A cell wall synthase accelerates plasma membrane partitioning in mycobacteria

  1. Takehiro Kado
  2. Zarina Akbary
  3. Daisuke Motooka
  4. Ian L Sparks
  5. Emily S Melzer
  6. Shota Nakamura
  7. Enrique R Rojas
  8. Yasu S Morita  Is a corresponding author
  9. M Sloan Siegrist  Is a corresponding author
  1. University of Massachusetts Amherst, United States
  2. New York University, United States
  3. Osaka University, Japan

Abstract

Lateral partitioning of proteins and lipids shapes membrane function. In model membranes, partitioning can be influenced both by bilayer-intrinsic factors like molecular composition and by bilayer-extrinsic factors such as interactions with other membranes and solid supports. While cellular membranes can departition in response to bilayer-intrinsic or -extrinsic disruptions, the mechanisms by which they partition de novo are largely unknown. The plasma membrane of Mycobacterium smegmatis spatially and biochemically departitions in response to the fluidizing agent benzyl alcohol, then repartitions upon fluidizer washout. By screening for mutants that are sensitive to benzyl alcohol, we show that the bifunctional cell wall synthase PonA2 promotes membrane partitioning and cell growth during recovery from benzyl alcohol exposure. PonA2's role in membrane repartitioning and regrowth depends solely on its conserved transglycosylase domain. Active cell wall polymerization promotes de novo membrane partitioning and the completed cell wall polymer helps to maintain membrane partitioning. Our work highlights the complexity of membrane-cell wall interactions and establishes a facile model system for departitioning and repartitioning cellular membranes.

Data availability

Sequencing data have been deposited in NIH SRA under accession codes PRJNA976743.All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all Figures and figure supplements.

The following data sets were generated

Article and author information

Author details

  1. Takehiro Kado

    Department of Microbiology, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5419-6123
  2. Zarina Akbary

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daisuke Motooka

    Department of Infection Metagenomics, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Ian L Sparks

    Department of Microbiology, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily S Melzer

    Department of Microbiology, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shota Nakamura

    Department of Infection Metagenomics, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Enrique R Rojas

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3388-2794
  8. Yasu S Morita

    Department of Microbiology, University of Massachusetts Amherst, Amherst, United States
    For correspondence
    ymorita@umass.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. M Sloan Siegrist

    Molecular and Cellular Graduate Program, University of Massachusetts Amherst, Amherst, United States
    For correspondence
    siegrist@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8232-3246

Funding

National Institute of Allergy and Infectious Diseases (R21 AI144748)

  • Yasu S Morita

National Institute of Allergy and Infectious Diseases (R21 AI144748)

  • M Sloan Siegrist

National Institute of Allergy and Infectious Diseases (DP2 AI138238)

  • M Sloan Siegrist

National Institute of Allergy and Infectious Diseases (R03 AI140259-01)

  • Yasu S Morita

National Institute of General Medical Sciences (R35GM143057)

  • Enrique R Rojas

National Institute of General Medical Sciences (T32 GM008515)

  • Emily S Melzer

Uehara Memorial Foundation

  • Takehiro Kado

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Petra Anne Levin, Washington University in St. Louis, United States

Version history

  1. Preprint posted: June 14, 2022 (view preprint)
  2. Received: July 16, 2022
  3. Accepted: September 2, 2023
  4. Accepted Manuscript published: September 4, 2023 (version 1)
  5. Version of Record published: October 3, 2023 (version 2)

Copyright

© 2023, Kado et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 747
    views
  • 140
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Takehiro Kado
  2. Zarina Akbary
  3. Daisuke Motooka
  4. Ian L Sparks
  5. Emily S Melzer
  6. Shota Nakamura
  7. Enrique R Rojas
  8. Yasu S Morita
  9. M Sloan Siegrist
(2023)
A cell wall synthase accelerates plasma membrane partitioning in mycobacteria
eLife 12:e81924.
https://doi.org/10.7554/eLife.81924

Share this article

https://doi.org/10.7554/eLife.81924

Further reading

    1. Cell Biology
    Tongtong Ma, Ruimin Ren ... Heng Wang
    Research Article

    Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.

    1. Cell Biology
    Gang Liu, Yunxuan Hou ... Xiumei Jiang
    Research Article

    Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron–sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron–sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.