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Abstract Novel single-cell-based technologies hold the promise of matching T cell receptor 
(TCR) sequences with their cognate peptide-MHC recognition motif in a high-throughput manner. 
Parallel capture of TCR transcripts and peptide-MHC is enabled through the use of reagents labeled 
with DNA barcodes. However, analysis and annotation of such single-cell sequencing (SCseq) 
data are challenged by dropout, random noise, and other technical artifacts that must be carefully 
handled in the downstream processing steps. We here propose a rational, data-driven method 
termed ITRAP (improved T cell Receptor Antigen Paring) to deal with these challenges, filtering 
away likely artifacts, and enable the generation of large sets of TCR-pMHC sequence data with a 
high degree of specificity and sensitivity, thus outputting the most likely pMHC target per T cell. We 
have validated this approach across 10 different virus-specific T cell responses in 16 healthy donors. 
Across these samples, we have identified up to 1494 high-confident TCR-pMHC pairs derived from 
4135 single cells.

Editor's evaluation
This paper is of interest to immunologists conducting single-cell analyses of T-cell recognition. It 
provides improved means of curating datasets to reduce noise and identify T cell-antigen pairs with 
greater confidence. Experimental data from human virus-specific TCRs are used to validate the 
methodology.

Introduction
T cells are essential for immune protection and play a critical role in the immune response to patho-
gens or cancer, where they directly kill infected or malignant host cells or orchestrate the response 
of other immune cells. Recognition is mediated through the heterodimeric T-cell receptor (TCR) 
expressed on the surface of T cells, which engages specifically with a peptide antigen (p) displayed 
in the MHC. Accurate specificity and broad coverage of antigen recognition are obtained through 
somatic recombination of the genetic loci, V(D)J, that encodes the α (VJ) and β (VDJ) chains of TCR. 
The process creates an extensively variable and dynamic repertoire, with an estimated 107 distinct 
αβTCRs in an individual (Arstila et al., 1999; Davis and Bjorkman, 1988).

Due to this diversity, the individual TCR transcripts can be used as endogenous cellular barcodes 
inherited by the T cell progeny. This has been utilized for providing quantitative insight into TCR diver-
sity (Robins et al., 2009), to trace lineage decisions of T cells (Gerlach et al., 2013) and to monitor 
the dynamics of T cells across immune-related diseases, such as infectious disease (Dziubianau et al., 
2013; Hou et al., 2016), cancer (Kirsch et al., 2015; Sherwood, 2013; Zhang et al., 2018) and 
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autoimmunity (Acha-Orbea et al., 1988; Madi et al., 2014). Most of such TCR repertoire studies 
have been confined to bulk experiments, tracing the TCR β chain because of its greater diversity 
(compared to the alpha chain) and because it is less ambiguous due to allelic exclusion (Bergman, 
1999). However, accurate pairing of the variable TCR α and β regions is valuable for uncovering the 
biological function of a T cell and is generally lost in bulk experiments since the transcripts are sepa-
rately encoded. Moreover, we and others have earlier demonstrated that paired α and β TCR data 
are essential for the characterization and learning of the relationship between the TCR sequence and 
specificity (Montemurro et al., 2021).

To accurately obtain TCR αβ-sequence-pair, single-cell sequencing platforms can be applied to 
simultaneously capture both TCR chains, while retaining cell origin information. To further assign spec-
ificity information to such TCRs, T cells can be stained with barcode-labeled pMHC multimers to 
simultaneously identify pMHC specificity and TCR sequence of individual cells (Bentzen et al., 2016; 
Zhang et al., 2018). Moreover, via DNA barcoded antibodies, the platform facilitates screening of 
surface proteins to distinguish cellular subtypes and enables cell hashing to trace origin of a given 
cell to, for example, a given donor, sample, or time point, which is highly valuable in patient studies.

Here we thus applied single-cell sequencing to describe the T cell specificities toward a set of 
viral-derived peptide-MHC (pMHC) complexes. The pMHCs were selected with the purpose of gener-
ating data to expand the current knowledge of TCR-pMHC interactions, and hence covered pMHCs 
with limited or no paired TCR coverage in the public-domain databases such as IEDB (Vita et al., 
2019) and VDJdb (Bagaev et al., 2020). We deployed the droplet-based single-cell platform from 
10x Genomics. Ideally a droplet contains a single cell with all its analytes and a gel-bead in emulsion 
(GEM). The gel-bead contains barcoded primers that ensures tracing of transcripts back to the cell 
of origin, referred to as GEMs. While the platform is highly promising, the sequence deconvolution 
is associated with substantial noise, and challenging to discriminate true from false signals. Common 
confounding factors include stochastic gene expression, cell cycle variations, apoptosis, and technical 
artifacts such as multiplet capture, contamination, dropout, and batch effects. Dropout and stochastic 
gene expression both result in zero-inflated gene counts and are typically insensitive to low expression 
levels (Buettner et al., 2015; Kharchenko et al., 2014; Yamawaki et al., 2021). Multiplet capture 
is the event of capturing two or more cells in a single GEM, and it is proportional to the capture rate 
of cells introduced to the system (Bloom, 2018; Zheng et al., 2017). The capture rate is determined 
by the rate of pulsing cells relative to the rate of gel-beads. Thus, to include even low-frequency cell 
populations, the capture rate must be high at the expense of introducing more multiplets. Contamina-
tion is particularly an issue when including analytes such as pMHC multimers, which may be dissolved 
in cell suspension (Gaublomme et al., 2019). The platform has no means of controlling how ambient 
analytes and their barcodes are partitioned with GEMs, which leads to GEMs that appear like multi-
plets or consist of ambiguous annotations from multiple analyte barcodes. The reverse issue arises 
from the risk that analytes may dissociate from the cell before capture. The listed confounders may 
result in both false-positive and false-negative discoveries.

The main concerns when screening for TCR specificity are nonspecific binding of pMHC and/or cell 
hashing analytes, incomplete TCR annotation, and T cell multiplets. Nonspecific binding and T cell 
multiplets may completely dilute the signal from actual interactions, while incomplete TCRs that are 
missing the annotation for either α- or β-chain render the single-cell setup superfluous. To ensure that 
a screening is fully exploited and interpreted correctly, we set out to develop a data-driven algorithm 
that facilitates a consistent and reproducible TCR categorization (clonotyping), peptide-MHC (pMHC) 
annotation, and antibody-based cell hashing referencing of the donors and their HLA profile.

We applied this algorithm to a dataset derived from screening PBMCs from 16 healthy donors for 
T cell recognition against common viruses. In total, we evaluated TCR recognition against 10 different 
pMHC multimers, each labeled with their unique barcode. We demonstrate that following the filtering 
steps described here we can obtain a confident pairing of pMHC specificity and TCR sequence. This 
strategy will open novel opportunities to evaluate the structural interplay and the sequence-driven 
signatures of pMHC recognition at large scale.

https://doi.org/10.7554/eLife.81810
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Results
Parallel capture of TCRɑβ sequences, peptide-MHC specificity, and 
sample origin from single cells
To obtain single-cell-derived triad information on TCR sequence, pMHC specificity, and sample origin, 
we stained peripheral blood mononuclear cells (PBMCs) from a total of 16 different healthy donors 
(Supplementary file 1). All samples were stained with the same panel composed of 10 different 
viral-derived pMHC multimers, each labeled with a unique barcode for that specificity and a common 
fluorescent label (allophycocyanin [APC]) (Figure  1; Supplementary file 2). We wished to enrich 
only for TCRs responsive to less commonly reported pMHCs, hence we co-stained the cells with the 
three most commonly reported viral-derived pMHC multimers (all A0201 restricted: GLC, GIL, NLV) 
bearing a different fluorochrome (phycoerythrin [PE]) and labeled with their own unique DNA barcode 
(Supplementary file 2). We sorted only the APC-labeled pMHC multimer binding T cells (and hence 
deselected the PE-labeled T cells) and included these in the downstream single-cell processing.

Prior to sorting, each sample was stained with a distinct hashing antibody to provide a sample 
identification barcode associated with the GEMs of the resultant single-cell data set. This is done to 
enable mixing of cells from different samples, while retaining the information of sample origin, and 
utilizing the capacity of capturing 6000–10,000 cells per lane in the 10x Genomics workflow. This is 
essential when capturing T cells based on their specificity since the MHC multimer-positive population 
is generally of low frequency (<1% of CD8 T cells). When several samples are mixed in the process of 
running the single-cell analysis, all mRNA and DNA barcodes (derived from hashing antibodies or the 
MHC multimers) associated with a given cell will be encoded with the same 10x barcode, proving the 
GEM association (Figure 1; Supplementary file 1).

Total data from simultaneous capture of cell, TCR, pMHC, and sample 
ID
The single-cell data is annotated using 10x Chromium Cellranger multi v6.1. This results in each GEM 
being quantified by a count of unique molecular identifiers (UMIs) (Kivioja et al., 2011) for the three 
components (TCR, pMHC, and sample hashing) based on transcripts of TCR α- and β-chains, barcodes 
co-attached to pMHC multimers and barcodes co-attached to cell hashing antibodies (Supplemen-
tary file 2).

To obtain the data presented here, a total of 1800 pMHC multimer-positive cells were sorted per 
donor irrespective of the frequency or the number of different antigen-specific T cell responses in a 
given sample, accumulating to a total of 28,800 cells sorted (Figure 1—figure supplement 1). All 
sorted cells were loaded into a single lane for 10x processing. Based on experience with pre-sorting 
of low frequent cell populations, this equals a total of 6000–9000 captured cells per lane after running 
the full 10x Genomics 5′ pipeline, and an acceptable doublet rate. This indicates that an appropriate 
proportion of cells are loaded on the Chromium. Initially, each GEM was annotated based on the 
most abundant transcripts from TCRαβ, pMHC, and cell hashing. However, this can lead to erroneous 
annotations as the noise level can differ substantially for the different reagents, resulting in different 
levels of UMIs.

Based on raw, unfiltered data, we found 6073 GEMs that contained all three components, that is, 
TCR, pMHC, and sample hashing, corresponding to 40% of the loaded cells (Figure 2a). A total of 
716,069 GEMs only contained one or two of the components, with the majority containing only the 
cell hashing barcode (n = 677,502) and the second largest share containing cell hashing as well as 
pMHC barcodes (n = 37,277). This number vastly exceeds the number of cells in the assay (15,700 cells 
loaded) and indicates contamination from ambient barcodes in suspension. This is further supported 
by the observation that the sample hashing UMI count was significantly higher (p<0.0005, Mann–
Whitney U) in the 6073 GEMs containing a TCR compared to the GEMs void of TCR (Figure 2b). A 
total of 43,455 GEMs captured a DNA barcode associated with the pMHC library and only 14% of 
these were completed with TCR transcripts and sample hashing barcodes. In the GEMs containing a 
TCR, 84% were completed with all three components, that is, included hashing and pMHC barcodes, 
while less than 0.05% of these GEMs were void of both sample hashing and pMHC barcodes. In the 
following, we will only consider the 6073 GEMs containing all three components, while taking into 
account that the high degree of noise also affects these seemingly completely mapped GEMs.

https://doi.org/10.7554/eLife.81810
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Figure 1. Schematic of experimental design. (A) Schematic of the experimental strategy. All samples are incubated with the same library of barcode-
labeled pMHC multimers and subsequently with a sample-specific barcode-labeled hashing antibody to individually label cells derived from a given 
sample. Multimer-binding cells from all samples are sorted in bulk and processed through the 10x Chromium workflow. The sequencing output 
simultaneously captures the sample barcode, the pMHC barcode, and the TCR sequences, which are all matched to a single cell based on the 
10x barcode. This also provides the means of retrospectively assigning each cell to their sample of origin via the sample-specific hashing barcode. 
(B) Example showing how the allophycocyanin (APC)-labeled pMHC multimers are sorted collectively from all samples into one tube that is further 
carried into the 10x workflow. The phycoerythrin (PE)-labeled pMHC multimers are not sorted and hence deselected. A total of 1800 APC-labeled cells 
are sorted from each donor. Here showing BC126 (large dotplot) and BC341 (small dotplot).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Gating strategy employed for sorting out pMHC binding MHC multimers isolated for single-cell processing.

https://doi.org/10.7554/eLife.81810
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The GEMs are distributed across three categories of TCR and two categories of pMHC observa-
tions: GEMs either missing a TCR chain, contain multiple TCR chains, or contain a unique TCRαβ-pair 
and GEMs containing either a single or multiple pMHC barcodes (Figure 2c). Sample hashing multi-
plets constitute 100% of GEMs containing sample hashing barcodes, and there is both a large propor-
tion of pMHC multiplets (65%) and GEMs missing either α- or β TCR-chain (39%), hence, multiplets 
of pMHC and sample hashing is the predominant issue. Few GEMs were detected with multiple TCR 
α- or β-chains (6%). This may be caused partly by naturally occurring multiplets of α-chain (4%) due 
to the incomplete gene restriction of the thymocyte during negative selection (Elliott and Altmann, 
1995; Petrie et al., 1993) or due to experimental features of the 1ox platform causing an expected 
6.9% of multiplets based on the number of cells loaded in our experiment.

Without further filtering, the pMHC-TCR pairing is subjected to extensive noise (Figure 2d), and 
we capture all the 10 DNA barcodes associated with the APC-labeled pMHCs in a varying number of 
GEMs. Importantly, the three negative control responses (GIL A0201, GLC A0201, and NLV A0201), 

Figure 2. Summary of raw data. (a) Venn diagram of the content of all gel-beads in emulsion (GEMs) from 10x Chromium drop-seq. Each GEM is 
expected to contain three components: transcripts of TCR and DNA barcodes from the target pMHC multimer as well as the sample hashing antibody. 
The Venn diagram illustrates the extent of GEMs with complete capture (capture of all three components) in contrast to the GEMs with incomplete 
capture (capture of a subset of components). (b) Comparison of distributions of unique molecular identifier (UMI) counts of sample hashing barcode 
between GEMs that contain TCR transcripts (TCR-occupied GEMs) and GEMs that do not contain TCR transcripts (TCR-void GEMs) (p<0.0005, Mann–
Whitney U). (c) Matrix of the distribution of pMHC singlets and multiplets across GEMs with TCRs either missing a chain, detected with multiple chains, 
or with a single, unique αβ-pair. The counts are given for each field and illustrated by a color. The lighter color represents higher counts. (d) Scatterplot 
of all detected pMHC barcodes (y-axis) within each of the 6073 GEMs (x-axis) that contain all three components: TCR, pMHC, and sample hashing. In 
each GEM, the most abundant pMHC is marked with green, while the remaining pMHCs in the GEM are gray. The marker size reports the UMI count of 
the given pMHC. The marker shape and color recount whether the HLA allele of the pMHC matches the HLA haplotype of the donor, which is deduced 
from sample hashing (yellow x: non-matching HLA). The fraction of HLA matches within the GEMs displaying a given specificity is annotated to the 
right of the plot. The first colorbar indicates the type of TCR chain annotation; whether the TCR has a unique αβ-pair, is missing a chain or consists of 
multiple chains. The second colorbar is a specificity check against the specificity databases IEDB and VDjdb. Colors highlight the GEMs where the 
CDR3αβ sequences are contained in the databases. The green color represents a match between the database pMHC and the detected pMHC, while 
red indicates a mismatch.

https://doi.org/10.7554/eLife.81810
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which were present in the donors but not sorted, are only captured in a few GEMs; both as the 
most abundant pMHC (GIL: 4 GEMs/clonotypes; GLC: 17 GEMs/clonotypes; and NLV: 12 GEMs/
clonotypes) and as presumed contamination (i.e., examples where the UMI count of the negative 
control(s) was not the most abundant). In this latter case, the vast majority (84%) of the negative 
control pMHCs had UMI counts of 1. Four of the abundant negative control responses matched 
known IEDB/VDJdb responses. This indicates that the cell isolation via sorting is effective in terms of 
capturing only the desired cells and relevant pMHC-associated barcode labels. The most frequently 
detected pMHC across all GEMs is RVR A0301, which is present with high UMI counts across all GEMs. 
Only RPH(10-mer) B0702-associated UMIs was consistently detected at low numbers per GEM. It 
was also evaluated whether the HLA allele of the pMHC matches the HLA haplotype of the donor(s) 
given via cell hashing (Figure 2d). Typically, the mismatches are found in GEMs where the most abun-
dant pMHC is detected at low UMI counts while the matches consist of GEMs with higher pMHC 
UMI counts. Of the 65% GEMs containing pMHC multiplets (Figure 2c), 13% contained two or more 
pMHCs at the exact same UMI level (Supplementary file 3), which may either represent noise or true 
cross-binding events.

The detected specificities in our data have been cross-referenced with the IEDB (Vita et al., 2019) 
and VDJdb (Bagaev et al., 2020) databases (Figure 2d). Based on the unfiltered data, we found 
five TCR-pMHC matches (across nine GEMs) and one TCR (one GEM), which was annotated with a 
different pMHC (Figure 2d). This latter is a case of a GEM with multiple pMHCs present with almost 
equal number of UMIs, where the most abundant pMHC is RVR A0301 (11 UMIs) and the second most 
abundant pMHC is GLC A0201 (9 UMIs), which is the peptide registered as target in IEDB and VDJdb.

The data in Figure  2d suggests that most of the captured T cells interact with several of the 
screened pMHCs to a degree that exceeds the level expected from natural cross-recognition. There-
fore, it is reasonable to assume that a large proportion of these multiplets are formed as a result of 
ambient pMHC leaking into GEMs.

Figure 3. An example of pMHC concordance in clonotype 1 (example from pilot study). (a) All detected pMHC (y-axis) in each gel-bead in emulsion 
(GEM) (x-axis, n = 467) of clonotype 1. The marker size shows the unique molecular identifier (UMI) count for the particular pMHC in a given GEM, and 
the color indicates the pMHC with the highest UMI count, similar to what is shown in Figure 1d. If two pMHCs are equally abundant in a GEM, they are 
both colored. No marker means no detection of that pMHC in that given GEM. (b) The compiled distribution of UMI counts for each peptide (assigning 
0 UMI when the pMHC is not detected in a GEM). The asterisk marks that a Wilcoxon test showed that the UMI counts of TPR B0702 were on average 
higher than for VTE A0101 UMI counts. (c) The specificity concordance across the GEMs of clonotype 1. Concordance is shown by a color gradient, that 
is, the larger the fraction of GEMs supporting a given specificity the darker the color.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Clonotype replicas sharing VJ-CDR3ab.

Figure supplement 2. Distribution of the three categories of TCR chains across different methods of filtering.

Figure supplement 3. Demultiplexing cell hashing using Seurat.

https://doi.org/10.7554/eLife.81810
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A data-driven filtering approach
From these observations, it is clear that a substantial part of the data consists of noise, that is, 
GEMs with multiplets of pMHC and sample hashing, and that the data must be filtered for proper 
interpretation.

Clonotype annotation
The definition of T-cell clones (clonotypes) is fundamental for pairing a given TCR clonotype to its 
respective pMHC recognition. Initial clonotypes were called using 10x Genomics Cellranger, which 
defines a clonotype as a set of cells that share identical receptor sequences at the nucleotide level, 
spanning the entirety of the V(D)J-C genes as well as the junction segments. Assuming reliable gene 
and CDR3 sequence calls by 10x Cellranger, we redefine clonotypes based on TCR annotation. 
Subsequently, GEMs with no clonotype annotation from 10x were annotated to existing clonotypes 
conditioned on matching VJαβ-genes and CDR3αβ sequences or as novel clonotypes. Similarly, clono-
types with identical VJ-CDR3αβ were merged to form larger groups of theoretically identical TCRs 
(Figure 3—figure supplement 1). Merging GEMs of the same TCR is essential to make statistical 
inference based on those groupings, for example, determine expected pMHC target per clonotype. 
The outcome was a set of 2441 TCR clonotypes across the 6073 GEMs containing both TCR and 
pMHC. For the 337 GEMs containing TCR chain multiplets, the most abundant chain per GEM was 
for the subsequent analyses selected to represent the true TCR. Note that this annotation was made 
post the definition of clonotypes and was applied for the TCR inter- versus intra-similarity comparison.

Defining pMHC recognition for selected TCR clonotypes
As we have seen earlier, not all GEMs within a given clonotype support the same pMHC target, and 
defining the pMHC target of a TCR based on individual GEMs thus results in contradicting annota-
tions. The key to identify the expected target for a clonotype is therefore to determine which pMHC 
identity represents the majority of UMIs across all GEMs within a given clonotype. Figure 3 illustrates 
an example from a pilot study that accentuates the importance of studying GEMs in ensemble rather 
than individually. Most GEMs are annotated with multiplets of pMHCs and across all GEMs the most 
abundant pMHC varies. While all pMHCs are found most abundant in at least one GEM, three pMHCs 
(TPR B0702, VTE A0101, and RAK B0801) are more often found most abundant (Figure 3a). Although 
TPR B0702 is detected in fewer GEMs (136) than VTE A0101 (260) and RAK B0801 (186), TPR B0702 
is present at generally higher UMI counts (Figure 3b). It is evident that there is a difference in UMI 
distributions between the different pMHC within the GEMs of a given clonotype, and that TPR B0701 
is the significantly most abundant pMHC across the ensemble of GEMs even though this pMHC is 
only present in a minority proportion of the GEM (Figure 3b). Based on these observations, we argue 
that the significantly most abundant pMHC should be annotated as the expected binder for the given 
clonotype rather than annotating based on the majority.

Having annotated the expected pMHC of a given clonotype, one can next go back to the indi-
vidual GEMs, and label GEMs where the most abundant pMHC corresponds to the expected binder, 
as ‘true,’ and all others as ‘false,’ and use these annotations to quantify the accuracy of the GEM 
annotations. Within each clonotype, one can compute a specificity concordance, that is, the fraction 
of GEMs detected with a certain specificity (defined by most abundant pMHC, i.e., highest pMHC UMI 
per GEM) (Figure 3c). In many cases across the full data set, the expected specificity for a clonotype 
coincides with the specificity, defined on a per-GEM level, resulting in high concordance. However, for 
some clonotypes, for example, clonotype 1, GEMs have diverging annotations and therefore lower 
concordance dispersed across multiple specificities (Figure 3). The clonotype visualized in Figure 3 is 
specifically chosen to exemplify how this lower concordance can affect the analysis. For clonotype 1, 
the fraction of GEMs that support VTE A0101 (0.33) is higher than the fraction of GEMs that supports 
TPR B0702 (0.26). This results in an overall low concordance, and only by considering the complete 
ensemble of clonotype 1 GEMs can the correct pMHC target be identified (Figure 3b).

https://doi.org/10.7554/eLife.81810
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Improving concordance between GEM and clonotype annotation based on 
grid search on UMI features
To rationally filter data, an accuracy metric was defined and optimized through the filtering process. For 
all specificities belonging to clonotypes with an assigned expected target, we calculated the overall 
accuracy as the proportion of GEMs where highest abundance pMHC annotation corresponds to the 
expected target of the clonotype. The raw unfiltered data yielded accuracy and average concordance 
scores of 69.6 and 83.8%, respectively. Next, we set out to investigate how different data-driven 
UMI filters could improve these performance values, removing noise and artifacts from the data. This 
removal would also reduce the number of included observations, hence the performance of different 
thresholds for filtering the data was evaluated based on a tradeoff between increased accuracy and 
discarded number of GEMs.

We tested various thresholds on UMI count and UMI ratios, that is, the ratio between the most 
abundant and second most abundant UMI feature, for pMHC and TCRαβ, respectively. The optimal 
thresholds were chosen to maximize the weighted average between accuracy and fraction of retained 
GEMs to favor increase in accuracy above losing some GEMs. This filtering analysis resulted in optimal 
thresholds of two pMHC UMI counts and a ratio pMHC UMI counts between top one and two >1. The 
latter results in the removal of GEMs where two pMHC were equally abundant for low UMI counts. 
The search did not result in thresholds imposing restrictions on neither TCR UMI counts nor TCR UMI 
ratio, which underpins that the TCRs with a missing chain as well as multiple chains also contribute to 
good performance. Imposing this filter yielded 4986 GEMs (82% of total), 1494 clonotypes (61% of 
total), and resulted in 95.3% accuracy, and a mean concordance of 90.6%.

Additional filters
Additional filters can be added to further clean the data. We investigated how an integrated filter 
in the 10x Genomics software, Cellranger, performed in removing potential noise from our data set 
(Figure 3—figure supplement 2). The filter (labeled ‘is cell’) evaluates whether a GEM has captured a 
cell based on full level of transcriptome data, when available, and otherwise solely on TCR transcript 
level. The filter was tested with both levels of transcript data, full level and TCR transcript level, which 
are respectively referred to as ‘is cell (GEX)’ and ‘is cell.’ Alternatively, viable cells are identified from 
the transcript data, independently of Cellranger, based on mitochondrial load and a minimum and 
maximum gene count per GEM. All three filterings are comparable (Figure 3—figure supplement 
2) and taken into account in the further evaluations. It is worth noting that, while the filterings based 
on the full transcript data might remove slightly more noise, the economic costs associated could 
propose that this should only be applied when the transcript data is required for additional purposes.

Cell hashing is generally a much simpler task to resolve than pMHC multiplets because one hashing 
entry most often has much higher counts compared to the others (Figure 3—figure supplement 
3). Moreover, due to the experimental design, where only one hashing antibody is added to each 
sample, it is expected that only a single hashing signal is associated with each GEM, that is, this does 
not mirror the complex nature of the pMHC data, where cross-reactivity could result in more than 
one pMHC be a true binder to a given TCR. Given this simplicity, we opted for utilizing the existing 
Seurat hashtag oligo (HTO) tool to demultiplex and annotate cell hashing (Stoeckius et al., 2018). In 
this setup, cell hashing also enables filtering based on matching HLA between the donor haplotypes 
and the HLA of the detected pMHC. Including this additional filter reduces the number of GEMs to 
4135 (covering a set of 1494 clonotypes). Additionally, depending on the subsequent use of the data, 
retaining only complete TCRs containing both α and β may be desirable. Including only GEMs where 
the TCR-pMHC pair is observed more than once, that is, specificity multiplets, reduces the uncertainty 
described above. Below we investigate the impact of imposing such filters.

Impacts of filtering
Evaluating filters by comparing TCR similarity across specificity
To objectively evaluate the performance impact of the presented filters, we define a quantitative 
evaluation based on the hypothesis that T cells binding the same pMHC (intra-specificity) will share 
a higher sequence similarity compared to TCRs of different specificities (inter-specificity) (Figure 4). 
Thus, filtering away artifacts should increase intra-similarity while decreasing the inter-similarity. Here, 
the similarity score between two TCRs was calculated from the summed score of the pairwise α- and 

https://doi.org/10.7554/eLife.81810
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β-chain similarities calculated using a kernel method described in Shen et al., 2012 and applied in 
Chronister et al., 2021.

Based on this kernel similarity metric, the filters were tested individually and cumulatively, that is, 
each filter was added to the previous set of filters. The general trend is that TCRs with the same spec-
ificity are more similar to each other than to TCRs of different specificities, when computing the intra- 
and inter-similarities per pMHC before and after filtering on the optimized UMI thresholds (Figure 4a 
and b). Before filtering, 9 out of 13 pMHCs displayed a higher mean intra-similarity than inter-similarity 
scores, whereas this number was 11 out 13 pMHCs when applying the UMI thresholds. The outliers 
before filtering were GIL A0201, VLE A0201, CLG A0201, and RPP B0702, while the outliers were 
reduced to VLE and RPP after filtering. Generally, the similarity scores often have a wide, overlapping 
range between the intra- and inter-categories. The three pMHCs that were deselected during sorting, 

Figure 4. Intra- and inter TCR similarity scores per peptide of the (a) total (unfiltered) data set and (b) the data filtered by the optimized threshold. The 
similarity per peptide plots (a and b) illustrates the distribution of paired similarity scores for each clonotype (containing both α- and β-chain). For each 
pMHC, each clonotype is compared to the remaining clonotypes of the same specificity (intra) and across specificities (inter). The count of compared 
clonotypes is listed just to the right of the y-axis in both (a) and (b). (c) displays the pooled intra- and inter-scores across all peptides for each of the 
filtering methods: total (no filtering), optimal threshold, matching HLA, hashing singlets, complete TCRs, specificity multiplets, ‘is cell’ by cell-flagging, 
‘is cell’ by cell-flagging when including GEX data, and viable cell from analyzing GEX data. An asterisk marks filters where intra-similarity is significantly 
larger than inter-similarity (Wilcoxon, α = 0.05). (d) displays the pooled intra- and inter-scores across all peptides for each of the filtering methods where 
each filtering is added cumulatively to the previously listed above it. An asterisk marks filters where intra-similarity is significantly larger than inter-
similarity (Wilcoxon, α = 0.05). The count of compared clonotypes is listed just to the right of the y-axis in both (c) and (d).

https://doi.org/10.7554/eLife.81810
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GIL A0201, GLC A0201, and NLV A0201, are only detected in a few TCR binding events. To enhance 
the power of comparison, the intra- and inter-scores were pooled respectively across the individual 
pMHCs (Figure 4c and d). The results demonstrate that intra-similarity is significantly higher than 
inter-similarity at each filtering step, both individually and combined. Moreover, we observe that the 
differences between intra- and inter-similarity appear to increase as filters are cumulatively added 
and fewer observations are left (Figure 4d). Particularly, the median inter-similarity score is lowered, 
suggesting that the filtering steps predominantly remove false-positives.

Evaluating filters across selected performance metrics
To compare the effect of the filters, the similarity scores were converted to the performance metric: 
AUC (area under the receiver operating characteristic [ROC] curve). Here, intra-specificity compari-
sons are regarded as true-positive observations and inter-specificity comparisons as true-negatives. 
Based on these performance metric definitions, we quantify the effect of each filtering step (Figure 5) 
and find that the highest accuracy and highest average concordance are obtained by filtering on 
the optimal threshold (95.3 and 90.6%), while the highest AUC is obtained from filtering on speci-
ficity singlets (70.5%) (Figure 5a). Expectantly, the accuracy and average concordance increase when 
the filters are imposed cumulatively (Figure 5b). The accumulation of filters also results in drastic 

Figure 5. Performance metrics for evaluating the filtering steps. Performance is measured by number and ratio of retained gel-beads in emulsion 
(GEMs), accuracy defined by proportion of GEMs where most abundant pMHC matches the expected binder (accuracy), average binding concordance 
(avg. conc.), and AUC of similarity scores (AUC). The filtering steps consist of total (raw, unfiltered data), optimal threshold obtained from grid search, 
matching HLA, hashing singlets identified from Seurat HTO demultiplexing, complete TCRs with a unique set of α- and β-chain, specificity multiplets 
such that each TCR-pMHC pair must be observed in two or more GEMs, is cell defined by 10x Genomics Cellranger, is cell (GEX) defined by Cellranger 
where GEX data is included, and is viable cell defined by mitochondrial load and gene counts. (a) Presentation of the individual effect of each filter. 
(b) Presentation of the accumulated effects of the listed filters.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Overview of ITRAP pipeline steps: ITRAP core actions are colored blue, while supporting steps are colored gray.

https://doi.org/10.7554/eLife.81810
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reduction of the GEMs, and it is evident that one must carefully weigh out the need for specificity over 
sensitivity when selecting the desired set of filters.

We conclude that the minimal filtering must include optimal threshold and matching HLA between 
pMHC and donor haplotype. Filtering on specificity multiplets would inherently result in more reliable 
observations, risking the removal of rare, low-avidity binding events. Generally, we did not find that 
including GEX data improved performance considerably. Finally, filtering on incomplete TCRs yields 
the second highest accuracy and average concordance. Unfortunately, the filter almost halves the 
number of GEMs. Hence, this filtering should be considered depending on future use of the data. An 
overview of the pipeline can be found in Figure 5—figure supplement 1.

Inspecting the filtered data
To determine the impact of the filtering steps, we have compiled the binding concordance for all clono-
types and applied three selected filtering steps: (1) the raw, unfiltered data, (2) filtering on optimal 
UMI thresholds and matching HLA, and (3) additionally filtering on complete TCRs (Figure 6). The raw, 
unfiltered data displays many clonotypes where the most abundant pMHC in GEMs of a given clono-
type are dispersed across multiple of the screened pMHCs (Figure 6a). When imposing the recom-
mended set of filters, optimal threshold, and HLA match, the outliers are greatly reduced, although 
not all low-concordance GEMs are removed (Figure 6b). By additionally filtering on complete TCRs, 
even fewer outliers are left (Figure 6c). Note again that we have purposely deselected T cells specific 
for GIL A0201, GLC A0201, and NLV A0201, explaining the few observations for these otherwise 
frequently recognized epitopes. An overview of gene usage for clonotypes specific for each of the 10 
positive pMHC can be found in Figure 6—figure supplement 1.

Many of the remaining low-concordance GEMs still suggest the improbable event of cross-binding 
across HLA restriction. We suspect that these are artifacts that we have not successfully removed. 
When the most strict filtering is imposed (Figure 6c), there are 77 GEMs (out of 2833) with a binding 
concordance of 0.5 or lower, which will be referred to as outliers. Also, 72 of those GEMs contain 
pMHC multiplets. And 93% of the multiplet outliers actually do contain the pMHC, which defines the 
high-concordance GEMs, however, at a lower UMI count. In the GEMs with multiple pMHC annota-
tions, the HLA is conserved across the pMHCs in 7% of the cases. In 82% of the cases, the HLAs are 
different, but still match the HLA haplotype of the donor given by the cell hashing. Of the 77 outliers, 
the most dominant pMHCs are RVR A0301 (38%) and TPR B0702 (30%). These values are in line with 
the overall contribution of these pMHCs in the GEMs with a binding concordance above 0.5 (34 and 
21%). This suggests that the observed GEMs with low concordance are a result of noise and not a 
reflection of TCR cross-reactivity. Prior to filtering the data, six clonotypes were identified, which were 
already registered in IEDB and VDJdb, five with matching pMHC, and one with a different annotation 
than in our observation (Figure  2d). The five matching clonotypes (nine GEMs) were successfully 
retained, while the mismatching clonotype (one GEM) was filtered away. Four of these nine GEMs 
were negative control responses (two GLC and two NLV) and the remaining five GEMs (across two 
clonotypes) were all responses directed towards FLYALALLL A*02:01. All pMHCs were detected with 
UMI counts ranging from 17 to 46.

Comparing single-cell data with fluorescent-based pMHC multimer 
screening
Investigating dominant clones
Beyond mapping the landscape of known TCR-pMHC interactions, single-cell screening enables inves-
tigation of T cell repertoire diversity. The high resolution both reveals the specificity and the TCR clon-
ality within the individual T cell populations, which is not possible to recover in classical stainings using 
fluorescent-labeled pMHC multimers (fluorescent multimers). The T cell diversity in the nine donors 
toward the set of analyzed pMHCs reveals a clear hierarchy with dominant responses in fluorescent 
multimer staining (Figure 7a); however, the clonality of each specificity is only available via single-cell 
data (Figure 7b). Here ITRAP represents data filtered by optimal UMI thresholds and matching HLA 
between pMHC and donor haplotype (given via cell hashing). Single-cell screening further enables 
comparison of the clonal distribution and the total clonal size per specificity. In this respect, the 
samples BC328 and BC62 are strikingly similar in their distribution of expanded clones. They both 
display a large and broad response toward RVR A0301 and two smaller responses toward RPP B0702 

https://doi.org/10.7554/eLife.81810
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Figure 6. Specificity per clonotype. The library peptides are listed on the y-axis and each clonotype is represented on the x-axis. Below the x-axis 
is annotated the total number of clonotypes and gel-beads in emulsion (GEMs) in the presented data. The marker size shows the number of GEMs 
supporting a given specificity. The color indicates the binding concordance that is calculated as the fraction of GEMs within a clonotype that support 
a given pMHC. The higher the concordance, the larger the fraction of supporting GEMs. The three plots illustrate the impact of three filtering criteria. 
(a) presents raw data with no filtering applied. (b) presents data filtered on optimal threshold and HLA matches. (c) presents data filtered as in (b) 
with the additional requirement of only complete TCRs (note that cell hasting filtering was not included here). A summary of the specificity singlet 
distribution for each subfigure is presented in Supplementary file 5.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Gene-gene pairing of V and J gene segment usage for each TCR chain.

https://doi.org/10.7554/eLife.81810
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Figure 7. T cell diversity per peptide across the individual samples. The nine samples, PBMCs from nine individual donors are represented on the 
x-axis. The marker size defines the distribution of T cells recognizing a given peptide, normalized per sample. (a) The T cell frequencies are visualized 
as the proportion of a given multimer-positive response within a donor. The black markers represent responses detected above the threshold, that is, 
≥10 cells and ≥0.002% of total CD8 T cells, or ≤10 cells but ≥0.01% of total CD8 T cells. The gray dots represent detected specificities below threshold 
but represented by ≥2 cells. Summed frequencies of detected responses within a donor are given as % of total CD8 T cells and listed just above the x-
axis. (b) The T cell frequencies are based on gel-bead in emulsion (GEM) counts normalized per sample from the single-cell data. Absolute GEM counts 
per sample are listed above the x-axis. The marker is colored by the fraction of GEMs within a specificity that originate from a given sample. Absolute 
GEM counts per peptide are listed to the right of the plot. The marker contains a donut diagram illustrating the distribution of clonotypes specific for 
the given peptide in the given sample. The wedge that represents the dominant clone is colored according to the center of the donut. Remaining 
clones (>1 GEM) are anthracite gray, and all clonotypes only supported by one GEM only are pooled and represented by a single light gray wedge. 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.81810
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and TPS B0702, which are both dominated by a single clonotype. Further, most peptides elicit diverse 
relative responses between samples. For example, RPP B0702 is the dominant response in samples 
BC328 and BC62, but the minority response in sample BC314. Sample BC300 contains primarily small 
clones, that is, fewer cells in each clonotype; however, this sample is generally represented with low 
amounts of total data (46 GEMs). Of note, small clones might be a result of suboptimal single-cell 
capture or because high-frequency responses can potentially mask any lower frequency responses 
present in a given donor (Supplementary file 4) when only 1800 cells are sorted from each sample. 
Samples represented with many GEMs are expected to be fully covered and therefore may contain 
more different expanded clonotypes, as sample BC360.

Evaluating ITRAP by ‘ground truth’ of fluorescent-based pMHC multimer 
screening
The net overlap of identified T cell responses between the two screenings (Figure 7a and b) is esti-
mated to 0.63 by Matthew’s correlation coefficient (MCC). Most of the T cell populations detected 
by fluorescent multimers are also captured in the single-cell screening, reflected by a recall of 0.95. 
However, the single-cell capture of small T cell clones (Figure 7b) that were not detected using fluores-
cent multimers (Figure 7a) negatively impacts the precision, yielding a score of 0.71. For fluorescent-
labeled MHC multimers, a detection threshold of 10 events is applied, which may account for the 
difference observed for the very rare clone, of which most were only represented by one GEM per 
clonotype (demonstrated by a light gray outer circle in Figure 7b). In only two cases, T cell popula-
tions were detected with fluorescent multimers but not captured in single cells: BC316/CLG A0201 
and BC62/RPH(10mer) B0702 (Figure 7a). The large T cell population of BC316/CLG A0201 was likely 
a technical artifact related to the barcode-labeled pMHC multimers.

We calculated the number of antigen-specific T cells sorted per donor, based on the total number 
of sorted cells/donor (n = 1800) and the frequency of each T cell population (Figure 7c and Supple-
mentary file 4). This number of sorted cells for a given specificity was strongly correlated with the 
numbers of single-cell GEMs assigned to the same specificity (Pearson correlation coefficient, PCC 
= 0.73, p<0.0005). Hence, even though many of the TCR-pMHC pairs are found across low numbers 
of GEMs, the strong correlation indicates that we can confidently assign pMHC specificity to the TCR 
sequence using ITRAP even in these cases. This is an essential feature of such analyses tool since indi-
vidual antigen-specific T cell responses are often present at very low frequencies and patient material 
is often scarce. Hence, to conduct biologically relevant studies, strategies that enable the investiga-
tion of the breadth of antigen-specific T cell responses are required. We also fitted a linear regression 
for T cell populations sorted and assigned with at least one adjusted cell count or GEM in the log-log 
space (R2 = 0.56). The regression indicates that ~10% of sorted cells will be captured in a single-cell 
screening with TCR-pMHC information yielded by ITRAP.

Discussion
Here, we have described and validated ITRAP, a data-driven approach for Improved Pairing of T cell 
Receptor and Antigen. We have successfully filtered single-cell 10x Genomics data to identify reliable 
TCR-pMHC interactions of up to 1494 clonotypes. The method can be adapted to any single-cell 
immune profiling data set and is highly transparent in the steps taken, allowing the user to choose 
appropriate stringency of filtering.

Comparing the sizes of the T cell populations for each specificity per donor between the two screening methods in (a) and (b) yielded the following 
Spearman correlations: BC126 (1.00, p<0.0005), BC328 (0.90, p=0.006), BC355 (0.74, p=0.02), BC360 (0.89, p=0.04), BC314 (0.90, p=0.04), and BC353 
(1.00, p<0.0005). (c) Representative example showing the four different responses detected with fluorescent-labeled pMHC multimers in donor BC126. 
(d) Correlation between T cell responses detected by fluorescent-labeled MHC multimers (y-axis) and single-cell capturing (x-axis). Correlation is given 
by Pearson correlation coefficient 0.73 (p<0.0005). The responses from fluorescent-based screening are given as an adjusted number of cells based on 
the detected response frequency out of 1800 cells (see calculations in Supplementary file 4). The hollow markers represent responses below detection 
threshold as described in (a). The responses are colored by the donor-of-origin. BC mix corresponds to BC311, BC11, BC83, BC88, BC341, BC342, and 
BC76.

Figure 7 continued

https://doi.org/10.7554/eLife.81810
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Our recommended approach of cleaning data with minimal elimination of GEMs is obtained by 
two sets of filters: (1) the optimized data-driven UMI thresholds combined with (2) information on 
matching HLA specificity (as obtained from donor-specific hashing). Increasing filtering is naturally at 
the expense of the number of GEMs that might reflect the trade-off between specificity and sensitivity 
of the assay. However, any benchmarking or validation is made difficult without a golden standard. 
Our best attempt at quantifying the impact of filtering is based on three metrics: annotation accuracy, 
binding concordance, and AUC of clonotype similarity for which ITRAP yielded the scores 96.2, 92.3, 
and 66.7, respectively. Evaluation of ITRAP with responses from fluorescent pMHC multimer staining 
revealed strong correlation (PCC = 0.73, MCC = 0.63) between the number of sorted T cells and the 
number of detected GEMs across all specificities.

Accuracy of pMHC annotation was based on selected clonotypes where the expected target was 
statistically distinct and UMI thresholds were set to optimize the annotation accuracy. Rare clonotypes 
are not considered in this metric and clones are not expected to display cross-reactivity amongst the 
included pMHC multimers. The optimal UMI thresholds are intended to remove observations devi-
ating from the expected target. The thresholds are based on the assumption that contamination will 
predominantly exist at lower UMI counts than actual binding events. This limits the sensitivity of the 
method in cases of low-affinity low-frequency interactions that otherwise might be of great scientific 
and clinical interest. It is, however, essential to underline that ITRAP does not explicitly exclude cross-
reactivity, and cross-reactive events are maintained after threshold filtering if such GEMs exist with 
proper UMI count values. This is in contrast with other tools where cross-reactive events are explicitly 
excluded.

The binding concordance is a metric that highlights cross-reactive clonotypes. In assays where 
cross-reactivity is not an expected outcome, binding concordance can be useful to evaluate the 
clonotypes where an expected target could not be identified. On the contrary, for data where T cell 
cross-recognition is of particular interest, the binding concordance can be used to establish the rela-
tive TCR binding contribution of each of the attributed pMHC targets. Growing evidence points to 
the relevance of T cell cross-recognition in both infectious disease (Dowell et al., 2022) and cancer 
(Fluckiger et al., 2020). Hence, novel tools to interrogate this phenomena on a single T cell level are 
highly warranted.

The last evaluation metric, AUC of clonotype similarity, is based on the assumption that T cells 
sharing specificity have more similar TCR sequences than T cells of different specificities (Chronister 
et al., 2021). This approach showed increasing separation of intra-specificities and inter-specificities 
as filters were cumulatively added, indicating that nonspecific binders were effectively removed. To 
further increase the AUC, discarding clonotype singlets (i.e., TCR clonotypes represented by only 
one GEM) was the best single filtering step to improve the AUC of similarity scores (AUC = 70.5, 
Figure 5a). This likely reflects that a fraction of such clonotype singlets represents nonspecific binding 
events. However, removing these as a standard procedure of ITRAP results in a substantial loss of 
TCR capture, represented by all T cell specificities with a light gray outer circle in Figure 7b. Thus, 
when aiming for capture of very low-frequency T cell specificities, a balance should be made between 
including this more stringent filtering step, or including such events, as demonstrated here.

The UMI thresholds identified by ITRAP are data specific and cannot be universally applied but 
must be fitted for individual experiments. To investigate this and the robustness of ITRAP further, we 
have in a recent publication (Povlsen et al., 2023) applied the method to the large 10x Genomics 
data set available at https://support.10xgenomics.com/single-cell-vdj/datasets. In short, we find that 
the ITRAP method also for this data set was capable of accurately denoising the raw data. This accu-
racy was manifested not only through highly improved internal performance (concordance, accuracy, 
and AUC) metric values, but also in improved predictive power of a NetTCR (Montemurro et al., 
2022) machine learning method trained on the denoised data. Due to the very different experimental 
settings in the two data sets, the obtained UMI-based filtering thresholds as expected varied between 
the two studies. This indicates the high strength of ITRAP being robust at being applied to data 
generated in very different biological and technical settings.

Other than investigating the robustness of ITRAP, the paper also benchmarked ITRAP perfor-
mance against ICON (Integrative COntext-specific Normalization) (Zhang et al., 2021). ICON was 
similarly developed for denoising and discriminating true TCR-pMHC binding signal from nonspecific 
background noise in single-cell data. The results from this benchmark suggested an overall superior 

https://doi.org/10.7554/eLife.81810
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performance of the ITRAP method compared with the ICON method in terms of both data consis-
tency and performance.

ICON was developed based on the public 10x Genomics data that includes 6 negative control 
pMHCs (Boutet et al., 2019) and 44 pMHC for positive selection of T cell populations. Comparing our 
method with ICON suggests that we present a more flexible and customizable approach. Where ICON 
yields a specific data set (Zhang et al., 2021), the ITRAP method allows varying yields, depending on 
the level of filtering applied. The ITRAP method requires haplotype information for optimal filtering, 
which ICON does not consider resulting in ~15% mismatched HLAs of their specificity annotations. 
Further, we believe that negative control pMHCs may provide false confidence as we do not know the 
limits to T cell specificity. For both methods, a particular awareness should be assigned to properly 
handle the range of affinity displayed by different clonotypes. One clonotype may display natural 
low affinity toward its cognate target, which might appear like noise in the comparison to other high-
affinity clonotypes. This diversity in signals is challenging to handle in a one-fit-all filtering process, and 
for projects with specific interest in low-affinity cell interactions, a specific focus should be addressed 
not to lose such information.

Effective pairing of TCR and pMHC will open new avenues to interrogate T cell recognition and 
the role of different T cell populations in pathogenic processes. Intensive efforts have been made 
to identify antigen specificity based on the TCR sequence (Gielis et al., 2019; Montemurro et al., 
2021; Moris et al., 2021; Sidhom et al., 2021; Weber et al., 2021; Zhang et al., 2021), and access 
to both TCR α- and β-chain is important to improve such prediction strategies (Montemurro et al., 
2021).

The coveted data is ensured via the ITRAP framework for single-cell data of TCRs and associated 
barcodes. The perspectives of further exploiting the transcriptomic information, allowing in-depth 
tracking of specific T cell subsets based on the clonotypes, suggest that we are on the verge of 
achieving substantial novel insight to T cell involvement and behavior in health and disease.

In conclusion, we have demonstrated that ITRAP is a highly flexible tool for denoising sc-pMHC 
TCR data to identify the most likely pMHC-TCR pairs. The validation of the tool will benefit from future 
studies where the pMHC specificities of TCRs may be experimentally validated. Here, we provide a 
first important step toward this by enabling researchers identifying the most likely pair to proceed 
with also for very low frequent T cell populations.

Methods
All healthy donor material was collected from the central blood bank at the university hospital, 
Rigshospitalet, Copenhagen (under the agreement no. BC29). Collection was done under approval 
by the Scientific Ethics Committee of the Capital Region, Denmark, and written informed consent was 
obtained according to the Declaration of Helsinki. This material is fully anonymized.

Cell samples
PBMCs from healthy donors were isolated from whole blood by density centrifugation on Lymph-
oprep (Axis-Shield PoC) and cryopreserved at −150°C in FCS (Gibco) + 10% DMSO.

DNA barcodes and dextran conjugation
Oligonucleotides modified with a 5′ biotin tag were purchased from LCG Biosearch Technologies 
(Denmark). Read from 5′ to 3′, the oligonucleotides were designed with the 10x equivalent Read2N 
sequence, a 10 nt UMI, a distinct 15mer nucleotide sequences (extracted from Xu et al., 2019), a 
9 nt UMI and ending in a 13 nt capture sequence complementary to the TSO of the 10x 5′ capture 
oligo (sequences are listed in Supplementary file 1). Barcodes were dissolved to 100 μM in RNAse-
free water and stored at −20°C. For a working solution, the DNA barcodes were further diluted 
in PBS + 0.5%  BSA + 1  mg/mL herring DNA + 2  mM EDTA to 2.17  μM and attached to PE- or 
APC- and streptavidin-conjugated dextran from FINA Biosolutions LCC (USA). The amount of DNA 
barcode attached to each new lot of dextran was titrated as described in Bentzen et al., 2016. DNA 
barcodes were attached by mixing with dextran-conjugate, followed by incubation, 30 min at 4°C. 
DNA barcode-assembled dextran-conjugates were stored for up to 24 hr at 4°C.

https://doi.org/10.7554/eLife.81810
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Peptides and MHC monomer production
Peptides were purchased from Pepscan (Pepscan Presto) and dissolved to 10 mM in DMSO. UV-sen-
sitive ligands were synthesized as previously described (Bakker et al., 2008; Rodenko et al., 2006; 
Toebes et al., 2006). Recombinant HLA-A*0201, HLA-A*0301, and HLA-B*0702, heavy chains, and 
human β2 microglobulin light chain were produced in Escherichia coli. HLA heavy and light chains 
were refolded with UV-sensitive ligands and purified as described in Hadrup et al., 2009. Specific 
peptide-MHC complexes were generated by UV-mediated peptide MHC exchange (Chang et al., 
2013; Frøsig et al., 2015; Rodenko et al., 2006; Toebes et al., 2006).

Generation of DNA barcode-labeled MHC multimer libraries
Unoccupied SA-binding sites on the DNA barcode-assembled dextran conjugates were used for the 
co-attachment of biotinylated pMHC molecules. 0.8  pmol pMHC monomer was mixed with 160× 
10–15 mol DNA-barcoded dextran-conjugate and incubated 30 min at room temperature (RT). MHC 
multimers were diluted in PBS with 5.2 μM d-biotin (Avidity, Bio200) to 909 nM and incubated 20 min 
on ice. DNA-barcoded MHC multimers were stored for up 1 wk at −20°C (PBS supplemented with 
glycerol and BSA, final concentrations 5 and 0.5%, respectively). Immediately before staining barcode-
labeled MHC multimers were thawed at 4°C, centrifuged (5 min at 3300 × g), and pooled (0.8 pmol 
of each pMHC/sample) to enable the detection of multiple T-cell responses in parallel. The pooled 
MHC multimers were centrifuged once more; 5 min at 3300 × g, to sediment aggregates before the 
volume of the reagent pool was reduced by ultrafiltration to obtain a final volume of ~80 μL of MHC 
multimers as described in Bentzen et al., 2016. Any aggregates in the MHC multimer reagent pool 
were sedimented by centrifugation, 5 min at 3300 × g before addition to the cell sample.

MHC multimer staining
Cryopreserved PBMCs were thawed and washed by sedimentation, 5 min, 390 × g, 4°C, in RPMI + 
10% FCS. Cells were further washed in a barcode-cytometry buffer (PBS + 0.5% BSA). 5 × 106 cells 
were incubated, 60 min, 4°C, with pooled DNA-barcoded multimers in a total volume of 100 μL (final 
concentration of each distinct pMHC, 8 nM), and washed three times by sedimentation, 5 min, 390 × 
g, 4 °C. 5 µL of Human TruStain FcX Fc Blocking reagent was added to a total of 50 µL cell suspension, 
and incubated 10  min, 4°C. Hashing antibodies (BioLegend, TotalSeq-C0251 anti-human Hashtag 
1-10 Antibodies) were centrifuged 10 min, 14,000 × g, 4°C, and 0.5 µL were added to each a distinct 
sample (Supplementary file 2), and incubated 15 min, 4°C. Next a 5× antibody mix composed of 
CD8-BV480 (BD 566121, clone RPA-T8) (final dilution 1/50), dump channel antibodies: CD4-FITC (BD 
345768) (final dilution 1/80), CD14-FITC (BD 345784) (final dilution 1/32), CD19-FITC (BD 345776) 
(final dilution 1/16), CD40-FITC (Serotech MCA1590F) (final dilution 1/40), CD16-FITC (BD 335035) 
(final dilution 1/64), and a dead cell marker (LIVE/DEAD Fixable Near-IR; Invitrogen L10119) (final 
dilution 1/1000), was mixed for each sample. The antibody mix was added to cell samples and incu-
bated 30 min, 4°C. Cells were washed three times in barcode-cytometry buffer and kept on ice until 
acquisition.

Cell sorting
Cells were sorted on a FACS Melody (BD) into tubes containing 100 μL of PBS + 0.5% BSA (tubes were 
saturated with PBS + 2% BSA in advance). Using FACS Chorus software, we gated on single, live, CD8-
positive and ‘dump’ (CD4, 14, 16, 19, and 40)-negative lymphocytes and sorted only APC-positive 
(PE-negative) cells within this population (Figure 1—figure supplement 1 for gating strategy). Cells 
sorted from individual samples were collected into the same tube (Figure 1b). The sorted cells were 
centrifuged for 10 min at 390 × g, and the buffer was removed.

DNA barcode-labeled MHC multimer stained cells on 10x platform
We utilize the 10x 5′ v2 chemistry that allows the cell barcode to be appended at the 5′-end of tran-
scripts, which is essential for capturing the CDR3 region of the V(D)J transcripts. In the 5′ chemistry, 
the template switch oligo (TSO) is encoded with a cell barcode, that is, one unique 10x barcode for 
every GEM. The TSO thus comprises the capture oligo, whereas the poly-dT primer is added in free 
suspension. Reverse transcription is initiated from binding of the poly-dT primer at the 3′-end, and 
mRNA is captured when the reverse transcriptase enzyme switches at the 5′-end of the transcript 

https://doi.org/10.7554/eLife.81810
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to the TSO. All DNA barcodes, partially complementary to the 10x Genomics 5′ TSO, are captured 
directly onto the GEMs. Annealing and extension during the reverse-transcription reaction associate 
the cell barcode and UMI from the gel-bead oligo with the pMHC and hashing antibody tags in 
parallel with the mRNAs in the same droplet.

Downstream processing of mRNA and DNA barcodes is performed according to the manufactur-
er’s instructions (Chromium Next GEM Single Cell 5' Reagent Kits v2 [Dual Index], with the Feature 
Barcode technology for Cell Surface Protein & Immune Receptor Mapping) (10x Genomics, USA). 
Approximately 15,700 cells were loaded (based on 55% recovery from 28,800 sorted cells) to yield 
a maximum of 9000 cells with an intermediate/high doublet rate (6,9%). Targeted amplification was 
performed for 13 cycles and the products were separated according to size into  <400  bp (DNA 
barcode-tags) and  >400  bp (the TCR sequences) using 0.6× SPRIselect beads (Beckman Coulter, 
B23318). Separate processing of the >400 bp bead-bound TCR sequences and the <400 bp in solu-
tion DNA barcodes was conducted according to the manufacturer’s instruction and the TCR amplifi-
cation products were sequenced on a NovaSeq running a 150 paired-end program. DNA barcodes, 
TCR sequences, and mRNA were sequenced to a depth of 13,332, 12,503, and 18,398 mean reads 
per cell, respectively.

Bioinformatics
Processing of 10x single-cell data
Hashing barcode reads, peptide-MHC barcode reads, and T cell gene expression reads were provided 
in fastq format and were processed using 10x Genomics Cellranger multi v6.1.0 (10xGenomics, 
2022b). The relevant outputs were the unfiltered count matrices of DNA barcodes and gene expres-
sion as well as clonotype annotations of each sequencing contig containing CDR3α/β sequences, V(D)
J-C genes, and UMI counts.

Postprocessing 10x Cellranger clonotyping
The raw contig annotations from Cellranger were selected for downstream analysis with filtering on 
incomplete and unproductive receptor transcripts. Incomplete contigs are not full length, that is, do 
not span the V-gene start codon until the J-gene stop codon. Unproductive contigs contain a frame-
shift that either induces an early stop codon or completely removes the stop codon.

Clonotypes defined by 10x were merged when consisting of identical VJ-CDR3αβ, thus reducing 
functional duplicates.

Cellranger flags rare nucleotide transcripts as likely artifacts, meaning the GEMs are flagged as 
unlikely to contain a cell and are therefore not assigned a clonotype (10xGenomics, 2022a). There-
fore, GEMs that were not annotated with a clonotype were imputed by searching the duplicate-
reduced clonotype set. If no match, a new clonotype ID was annotated to the GEM.

Filtering based on gene expression
Filtering on gene expression data was performed as described in Zhang et al., 2021. Low-quality 
GEMs such as doublets may be removed by excluding GEMs with more than 2500 genes. Dead cells 
may be removed by excluding GEMs with fewer than 200 genes and a ratio of mitochondrial gene 
expression to the total gene expression above 0.2.

Demultiplexing samples via cell hashing
Cell Hashing uses oligo-tagged antibodies against ubiquitously expressed surface proteins to place 
a sample barcode on each single cell, enabling different samples to be multiplexed together and 
run in a single experiment. To demultiplex the samples, the method presented by Stoeckius et al. 
was implemented (Stoeckius et al., 2018). The method clusters the normalized count matrix using 
k-medoid clustering into k clusters, ‍k = nsamples + 1‍. For each barcode, a negative binomial distribu-
tion is fitted to the pool of all clusters except the cluster with the highest average expression for 
the given barcode. Each GEM is classified as positive if the barcode value exceeds a 0.99 quan-
tile threshold for the negative distribution, and otherwise classified as negative. If GEMs contain 
multiple barcodes that pass the threshold, the GEM is annotated as a doublet (Stoeckius et al., 
2018).

https://doi.org/10.7554/eLife.81810
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Defining the expected binder
The pMHC and cell hashing barcode annotations were merged with the T cell annotations on the 
GEMs that contained both TCR and pMHC attributes. Each clonotype is expected to have a preferred 
target within the pMHC library, thus each clonotype is evaluated to find the pMHC, which is most 
likely to be that target.

Each clonotype is evaluated to identify the expected target within the pMHC library. The pMHCs 
that are detected within the GEMs annotated to a given clonotype are compared by their UMI count 
distribution. The two pMHCs that have the highest mean UMI count are compared, testing the 
hypothesis that the expected binder will have a significantly higher mean UMI count than the other 
pMHC (Wilcoxon, α = 0.05). Clonotypes of less than 10 GEMs were not tested. The clonotypes where 
the mean UMI of the top two pMHCs was significantly different were collected as a training set. The 
pMHC that had significantly higher mean UMI was annotated as the expected target and specificity 
annotations of the GEMs were individually evaluated. True interactions were then defined as GEMs 
where the most abundant pMHC matched the identified expected target. The GEMs where the most 
abundant pMHC did not match the expected target were labeled as false interactions. The GEMs 
belonging to clonotypes where no expected target was identified were left out.

Defining specificity concordance
Concordance is an indirect measure of how cross-reactive a certain clonotype is. Specificity concor-
dance is defined as the ratio of GEMs of a single clonotype that are annotated to bind a particular 
pMHC. The more GEMs in a clonotype annotated to the same pMHC the larger concordance. If a 
clonotype is only detected with one pMHC, the specificity concordance is 1.

Grid search on UMI features
Based on the labels of the training set, a performance metric, o, was defined to evaluate the accu-
racy at increasing thresholds for UMI count and UMI ratio of pMHC, α-chain, and β-chain. The UMI 
ratio measures multiplets and is defined as the ratio between the highest UMI count and the second 
highest UMI count in a GEM:

	﻿‍
UMIratio = UMImax

UMIsec + 0.25‍�

A small number (0.25) was added in the denominator to avoid division by zero.
The performance metric, o, is a weighted average of accuracy and fraction of retained GEMs, given 

by the following equation:

	﻿‍
o = 2 · acc + fretained GEMs

3 ‍�

The accuracy metric is defined by the ratio of training set GEMs that were labeled as true interactions 
over the total number of GEMs in the training set. The performance metric, o, was maximized by 
finding the set of filters that increase the accuracy without excluding too much data.

The thresholds for filtering were selected from a complete grid search. Each feature was tested 
in the range of 0 to the median value, determined ad hoc from the experience that thresholds never 
approached the median value.

Comparing TCR similarity
Effects of filtering were also evaluated through a comparison of TCR similarity. The similarity score 
is based on the kernel similarity score underlying the TCRmatch method between CDR3 sequences 
(Chronister et al., 2021). This score can be calculated for CDR3s of variable length and takes a value 
between 0–1, with the value of 1 representing identical pairs. As both the α- and β-chain partake in 
the pMHC interaction, TCRs will be compared based on the summed similarity between the α- and 
β-chains, and GEMs missing a chain will be excluded to avoid bias. Two similarity scores are computed 
for each unique TCRαβ-pair (per clonotype): an intra-score and an inter-score. The intra-score is based 
on the maximum similarity of the given clonotype to all other clonotypes sharing its pMHC target 
(intra-specificity). The inter-score is based on the maximum similarity of the given clonotype to an 

https://doi.org/10.7554/eLife.81810
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equal-sized set of clonotypes specific to other pMHC targets (inter-specificity). The computation is 
done peptide-wise, such that clonotypes with maximum concordance for a given peptide will, for 
that peptide, be included in an intra-similarity score, but for another peptide be included in an inter-
similarity score. Clonotypes consisting of GEMs causing diverging specificities were limited to the 
expected target pMHC or, if nonexisting, to the specificity of highest concordance to avoid potential 
overlaps from ‘cross-reactive’ clonotypes in the computation.

The similarity difference between intra- and inter-specificity clonotypes was tested for the hypoth-
esis that intra-similarity is greater than inter similarity (Wilcoxon, α = 0.05). The similarity test was 
performed on all filtering methods described in the paper.

Validating single-cell capture against fluorescent multimer staining 
responses
The 16 donors were known to respond to the panel of peptides used in the screening. Response 
proportions of sorted CD8+ T  cells were detected by fluorescent multimer staining, as described 
previously. A total of 1800 cells were selected from each donor and, based on the detected response 
proportions, an adjusted count of cells could be computed. Cells were selected based on two criteria: 
≥10 cells and ≥0.002% of total CD8 T cells, or ≤10 cells but ≥0.01% of total CD8 T cells. The multimer 
responses were compared to GEMs filtered on UMI thresholds and matching HLA. To visually compare 
the two screening methods, the responses were normalized within each sample and plotted side-by-
side. The methods were also quantitatively compared, both in absolute counts of responses and as 
binary classes with multimer responses as true labels and single-cell responses as query labels.

The correlation in Figure  7d was also fitted via linear regression on log10 transformed data, 
resulting in the following equation:

	﻿‍ log10
(
y
)

= 0.86 · log10
(
x
)

+ 1.18, R2 = 0.56‍�

The equation was used to estimate the yield of single-cell captured cells relative to multimer screening. 
Three examples were computed to estimate an approximate 10% yield.

	﻿‍ log10
(
10

)
= 0.86 · log10

(
0.6

)
+ 1.18‍�

	﻿‍ log10
(
100

)
= 0.86 · log10

(
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