly relevant as transcript levels only show limited correspondence with protein levels, which 
renders the functional interpretation of transcriptome results difficult, in particular under dynamic 
conditions such as development, maturation, and disease (Liu et al., 2016; Schwanhäusser et al., 
2011; Wang et  al., 2017). However, in contrast to well-established RNA-seq approaches, deep 
proteome profiling of complex tissues is still challenging, above all, for low abundant and transmem-
brane proteins. Latest technological advances in mass spectrometry (MS) and data analysis provide 
new solutions for these challenges (Demichev et al., 2020; Meier et al., 2020; Meier et al., 2018). 
Here, we thoroughly compared two MS-based quantitative proteomics approaches: commonly used 
data-dependent acquisition (DDA) paired with parallel accumulation serial fragmentation (DDA-PASEF) 
(Meier et al., 2018) compared to data-independent acquisition (DIA-PASEF) (Meier et al., 2020). The 
latter has been shown to offer superior performance for deep profiling (Meier et al., 2020), yet it has, 
thus far, only been applied by specialized laboratories given its high demands regarding technology 
and data analysis.

The goal of this work was to comprehensively catalog the protein setup of mouse paw skin and 
SCN, changes upon age (comparing adolescents, 4  weeks of age, and adults, 14  weeks of age), 
and differences between male and female wild-type (WT) C57BL/6J mice. The SCN is affected by a 
wide variety of motor and sensory neuropathologies induced by inflammation, trauma, and demyelin-
ation. Similarly, the skin, as our interface to the outer world, can be impaired by several inflammatory 
diseases like atopic dermatitis, psoriasis, and lupus erythematodes. In addition, both the skin and 
SCN are involved in nociception and (chronic) pain. We therefore focused on the potential implication 
of our data for preclinical research on skin- and SCN-related pathologies, including pain. Our results 
decipher hitherto unknown age and sex dependency of assorted proteins and signaling pathways, 
including those with known disease relevance. Taken together, our dataset is unique as (1) it provides 
a quantitative protein catalog of skin and SCN and (2) it does so in dependence on the age and sex of 
naïve mice. Given the heterogeneity of mouse age ranges in biomedical studies and the impact of age 
and sex on experimental outcomes, our results represent a highly valuable resource to foster future 
investigations in the context of skin and peripheral nerve (patho)physiology by enhancing reproduc-
ibility and unmasking hitherto unknown differences.

https://doi.org/10.7554/eLife.81431
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Results
DIA-PASEF allows deep and reproducible proteome profiling of mouse 
paw skin and sciatic nerves (SCN)
In this study, we analyzed 16 biological replicates of paw skin and SCN samples to compare the 
proteome between (1) two age groups, that is, 4-week-old adolescent mice and 14-week-old adult 
mice, and (2) males and females (Figure 1—figure supplement 1). To enable and optimize deep 
proteome profiling, we compared two label-free quantification strategies of MS-based quantitative 
proteomics. In particular, DDA-PASEF and DIA-PASEF. For each sample, we analyzed technical dupli-
cates using a timsTOF Pro mass spectrometer (Bruker Daltonik). DDA or DDA-PASEF have been the 
methods of choice for most proteomics studies published so far (Aballo et al., 2021; Aebersold and 
Mann, 2016; Meyer, 2021). However, recent advances highlighted the superior performance of DIA-
PASEF methods (Brunner et al., 2022; Meier et al., 2021), which we tested in our study side-by-side. 
Given the long acquisition time of approximately 20 days for all samples and replicates, we constantly 
monitored the performance of our MS setup in DIA-PASEF mode by using pooled skin peptides and 
SCN peptides as quality controls. Pearson’s correlation coefficients were calculated for all quality 
control runs (Figure 1A and B). The average correlations of quality controls were 0.98 and 0.99 for 
pooled skin and SCN samples, respectively, indicating highly consistent stability of the instrument 
setup. Usually, DIA data is searched against a peptide library constructed from data obtained via DDA 
of the same sample; therefore, only proteins present in the library can be identified and quantified 
(Ludwig et  al., 2018). In contrast, DIA-NN, a recently developed program based on deep neural 
networks, extensively advanced DIA workflows with a library-free database search mode (Demichev 
et al., 2020). Thus, we compared DDA-PASEF data subjected to a standard MaxQuant search (Cox 
et al., 2014) with DIA-PASEF data subjected to DIA-NN library-free search. As shown in Figure 1C 
and D, protein identifications from DDA-PASEF were highly covered by DIA-PASEF experiments, and 
DIA-PASEF detected additional 4135 and 3926 protein groups in skin and SCN, respectively (Figure 
1—source data 1 and 2). Besides comparing protein identifications (protein IDs: for the remainder of 
this article, we will refer to protein groups as protein IDs for the sake of simplicity), we also compared 
both acquisition modes with respect to reproducibility at the quantitative level. Notably, we observed 
smaller coefficients of variation (CVs) across all DIA-PASEF runs (Figure 1E and F), indicating higher 
reproducibility compared to DDA-PASEF. Taken together, DIA-PASEF exhibited superior performance 
and was therefore chosen for further analysis of skin and SCN samples.

Age-dependent protein abundance changes in mouse paw skin and 
SCN
In paw skin, we quantified > 8600 protein IDs across experimental groups (Figure 2A, Figure 1—
source data 1). Comparing this proteome dataset with the most comprehensive (human) skin 
proteome dataset (Dyring-Andersen et  al., 2020) published so far, our skin proteome covered 
approximately 70% (Figure  2B). Importantly, in our study we analyzed whole-skin lysates without 
preanalytical sample fractionation (e.g., separation of different skin layers) (Dyring-Andersen et al., 
2020). Note that the previously published skin proteome was obtained from human hairy skin, while 
we analyzed mouse glabrous skin known to exhibit several differences in skin structure (Gudjonsson 
et al., 2007). Nonetheless, we identified all 50 known keratins and 19 collagens. In addition to struc-
tural proteins, we also quantified 13 members of the interleukin (IL) family and 11 of the S100 family 
(Figure 2E), known to play essential roles in the context of inflammation and infection (Kozlyuk et al., 
2019; Velazquez-Salinas et al., 2019). Their detection across all skin samples with only a few missing 
values (note that we did not impute any data; see ‘Materials and methods’ for details) further validates 
the high performance and reproducibility of our optimized workflow. In SCN, approx. 8400 protein 
IDs were quantified across experimental groups (Figure 2C, Figure 1—source data 2). SCN harbor 
myelinated axons, which are closely associated with glia cells such as Schwann cells. Remarkably, the 
myelin proteome was nearly completely covered in our SCN data (94%); 1014/1077 described myelin 
proteins (Siems et al., 2020; Figure 2D), without a priori myelin enrichment as required in previous 
studies (Siems et al., 2020). Among the 63 proteins of the myelin proteome, which were not covered 
in our dataset, were ATP synthases, histones, and septins (Figure 2—source data 1). Another indi-
cation as to the depth and high performance of our workflow is the fact that we robustly quantified 

https://doi.org/10.7554/eLife.81431
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Figure 1. Data-independent acquisition paired with parallel accumulation serial fragmentation (DIA-PASEF) acquisition followed by DIA-NN analysis 
outperforms data-dependent acquisition paired with PASEF (DDA-PASEF) acquisition in deep proteome profiling of paw skin and sciatic nerve (SCN) 
of naïve mice. (A, B) Pearson’s correlations of technical controls of paw skin (blue) and SCN (green) acquired over 20 days on a timsTOF Pro. (C, 
D) Comparisons of identified protein groups (protein IDs) using DDA- and DIA-PASEF workflows in paw skin (C) and SCN (D). (E, F) Coefficient of 
variation (CV) distributions of quantitative proteomes using DDA- and DIA-PASEF in paw skin (E) and SCN (F) of 4-week and 14-week-old males (cyan) 
and females (magenta).

Figure 1 continued on next page
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multiple ion channels across SCN samples (Figure 2F, Figure 1—source data 2), such as Trpv1 and 
several voltage-gated sodium channels (e.g., Scn8a, Scn9a, Scn11a) – again without requiring preana-
lytical membrane preparations. These ion channel identifications further corroborate the high quality 
of our approach as ion channels are usually expressed at low abundance and are notoriously difficult 
to be detected by MS given their pronounced hydrophobicity (Samways, 2014).

We employed principal component analysis (PCA) to visualize proteome similarities and differ-
ences across age and sex groups. Importantly, we only considered those proteins that were robustly 
quantified in all samples (according to all our quality criteria; see ‘Materials and methods’ for details), 
resulting in 6086 protein IDs in the skin and 6065 protein IDs in SCN (Figure 2G and H, Figure 1—
source data 1 and 2). Age groups were clearly segregated by the first and second components in 
skin and SCN samples, indicating that age is a prominent discriminator in our study and associated 
differences can be tackled by whole-proteome analysis. Furthermore, to elucidate changes in abun-
dance profiles across all experimental groups, fuzzy C-means clustering analysis was performed based 
on the average intensity of any protein ID quantified (Figure 2—figure supplement 1). Among the 
nine clusters generated, most of the proteins showed strong age patterns, such as clusters 2 and 5 in 
skin, and clusters 4, 6, and 7 in SCN. On the contrary, several proteins exhibited different expression 
trends in age/sex groups. For instance, most proteins in cluster 6 of the skin proteome showed minor 
age-dependent changes in females, while their abundance was notably increased in 14-week males 
compared to 4-week males (Figure 2—figure supplement 1). Similar sex-specific changes were also 
observed in SCN represented by cluster 3. Taken together, the clustering analysis of the paw skin and 
SCN proteome reveals thus far unknown expression patterns dependent on the biological variables 
age and sex, that is, sex-specific and -overlapping age dependency, which may affect mouse (patho)
physiology.

Diverse biological pathways exhibit age dependence intertwined with 
sex differences in paw skin
To explore this age dependency further, we applied a fold change (FC) cut-off (absolute log2 FC ≥ 
0.585, i.e., an absolute FC of 1.5) in addition to a significance cut-off (q-value ≤ 0.05) and found 234 
and 94 differentially expressed proteins (DEPs) in female and male skin datasets, respectively (Figure 
1—source data 1). As shown in Figure  3A, 46 DEPs were shared between sexes, while 188 and 
48 DEPs were unique for female and male skin (Figure 1—source data 1). Gene Ontology Biolog-
ical Process (GO-BP) analysis of 46 common DEPs resulted in three significantly enriched pathways 
(criteria: at least four DEPs/pathway, Bonferroni-adjusted p-value ≤ 0.05). DEPs annotated to enriched 
pathways were mapped back to quantitative proteomic data, and the agglomerated z-scores of the 
pathways are visualized in Figure 3B, revealing a marked age-dependent pattern. As expected, skin 
development-related pathways such as ‘protein hydroxylation’ and ‘collagen fibril organization’ were 
enriched in 4-week skin compared to 14 weeks. These pathways were reported to be implicated in 
skin stability during development (Rappu et  al., 2019). Specifically, several proline/serine hydrox-
ylases (e.g., P4ha2, P3h1, P4ha1) were highly expressed in 4-week skin together with members of 
collagens (Figure 3B). Performing GO-BP enrichment on DEPs from age-dependent comparisons in 
female versus male mice (Figure 3—figure supplement 1A and B) revealed interesting biological 
insights into sex-dependent differences. In male skin, pathways of ‘notch signaling’ and ‘extrinsic 
apoptotic signaling’ were significantly enriched at 4 weeks, while ‘actin-mediated cell contraction’ and 
‘cellular component assembly involved in morphogenesis’ were enriched at 14 weeks (Figure 3C). In 
female skin, proteins annotated to multiple interconnected pathways were significantly enriched at 
14 weeks compared to 4 weeks (Figure 3D, Figure 3—figure supplement 1A). Many of these have 
been shown to contribute to skin homeostasis (Hamanaka et al., 2013; Sreedhar et al., 2020) such 
as ‘plasma membrane organization’, ‘cotranslational protein targeting to membrane’, and ‘positive 

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Quantitative proteome and differentially expressed protein (DEP) lists of paw skin.

Source data 2. Quantitative proteome and differentially expressed protein (DEP) lists of sciatic nerve (SCN).

Figure supplement 1. Experimental workflow of proteome profiling in mouse paw skin and sciatic nerves.

Figure 1 continued
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Figure 2. Age and sex differences in proteomes of paw skin and sciatic nerve (SCN). (A) Venn diagram shows unique and shared protein IDs across 
age and sex groups of paw skin. (B) Comparison of the quantified paw skin proteome with previously reported sub-proteomes of human skin (Dyring-
Andersen et al., 2020) indicates high coverage in our proteome data. (C) Venn diagram shows unique and shared protein IDs across age and sex 
groups of SCN. (D) Our SCN proteome dataset harbors 1014 myelin proteins, i.e. 94% of the previously reported myelin proteome (Siems et al., 2020). 

Figure 2 continued on next page
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(E) Heatmaps show the expression of interleukin and S100 protein families across all paw skin samples. (F) Heatmap shows the expression of ion channel 
proteins quantified across all SCN samples. Color legends are coded based on log2-transformed protein intensities. (G, H) Principal component analysis 
(PCA) reveals age as a prominent variable in paw skin and SCN tissues.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. List of myelin proteins (Siems et al., 2020) not quantified in the sciatic nerve (SCN) proteome.

Figure supplement 1. Fuzzy C-means clustering analysis of the paw skin (A) and sciatic nerve (SCN) (B) proteome.

Figure 2 continued
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Figure 3. Differential expression analysis of paw skin samples reveals diverse age-dependent biological pathways in male and female mice. (A) Venn 
diagram illustrates unique and shared differentially expressed proteins (DEPs; criteria: q-value ≤ 0.05, absolute log2 fold change [FC] ≥ 0.585, i.e., 
an absolute FC of 1.5) from age-dependent comparisons in female (magenta) and male (cyan) paw skin. (B) 46 common DEPs (A) are annotated to 
pathways related to skin development. The agglomerated z-score of each pathway is visualized in the heatmap. Common DEPs are annotated to three 
interconnected pathways. All proteins annotated here were highly expressed in 4-week paw skin (red filled circle). (C, D) Enriched interconnected 
pathways from age-dependent comparison in male (cyan) and female (magenta) mice. Red: higher expression at 4 weeks; blue: lower expression at 
4 weeks. (E) Ligands and neuronal receptors found in skin cells (Wangzhou et al., 2021) are significantly regulated by age. Significance levels are 
indicated as ns, q-value > 0.05, *q-value ≤ 0.05, **q-value ≤ 0.01, ***q-value ≤ 0.001, and ****q-value ≤ 0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. List of ligands and neuronal receptors found in skin cell types (Wangzhou et al., 2021), which we quantified in the paw skin proteome.

Figure supplement 1. Gene Ontology Biological Process (GO-BP) analysis of differentially expressed proteins (DEPs) from age-dependent comparisons 
in female (A) and male (B) paw skin.

https://doi.org/10.7554/eLife.81431
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regulation of map kinase activity’ besides others like ‘positive regulation of axonogenesis’ and ‘glial 
cell development’ (Figure 3D, Figure 3—figure supplement 1A). In contrast, proteins annotated to 
‘cellular response to heat’ showed a higher z-score in 4-week skin of females.

Keratinocytes are among the most abundant cell types in skin, followed by fibroblasts, endothelial 
cells, melanocytes, and subsets of resident innate and adaptive immune cells. In addition, sparsely 
distributed sensory nerve endings in the skin play significant roles for aspects of somatosensation, 
including the detection of different physical stimuli, whether they be innocuous or noxious. However, 
this cellular diversity cannot be separated on the experimental level when analyzing complex tissue 
lysates as in our study. Therefore, we assessed the depth of our profiling workflow across different 
cell types indirectly by applying a recently published resource on ligand–receptor interactions in 
42 cell types, including sensory neurons of mouse dorsal root ganglia (DRG) (Wangzhou et al., 2021). 
We extracted ligand–receptor interactions found across skin cell types (Wangzhou et al., 2021) for 
comparison with our skin dataset. In total, 144 ligands and receptors of DRG were present in our skin 
dataset (Figure 3—source data 1), of which 12 were significantly regulated (q-value ≤ 0.05) when 
comparing 4-week to 14-week mice (Figure 3E). For example, the ligand Lamb1 was found to be 
more abundant in 4-week female skin. Lamb1 was reported to serve as an anchor point for end feet of 
radial glial cells and as a physical barrier to migrating neurons (Radmanesh et al., 2013). Three recep-
tors of Lamb1, low-density lipoprotein receptor-related protein 1 (Lrp1), C-type mannose receptor 
2 (Mrc2), and suppressor of tumorigenicity 14 protein homolog (St14), were also identified in our 
dataset (Figure 1—source data 1). Interestingly, Mrc2 showed age-dependent statistical significance 
with higher expression at 4 weeks of age. Taken together, our results generally raise awareness of 
pronounced age dependency of protein expression in naïve mice, which should be carefully consid-
ered when pooling wide-ranging age groups in mouse studies.

Prominent age and sex dependency of immune pathways and myelin 
proteins in SCN
In the SCN proteome, we observed similar age dependency as in paw skin. Differential expression 
analysis uncovered 929 DEPs and 1269 DEPs in age-dependent comparisons of female and male SCN 
(Figure 4A, Figure 1—source data 2), accounting for almost one-fifth of the here quantified SCN 
proteome. Pathway enrichment for 641 common DEPs (Figure 1—source data 2) and age-enriched 
DEPs in males versus females (for 4 weeks and 14 weeks, respectively) is given in Figure 4—figure 
supplement 1, spanning diverse categories from metabolic processes and translation to neuronal 
function and inflammatory/immune signaling. For example, among common DEPs, ‘vesicle localiza-
tion’ had a higher z-score in 4-week SCN of both sexes, while pathways related to ‘neuron survival’, 
‘neurotransmitter transport’, and ‘anterograde axonal transport’ were more pronounced in 14-week 
SCN of both sexes (Figure  4B). These processes appear to be interconnected via distinct DEPs 
(Figure  4B), suggesting crosstalk during development. For instance, superoxide dismutase (Sod1) 
was found to be less expressed in 4-week mice and represents a connecting hub of two pathways 
related to nervous system function (Figure 4B) in line with its implication in amyotrophic lateral scle-
rosis (ALS) (Pansarasa et al., 2018). Remarkably, 144 DEPs from age-dependent comparisons were 
associated with the ‘synapse’ as revealed by querying SynGO, a public reference for synapse research 
(Koopmans et al., 2019; Figure 4—source data 1).

Miscellaneous immune cell types are known to be present in the SCN, where they contribute to 
nerve health, damage, and repair, as well as to sensory phenomena of pain (Kalinski et al., 2020). 
Thus, we cross-referenced our data to the aforementioned ligand–receptor database (Wangzhou 
et al., 2021) and searched our SCN dataset for ligands of neuronal receptors known to be expressed 
in immune cells. Among the 56 immune cell ligands of neuronal receptors quantified in the SCN 
proteome, 19 showed age-dependent abundance changes in both sexes such as Agrin (Agrn), Thy-1 
membrane glycoprotein (Thy1), and several collagens (Figure 4C, Figure 4—source data 2). Given 
their age-dependent abundance differences already in naïve mice, our results caution to adequately 
pool age groups when assessing immune signaling in mouse disease models as data might get skewed 
by underlying – and thus far unknown – age differences.

We also assessed ligands of neuron receptors Wangzhou et  al., 2021 found in glial cells and 
vice versa given their utmost importance for SCN (patho)physiology. We found 85 glial cell ligands 
of neuron receptors and 70 neuron ligands of glial cell receptors in our SCN proteome, and, more 

https://doi.org/10.7554/eLife.81431
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Figure 4. Age-dependent differential expression analysis in sciatic nerve (SCN) samples. (A) Venn diagram illustrates unique and shared differentially 
expressed proteins (DEPs) (criteria: q-value ≤ 0.05, absolute log2 fold change [FC] ≥ 0.585, i.e., an absolute FC of 1.5) from age-dependent comparisons 
in female (magenta) and male (cyan) SCN. (B) Common DEPs are annotated to pathways related to neuronal function and inflammation. The 
agglomerated z-score of each pathway is visualized in the heatmap. Red: proteins more abundant at 4 weeks; blue: proteins less expressed at 4 weeks. 
(C) Eighteen ligands of neuronal receptors found in immune cells (Wangzhou et al., 2021) are significantly regulated by age. Significance levels are 
indicated as: ns, q-value > 0.05, *q-value ≤ 0.05, **q-value ≤ 0.01, ***q-value ≤ 0.001, and ****q-value ≤ 0.0001. (D) Log2 FC of previously reported myelin 
proteins (Siems et al., 2020) in our age-dependent SCN datasets. Red: higher expression at 4 weeks; blue: lower expression at 4 weeks; white: not 
significantly regulated.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Synaptic proteins among differentially expressed proteins (DEPs) from age-dependent comparisons in sciatic nerve (SCN).

Figure 4 continued on next page

https://doi.org/10.7554/eLife.81431
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interestingly, about one-third of ligand-receptor pairs showed strong age dependency (Figure 4—
source data 3 and 4), e.g., limbic system-associated membrane protein (Lsamp), a glial cell ligand 
mediating selective neuronal growth and axon targeting (Sanz et al., 2017), and two of its neuronal 
receptors, netrin-G1 (Ntng1) and thy-1 membrane glycoprotein (Thy1). While Lsamp exhibited higher 
expression in 4-week SCN than in 14-week SCN, its two receptors showed the opposite (Figure 4—
source data 4, datasheet 2). Similar expression trends were also found in neuron ligands of glial cell 
receptors, for example, the ligand disintegrin and metalloproteinase domain-containing protein 23 
(Adam23) were less abundant in 4-weeks SCN, but the receptor integrin beta-3 (Itgb3) was more 
abundant in 4-week SCN (Figure 4—source data 3, datasheet 2). These data may suggest a homeo-
static mechanism specifically in young SCN to counterbalance ligand abundance on the receptor level 
– an intriguing hypothesis given that, for example, Lsamp has been reported to suppress neuronal 
outgrowth of DRG (Sanz et al., 2017).

In this respect, it is noteworthy that 21/90 known myelin proteins within the myelin proteome 
(Siems et al., 2020; Figure 2D) were differentially regulated by age, including highly abundant struc-
tural myelin proteins such as myelin basic protein (Mbp) and myelin protein P0 (Mpz) (Figure 4D). In 
line with previous reports in mice and zebrafish (Siems et al., 2021), Mbp and Mpz were significantly 
enriched in both male and female 14-week SCN, reflecting myelin assembly and axonal develop-
ment with age. Similarly, CD59A glycoprotein (Cd59a), a sparsely expressed myelin protein associated 
with protection against complement-mediated lysis (Zeis et al., 2016), was more abundant at adult 
age (Figure 4D) as described previously in mouse brains (Siems et al., 2021). This congruency with 
published data on both high- and low-abundant myelin proteins validates our datasets and highlights 
their quality and depth of profiling. Note, however, that some myelin DEPs appear to be specific 
for female (Bcas1, Ca2, Cadm4, Dynll1) or male (Itgb4) SCN in dependence on age – a fact that has 
not been investigated in previous studies, which mostly focused on male mice (Siems et al., 2021). 
Further investigation of these changes correlated with sex and age will likely help to better under-
stand the molecular setup of myelin and, importantly, associated pathologies.

Sexual dimorphism in paw skin and SCN proteomes within distinct age 
groups
In addition to thus far presented sex differences in age-dependent proteome changes, we then turned 
to specifically looking at sex dependency within one age group in our datasets, that is, we compared 
skin and SCN proteomes between male and female mice at 4 weeks and 14 weeks, respectively. While 
several studies have addressed sexual dimorphism in animal models, most previous reports relied on 
investigating differences of transcript abundance in paw skin and nerve tissues (Mecklenburg et al., 
2020; Ray et al., 2019). In our proteome dataset, we observed 58 DEPs (in skin) and 33 DEPs (in 
SCN) in a sex-dependent manner within the same age group (Figure 5A and B, Figure 1—source 
data 1 and 2). These numbers are low compared to aforementioned prominent changes upon age 
(Figures 3A and 4A). Of note, sex-dependent DEPs differed by age. For example, sex-dependent 
changes were much less pronounced in 4-week compared to 14-week skin (Figure  5A) and SCN 
(Figure 5B) in line with our initial PCA (Figure 2G and H). Interestingly, we did not observe any sex-
dependent DEPs at 4 weeks in SCN (Figure 5B, orange circle). However, it is worth mentioning that 
all here reported DEPs are highly dependent on the experimental and analytical conditions of our 
study, for example, the chosen analysis and cut-off criteria, which are outlined in detail in ‘materials 
and methods’. Nonetheless, PCA using only sex-dependent DEPs (Figure 1—source data 1 and 2) 
enabled effective discrimination between female and male samples (Figure 5C and D), suggesting 
that these DEPs might represent sex-specific protein signatures in mouse paw skin and SCN.

Source data 2. Ligand list of neuronal receptors found in immune cells (Wangzhou et al., 2021), which we quantified in the sciatic nerve (SCN) 
proteome.

Source data 3. Neuronal ligands of glial receptors (Wangzhou et al., 2021), which we quantified in the sciatic nerve (SCN) proteome.

Source data 4. Glial ligands of neuronal receptors (Wangzhou et al., 2021), which we quantified in the sciatic nerve (SCN) proteome.

Figure supplement 1. Enriched Gene Ontology Biological Process (GO-BP) terms and their activity scores in age-dependent comparisons using 
common differentially expressed proteins (DEPs) (A) and DEPs enriched in male sciatic nerve (SCN) (B) and female SCN (C), respectively.

Figure 4 continued
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Figure 5. Differential expression analysis indicates protein signatures of sexual dimorphism in paw skin and sciatic nerve (SCN). (A, B) Differentially 
expressed proteins (DEPs) of sex-dependent comparisons at 4 weeks and 14 weeks in paw skin (A) and SCN (B). Heatmaps show the normalized protein 
expression (averaged intensity) across age and sex groups. Venn diagram depicts sex-dependent DEPs at 4 weeks (orange; note that none were found 
in SCN) and 14 weeks (green). (C, D) Principal component analysis (PCA) using DEPs of sex-dependent comparisons (in contrast to PCA on all identified 

Figure 5 continued on next page
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Overall, GO-BP analysis revealed that sex-dependent DEPs in skin and SCN could be annotated to 
few (owing to the low number of DEPs) but distinct pathways (Figure 5E and F). For example, ‘regula-
tion of complement activation’ was significantly enriched in both skin and SCN in sex comparisons at 
14 weeks (Figure 5E and F). The complement system is known to be crucially implicated in immunity, 
host defense, inflammation, and associated pathologies (Merle et al., 2015; Ray et al., 2019). Thus, 
revealing its sexual dimorphism provides a crucial guide for adequate experimental design in future 
studies, especially when using rodent disease models.

Next, we compared our datasets with previously published literature on molecular sex differences. 
Unfortunately, we did not find any resource that assessed sex differences in mouse SCN. Therefore, 
we compared our SCN datasets with sex-associated genes found in human tibial nerve (Ray et al., 
2019; Figure 5—source data 1). Among these 149 differentially expressed genes (DEGs), we quan-
tified 31 proteins in our SCN dataset, of which only 20 were differentially regulated. However, these 
proteins rather exhibited age- and not sex-dependent differences in our mouse SCN data, potentially 
due to species differences (Ray et al., 2019; Figure 5—figure supplement 1A). A previous transcrip-
tomics study on mouse hind paw skin revealed 123 DEGs comparing female with male mice aged 
8–12 weeks (Mecklenburg et al., 2020). Among these 123 DEGs, we quantified 42 proteins in our 
skin dataset, of which 14 were sexually dimorphic at 4 weeks and/or 14 weeks (Figure 5—source data 
2; Figure 5—figure supplement 1B) in line with published data (Mecklenburg et al., 2020). Reasons 
as to why we did not observe sex-dependent differences in the remaining 28 out of these 42 proteins 
could be manifold: starting with the broad age range used in the transcriptome study (Mecklenburg 
et al., 2020) to the known fact that transcript levels only show limited correspondence with protein 
expression levels (Liu et al., 2016; Maier et al., 2009; Reimegård et al., 2021). The latter highlights 
the importance of performing profiling studies on the proteome and integrate these data with other 
-omics approaches.

Multiple proteins associated with skin diseases and pain exhibit age 
and sex dependency
In light of translational research, reverse translation of human data to mouse models of skin diseases 
is of high utility. Therefore, we compared our skin datasets with a list of top candidates (skin disease 
transcriptomic profiles, https://biohub.skinsciencefoundation.org/) found to be regulated in the skin 
of human patients suffering from skin diseases such as psoriasis, acne, atopic dermatitis, and rosacea. 
Intriguingly, our proteome results harbor 329 out of 907 disease genes, of which 27 proteins showed 
significant age and/or sex dependency across varied skin diseases (Figure 6A, Figure 6—source data 
1). Fuzzy C-means clustering analysis of these 329 skin disease-related proteins revealed not only 
discrete abundance patterns among age and sex groups but also proteins with differential profiles 
when comparing all four experimental groups (Figure 6—source data 2). For example, proteins in 
cluster 6 showed higher abundance in 14-week male skin, whereas proteins in cluster 7 exhibited 
lower abundance in 4-week skin of both sexes compared to 14 weeks (Figure 6B). Discrete abun-
dance patterns in dependence on age and sex were also observed on the level of individual proteins 
(examples are given in Figure 6C; full list detailed in Figure 6—source data 1). For example, collagen 
alpha-1(V) chain (Col5a1), collagen alpha-2(V) chain (Col5a2), and coiled-coil domain-containing 
protein 80 (Ccdc80) were less abundant at 14 weeks in both male and female samples and, in parallel, 
showed distinct sex differences. In contrast, indolethylamine N-methyltransferase (Inmt) and keratin 
type II cytoskeletal 6A (Krt6a) represent examples with higher levels in both sexes at 14 weeks. Others 
display prominent sex dependency such as transcription factor Sp1 (Sp1) and versican core protein 

proteins illustrated in Figure 2G and H) reveals sex as an effective discriminator in paw skin and SCN tissues; females (magenta) and males (cyan). (E, 
F) Visualization of enriched pathways using sex-dependent DEPs at 4 weeks and 14 weeks. Red: higher expression in males; blue: lower expression in 
males; green: pathways enriched at 14 weeks in a sex-dependent manner.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Sex-associated transcripts of human tibial nerves (Ray et al., 2019), which we quantified in the sciatic nerve (SCN) proteome.

Source data 2. Sex-associated transcripts of mouse hind paws (Mecklenburg et al., 2020), which we quantified in the paw skin proteome.

Figure supplement 1. Sexual dimorphism in SCN and paw skin.

Figure 5 continued

https://doi.org/10.7554/eLife.81431
https://biohub.skinsciencefoundation.org/
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Fuzzy C-means clustering analysis of 329 skin disease-related proteins

Fuzzy C-means clustering analysis of 245 pain-related proteins
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Figure 6. Multiple proteins associated with skin diseases and pain exhibit age and sex dependence. (A) Venn diagram indicates the number of 
quantified protein IDs in paw skin (white) associated with various human skin diseases (light gray) upon comparison with a skin disease database (dark 
gray, https://biohub.skinsciencefoundation.org/). (B) Examples of fuzzy C-means clustering analysis of the 329 protein IDs associated with human 
skin diseases illustrate their relative expression in experimental groups (other clusters are detailed in Figure 6—source data 2). (C) Significantly 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.81431
https://biohub.skinsciencefoundation.org/
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(Vcan) being specifically regulated in female skin in an age-dependent manner (less abundant in 
4-week female skin compared to 14 weeks; Figure 6—source data 1). Among skin diseases used here 
for comparison (Figure 6—source data 1), several are known to exhibit an autoimmune component 
such as alopecia areata, lichen plantus, lupus erythematosus, psoriasis, and vitiligo. Overall, autoim-
mune skin diseases are more prevalent in females. Thus, we specifically checked whether top gene 
signatures of aforementioned autoimmune-associated skin diseases are among the reported female-
enriched proteome changes of our study (Figure 1—source data 1). Indeed, 11 proteins could be 
identified, of which 9 were differentially regulated by age only in females (Figure 6—source data 
1, data sheet 3). For instance, transforming growth factor-beta-induced protein ig-h3 (Tgfbi) and 
transcription factor Sp1 (Sp1) were more abundant in 14-week female skin, but no significance was 
found in males. It is noteworthy that in our study we investigated hairless glabrous skin in mice. 
However, transcriptomic profiles of human skin diseases used for comparison are mostly derived from 
human hairy skin – a difference that needs to be taken into account when interpreting the presented 
comparisons between mouse and human skin. This is why we additionally selected transcriptomic 
studies on skin diseases affecting human glabrous skin, that is, palms and soles, such as handfoot 
psoriasis (Ahn et al., 2018), palmoplantar pustulosis (McCluskey et al., 2022), and vesicular hand 
eczema (Voorberg et al., 2021). Among top gene signatures presented in glabrous skin datasets 
(2498 DEGs), 928 proteins were quantified in our paw skin datasets and 96 of them showed age and/
or sex dependency including several collagens (Figure 6—source data 3; examples are marked with 
‘#’ in Figure 6C). Overall, our data suggest significant regulation of human skin disease profiles by 
age and sex in mice – knowledge of utmost significance for reverse translational studies on the skin.

The SCN is affected by various pathologies such as nerve injury and neuropathic pain (Chen et al., 
2021; Hildreth et al., 2009). In this context, we assessed the presence of known pain-related genes 
in SCN datasets by comparison with three publicly available pain gene databases (https://www.pain-
researchforum.org/, http://paingeneticslab.ca/4105/06_02_pain_genetics_database.asp, and https://​
humanpaingeneticsdb.ca/hpgdb/). Among 841 pain genes, 245 were quantified in our SCN proteome 
(Figure 6D, Figure 6—source data 4 ). Similar to skin disease-related proteins, fuzzy C-means clus-
tering analysis revealed distinct abundance profiles for these 245 pain-related proteins differing by 
age and/or sex (Figure 6E, Figure 6—source data 2). Intriguingly, 132 of these pain-related proteins 
displayed significant changes (q-value  ≤ 0.05) by age and/or sex (Figure 6—source data 4), of 
which examples are given in Figure 6F. For instance, angiotensin I-converting enzyme (Ace) exhibits 
pronounced age and sex differences while its family member Ace2 only showed age differences (i.e., 
higher expression in adult mice). Ace2 has been described to be associated with increased risk of 
nonspecific orofacial symptoms in the OPPERA (Smith et al., 2013) prospective study, and Ace is 

expressed protein IDs associated with human skin diseases show age and/or sex dependency. Proteins marked with ‘#’ represent examples related to 
hand–foot psoriasis, palmoplantar pustulosis, and vesicular hand eczema. (D) Venn diagram indicates the number of quantified protein IDs in sciatic 
nerve (SCN) (white) associated with pain (light gray) upon comparison with known pain genes (dark gray). Pain-related genes were downloaded from 
publicly available pain gene databases: https://www.painresearchforum.org/, https://humanpaingeneticsdb.ca/hpgdb/, and http://paingeneticslab.
ca/4105/06_02_pain_genetics_database.asp. (E) Examples of fuzzy C-means clustering analysis of the 245 protein IDs associated with pain illustrate their 
relative expression in experimental groups (other clusters are detailed in Figure 6—source data 2). (F) Significantly expressed protein IDs associated 
with pain show age and/or sex dependency. Significance levels in (C) and (F) are indicated as ns, q-value > 0.05, *q-value ≤ 0.05, **q-value ≤ 0.01, ***q-
value ≤ 0.001, and ****q-value ≤ 0.0001.

The online version of this article includes the following source data for figure 6:

Source data 1. Gene candidates of various human skin diseases (https://biohub.skinsciencefoundation.org/), which we quantified in the paw skin 
proteome.

Source data 2. Fuzzy C-means clustering membership of 329 and 245 pathology-related proteins quantified in the paw skin and sciatic nerve (SCN) 
proteome.

Source data 3. Differentially expressed genes (DEGs) of hand–foot psoriasis, palmoplantar pustulosis, and vesicular hand eczema quantified in the paw 
skin proteome.

Source data 4. Pain-related genes (https://www.painresearchforum.org/, http://paingeneticslab.ca/4105/06_02_pain_genetics_database.asp, and 
https://humanpaingeneticsdb.ca/hpgdb/), which we quantified in the sciatic nerve (SCN) proteome.

Source data 5. Differentially expressed proteins (DEPs) upon sciatic nerve (SCN) injury (spared nerve injury [SNI] model of neuropathic pain in mice) 
(Barry et al., 2018) quantified in the SCN proteome.

Figure 6 continued

https://doi.org/10.7554/eLife.81431
https://www.painresearchforum.org/
https://www.painresearchforum.org/
http://paingeneticslab.ca/4105/06_02_pain_genetics_database.asp
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linked to migraine and potentially higher frequency as well as susceptibility (Dandona et al., 2007). 
Generally, Ace plays an essential role in vascular physiology and inflammation within the renin–angio-
tensin system. The FK506 binding protein 51 (Fkbp5) also displayed significant age and sex differ-
ences, with its expression being lower in female adults but higher in male adults compared to 4-week 
mice. Fkbp5 is a glucocorticoid receptor co-chaperone, and its polymorphisms predict persistent 
musculoskeletal pain after traumatic stress exposure (Bortsov et al., 2013; Linnstaedt et al., 2018). 
Moreover, it is generally involved in the acute stress response linked to stress-related disorders in 
humans via the hypothalamic-pituitaryadrenal (HPA) axis (Häusl et al., 2021). Interestingly, variations 
in serpin peptidase inhibitor clade A member 6 (Serpina6), another pain gene with pronounced age 
differences and sex-opposite expression, are also associated with the HPA stress axis impacting the 
susceptibility to musculoskeletal pain (Holliday et al., 2010), the risk of cardiovascular disease, as 
well as gene expression in peripheral tissues (Crawford et al., 2021). These few examples highlight 
the importance of considering changes in the abundance of aforementioned proteins across ages 
and in both sexes for research on preclinical disease models. Therefore, our datasets represent a 
highly valuable and unique resource for biomedical studies. To further illustrate this utility, we have 
critically inspected our previous SCN datasets derived from the neuropathic pain model of nerve 
injury (spared nerve injury [SNI] model) in male adult mice (Barry et al., 2018). Indeed, several candi-
date proteins we previously reported (Barry et al., 2018) to be regulated upon SNI in adult males, 
for example, angiotensin-converting enzyme (Ace), apolipoprotein E (Apoe), complement C3 (C3), 
progranulin (Grn), epidermal growth factor receptor (Egfr), and voltage-dependent calcium channel 
subunit alpha-2/delta-1 (Cacna2d1), exhibited age-dependent abundance differences in males but 
not in females (Figure 6—source data 5) – a fact that has not been known before and might crucially 
affect SNI-induced pathology. Taken together, our data emphasize the essential need for male versus 
female as well as age-matched biomedical studies in parallel.

Discussion
Age and sex as parameters in rodent-based research are known to strongly affect experimental 
outcomes in vivo and in vitro. Despite this knowledge, the molecular setup of most cell and tissue 
types and how they are impacted by age and sex has not yet been discerned (Garcia-Sifuentes and 
Maney, 2021; Woitowich et  al., 2020). This gap is especially eminent at the proteome level – a 
fact that hampers our understanding of the molecular signature underlying physiological processes 
and disease phenotypes. Here, we present an optimized workflow of quantitative proteomics, which 
utilizes DIA-PASEF followed by data analysis with the publicly available program DIA-NN (Demichev 
et al., 2020). This approach enabled us to deeply profile and quantify the proteome of paw skin and 
SCN in adolescent versus adult male and female mice. Strikingly, our data reveal unprecedented 
insights into hitherto unknown age and sex differences of biological processes relevant for skin and 
SCN physiology as well as associated disorders. Therefore, our work serves as unique resource for 
the scientific community by defining the protein compendium of mouse skin and SCN and changes 
thereof in dependence on age and sex. In addition, our results assertively highlight the significance of 
appropriate age and sex matching and provide a stepping stone for optimizing preclinical and trans-
lational research toward enhanced reproducibility and success.

We focused our analysis on paw skin and SCN isolated from 4-week and 14-week male and female 
mice. Both tissue types are crucially implicated in multiple diseases. On one hand, in various allergic, 
itchy, and inflammatory skin pathologies such as atopic dermatitis, psoriasis, and lupus erythema-
todes. The SCN, on the other hand, is affected by a wide variety of motor and sensory neuropathol-
ogies induced by inflammation, trauma, and demyelination. Moreover, both the skin and SCN are 
involved in nociception and pain, including chronic conditions. Our reasoning for the chosen age 
groups was as follows: given time and budget constraints as well as ‘comparability to historical data’ 
(Reiber et al., 2022), it has become standard practice to perform experimental studies with mice of 
a wide age range, generally from 4 weeks to 12 weeks of age (Jackson et al., 2017; Reiber et al., 
2022), regardless of the studied biological system. Of note, mice aged 3–4 weeks are mostly used 
for cell culture-based in vitro studies (Boyer et al., 1994; Isensee et al., 2017; Lin and Chen, 2018; 
Malin et al., 2007). For example, peripheral sensory neurons of DRG exhibit better health and growth 
factor-dependent survival when isolated from young rodents (Malin et al., 2007; Melli and Höke, 
2009). Similarly, Schwann cells originated from younger human donors proliferated faster than those 

https://doi.org/10.7554/eLife.81431
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from older donors (Boyer et al., 1994; Monje, 2020). In contrast to these younger ages used for 
cell culture-based research, most studies on mouse behavior are conducted at ages of 6–12 weeks, 
that is, a period with overt maturational changes before reaching adulthood from 12 weeks of age 
onward (Flurkey et al., 2007). Notable examples of this practice include studies on cutaneous touch, 
somatosensation and (chronic) pain, and diseases of the central nervous system (CNS) and peripheral 
nervous system (PNS), just to name a few (Narayanan et al., 2016; Poole et al., 2014; Zheng et al., 
2019). Furthermore, the most extensive and highly valuable RNA-seq-based resource describing the 
molecular setup of mouse CNS and PNS cell types (Zeisel et al., 2018) (https://www.mousebrain.org) 
was assembled by pooling mice of both sexes aged 2–3 weeks. Our results show that the proteome 
exhibits clear differences when comparing 4-week with 14-week mice raising concerns about the 
aforementioned practices of comparing and correlating in vitro data derived from young ages with in 
vivo data of older ages. Failed correlations among these age groups may have led to false negatives 
and prevented new findings. On the contrary, mechanisms discovered in young cells may be wrongly 
accounted for phenotypic differences observed in adult rodents. Based on our data, we strongly 
suggest suitable age matching across different methods within a study to ensure scientific rigor and 
reproducibility.

From a technical point of view, we have employed a highly sensitive workflow based on DIA-PASEF 
followed by data analysis via DIA-NN (Demichev et al., 2020). This enabled us to provide the most 
in-depth and highly reproducible proteome dataset of mouse skin and SCN published thus far. While 
we have previously used DIA-MS, but not DIA-PASEF, to investigate various tissues in mouse pain 
models (Barry et al., 2018; Rouwette et al., 2016; Sondermann et al., 2019), we have not achieved 
the high quantitative depth reported here. For instance, in SCN, we quantified more than twice as 
many proteins (~8400 IDs, Figure 2C) as in our previous study using DIA-MS (3141 IDs) (Barry et al., 
2018). Even so, we would like to stress the fact that all here presented data and DEPs are closely 
interconnected with the experimental and analytical setup of our study. For example, datasets would 
become more comprehensive, if improved mass spectrometers, more biological replicates, lower cut-
offs (in our study: absolute log2FC ≥ 0.585), or more powerful analysis algorithms (see discussion 
below) will be used in future investigations.

DIA workflows generally facilitate high reproducibility of quantitative profiling (Domon and Aeber-
sold, 2010); however, resulting MS spectra are very complex requiring careful interpretation (Bilbao 
et al., 2015). To address this, improvements of diverse aspects have been continuously implemented. 
For instance, from the hardware point of view, the addition of ion mobility to chromatographic and 
mass separation of peptides has significantly reduced spectral complexity in DIA-MS (Helm et al., 
2014). Furthermore, the DIA-PASEF workflow was developed on timsTOF Pro instruments (Bruker 
Daltonik) and enables nearly complete sampling of the precursor ion beam (Meier et al., 2020). Like-
wise, new algorithms have been developed to interpret complex spectra. For example, Arnaud Droit 
and colleagues systematically evaluated and compared DIA data processing software (Gotti et al., 
2021) such as DIA-NN, DIA-Umpire, OpenSWATH, ScaffoldDIA, Skyline, and Spectronaut: DIA-NN 
outperformed others in terms of peptide and protein identifications. Given that DIA-PASEF has not 
yet been widely used, above all not for mouse skin and SCN, we have systematically compared the 
more commonly used DDA-PASEF mode with DIA-PASEF. We specifically compared (1) the number of 
protein IDs quantified, (2) the coefficients of variation (CVs), and (3) quantitative correlations between 
technical replicates of each sample. As expected, DIA-PASEF outperformed DDA-PASEF in all param-
eters (Figure 1). Consequently, we obtained all reported datasets on paw skin and SCN via DIA-
PASEF followed by DIA-NN library-free data analysis.

Both analyzed tissues harbor various cell types such as keratinocytes, immune cells, peripheral 
nerve endings, and fibroblasts in skin, and glia cells, immune cells, and axons in SCN. Because of this 
cellular complexity, we cannot assign the detected age- and sex-dependent proteome differences 
to specific cell types – a limitation applicable to all -omics assays, if not performed on the single-cell 
level. In contrast to established procedures for single-cell RNA-seq, proteomics on single cells is still 
in its infancy. However, the transcriptome cannot predict disease phenotypes in a straightforward 
manner given the highly dynamic regulation of protein levels by manifold mechanisms (Liu et al., 
2016; Schwanhäusser et al., 2011). Consequently, monitoring pathologies and associated changes 
in molecular and cellular signaling requires the integration of proteomics into a multi-omic suite. This 
calls for the development of technological advances for accurate, highly sensitive, and comprehensive 

https://doi.org/10.7554/eLife.81431
https://www.mousebrain.org
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proteome profiling on the single-cell level. Recently, Brunner et al. established an ultra-high-sensitivity 
MS workflow to quantify single-cell proteomes from cultured HeLa cells with protein IDs ranging from 
1018 (cell cycle G1 phase) to 1932 (G1/S phase) per single cell (Brunner et al., 2022). Though this 
pipeline has provided the opportunity to analyze single-cell-derived proteomes, the workflow requires 
elaborate sample preparation and technical equipment. Furthermore, it has not yet been applied to 
complex tissues harboring multiple cell types.

In conclusion, we present the most extensive proteome compendium of mouse skin and SCN 
described thus far. Our work demonstrates prominent and previously unknown sexual and age dimor-
phism in paw skin and SCN of naïve mice. Many of the reported differences are likely relevant for our 
mechanistic understanding of various disorders involving the skin (e.g., inflammatory pathologies like 
atopic dermatitis and psoriasis) and SCN (motor- and sensory neuropathologies induced by inflam-
mation, trauma, and demyelination). Therefore, our study serves as a unique resource for different life 
science disciplines. In addition, our work advocates for the importance of appropriate age and sex 
matching and provides new avenues for improving the reproducibility, generalizability, and success of 
preclinical and translational research on skin and SCN.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(mouse) C57BL/6J In-house bred

Wild type, female and male, 3-4 
and 1415 weeks old

Chemical compound, drug Acetonitrile Fisher Scientific 10001334

Chemical compound, drug Formic acid Fisher Scientific 15658430

Chemical compound, drug 10× PBS Fisher Scientific 11594516

Chemical compound, drug Tris 1 M Accugene/Avantor 733-1653

Chemical compound, drug Glycerol Fisher Scientific 10021083

Chemical compound, drug Dithiothreitol 1 M Sigma-Aldrich 43816

Chemical compound, drug Acetone Sigma-Aldrich 1000201000

Chemical compound, drug Ethanol Sigma-Aldrich 1117272500

Chemical compound, drug Iodoacetamide Sigma-Aldrich I1149

Chemical compound, drug Ammonium bicarbonate Sigma-Aldrich 09830-500G

Chemical compound, drug Water MS grade Sigma-Aldrich 1.15333.1000

Chemical compound, drug Trypsin/Lys-C Promega V5073

Chemical compound, drug Trypsin Serva 37283.01

Chemical compound, drug Sera-Mag SpeedBead beads Cytiva
65152105050250,
45152105050250 1:1 mix

Other
cOmplete Protease Inhibitor 
Cocktail Roche/Merck 58929700001 Mix of protease inhibitors

Other Protein LoBind tube Eppendorf 0030108116 Reagent tube

Other Aurora Series UHPLC column IonOpticks AUR2-25075C18A-CSI 25 cm × 75 µm column

Other Biopsy punch 4 mm Kai Medical 48401 Skin biopsy punch

Software, algorithm MaxQuant
Max Planck Institute of 
Biochemistry Version 1.6.17.0

Software, algorithm DIA-NN
https://github.com/vdemichev/​
DiaNN RRID:SCR_022865 Version 1.8.0

Software, algorithm R https://www.r-project.org/ Version 4.1.1

https://doi.org/10.7554/eLife.81431
https://github.com/vdemichev/DiaNN
https://github.com/vdemichev/DiaNN
https://identifiers.org/RRID/RRID:SCR_022865
https://www.r-project.org/
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Software, algorithm Mouse proteome database UniProt UP000000589
Downloaded on 2021-07-08, 
17070 entries

 Continued

Reagents
All reagents were purchased from Sigma-Aldrich (St. Louis, MO) if not mentioned otherwise. Aceto-
nitrile (ACN) and formic acid (FA) were purchased from Fisher Scientific (Hampton, New Hampshire; 
both FA and ACN were liquid chromatography-mass spectrometry [LC-MS] grade). LC-MS grade 
water from Sigma was used for all solutions.

Animals and tissue isolation
In-house bred C57BL/6J mice of both sexes were used. Housing and sacrificing of mice were carried 
out with approval of the Max Planck Institute for Multidisciplinary Sciences Institutional Animal Care 
and Use Committee (IACUC, see ‘Ethics statement’). All mice used in this study were group-housed 
in individually ventilated cages in a 12  hr light/dark cycle in the animal facility of the Max Planck 
Institute for Multidisciplinary Sciences with water and food ad libitum. Mice were sacrificed at ages 
3-4 (referred to as 4-week-old mice) or 14-15  weeks (referred to as 14-week-old mice). Thus, the 
experiment consisted of four different conditions with four biological replicates each (4-week females, 
4-week males, 14-week females, and 14-week males). After CO2 euthanization of mice, the SCN and 
paw skin were isolated. SCN was rinsed in ice-cold PBS before flash-freezing in liquid nitrogen. For the 
paw skin, a 4 mm punch biopsy (Kai Medical, Solingen, Germany) of the plantar aspect of the paw was 
taken, and the dermis and epidermis were separated from underlying tendons/muscle tissue under a 
microscope. The flash-frozen tissue was stored at 80°C until further use. For both skin and SCN, tissue 
from two mice of the same sex and age were pooled together as one biological replicate.

Protein extraction
For protein extraction, each SCN was cut into three pieces with a scalpel on a glass slide and trans-
ferred to a protein LoBind tube (Eppendorf, Hamburg, Germany) prefilled with 250 µL lysis buffer 
(100 mM Tris–HCl, 5% glycerol, 10 mM DTT, 2% SDS) and in presence of 1× cOmplete Protease Inhib-
itor Cocktail (Roche, Basel, Switzerland). Samples were then sonicated using Bioruptor Pico (Diag-
enode, Seraing, Belgium) for 15 cycles (30 s on and 30 s off, 4°C) at low frequency. After a short vortex, 
samples were further incubated at 70°C for 10 min with 1000 rpm agitation. Remaining tissue debris 
was removed after centrifugation at 10,000 × g for 5 min, and the supernatant was taken into a new 
tube. To remove lipids in the tissue lysates, 1250 µL (5× sample volume) of cold acetone was added, 
and the sample was placed at 20°C for 4 hr. With centrifugation at 14,000 × g for 30 min, acetone 
was removed, and proteins were collected at the bottom. The protein pellet was further washed with 
1.5 mL cold ethanol (80% v/v) followed by 30 min centrifugation at 14,000 × g. The protein pellet was 
air-dried for 20 min at room temperature before the addition of 100 µL lysis buffer. A further incu-
bation at 70°C for 10 min with 1000 rpm agitation was performed to solubilize all proteins. Protein 
concentrations were measured using NanoPhotometer N60 (Implen, Munich, Germany) at 280 nm, 
and 50 µg protein of each sample was taken for protein reduction (5 mM dithiothreitol [DTT], 30 min 
incubation at 60°C) and alkylation (20 mM iodoacetamide [IAA], 30 min at room temperature in the 
dark). The remaining IAA in the sample was quenched with addition of 5 mM DTT. Skin biopsies were 
cut into two pieces and homogenized in 350 µL lysis buffer with the help of a glass dounce. The 
homogenate was further solubilized by incubation at 70°C for 10 min with 1500 rpm agitation and 
sonification with the Bioruptor Pico (15 cycles, 30 s on and 30 s off, 4°C, low frequency). Removal of 
cell debris and subsequent steps were done as described for the SCN.

SP3-assisted protein digestion and peptide clean-up
For protein clean-up and digestion, a modified version of the single-pot, solid-phase-enhanced 
sample preparation (SP3) method from Hughes et al. was used (Hughes et al., 2019). Briefly, 10 µL 
of pre-mixed Sera-Mag SpeedBead beads (Cytiva, Marlborough, MA) were added into 50 µg protein 
sample. To initiate binding of proteins to the beads, one volume of absolute ethanol was added 

https://doi.org/10.7554/eLife.81431
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immediately, followed by incubation on a Thermomixer (Eppendorf) at 24°C for 5 min with 1000 rpm 
agitation. The supernatant was removed after 2 min resting on a magnetic rack, and the beads were 
rinsed three times with 500 μL of 80% ethanol. Rinsed beads were reconstituted in 50 μL digestion 
buffer (50 mM ammonium bicarbonate, pH 8). Protein digestion was performed with 2 μg of either 
sequencing grade trypsin (SCN samples) or trypsin/Lys-C (skin samples) for 18 hr at 37°C with 950 rpm 
agitation. After digestion, ACN was added to each sample to a final concentration of 95%. Mixtures 
were incubated for 8 min at room temperature and then placed on a magnetic rack for 2 min. The 
supernatant was discarded, and the beads were rinsed with 900 μL of 100% ACN. The rinsed beads 
were reconstituted either in 40 μL (SCN samples) or 20 μL (skin samples) LC-MS grade water to elute 
the peptides. Peptide concentration was measured in duplicate using NanoPhotometer N60 (Implen, 
München, Deutschland) at 205 nm. Peptide samples were acidified with FA to a final concentration of 
0.1% and stored at -20°C until LC-MS/MS analysis.

LC-MS/MS
Nanoflow reversed-phase liquid chromatography (Nano-RPLC) was performed on a NanoElute 
system (Bruker Daltonik, Bremen, Germany). Then, 250 ng of peptides were separated with a 130 min 
gradient on a 25 cm × 75 µm column packed with 1.6 µm C18 particles (IonOpticks, Fitzroy, Australia). 
Mobile solvent A consisted of 2% ACN, 98% water, 0.1% FA, and mobile phase B of 100%, 0.1% 
FA. The flow rate was set to 400 nL/min for the first 2 min and the last 9 min of the gradient, while 
the rest of the gradient was set to 250 nL/min. The mobile phase B was linearly increased from 0 to 
20% from 3 min to 110 min, flowed by a linear increase to 35% within 10 min and a steep increase to 
85% in 0.5 min. Then, a flow rate of 400 nL/min at 85% was maintained for 9 min to elute all hydro-
phobic peptides. NanoElute LC was coupled with a hybrid TIMS quadrupole TOF mass spectrometer 
(timsTOF Pro, Bruker Daltonik) via a CaptiveSpray ion source. Each sample was analyzed in both DIA 
and DDA modes coupled with parallel accumulation serial fragmentation (PASEF) one after another in 
duplicate. The TIMS analyzer was operated in a 100% duty cycle with equal accumulation and ramp 
times of 100 ms each. Specifically, in DDA-PASEF mode (Meier et al., 2018), 10 PASEF scans were 
set per acquisition cycle with ion mobility range (1 /k0) from 0.6 to 1.6, and singly charged precursors 
were excluded. Dynamic exclusion was applied to precursors that reached a target intensity of 17,500 
for 0.4 min. Ions with m/z between 100 and 1700 were recorded in the mass spectrum. In DIA-PASEF 
mode, precursors with m/z between 400 and 1200 were defined in 16 scans containing 32 ion mobility 
steps with an isolation window of 26 Th in each step with 1 Da overlapping for neighboring windows. 
The acquisition time of each DIA-PASEF scan was set to 100 ms, which led to a total cycle time of 
around 1.8  s (Meier et  al., 2020). In both DDA and DIA-PASEF modes, the collision energy was 
ramped linearly from 59 eV at 1/k0 = 1.6–20 eV at 1/k0 = 0.6.

DDA-PASEF data processing
All DDA data were analyzed with MaxQuant (version 1.6.17.0) and searched with Andromeda against 
Mus musculus database from UniProt containing 17,070 protein entries (downloaded on 2021-07-08). 
The minimal peptide length was set to six amino acids, and a maximum of three missed cleavages 
were allowed. The search included variable modifications of methionine oxidation and N-terminal 
acetylation, deamidation (N and Q), and fixed modification of carbamidomethyl on cysteine, and a 
maximum of three modifications per peptide were allowed. The ‘Match between run’ function was 
checked within 0.5  min retention time window and 0.05 ion mobility window. Mass tolerance for 
peptide precursor and fragments were set as 10 ppm and 20 ppm, respectively. The FDR was set 
to 0.01 at precursor level and protein level. Label-free quantification algorithm was used to quantify 
identified proteins with a minimum of one razor and unique peptide. The rest of the parameters were 
kept as default. Proteus, an R package (https://github.com/bartongroup/Proteus), was used for down-
stream analysis of MaxQuant output (Gierlinski et al., 2018).

DIA-PASEF data processing
DIA-NN (Demichev et al., 2020) was used to process DIA-PASEF data in library-free mode with the 
same M. musculus proteome database to generate the predicted spectrum library. Trypsin/P was 
used for in silico digestion with an allowance of maximum three missed cleavages. A deep learning-
based method was used to predict theoretical peptide spectra along with its retention time and 

https://doi.org/10.7554/eLife.81431
https://github.com/bartongroup/Proteus
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ion mobility. Variable modifications on peptides were set to N-term methionine excision, methionine 
oxidation, and N-term acetylation, while carbamidomethylation on cysteine was a fixed modification. 
The maximum number of variable modifications on a peptide was set to 3. Peptide length for the 
search ranged from 5 to 52 amino acids. Aligned with the DIA-PASEF acquisition method, m/z ranges 
were specified as 400–1200 for precursors and 100–1700 for fragment ions. Both MS1 and MS2 mass 
accuracy were set to 10 ppm as recommended. Unique genes were used as protein inference in 
grouping. RT-dependent cross-run normalization and Robust LC (high accuracy) options were selected 
for quantification. The main report from the DIA-NN search was further processed with the R package, 
DiaNN (https://github.com/vdemichev/diann-rpackage; Demichev et al., 2020; Demichev, 2020) to 
extract the MaxLFQ (Cox et al., 2014) quantitative intensity of gene groups for all identified protein 
groups with q-value < 0.01 as criteria at precursor and gene group levels.

Visualization of proteomic data
Pearson’s correlation plots were created with corrplot package (https://github.com/taiyun/corrplot; 
Wei and Simko, 2022). Venn diagrams were plotted using VennDiagram (https://CRAN.R-project.​
org/package=VennDiagram; Chen, 2022), and area-proportional Venn diagrams were created with 
eulerr package (https://github.com/jolars/eulerr; Larsson, 2022). All box plots and bar plots used 
to visualize the proteomic data were created using ggplot2 package (https://github.com/tidyverse/​
ggplot2; Wickham et  al., 2022). In addition, the package ggpubr (https://rpkgs.datanovia.com/​
ggpubr/; Kassambara, 2022) was used for significance tests in comparisons within box plots. PCA 
was performed with the factoextra package (https://rpkgs.datanovia.com/factoextra/index.html; 
Kassambara, 2020), and proteins that were quantified in all biological and technical replicates are 
considered for the analysis. Color-coded tables were prepared in Microsoft Excel 2019.

Differential expression analysis and protein function enrichment
Two samples (Skin_Ma4w-4 and SCN_Fe4w-1) were excluded from the following analysis due to 
significantly lower protein content than corresponding biological replicates. Only proteins quantified 
in ≥ 75% of replicates in each experimental group were submitted to differential expression analysis, 
resulting in 6983 protein IDs and 6827 protein IDs for paw skin and SCN proteomes, respectively. 
Technical duplicates of each biological sample were averaged. These quantitative data were imported 
into the R package, ProTIGY (https://github.com/broadinstitute/protigy; Krug et al., 2021), and log2-
transformed, followed by normalization based on log2-mean intensity. Two-sample moderated t-test 
was used to test for statistical significance test of individual contrasts. Age-dependent comparisons 
(Fe = female; Ma = male): Skin_Fe4w versus Skin_Fe14w, Skin_Ma4w versus Skin_Ma14w, SCN_Fe4w 
versus SCN_Fe14w, and SCN_Ma4w versus SCN_Ma14w. Sex-dependent comparisons: Skin_Ma4w 
versus Skin_Fe4w, Skin_Ma14w versus Skin_Fe14w, SCN_Ma4w versus SCN_Fe4w, and SCN_Ma4w 
versus SCN_Fe4w. Proteins with the adjusted (Benjamini and Hochberg, for multiple testing) p-value 
≤ 0.05 (hereafter referred to as the q-value) and the absolute log2 FC ≥ 0.585, that is, an absolute 
FC of 1.5, were considered as DEPs in each contrast. GO-BP enrichment and visualization of DEPs 
was performed using the pathfindR package (version 1.6.4, https://github.com/egeulgen/pathfindR; 
Ulgen, 2022) in R environment (Ulgen et al., 2019). In general, a threshold of ≥ 4 DEPs and adjusted 
p-value ≤ 0.05 (Bonferroni) was applied for significantly enriched pathways. Due to the low number of 
sex-dependent DEPs found in paw skin and SCN within one age group, a threshold of ≥ 3 DEPs and 
adjusted p-value ≤ 0.05 (Bonferroni) was applied for significantly enriched pathways in dependence 
of sex.
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