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Abstract Actin isoforms organize into distinct networks that are essential for the normal function 
of eukaryotic cells. Despite a high level of sequence and structure conservation, subtle differences 
in their design principles determine the interaction with myosin motors and actin- binding proteins. 
Therefore, identifying how the structure of actin isoforms relates to function is important for our 
understanding of normal cytoskeletal physiology. Here, we report the high- resolution structures of 
filamentous skeletal muscle α-actin (3.37 Å), cardiac muscle α-actin (3.07 Å), ß-actin (2.99 Å), and 
γ-actin (3.38 Å) in the Mg2+·ADP state with their native post- translational modifications. The struc-
tures revealed isoform- specific conformations of the N- terminus that shift closer to the filament 
surface upon myosin binding, thereby establishing isoform- specific interfaces. Collectively, the struc-
tures of single- isotype, post- translationally modified bare skeletal muscle α-actin, cardiac muscle 
α-actin, ß-actin, and γ-actin reveal general principles, similarities, and differences between isoforms. 
They complement the repertoire of known actin structures and allow for a comprehensive under-
standing of in vitro and in vivo functions of actin isoforms.

Editor's evaluation
This study presents four high quality cryo- EM structures of ADP- actin filaments formed from skeletal 
α-, cardiac α-, cytoplasmic β- and cytoplasmic γ-actin. These structures are important for under-
standing the functional differences among these actin isoforms. This work is of significant general 
interest, because actin filaments, composed of different actin isoforms, have a critical role in a 
number of physiological processes from muscle contraction to cell migration and division.

Introduction
Actin isoforms are among the most ubiquitous and abundant structural proteins that facilitate the 
functional organization of the cytoplasm of eukaryotic cells (Blanchoin et al., 2014; Pollard, 2016). 
Humans express six actin genes in a tissue- specific and developmentally regulated manner (Kashina, 
2020). The gene products are structurally and functionally highly conserved among vertebrates and 
can be grouped into four muscle actins: skeletal muscle α-actin, smooth muscle α-actin (vascular), 
cardiac muscle α-actin, smooth muscle γ-actin (enteric), and two nonmuscle actins (ß-actin and γ-actin; 
Otey et al., 1987; Vandekerckhove and Weber, 1978). Most cells maintain a defined ratio of actin 
isoforms with muscle and nonmuscle actins representing the main isoforms in muscle and nonmuscle 
cells, respectively (Kashina, 2020; Otey et al., 1987; Vandekerckhove and Weber, 1978; Kee et al., 
2009; Tondeleir et al., 2009; Patrinostro et al., 2017). Actin isoforms have specific and redundant 
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roles in cells and display different biochemistries, cellular localization, and interactions with myosin 
motors and actin- binding proteins (ABPs; Pollard, 2016; Kashina, 2020; Perrin and Ervasti, 2010; 
Vedula et al., 2021; Varland et al., 2019; Bunnell et al., 2011; Tondeleir et al., 2012; Baranwal 
et  al., 2012; Diensthuber et  al., 2011; Müller et  al., 2013; Lee and Dominguez, 2010; Harris 
et al., 2020; Lappalainen, 2016). Driven by the dominating action of ABPs and signaling proteins, 
differences between actin isoforms may facilitate the formation of diverse cellular actin networks 
with distinct compositions, architectures, dynamics, and mechanics that enable fundamental cell func-
tions including adhesion, migration, and contractility (Blanchoin et al., 2014; Tondeleir et al., 2009; 
Vedula et al., 2021). The altered expression and mutation of the genes encoding for actin isoforms 
have been linked to human diseases (Tondeleir et al., 2009; Chaponnier and Gabbiani, 2004; Parker 
et al., 2020).

Actin isoforms share high sequence identity at the protein level (~93–99%) and the propensity 
to self- assemble into helical, polarized filaments (F- actin) from monomers (G- actin; Pollard, 2016; 
Perrin and Ervasti, 2010; Dominguez and Holmes, 2011; Arnesen et al., 2018). Since the publica-
tion of the first crystal structure of G- actin in complex with DNaseI ~30 years ago, extensive studies 
have advanced our understanding of the structure of monomeric and filamentous actin, polymeriza-
tion mechanisms, post- translational modifications (PTMs), interaction with drugs, myosin motors, and 
ABPs at ever- increasing resolution (Dominguez and Holmes, 2011; Holmes et al., 1990; Kabsch 
et al., 1990; von der Ecken et al., 2016; Chou and Pollard, 2019; Zsolnay et al., 2020; Chou and 
Pollard, 2020; Belyy et al., 2020; Merino et al., 2018; Mentes et al., 2018; Mei et al., 2020; Ducka 
et al., 2010; Lee et al., 2007; Otomo et al., 2005; Oda et al., 2009; Egelman et al., 1982; Ali et al., 
2022; Oda et  al., 2020; Gong et  al., 2022). Although isoform- specific mechanisms with myosin 
motors and ABPs that drive functional distinction are widely described, they are poorly understood 
at the structural level.

To address how the structure contributes to the functional distinction of actin isoforms, we 
employed a combination of recombinant post- translationally modified actins and actins purified from 
native source to obtain pure, single- isotype preparations of individual actin isoforms to perform cryo- 
electron microscopy (cryo- EM) analyses. Specifically, we used our previously established Pick- ya actin 
method to recombinantly produce human ß-actin and γ-actin in an engineered Pichia pastoris strain 
that expresses the human N- acetyl transferase NAA80 and histidine methyl transferase SETD3 to 
ensure uniform Nt- acetylation and methylation of H72/H73, a conserved PTM profile of vertebrate 
actins (Hatano et al., 2020). Skeletal muscle α-actin and cardiac muscle α-actin were purified from 

eLife digest The protein actin is important for many fundamental processes in biology, from 
contracting muscle to dividing a cell in two. As actin is involved in such a variety of roles, human cells 
have slightly different versions of the protein, known as isoforms. For example, alpha- actin is vital for 
contracting muscle, while beta- and gamma- actin drive cellular processes in non- muscle cells.

In order to carry out its various functions, actin interacts with many other proteins inside the cell, 
such as myosin motors which power muscle contraction. These interactions rely on the precise chain 
of building blocks, known as amino acids, that make up the actin isoforms; even subtle alterations in 
this sequence can influence the behavior of the protein. However, it is not clear how differences in the 
amino acid sequence of the actin isoforms impact actin’s interactions with other proteins.

Arora et al. addressed this by studying the structure of four human actin isoforms using a technique 
called cryo- electron microscopy, where the proteins are flash- frozen and bombarded with electrons. 
These experiments showed where differences between the amino acid chains of each isoform were 
located in the protein. Arora et al. then compared their structures with previous work showing the 
structure of actin bound to myosin. This revealed that the tail- end of the protein (known as the N- ter-
minus) differed in shape between the four isoforms, and this variation may influence how actin binds 
to others proteins in the cell.

These results are an important foundation for further work on actin and how it interacts with other 
proteins. The structures could help researchers design new tools that can be used to target specific 
isoforms of actin in different types of laboratory experiments.

https://doi.org/10.7554/eLife.82015
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rabbit skeletal muscle and the left ventricle of a bovine heart, respectively. At the protein level, all 
actin isoforms are conserved across vertebrates, allowing us to compare our structures to previous 
structures of filamentous actin from other vertebrate species in the correct physiological context 
(Figure 1—figure supplement 1; Pollard, 2016; Perrin and Ervasti, 2010; Dominguez and Holmes, 
2011). Our 2.99–3.38 Å resolution structures of filamentous actin isoforms show that the N- termini 
of bare muscle and nonmuscle actins have different orientations that contribute to distinct binding 
interfaces for myosin motors and likely other ABPs.

Results
High-resolution structures and general principles of actin isoforms
To determine the structural characteristics and differences between actin isoforms, we solved the 
high- resolution structures of single- isotype skeletal muscle α-actin (3.37 Å), cardiac muscle α-actin 
(3.07 Å), ß-actin (2.99 Å), and γ-actin (3.38 Å) in the filamentous state using cryo- EM (Figure 1A–D, 
Figure 1—figure supplement 1, Table 1). The structures show local resolutions ranging from 2.1 
to 3.5 Å for skeletal muscle α-actin, 1.9–3.3 Å for cardiac muscle α-actin, 1.5–3.0 Å for ß-actin, and 
2.1–4.4 Å for γ-actin (Figure 1—figure supplement 2). For all actin isoforms, the highest local reso-
lutions were obtained in the central core region. Lower local resolutions were obtained in the most 
surface- exposed and flexible regions such as the N- terminus and the D- loop as expected. All actin 
structures were solved in the Mg2+·ADP state (Figure 1E, Figure 2) and have been obtained without 
the use of stabilizing drugs that may interfere with the filament structure (Diensthuber et al., 2011; 
Isambert et al., 1995; Zimmermann et al., 2015).

Our cryo- EM maps allowed us to build unambiguous models of actin isoforms in which secondary 
structure information including the side chains, the nucleotide and associated cation (Mg2+·ADP), and 
PTMs were apparent from the densities (Figure 1E, Figure 1—figure supplement 2). This allowed 
us to resolve the N- terminus of actin isoforms that is often disordered or missing in prior structures 
(Kudryashov and Reisler, 2013). For ß-actin and γ-actin, we could resolve the entire N- terminus 
starting from amino acids D1 and E1, respectively. For skeletal muscle α-actin and cardiac muscle 
α-actin, we could resolve the N- terminus starting from amino acids E4 and D2, respectively. The 
lack of resolvable density for the very first amino acid of cardiac muscle α-actin and the first three 
amino acids of skeletal muscle α-actin may be attributed to a nonuniform PTM pattern of native actin 
isoforms prepared from muscle compared to our recombinant nonmuscle actin isoforms with uniform 
PTM pattern in that the entire N- terminus region could be resolved (Figure 1E, Figure 1—videos 
1–5).

Consistent with the high sequence conservation across actin isoforms (Figure 1—figure supple-
ment 1B–C), our reconstructions show the characteristic double- stranded actin helix with a helical 
rise of ~27.6 Å to 28 Å and a helical twist of ~–166.5° to –168° (Figure 1A–D, Figure 1—figure 
supplement 1A) that has been observed in numerous previous structural studies, including previous 
high- resolution cryo- EM studies (Holmes et al., 1990; Chou and Pollard, 2019; Mei et al., 2020; 
Oda et al., 2009; Egelman et al., 1982; Ali et al., 2022; Fujii et al., 2010; Galkin et al., 2015). 
The actin filament itself is composed of G- actin (42 kDa) protomers that are oriented in the same 
direction (Holmes et al., 1990). Each protomer folds into four subdomains that are referred to as 
SD1–SD4 (Figure 1, Figure 1—figure supplement 1A; Kabsch et al., 1990). SD1 and SD2 form the 
outer domain, and SD3 and SD4 form the inner domain (Figure 1). This domain arrangement results 
in the formation of two clefts – the nucleotide- binding cleft and the barbed end groove (Figure 1, 
Figure 1—figure supplement 1A; Pollard, 2016; Dominguez and Holmes, 2011; Merino et al., 
2020). The nucleotide- binding cleft between SD2 and SD4 harbors the active site that is occupied 
by Mg2+·ADP in our structures (Figure 1E, Figure 2, Figure 1—figure supplement 1A). The barbed 
end groove between SD1 and SD3 represents a major binding interface for myosins and ABPs (von 
der Ecken et al., 2016). It further mediates longitudinal interfaces within the actin filament. SD2 and 
SD4 of an actin protomer are at the pointed end, and SD1 and SD3 are at the barbed end (Figure 1—
figure supplement 1A; Pollard, 2016; Dominguez and Holmes, 2011; Merino et al., 2020). The 
longitudinal interface between two adjacent actin protomers involves the extended D- loop located 
in SD2 of one actin protomer that interacts with amino acids located in SD1 and SD3 of another 

https://doi.org/10.7554/eLife.82015
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Figure 1. Cryo- electron microscopy (cryo- EM) filament structures of actin isoforms. (A) Helical reconstruction of skeletal muscle α-actin, (B) cardiac 
muscle α-actin, (C) β-actin, and (D) γ-actin. Views in (B–D) are according to (A). Four individual actin protomers in the filament are shown and denoted 
with italic numbers. The pointed (−) and barbed (+) ends are indicated. (E) Representative key regions of actin isoforms with corresponding cryo- 
EM densities in transparent surface representation are shown. The protein backbone and amino acid side chains are shown in licorice and stick 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.82015
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protomer. Both the N- and C- terminus of the actin protomer are in SD1 (Pollard, 2016; Dominguez 
and Holmes, 2011; Merino et al., 2020).

Similarities and differences between actin isoforms
The superposition of all actin isoform structures shows a root- mean- square deviation (RMSD) between 
0.83Å to 1.04Å for Cα atoms, indicating an overall similar topology. No significant differences in the 
pitch of the actin helix were observed between our structures of actin isoforms, emphasizing their 
overall conserved filamentous structure in the absence of myosin motors or ABPs. Actin isoforms differ 
by conservative and nonconservative substitutions (Figure 1—figure supplement 1C) that contribute 
to their distinct biochemical and in vivo functions (Blanchoin et al., 2014; Tondeleir et al., 2009; 
Vedula et al., 2021). Overall, the amino acid sequence is more conserved among muscle actins than 
between muscle and nonmuscle actins (Figure 1—figure supplement 1C). A structural comparison 
of our cryo- EM reconstructions shows amino acid substitutions across isoforms with the positions of 
substituted amino acids highlighted (Figure 3). Actin isoforms show the largest divergence at the 
acidic N- terminus within SD1 (Figure 1E, Figure 1—figure supplement 1C, Figure 3A). Of note, 
amino acids 1–3 in our structure of skeletal muscle α-actin and the first amino acid in our structure of 
cardiac muscle α-actin are not resolved and therefore not shown in Figure 3. Other substitutions are 
within SD1 (Figure 3B, Figure 3—figure supplement 1), SD3 (Figure 3C, Figure 3—figure supple-
ment 1), and SD4 (Figure 3D, Figure 3—figure supplement 1). There are no substitutions in SD2, the 
smallest and most flexible subdomain (Kudryashov and Reisler, 2013).

Amino acid substitutions at subdomain interfaces, such as the nucleotide- binding cleft active site 
of actin isoforms, are likely to influence protein function. To evaluate their possible impact on nucle-
otide coordination and the structural organization of the active site, we performed a comparative 
structural analysis. Our cryo- EM reconstructions show that the nucleotide- binding cleft active site is 
conserved between actin isoforms (Figure 1E and Figure 2). The densities for Mg2+ and ADP were 
assigned without ambiguity and revealed interactions with amino acids located in SD2 (Q58/Q59 and 
Y68/Y69) and SD4 (E206/E207, R209/R210, K212/K213, and E213/E214) but also with amino acids 
located in SD1 (M15/L16, K17/K18, Q136/Q137, and Y336/Y337) and SD3 (D156/D157, M304/M305, 
Y305/Y306, and K335/K336; Figure 2).

While most of the interactions are polar and electrostatic, amino acid Y305/Y306 forms π-π interac-
tions with the adenine ring of ADP. The superimposition of the nucleotide cleft active sites of our four 
structures of actin isoforms shows small differences in the positions of the nucleotide (RMSD ~0.44–
0.47 Å) and the bound Mg2+ (RMSD ~0.5–1.3 Å), especially in the position of the β-phosphate group 
relative to the α-phosphate group (Figure 2, Figure 2—figure supplement 1). The position of the 
Mg2+ moves relative to the position of the β-phosphate group (Figure 2—figure supplement 1). The 

representation, respectively. Throughout this work, amino acids are numbered according to the sequence of mature actin isoforms (Figure 1—figure 
supplement 1C).

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Sequence conservation in actin isoforms.

Figure supplement 2. Image processing summary for actin isoforms.

Figure supplement 3. Methylation of H72/H73 in actin isoforms.

Figure 1—video 1. Structure of a skeletal muscle α-actin protomer with the corresponding cryo- electron microscopy (cryo- EM) density.

https://elifesciences.org/articles/82015/figures#fig1video1

Figure 1—video 2. Structure of a cardiac muscle α-actin protomer with the corresponding cryo- electron microscopy (cryo- EM) density.

https://elifesciences.org/articles/82015/figures#fig1video2

Figure 1—video 3. Structure of a β-actin protomer with the corresponding cryo- electron microscopy (cryo- EM) density.

https://elifesciences.org/articles/82015/figures#fig1video3

Figure 1—video 4. Structure of a γ-actin protomer with the corresponding cryo- electron microscopy (cryo- EM) density.

https://elifesciences.org/articles/82015/figures#fig1video4

Figure 1—video 5. Structures of the N- termini of actin isoforms with corresponding cryo- electron microscopy (cryo- EM) densities.

https://elifesciences.org/articles/82015/figures#fig1video5

Figure 1 continued

https://doi.org/10.7554/eLife.82015
https://elifesciences.org/articles/82015/figures#fig1video1
https://elifesciences.org/articles/82015/figures#fig1video2
https://elifesciences.org/articles/82015/figures#fig1video3
https://elifesciences.org/articles/82015/figures#fig1video4
https://elifesciences.org/articles/82015/figures#fig1video5
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Table 1. Data collection, image processing, and structure characteristics summary.

Map
Skeletal muscle 
α-actin

Cardiac muscle 
α-actin β-actin γ-actin

Data collection

Microscope FEI Titan Krios G3i FEI Titan Krios G3i FEI Titan Krios G3i FEI Titan Krios G3i

Voltage (kV) 300 300 300 300

Detector Gatan K3 Gatan K3 Gatan K3 Gatan K3

Automation software EPU EPU EPU EPU

Energy filter slit width 
(eV) 20 20 20 20

Recording mode Super- resolution Super- resolution Super- resolution Super- resolution

Magnification (nominal) 81,000 81,000 81,000 81,000

Movie micrograph pixel 
size (Å) 0.891 0.891 0.891 0.891

Total Dose rate (e−/Å2) 65 60 50 65

Defocus range (µm) –0.5 to –2.5 –0.5 to –2.5 –0.5 to –2.5 –0.5 to –2.5

Spherical aberration 
(mm) 0.01 0.01 0.01 0.01

Movies 2046 1444 1352 2952

Total extracted particles 261,195 657,300 279,120 1,249,379

Total # of refined 
particles 185,406 657,041 263,911 1,009,372

Reconstruction

EMDB code EMD- 27548 EMD- 27549 EMD- 27572 EMD- 27565

Box size 350 256 256 256

Symmetry helical helical C1 C1

Map sharpening B- factor 
(Å2) –90 –149 –81 –201

Resolution (global) (Å) 3.37 3.07 2.99 3.38

Structure building and 
validation

PDB ID 8 DMX 8DMY 8DNH 8DNF

Model building Coot Coot Coot Coot

Refinement program Phenix Phenix Phenix Phenix

Refinement target Real- space Real- space Real- space Real- space

RMSD from ideal values

Bond length (Å) 0.02 0.02 0.04 0.03

Bond Angles (0) 0.493 0.494 0.761 0.711

Ramachandran favored 
(%) 97.61 96.68 96.21 96.20

Ramachandran allowed 
(%)

2.39 3.32 3.79 3.46

Table 1 continued on next page

https://doi.org/10.7554/eLife.82015
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superimposition of the nucleotide- binding cleft active sites further shows small local rearrangements 
of side chains of conserved amino acids (Figure 2—figure supplement 1), including R182/R183 and 
K335/K336. Amino acids M15/L16 and M304/M305 form hydrophobic interactions in the nucleotide- 
binding cleft active site (Figure 2). Amino acid substitution M15/L16 between nonmuscle and muscle 
actin does not alter the overall topology of the nucleotide- binding site. Instead, the longer side chain 
of M15 in nonmuscle actins, located in a loop that protrudes into the nucleotide- binding cleft, acts 
as an extended lid that flanks the active site and shields the phosphate groups of ADP (Figure 2, 
Figure 2—figure supplement 1).

Near the nucleotide- binding cleft active site, amino acids C10 and V17 in muscle actins are substi-
tuted with V9/I9 and C16 in β/γ-actin (Figure 3, Figure 1—figure supplement 1C). These reciprocal 
amino acid substitutions maintain the overall oxidation- reduction environment within filamentous 
actin isoforms which is important for its dynamic properties and the interaction with some regulatory 
proteins (Farah et al., 2011; Lassing et al., 2007; Wilson et al., 2016; Terman and Kashina, 2013).

The analysis of interprotomer interfaces in our four structures of actin isoforms (Figure 4, Figure 5, 
Figure 4—figure supplement 1) showed that longitudinal interactions are mainly mediated by hydro-
philic amino acids that are likely to enable interactions with water molecules that were recently shown 
to mediate interprotomer contacts within the filament core (Figure 4, Figure 4—figure supplement 
1; Reynolds et al., 2022). Amino acid substitutions at the longitudinal interprotomer interface (also 
called long pitch helix interface) include L175/M176, T200/V201, Q224/N225, C271/A272, F278/
Y279, and V286/I287. These substitutions may influence the stability of the promoters based on their 
ability to interact with the solvent and other protomer residues (Reynolds et al., 2022). The trans-
verse interprotomer interface (also called short pitch helix interface) is formed through hydrophilic and 
hydrophobic interactions (Figure 5, Figure 4—figure supplement 1). In contrast to interactions at the 
longitudinal interface, most of the transverse interprotomer interactions are direct and not mediated 
by solvent. A single amino acid substitution (V286/I287) is present at the transverse interprotomer 
interface. This amino acid substitution is located near the intersection of the longitudinal and trans-
verse interprotomer interfaces (Figure 3—figure supplement 1). Amino acid I287 is in hydrophobic 
contact with I208 and L242 in muscle actins and buries a surface area of ~113 Å2, whereas the interac-
tion between V286, I207, and L241 in nonmuscle actins is less hydrophobic and buries a surface area 
of ~83 Å2 in the transverse interprotomer interface (Figure 4—figure supplement 1C and D). Interac-
tions with the D- loop located in SD2 are conserved in our structures of actin isoforms, underlining the 
critical and conserved role of the D- loop to mediate interprotomer interactions. At the intersection of 
the longitudinal and transverse interprotomer interfaces, H39/40 and H172/H173 together with M43/
M44 act as central anchors.

PTMs are not only essential for actin structure, function, and dynamics but also for their interac-
tion with myosin motors and APBs (Varland et al., 2019; Cook et al., 1993; Drazic et al., 2018). 
Here, we focused on two widely documented and highly conserved PTMs of mature vertebrate actins 
that are important for actin structure and function: the post- translational acetylation of the N- ter-
minus by N- terminal acetyltransferase NAA80 and methylation of H72/H73 by SET domain protein 

Map
Skeletal muscle 
α-actin

Cardiac muscle 
α-actin β-actin γ-actin

Ramachandran outliers 
(%) 0 0 0 0.34

MolProbity Score 1.42 1.42 1.72 1.72

Structures 
Characteristics

Species Rabbit Bovine Human Human

Amino acid resolved 4–375 2–375 1–374 1–374

PTMs resolved H73 H73 D1/H72 E1/H72

Table 1 continued

https://doi.org/10.7554/eLife.82015
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Figure 2. Conserved nucleotide- binding cleft active site in actin isoforms. (A–D) Coordination of Mg2+·ADP in 
the nucleotide- binding cleft of skeletal muscle α-actin (A), cardiac muscle α-actin (B), β-actin (C), and γ-actin 
(D). Underlines indicate locations of amino acid substitutions between actin isoforms. The protein backbone 
and side chains are shown in licorice and stick representation, respectively. ADP is shown in cyan- colored stick 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.82015
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3 (SETD3; Kabsch et al., 1990; Terman and Kashina, 2013; Drazic et al., 2018; Wilkinson et al., 
2019; Nyman et al., 2002). Both PTMs are present in actin prepared from vertebrate tissues and 
our preparations of recombinant human β- and γ-actin produced in an engineered Pichia pastoris 
strain (Hatano et al., 2020). The quality of our density maps allowed us to resolve both key PTMs 

representation. Electron densities for key amino acids in the nucleotide- binding cleft active site of actin isoforms 
are shown. Schematic representations of key interactions in the nucleotide- binding cleft active sites of the 
respective actin isoforms are shown in the right panel. The schematics are not drawn to scale.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Coordination of Mg2+·ADP in the nucleotide- binding cleft of actin isoforms.

Figure 2 continued

Figure 3. Similarities and differences between actin isoforms. (A) Sequence variations at the N- terminus located in SD1 of actin isoforms. (B) Sequence 
variations in SD1 of actin isoforms. (C) Sequence variations in SD3 of actin isoforms. (D) Sequence variations in SD4 of actin isoforms. SD2 is conserved 
between actin isoforms. The identical and nonidentical amino acids at sites of substitutions within the actin protomer across isoforms are shown for 
skeletal muscle α-actin (orange), cardiac muscle α-actin (yellow), β-actin (purple), and γ-actin (teal) as spheres. Note that the first three amino acids of 
skeletal muscle α-actin and the first amino acid of cardiac muscle α-actin are unresolved in our structures. The protein backbone is shown in licorice 
representation, and the substituted amino acids are shown in spheres representation.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Amino acid variations along the longitudinal and transverse axis of actin isoforms.

https://doi.org/10.7554/eLife.82015
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(Figure 1E, Figure 1—video 5, Figure 1—figure supplement 3). Specifically, the presence of resolv-
able density allowed us to model the entire N- terminus including the Nt- acetylated D1 (D1Ac) and the 
Nt- acetylated E1 (E1Ac) in the cryo- EM reconstructions of β- and γ-actin (Figure 1E).

The acetylation site on the N- terminus is exposed on the filament surface and adds an additional 
negative charge to the already negatively charged N- terminus (Figure 1—figure supplement 1C). 
Like in previous cryo- EM structures of muscle α-actins, there are no resolvable densities for the very 
N- terminus, including Nt- acetylation, in our density maps of skeletal muscle α-actin and cardiac muscle 
α-actin (Figure 1E), possibly due to nonuniform PTM patterns of native, tissue- purified muscle actins. 
In addition to Nt- acetylation in β- and γ-actin, we could resolve the methylated H72/H73 (H72Me/
H73Me) in all cryo- EM reconstructions of actin isoforms (Figure 1—figure supplement 3). The pres-
ence of both key PTMs in our cryo- EM reconstructions emphasizes that our recombinant human actins 
represent bona fide post- translationally processed, mature nonmuscle actins (Hatano et al., 2020).

Figure 4. Comparative structural analysis of the longitudinal interprotomer interface. (A–D) Key residues at the interprotomer interface of skeletal 
muscle α-actin (A), cardiac muscle α-actin (B), β-actin (C), and γ-actin (D). Individual protomers in actin isoforms are oriented according to Figure 4—
figure supplement 1A. Underlines indicate locations of amino acid substitutions between actin isoforms. The protein backbone and side chains are 
shown in licorice and stick representation, respectively.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Transverse and longitudinal interprotomer interfaces in actin isoforms.

https://doi.org/10.7554/eLife.82015
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Myosin modulates actin filament structure
Myosin motors bind actin in a nucleotide- dependent, reversible manner to generate force and motion 
(Heissler and Sellers, 2016a; Sellers, 2000). The myosin enzymatic cycle can be categorized into 
states with weak (ATP and ADP·Pi) and strong (ADP and nucleotide- free [rigor]) actin affinity (De La 
Cruz and Ostap, 2009; Heissler and Sellers, 2016b). In the strong affinity states, a binding inter-
face is established between actin and the myosin motor domain (von der Ecken et al., 2016; Doran 
and Lehman, 2021; Lorenz and Holmes, 2010). To determine whether myosin binding to actin may 
modulate actin filament structure, we compared our structures of filamentous bare actin isoforms with 
previous high- resolution cryo- EM structures of myosin- bound actins. We compared the structure of 
rigor nonmuscle myosin- 2C (NM2C, PDB ID: 5JLH) bound to γ-actin, the structure of rigor myosin- 1B 
bound to skeletal muscle α-actin (M1B, PDB ID: 6C1H), and the structure of Mg2+·ADP.M1B bound to 
skeletal muscle α-actin (PDB ID: 6C1G) with our structures of bare actin isoforms (Figure 6). We also 
compared the structure of rigor cardiac myosin- 2 bound to the cardiac thin filament (cardiac muscle 
α-actin decorated with tropomyosin and troponin, PDB ID: 7JH7; Figure 6—figure supplement 1) 
with our structure of bare cardiac muscle α-actin. The actomyosin structures were selected since they 
represent distinct high- affinity binding states (Mg2+·ADP versus rigor) and classes of myosin motors 
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Figure 6. The actomyosin interface. (A) Superimposition of bare actin isoform structures in the Mg2+·ADP state (left), superimposition of myosin- bound 
actin isoforms structures (middle), and overlap of bare versus myosin- bound actin structures (right) are shown. (B) Zoomed- in view of the actomyosin 
interface at the D- loop region. For clarity, only D- loops involved in the binding of myosins are highlighted in the respective dark colors. The offset 
between the structures in the lower two panels is caused by a conformational change of SD2 in myosin- bound compared to bare actin structures.

Figure 6 continued on next page
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with different enzymatic output (Mentes et al., 2018; Heissler and Sellers, 2016b; Heissler and 
Manstein, 2011).

Myosin binding to actin filaments causes subtle conformational changes in the filament (Figure 6). 
Superimposition of the actin structures showed that the Cα of bare and myosin- bound actin protomers 
deviate with an RMSD of ~1.25–3 Å. These changes are similar for myosins from different classes and 
independent of the nucleotide state of the respective motor domain (Figure 6A). The superposition of 
structures of bare actin isoforms and known structures of myosin- bound actins shows that SD2 adopts 
a different conformation (Figure 6A and B, Figure 6—figure supplement 1, Figure 6—video 1). The 
conformation of the D- loop, located in SD2, differs with a Cα RMSD of ~0.95–1.25 Å (Figure 6A and 
B). Superimposition of bare γ-actin with γ-actin/NM2C complex shows the subtle inward movement 
of the D- loop with a Cα RMSD of ~1.25 Å in the myosin- bound state, suggesting that myosin- binding 
induces subtle changes in the barbed end groove that do not change the separation between SD1/
SD3 and SD2/SD4. The inward movement of the D- loop (RMSD  ~0.91  Å) is also observed in the 
recent structure of cardiac myosin bound to the thin filament compared to our structure of bare 
cardiac muscle α-actin (Figure 6—figure supplement 1), suggesting that myosin and not the regu-
latory proteins tropomyosin and troponin drive this structural change. The analysis of the actomyosin 
interface also shows that the D- loop conformation does not change significantly with respect to the 
nucleotide states (rigor versus ADP) of the compared myosins (Figure 6B).

Next, we compared the position of the actin N- terminus region and its interaction with myosin 
motors. The superimposition of bare and myosin- bound actin structures shows that the N- termini 
of skeletal muscle α-actin points in a different direction compared to those from ß-actin and γ-actin 
(Figure 7A). The actin N- terminus is positioned closer to the filament surface in myosin- bound struc-
tures compared to our bare actin structures (Figure 7, Figure 6—video 1, Figure 7—video 1). The 
negatively charged N- termini of bare ß-actin and γ-actin are near loop- 2, a major element of the 
actomyosin interface that is rich in positively charged amino acids and variable in length (Heissler and 
Manstein, 2011; Joel et al., 2001; Murphy and Spudich, 1999; Uyeda et al., 1994).

This interface is likely to represent one of the initial contact sites upon the formation of a transient 
intermediate between both proteins during the formation of the actomyosin complex. Nt- acetyla-
tion of actin likely enhances long- range electrostatic interactions between both proteins that subse-
quently trigger allosteric structural changes that result in the formation of the actomyosin interface 
as suggested previously (Abe et al., 2000). Furthermore, we observed a cluster of positively charged 
amino acids (R661, R663, and R664) in loop- 2 of NM2C that may interact with either the acetylated 
N- terminus of ß-actin (D1Ac, D2, and D3) or the acetylated N- terminus of γ-actin (E1Ac, E2, and E3; 
Figure 7B–C) to stabilize the interface.

We also showed that a shorter loop- 2, as it is found in M1B, is less efficient in stabilizing the actin 
N- terminus due to geometric constraints that limit its ability to pull the N- terminus closer to the 
filament surface in the strong binding states compared to a longer loop- 2 as it is found in NM2C 
(Figure 7A). This suggests that distinct actin- myosin interfaces are formed between actin isoforms and 
myosin motor proteins that may determine the strength of the interaction and biochemical outputs.

Discussion
Despite many elegant, high- resolution cryo- EM studies of filamentous actin in the absence and pres-
ence of myosin motors and ABPs, our understanding of the structural mechanisms that underlie the 
nuanced interactions of actin isoforms with interacting proteins that have been previously reported in 
cells and in vitro remain largely elusive (Müller et al., 2013; Chen et al., 2017; Dugina et al., 2009). 
This knowledge however is critical to understanding how protein binding modulates actin filament 
structure and networks that in turn may be recognized by and guide other interacting proteins to 

The online version of this article includes the following video and figure supplement(s) for figure 6:

Figure supplement 1. The actomyosin interface of the cardiac thin filament compared to bare cardiac muscle α-actin.

Figure 6—video 1. Conformational changes of the D- loop in bare and myosin- bound actin.

https://elifesciences.org/articles/82015/figures#fig6video1

Figure 6 continued

https://doi.org/10.7554/eLife.82015
https://elifesciences.org/articles/82015/figures#fig6video1


 Research article      Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

Arora et al. eLife 2023;12:e82015. DOI: https://doi.org/10.7554/eLife.82015  14 of 25

R663

R661
R664

E1Ac

E3

E2

Actin N-terminus

Loop-2

R663
R661

R664

D1Ac

D3
D2

Loop-2

N-terminus

A

B

C

Skeletal muscle α-actin bound to M1B (Mg2+.ADP) 
Skeletal muscle α-actin bound to M1B (rigor) 

β-actin 
γ-actin bound to NM2C (rigor) 

γ-actin 

* *

*

*
*

N-terminus

Loop-2
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The online version of this article includes the following video for figure 7:

Figure 7—video 1. Conformational changes at the actomyosin interface.

https://elifesciences.org/articles/82015/figures#fig7video1
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create a variety of actin landscapes in cells (Harris et al., 2020; Lappalainen, 2016; Breitsprecher 
et al., 2012; Damiano- Guercio et al., 2020; Jansen and Goode, 2019; Chen et al., 2020).

To further our understanding of the sequence- structure relationship of actin isoforms, we solved 
four high- resolution cryo- EM structures, including the structure of bare and isotypic filamentous 
skeletal muscle α- actin and the new structures of bare cardiac muscle α-actin, ß-actin, and γ-actin. 
The structures of single isotype, mature actins allowed us to analyze the similarities and differences 
between actin isoforms and their unique modes of interactions with myosin motors.

Actin isoforms are subject to extensive PTM mechanisms that may drive structural changes, distinct 
biochemistries, and cellular activities (Kashina, 2020; Vedula et  al., 2021; Terman and Kashina, 
2013). Prevalent PTMs of actin isoforms include acetylation and methylation. Nt- acetylation and H72/
H73 methylation are highly conserved in vertebrate actins and therefore expected to be present in 
most if not all previous structures of filamentous F- actin. However, the methylated H72/H73 has been 
only recently resolved in the structure of skeletal muscle α-actin (Chou and Pollard, 2019). The high 
resolution of our structures allowed us to resolve the methylated H72/H73. Furthermore, we could 
resolve the acetylated N- termini in filamentous ß-actin and γ-actin.

The overall structure of actin isoforms is conserved, as expected from the high- sequence conser-
vation (Figure 1—figure supplement 1). However, each structure shows subtle but defining differ-
ences. Minor differences were observed near the nucleotide- binding cleft (Figure 2, Figure 2—figure 
supplement 1) that may contribute to the reported differences in the biochemistries of actin isoforms 
(Chen et  al., 2021; Bergeron et  al., 2010). The comparison of longitudinal and transverse inter-
protomer interfaces revealed that the transverse interface is, with only one amino acid substitution 
(V286/I287), more conserved compared to the longitudinal interprotomer interface which features 
several amino acid substitutions (L175/M176, T200/V201, Q224/N225, C271/A272, F278/Y279, 
and V286/I287; Figure 4, Figure 4—figure supplement 1C and D, Figure 5). Furthermore, amino 
acid substitution V286/I287 is located at the intersection of the longitudinal and transverse inter-
protomer interfaces (Figure 3—figure supplement 1). In addition, our structures show the presence 
of conserved amino acids (H39/H40, H172/H173, and M43/M44) at the intersection of the longitudinal 
and transverse interprotomer interfaces. These residues were previously shown to be highly suscep-
tible to oxidative stress caused by reactive oxygen species and suggest a possible implication for the 
filament stability of actin isoforms (Varland et al., 2019). The absence of amino acid substitutions in 
SD2 and conserved interactions between the SD2 D- loop and amino acids of SD1 and SD3 suggests 
selective pressure to maintain this critical structural element. We also noticed that the D- loop of actin 
isoforms is located closer to the filament surface in myosin- bound structures compared to structures 
of bare actin filaments.

In contrast, the recent high- resolution structures of rigor and Mg2+· ADP. myosin-  15 bound to skel-
etal muscle α-actin suggest flexibility in the D- loop in the rigor state and a rigid D- loop near the actin 
surface in the Mg2+·ADP state. The flexible D- loop has been proposed to support actin nucleation 
activity, whereas the rigid D- loop has been proposed to limit the actin nucleation activity of this 
myosin (Gong et al., 2022).

The most prominent structural change between bare actin isoforms corresponds to the N- terminus 
location (Figure 1, Figure 7). Given that the sequence of actin isoforms differs the most at the N- ter-
minus (Figure 1—figure supplement 1C) and the well- established central role of the N- terminus in 
the interactions with myosin motors and ABPs, we propose that these structural changes may dictate 
different biochemical interactions. For example, by comparing the structures of bare skeletal muscle 
α-actin with the γ-actin/NM2C complex, a previous study suggested a large- scale pulling mechanism 
in which the actin N- terminus is pulled toward the actomyosin interface in the rigor state (von der 
Ecken et al., 2016). Based on our structures that show different conformations of the N- terminus 
between muscle and nonmuscle actins, we suggest that instead of a large conformational change 
through a pulling mechanism, actin isoform- specific interfaces with myosin motors are formed that 
involve a more subtle movement of the N- terminus. These different interfaces together with the subtle 
differences in the amino acid sequence of the N- terminus region are likely to contribute to the extent 
actin isoforms can activate the enzyme function of myosin motors in vitro and in cells (Müller et al., 
2013; Lappalainen, 2016). The presence of low levels of nonmuscle actins and nonmuscle myosins 
in muscle suggests that motors, and likely other interacting partners, can interact with multiple actin 
isoforms in vivo. In fact, most cells maintain multiple actin isoforms and a defined complement of 

https://doi.org/10.7554/eLife.82015
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myosin motors (Kashina, 2020; Otey et al., 1987; Sellers, 2000; Heissler and Sellers, 2016b). This 
cell type- specific mixing and matching is likely to fine- tune the enzymatic output of myosin motors 
for specialized functions (Kee et  al., 2009; Müller et  al., 2013; Sun et  al., 2020). For example, 
previous in vitro experiments with recombinant proteins revealed isoform- specific differences in the 
interaction between muscle and nonmuscle actin isoforms and individual myosin motors (Müller 
et al., 2013). Notably, predominantly nonsarcomeric myosins have a faster ATPase activity and in vitro 
sliding velocity when assayed with nonmuscle actins compared to muscle actin, suggesting selective 
fine- tuning of the functional competencies of myosin- actin combinations with implications for cell 
function (Müller et al., 2013). These in vitro observations are supported by our structural data that 
suggest that the different orientations of the N- termini of actin isoforms contribute to the formation of 
different binding interfaces with myosin motors (Figure 7). Previous work also revealed differences in 
the extent to which the highly conserved β-actin and γ-actin isoforms (Figure 1—figure supplement 
1) can activate the kinetic and functional activity of the same motor in vitro (Müller et al., 2013). 
Based on our structural and previous biochemical studies, we speculate that the biochemical proper-
ties of the very N- terminus of actin isoforms are key contributors to the formation of isoform- specific 
interfaces with myosin motors (Müller et al., 2013; Cook et al., 1993; Abe et al., 2000). For instance, 
the very N- termini of mature β-actin (DDD) and γ-actin (EEE) have different pKa values, resulting in 
a higher negative electron charge density in β-actin compared to γ-actin that is further increased by 
Nt- acetylation in both isoforms. These differences are likely to contribute to distinct interactions with 
the positively charged loop- 2 and other actin- binding elements in the motor domain of myosin family 
members during the formation of the actomyosin interface. Actin isoform- specific interfaces may be 
further diversified by differential N- terminal processing of β-actin, PTMs, and alternatively spliced 
myosin motors (Varland et al., 2019; Müller et al., 2013; Arnesen et al., 2018; Terman and Kashina, 
2013; Heissler and Manstein, 2011; Sheff and Rubenstein, 1989; Solomon and Rubenstein, 1985). 
For example, the Nt- acetylated N- termini of actin isoforms would likely be more efficient to establish 
electrostatic interactions with the positively charged loop- 2 of myosin, while the addition of a positive 
charge to the N- terminus of β-actin through arginylation may weaken the interaction.

While we focused our comparative structural analysis on the interaction between actin isoforms 
with myosin motors, the actin N- terminus has been shown previously to interact with numerous 
ABPs (Arnesen et al., 2018; Cook et al., 1993; Abe et al., 2000). Therefore, we speculate that the 
proposed isoform- specific interaction mechanisms that stem from the different conformations of the 
N- termini extend to ABPs. Together, we present structural evidence that the binding of myosin motors 
modulates actin filament structure and propose a possible mechanism for the formation of actin 
isoform- specific interactions with binding proteins by the conformation of its N- terminus (Figure 7).

In conclusion, we present direct evidence for the structural divergence of actin isoforms that under-
lies their nuanced interactions with myosin motors. Our work serves as a strong foundation for our 
understanding of the sequence- function relationship of actin isoforms. By adding our cryo- EM struc-
tures of single isotype, mature actin isoforms to the collection of previous structures of the bare and 
decorated actin filaments, we provide a comprehensive understanding of the remarkable diversity of 
actin isoforms that is reflected in their biological activities in health and disease.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (P. pastoris)

P. pastoris 
transformants

https://journals.biologists.com/jcs/ 
article/131/8/jcs213827/57192/Rapid-
production-of-pure-recombinant-actin

Hatano et al., 2018; P. pastoris 
transformants used to prepare 
recombinant b- actin (H. sapiens) and 
g- actin (H. sapiens)

Biological sample (O. 
cuniculus)

Skeletal muscle Pel- Freez 41995 Muscle acetone powder used for the 
preparation of native skeletal muscle 
a- actin

Biological sample (B. 
taurus)

heart Local butcher Left ventricle used for the preparation 
of native cardiac muscle a- actin

https://doi.org/10.7554/eLife.82015
https://journals.biologists.com/jcs/article/131/8/jcs213827/57192/Rapid-production-of-pure-recombinant-actin
https://journals.biologists.com/jcs/article/131/8/jcs213827/57192/Rapid-production-of-pure-recombinant-actin
https://journals.biologists.com/jcs/article/131/8/jcs213827/57192/Rapid-production-of-pure-recombinant-actin
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Other (O. cuniculus) skeletal muscle a- actin This paper UniProt ID: 
P68135

Peptide, protein reagent, prepared 
from muscle acetone powder

Other (B. taurus) cardiac muscle a- actin This paper UniProt ID: 
Q3ZC07

Peptide, protein reagent, prepared 
from bovine heart

Peptide, recombinant 
protein (H. sapiens)

b- actin This paper UniProt ID: 
P60709

Prepared from P. pastoris 
transformants

Peptide, recombinant 
protein (H. sapiens)

g- actin This paper UniProt ID: 
P63261

Prepared from P. pastoris 
transformants

Other Amicon 30 kDa MWCO 
centrifugal filters

Millipore Sigma UFC903008 Protein concentrators

Other C- flat Au 1.2/1.3 grids Electron Microscopy Sciences CF313- 50- Au Electron microscopy grids

Software, algorithm EPU Thermo Fisher Scientific Software for cryo- EM data acquisition

Software, algorithm cryoSPARC https://doi.org/10.1038/nmeth.4169 Punjani et al., 2017

Software, algorithm MotionCor2 https://doi.org/10.1038/nmeth.4193 Zheng et al., 2017

Software, algorithm Coot https://doi.org/ 
10.1107/S0907444910007493

Emsley et al., 2010

Software, algorithm PHENIX https://doi.org/10.1107/ 
S0907444909052925

Adams et al., 2010

Software, algorithm Chimera https://doi.org/10.1002/jcc.20084 Pettersen et al., 2004

Software, algorithm MolProbity https://doi.org/10.1002/pro.3330 Williams et al., 2018

 Continued

Protein production and purification
Native actins
Rabbit skeletal muscle α-actin (UniProt ID: P68135) was prepared from acetone powder (Pel- Freez 
Biologicals, Rogers, AR, USA) as described earlier (Heissler et  al., 2015). Cardiac muscle α-actin 
(UniProt ID: Q3ZC07) was prepared from the left ventricle of a bovine heart (local butcher) as described 
for skeletal muscle α-actin. At the amino acid level, both proteins are identical to the respective 
human proteins.

Recombinant actins
P. pastoris transformants for human β-actin (UniProt ID: P60709) and human γ-actin (UniProt ID: 
P63261) were stored at –80°C and were revived on YPD (Yeast extract, Peptone, Dextrose) solid media 
plates at 30°C. Cells were inoculated into 200 mL Minimal Glycerol (MGY) liquid media composed 
of 1.34% yeast nitrogen base without amino acids (Millipore Sigma, St. Louis, MO, USA), 0.4 mg/L 
biotin, and 1% glycerol and cultured at 30°C, 220 rpm. The culture medium was diluted to 6 L with 
fresh MGY media, and cells were further cultured at 30°C, 220 rpm in six 2 L flasks until the optical 
density at 600 nm (OD600) reached around 1.5. Cells were pelleted down by centrifugation (10,628 g 
at 25°C for 5 min, F9−6x1,000 LEX rotor, Thermo Fisher Scientific, Waltham, MA, USA). The cells were 
washed once with sterilized water and re- suspended into 6 L MM composed of 1.34% yeast nitrogen 
base without amino acids (SIGMA Y0626), 0.4 mg/L biotin, and 0.5% methanol. Cells were cultured 
in twelve 2 L baffled flasks (500 mL for each) at 30°C, 220 rpm for 1.5–2 days. 0.5% methanol was fed 
every 24 hr during the culture. Cells were pelleted down by centrifugation (10,628 g at 25°C for 5 min, 
F9−6x1,000 LEX rotor, Thermo Fisher Scientific, Waltham, MA, USA). Cells were washed once with 
water and suspended in 75 mL of ice- cold water. The suspension was dripped into a liquid nitrogen 
bath and stored at –80°C. 50 g cell suspension was loaded into a grinder tube (SPEX SamplePrep, 
Metuchen, NJ, USA) pre- cooled with liquid nitrogen. Cells were grinded in a liquid nitrogen bath of a 
Freezer mill (SPEX SamplePrep, Metuchen, NJ, USA). The duration of the grinding was 1 min with 14 
cycles per second. The grinding procedure was repeated 30 times at 1 min intervals. Liquid nitrogen 
was re- filled every 10 times of the grinding. The resulting powder was kept on dry ice until the next 

https://doi.org/10.7554/eLife.82015
https://doi.org/10.1038/nmeth.4169
https://doi.org/10.1038/nmeth.4193
https://doi.org/10.1107/S0907444910007493
https://doi.org/10.1107/S0907444910007493
https://doi.org/10.1107/S0907444909052925
https://doi.org/10.1107/S0907444909052925
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1002/pro.3330
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step. The powder was kept at room temperature until it started to melt. Then, it was resolved in an 
equal amount of 2× binding buffer composed of 20 mM imidazole (pH 7.4), 20 mM HEPES (pH 7.4), 
0.6 M NaCl, 4 mM MgCl2, 2 mM ATP (pH 7.0), 2× concentration of protease inhibitor cocktail (Roche 
cOmplete, EDTA free, Millipore Sigma, St. Louis, MO, USA), 1  mM phenylmethylsulfonyl fluoride 
(PMSF), and 7 mM beta- mercaptoethanol. The lysate was sonicated on ice (3 min, 5  s pulse, 10 s 
pause with 60% amplitude, QSONICA SONICATORS, Newtown, CT, USA) until all aggregates were 
resolved. The lysate was centrifuged at 4°C (3220 g for 5 min, A- 4–81 rotor, Eppendorf, Enfield, CT, 
USA) to remove intact cells and debris. The insoluble fraction was removed by high- speed centrifu-
gation at 4°C (25,658 g for 30 min, A23−6x100 rotor; Thermo Fisher Scientific, Waltham, MA, USA). 
The supernatant was filtrated with a Filtropur BT50 0.2 µm bottle top filter (SARSTEDT, Nümbrecht, 
Germany) and incubated with 6 mL Nickel resin (Thermo Fisher Scientific, Waltham, MA, USA) at 4°C 
for 1 hr. The resin was pelleted down by centrifugation at 4°C (1258 g for 5 min, A- 4–81 rotor, Eppen-
dorf, Enfield, CT, USA) and washed with ice- cold 50 mL binding buffer composed of 10 mM imidazole 
(pH 7.4), 10 mM HEPES (pH 7.4), 300 mM NaCl, 2 mM MgCl2, 1 mM ATP (pH 7.0), and 7 mM beta- 
mercaptoethanol for four times. The resin was washed five times with a G- buffer composed of 5 mM 
HEPES (pH 7.4), 0.2 mM CaCl2, 0.01 w/v% NaN3, 0.2 mM ATP (pH 7.0), and 0.5 mM dithiothreitol. The 
resin was suspended in an ice- cold 40 mL G- buffer with 5 µg/mL TLCK- treated chymotrypsin (Milli-
pore Sigma, St. Louis, MO, USA) and incubated overnight at 4°C. The chymotrypsin was inactivated 
by 1 mM PMSF, and the elution was collected into a tube. Actin retained on the resin was eluted 
with 12 mL G- buffer without actin, and all elution fractions were combined and concentrated with a 
30 kDa cut- off membrane (Millipore Sigma, St. Louis, MO, USA) to 0.9 mL. The 0.9 mL of each actin 
was polymerized by adding 100 µL of 10× MKE solution composed of 20 mM MgCl2, 50 mM EGTA, 
and 1 M KCl for 1 hr at room temperature. The polymerized actin samples were pelleted down by 
ultracentrifugation at room temperature (45,000 rpm for 1 hr, TLA- 55 rotor, Beckman Coulter, India-
napolis, IN, USA). The pellets were rinsed once with a 1 mL G- buffer and re- suspended into an ice- cold 
0.5 mL G- buffer. The actin was depolymerized by dialysis against a 1 L G- buffer at 4°C for 2 days. The 
dialysis buffer was exchanged every 12 hr. The solutions with the depolymerized actin were collected 
into 1.5 mL centrifuge tubes and stored on ice.

Sample preparation and cryo-EM data collection
For cryo- EM studies, G- actin was polymerized by the addition of a 10× stock solution of buffer 
containing 0.5 M KCl, 20 mM MgCl2, 10 mM EDTA, and 0.1 M MOPS pH 7.0 before plunge freezing. 
Briefly, C- flat 1.2/1.3 gold grids were glow- discharged with a PELCO easiGlow (TedPella, Redding, 
CA, USA) for 60 s. 4 µL of actin sample was applied to the grids, incubated for 1 min, and blotted 
for 4 s at 95% humidity. Grids were plunged into liquid ethane using a Leica EM GM2 plunger (Leica 
Microsystems, Wetzlar, Germany) and stored in liquid nitrogen until data collection. All grids were 
screened for homogeneous sample distribution and optimal ice thickness on a Glacios cryo- TEM 
(Thermo Fisher Scientific, Waltham, MA, USA) equipped with a Falcon 3EC direct electron detector 
at a magnification of 92,000×. Data collection on optimal grids was performed on a Titan Krios G3i 
(Thermo Fisher Scientific, Waltham, MA, USA) operated at 300 kV, equipped with a K3 direct electron 
detector, a Bioquantum energy filter, and a Cs image corrector. For skeletal muscle α-actin, a total of 
2046 movies with a magnification of 81,000×, corresponding to a pixel size of 0.4455 Å, were collected 
in super- resolution mode at a defocus range of –0.5 µm to –2.5 µm with a total electron dose of 65 
e−/Å2 per movie. For cardiac muscle α-actin, a total of 1444 movies with a magnification of 81,000×, 
corresponding to a pixel size of 0.4455 Å were collected in super- resolution mode at a defocus range 
of –0.5 µm to –2.5 µm with a total electron dose of 60 e−/Å2 per movie. For acetylated β- and γ-actins, 
a total of 1352 movies and 2952 movies with a magnification of 81,000×, corresponding to a pixel size 
of 0.4455 Å were collected in super- resolution mode at a defocus range of –0.5 µm to –2.5 µm with 
a total electron dose of 50 e−/Å2 and 65 e−/Å2 per movie, respectively. Data collection for all actins 
were performed using EPU software (Thermo Fisher Scientific, Waltham, MA, USA). Data collection 
statistics are shown in Table 1.

Image processing and 3D reconstruction
All raw movies of skeletal muscle and cardiac muscle α-actin were aligned, drift corrected, and dose 
weighted using the Patch motion module, and the Contrast Transfer Function (CTF) parameters were 
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estimated using the Patch CTF module implemented in cryoSPARCv3.2 (Punjani et al., 2017). All 
raw movies of acetylated β- and γ-actin were aligned and motion- corrected using the Patch motion 
module in cryoSPARC and MotionCor2 software (Punjani et  al., 2017; Zheng et  al., 2017), and 
the CTF parameters were estimated using the Patch CTF module implemented in cryoSPARCv3.2. 
Segments of actin filaments were initially picked using the template- free tracing method implemented 
in the filament tracer module in cryoSPARC to generate templates for particle picking (Punjani et al., 
2017). A small set of particles for reference- free 2D classifications was selected and subsequently 
used as templates for filament tracing. Furthermore, segments of filaments were extracted, several 
rounds of 2D classifications were performed to remove erroneous picks, and well- aligned 2D classes 
were selected as templates for ab initio 3D reconstruction. For all actins, a major class with a fila-
mentous model that showed clear helical features was selected for 3D refinements using the helical 
refinement module implemented in cryoSPARCv3.2 (Punjani et  al., 2017). For acetylated β- and 
γ-actins, final rounds of refinements were performed using the homogenous refinement module in 
cryoSPARC. Data collection statistics, image processing, and the refinement summary of models are 
shown in Table 1.

Model building, refinement, and validation
For model building, sharpened maps were used to build models of filamentous actins. We have used 
a common approach of model building, refinement, and validation for all actin isoforms. Briefly, the 
high- resolution structures of Mg2+⋅ADP bound skeletal muscle and cardiac muscle α-actins, Nt- acetyl-
ated β-, and γ-actins were built using PDB entry 6DJO as a template. Initial rigid- body docking into 
the cryo- EM reconstructions of actin maps was performed with molecular dynamics flexible fitting 
function in Chimera (Pettersen et al., 2004). Iterative model building was performed using real- space 
refinement in Phenix (Adams et al., 2010) and COOT (Emsley et al., 2010). The acetylated N- ter-
minus of the β- and γ-actins was manually placed in the cryo- EM densities using COOT. It is important 
to note that the N- terminal amino acids (1–3) of β- and γ-actins showed high flexibility, and we manu-
ally placed the best possible rotamers in this region by using cryo- EM map contour levels of ≥1.8–2.0σ 
in COOT. All rotamers were minimized and refined in Phenix. We manually built numerous parts in four 
actin isoform structures including the D- loop, N- and C- terminal residues, and amino acid substitu-
tions. Furthermore, we manually modeled PTMs and placed the Mg2+.ADP in the nucleotide- binding 
cleft active site and adjusted rotamers for the side chains as necessary. All final actin models were 
refined using Phenix, and the refined models were validated using MolProbity (Williams et al., 2018). 
Amino acids are numbered according to the sequence of mature actin isoforms (Figure 1—figure 
supplement 1C).
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