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Abstract Recent studies suggest that the cross-sectional relationship between reading skills 
and white matter microstructure, as indexed by fractional anisotropy, is not as robust as previously 
thought. Fixel-based analyses yield fiber-specific micro- and macrostructural measures, overcoming 
several shortcomings of the traditional diffusion tensor model. We ran a whole-brain analysis inves-
tigating whether the product of fiber density and cross-section (FDC) related to single-word reading 
skills in a large, open, quality-controlled dataset of 983 children and adolescents ages 6–18. We also 
compared FDC between participants with (n = 102) and without (n = 570) reading disabilities. We 
found that FDC positively related to reading skills throughout the brain, especially in left temporo-
parietal and cerebellar white matter, but did not differ between reading proficiency groups. Explor-
atory analyses revealed that among metrics from other diffusion models – diffusion tensor imaging, 
diffusion kurtosis imaging, and neurite orientation dispersion and density imaging – only the orien-
tation dispersion and neurite density indexes from NODDI were associated (inversely) with reading 
skills. The present findings further support the importance of left-hemisphere dorsal temporoparietal 
white matter tracts in reading. Additionally, these results suggest that future DWI studies of reading 
and dyslexia should be designed to benefit from advanced diffusion models, include cerebellar 
coverage, and consider continuous analyses that account for individual differences in reading skill.

Editor's evaluation
This valuable study investigates the association between fixel-based white matter measures and 
reading for the first time. In a large sample of participants ranging from 6-18 years of age, a 
convincing association between intra-axonal volume and single-word reading abilities are reported. 
This work will be of interest to a wide readership.

Introduction
Many research efforts spanning multiple neuroimaging modalities have sought to yield insights into 
the neural bases of reading ability and disability (Vandermosten et al., 2012; Landi et al., 2013; 
Richlan et al., 2013). Among these studies are those that employ diffusion-weighted imaging (DWI) 
to study the properties of anatomical connections in the brain. The most commonly reported measure 
of white matter microstructure is fractional anisotropy (FA). FA is a metric derived from the diffusion 
tensor imaging (DTI) model (Basser et al., 1994) that quantifies the degree to which water diffusion is 
directionally restricted in each voxel (Hagmann et al., 2006; Basser and Pierpaoli, 2011). FA is high 
in white matter compared with gray matter and cerebrospinal fluid (CSF) due to preferential water 
movement along the axis of axons. Studies of white matter microstructural properties’ relationships to 
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reading skill have primarily used FA (for overviews, see Ben et al., 2007; Vandermosten et al., 2012; 
Moreau et al., 2018; Meisler and Gabrieli, 2022). However, several factors confound the ability to 
draw meaningful interpretations from FA results (Farquharson et al., 2013; Riffert et al., 2014). As a 
metric defined on the voxel-level, FA is prone to partial volume effects, manifesting as reduced FA in 
regions where white matter borders gray matter or CSF (Vos et al., 2011). Due to the limited degrees 
of freedom in the tensor model, FA is artificially lower in regions of crossing fibers, affecting up to 
90% of white matter voxels (Behrens et al., 2007; Jeurissen et al., 2013). In addition to sensitivity 
to myelination, FA also tends to covary with other elements such as axonal diameter, density, perme-
ability, and coherence (Beaulieu, 2009; Johansen-Berg and Behrens, 2013; Shemesh, 2018; Frie-
drich et al., 2020; Lazari and Lipp, 2021), and information from DTI alone is not sufficient to gauge 
the individual contributions of these features. Thus, FA has often been reduced to a nonspecific (and 
arguably inappropriate; see Jones et al., 2013) term, 'white matter integrity’.

Early cross-sectional studies of FA and reading skills seemed to converge towards a consensus of 
greater FA relating to better reading ability, particularly in left temporoparietal white matter tracts 
that connect neocortical regions known to be important for language, such as the arcuate fasciculus 
(AF) and superior longitudinal fasciculus (SLF) (Klingberg et al., 2000; Ben et al., 2007; Vandermo-
sten et al., 2012). As tract segmentation algorithms became more robust and widely used, subse-
quent studies, empowered to address tract-specific hypotheses, began describing a range of results. 
These included significant FA-reading relationships in different areas, such as commissural (Frye et al., 
2008; Lebel et al., 2013), cerebellar (Travis et al., 2015; Bruckert et al., 2020), and right-lateralized 
bundles (Horowitz-Kraus et al., 2015), as well as regions where higher FA was associated with worse 
reading skills (Carter et al., 2009; Frye et al., 2011; Christodoulou et al., 2017). The inconsistency 
in past results is potentially driven by a variety of factors such as publication bias (Begg, 1994), 
small participant cohorts, inhomogeneous acquisition parameters, different covariates and reading 
measures, variation in age groups, and different processing techniques (Moreau et al., 2018; Ramus 
et al., 2018; Schilling et al., 2021a; Schilling et al., 2021b). Few studies have sought to resolve these 
inconclusive results. A meta-analysis of whole-brain voxel-based studies found no regions where FA 
either varied with reading ability or was reduced in dyslexic compared with typically reading, indi-
viduals (Moreau et al., 2018). Geeraert et al., 2020 used principal component analysis to draw out 
white matter structural indices from several scalar maps, including metrics from DTI (such as FA) and 
neurite orientation dispersion and density imaging (NODDI; Zhang et al., 2012), and found that vari-
ance in these measures was driven by age-related development, but not reading. Three large-scale 
cross-sectional studies using publicly available datasets found largely null associations between FA 
and reading skills in several tracts (Koirala et al., 2021; Meisler and Gabrieli, 2022; Roy et al., 2022).

Despite the mixed empirical findings relating FA to reading skill, it is reasonable to hypothesize 
that there ought to be such a brain structure–behavior correlate of reading ability. Reading involves 
the functioning of a widely distributed brain network (Cattinelli et al., 2013; Wandell and Yeatman, 
2013; Murphy et al., 2019), and white matter tracts are conduits for information sent within this 
network (Ben et al., 2007). Lesion-mapping analyses (Wang et al., 2020; Li et al., 2021) and clin-
ical case studies (Epelbaum et al., 2008; Rauschecker et al., 2009) have demonstrated that white 
matter connections, primarily in the left hemisphere, are necessary for reading. Since white matter 
exhibits learning-driven plasticity and can also modulate neuronal firing patterns (Fields, 2015; Xin 
and Chan, 2020), one may expect that functional variation, such as differences in reading ability, may 
be reflected by some white matter structural property (Ramus et al., 2018; Protopapas and Parrila, 
2018; Protopapas and Parrila, 2019). The largely null findings in higher-powered meta-analyses 
(Moreau et al., 2018) and large-scale studies (Koirala et al., 2021; Meisler and Gabrieli, 2022; Roy 
et al., 2022) suggest that FA is not a specific enough metric to effectively capture this relationship in 
cross-sectional designs (however, see Van Der Auwera et al., 2021 and Roy et al., 2022 for evidence 
that FA tracks individual longitudinal trajectories in reading achievement).

More advanced diffusion models have yielded metrics that better reflect variance in reading 
skills. Sihvonen et al., 2021 found that connectometry from quantitative anisotropy modeling (Yeh 
et  al., 2013) in multiple pathways covaried with better reading skill independently from phono-
logical abilities. Quantitative anisotropy is less prone to artifacts from partial volume effects and 
crossing fibers than FA (Yeh et al., 2016). Zhao et al., 2016 found that more right-sided laterality of 
hinderance-modulated orientation anisotropy (HMOA; Dell’Acqua et al., 2013) in the SLF and inferior 
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frontal-occipital fasciculus was related to worse reading skills. Koirala et  al., 2021 reconstructed 
multiple diffusion models in children and concluded that lower orientation dispersion and neurite 
density indices from NODDI modeling related to better reading abilities in several bilateral tracts, 
while FA was not associated with reading. Although not a DWI sequence, myelin water imaging (MWI) 
studies have suggested both positive (Beaulieu et al., 2020) and negative (Economou et al., 2022) 
associations of myelination with reading skill in children. Economou et al., 2022 also replicated null 
associations between FA and reading ability in their experimental cohort. These results collectively 
suggest that studies of reading (and perhaps other cognitive domains; see Lazari et al., 2021) should 
begin to move beyond traditional DTI modeling. However, NODDI metrics, being a voxel-level metric, 
cannot ascribe properties to particular fiber populations if multiple exist in a voxel. MWI acquisitions, 
while showing higher specificity to variation in myelin, tend to have relatively long scan times (Alonso-
Ortiz et al., 2015) one would also still need to collect a DWI scan if one wanted to associate MWI 
metrics with fiber bundles and properly account for MWI variation due to fiber orientations (Birkl 
et al., 2021). Collecting all of these data in children and clinical populations is challenging and not 
always practical.

Subsequently, a DWI analytical paradigm was introduced that performs statistical inferences on 
'fixels,' or individual fiber populations within voxels, using a set of three fixel-derived metrics: fiber 
density (FD), fiber cross-section (FC), and their product (FDC) (Raffelt et al., 2015). This framework is 
enabled by constrained spherical deconvolution (CSD) (Tournier et al., 2007), a data-driven approach 
for resolving fiber orientation distributions (FODs) even in the presence of crossing fibers. Unlike other 
fiber-specific metrics, such as quantitative anisotropy, fixel-based analyses (FBA) can yield distinct 
micro- and macrostructural components, and these can be studied on a fixel-by-fixel basis, affording 
increased spatial specificity. FD is a microstructural measure that reflects the intra-axonal volume frac-
tion (Raffelt et al., 2012b; Genc et al., 2020), while FC is a macrostructural measure related to the 
cross-sectional area of fiber bundles (Raffelt et al., 2012b). The product of FD and FC, or FDC, is 
therefore related to the total estimated intra-axonal volume and is sensitive to both white matter 
micro- and macrostructure. Increased intra-axonal volume may reflect either an increased number of 
axons in a given area or the presence of wider axons (or some combination thereof), although conven-
tional DWI alone may not be able to resolve the respective contributions of these two possibilities. 
Wider axons conduct action potentials more quickly and can fire more often at their terminals (Perge 
et al., 2012). Thus, FDC is thought to more closely relate to the conductive capacity of white matter 
(Raffelt et al., 2017b).

In addition to enabling investigations of these more specific fixel-derived metrics, FBA present 
several additional advantages compared to traditional FA whole-brain approaches (Dhollander 
et  al., 2021a). Since FBAs operate on the level of fixels, and fixels are generated from FODs in 
white matter, FBAs are by nature restricted to white matter, thus mitigating the effects of multiple 
comparison correction from redundant regions in other neural compartments. Spatial smoothing in 
FBAs is performed within local neighborhoods of white matter bundles informed by fixel connectivity 
(Raffelt et al., 2015). Thus, the signal in a given fixel is not influenced by different tissue classes or 
other fiber populations, in contrast to traditional voxel-based spatial smoothing, which operates more 
indiscriminately.

FBAs have been quickly adopted and used to investigate several clinical and developmental popu-
lations (reviewed in Dhollander et al., 2021a). However, they have not yet been used to examine 
reading abilities. With the increased specificity of FBAs, this approach might reveal fiber-specific 
biomarkers that are more sensitive to variation in reading abilities than FA or other tensor-derived 
metrics, providing valuable insights into the neural basis of literacy. In this study (Figure  1), we 
examined the relationship between single-word reading skill and FDC (primary analysis), FD, and 
FC (secondary analyses) in a pediatric dataset of 983 children and adolescents ages 6–18 from the 
Healthy Brain Network (HBN) biobank (Alexander et al., 2017). We additionally looked for differ-
ences in fixel metrics between participants with (n = 102) and without reading disabilities (n = 570) 
using the criteria based on diagnostic and standardized reading assessments. In a set of exploratory 
analyses, we tested whether DWI metrics from other models – DTI, diffusion kurtosis imaging (DKI; 
Jensen et al., 2005), and NODDI – were related to reading abilities. In all analyses, we employed 
generalized additive modeling (GAM) (Hastie and Tibshirani, 1990) to more flexibly model age-
related variance given the wide age range of participants (Zhao et al., 2022; Bethlehem et al., 2022). 
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Figure 1. Methodological overview of the study. Top: description of primary and secondary analyses. Bottom: schematic depicting interpretations of 
changes in examined metrics. Depictions of bundles, axons, and neurites are not drawn to scale. DWI, diffusion-weighted imaging; DTI, diffusion tensor 
imaging; DKI, diffusion kurtosis imaging; NODDI, neurite orientation density and dispersion index; FA, fractional anisotropy; KFA, kurtosis fractional 
anisotropy; MD, mean diffusivity; MK, mean kurtosis; NDI, neurite density index; ODI, orientation dispersion index; FODF, fiber orientation distribution 
function; FD, fiber density; FC, fiber cross-section; FDC, fiber density and cross-section product.
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We hypothesized that we would see positive associations between FDC and reading abilities, as well 
as lower FDC among dyslexic readers, in several tracts spanning both hemispheres, but especially 
the left arcuate fasciculus, left inferior fronto-occipital fasciculus, and cerebellar peduncles, as these 
tracts yielded significant relationships in multiple studies of advanced diffusion models and reading 
(Beaulieu et al., 2020; Koirala et al., 2021; Sihvonen et al., 2021; Economou et al., 2022). However, 
since this was the first FBA involving reading skill, and one with considerably high statistical power, we 
took a more conservative approach and ran a whole-brain FBA. Using tract segmentation, we ascribed 
locations of significant results to bundles to guide future research efforts.

Results
Participant data
The 983 participants who passed all inclusion, exclusion, and quality control criteria (Table 1) were 
divided into a typically reading group (TR; n = 570) and reading disability group (RD; n = 102) based 
on diagnostic and standardized reading assessments (Figure 2; see 'Materials and methods'). A total 
of 311 participants did not meet the criteria for either group, but were still included in the correla-
tion analyses. The TR group, compared with the RD group, was older and had higher socioeconomic 
scores, brain volumes, verbal IQ, visuospatial IQ, age-normalized reading scores, globally averaged 
fixel metrics, and image quality (as indexed by the average neighbor correlation; see Yeh et al., 2019 
for more information on this metric). The groups were matched in sex distribution (although the 
cohort as a whole was male-skewed), handedness, and average motion (mean framewise displace-
ment). Reading scores and IQs were age-standardized composite indexes from the Tests of Word 
Reading Efficiency (TOWRE; Torgesen et  al., 1999) and Wechsler Intelligence Scale for Children 
(WISC; Wechsler and Kodama, 1949), respectively. In total, 17 participants were missing socioeco-
nomic information, and 93 participants did not have WISC scores. Since these variables were not 
ultimately included in our statistical models, we did not exclude these participants. The relationships 
between phenotypic and global neuroimaging metrics, and the differences in these measures between 

Table 1. Phenotypic and neuroimaging summary statistics in all participants and within the two reading proficiency groups.
17 and 93 participants were lacking socioeconomic and WISC scores, respectively, and were ignored for the corresponding rows. 
Values are listed as mean (standard error of the mean). For group comparison effect sizes (right-most column), *p<0.05 and † 
p<0.001. All t-tests were Welch’s t-tests, and ‍χ

2
‍ tests were used for comparisons of categorical variables.

Metric All (n = 983) TR (n = 570) RD (n = 102) Effect size

Sex (M/F) 617/366 355/215 59/43 Φ = 0.0235

Age (years) 11.16 (0.10) 11.38 (0.14) 10.56 (0.27) d = 0.258*

Handedness (EHI) 61.78 (1.58) 62.19 (2.05) 62.91 (5.05) d = 0.015

Handedness (L/A/R) 74/128/781 42/66/462 8/17/77 Φ = 0.047

SES (years parental edu.) 17.63 (0.10) 18.13 (0.11) 16.93 (0.32) d = 0.429†

ICV (cm3) 1540 (5.130) 1559 (6.735) 1501 (12.47) d = 0.370†

WISC VSI 102.08 (0.552) 105.72 (0.714) 97.82 (1.497) d = 0.494†

WISC VCI 104.61 (0.542) 109.26 (0.658) 98.18 (1.414) d = 0.750†

TOWRE 97.93 (0.56) 109.49 (0.45) 70.48 (0.80) d = 3.74†

Global FD 0.285 (6.26e-4) 0.287 (7.66e-4) 0.280 (2.53e-3) d = 0.337*

Global log(FC) 0.050 (2.15e-3) 0.059 (2.73e-3) 0.030 (5.92e-3) d = 0.455†

Mean motion (mm) 0.44 (7.89e-3) 0.44 (0.01) 0.44 (0.03) d = 4.27e-3

Quality (Neighbor Corr.) 0.756 (1.58e-3) 0.760 (2.08e-3) 0.745 (5.17e-3) d = 0.291*

TR = typically reading group; RD = reading disability group; EHI = Edinburgh Handedness Inventory; SES = socioeconomic status; ICV = intracranial 
volume; TOWRE = Tests of Word Reading Efficiency composite score, age-normalized; WISC VSI = Wechsler Intelligence Scale for Children visuospatial 
index, age-normalized; WISC VCI = Wechsler Intelligence Scale for Children verbal comprehension index, age-normalized; FD = fiber density; FC = 
fiber cross-section. FD and FC are unitless.

https://doi.org/10.7554/eLife.82088
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scanning sites, can be found in the supplementary materials (Supplementary file 1; Figure 2—figure 
supplements 1 and 2).

Fixel metrics
We ran a whole-brain fixel-based analysis testing whether the product of fiber density and fiber cross-
section, or FDC, was associated with raw composite TOWRE scores, controlling for age, sex, intra-
cranial volume, image quality, and scanning site. We found widespread bilateral and commissural 

 (n = 570)
 (n = 311)

 (n = 102)

Figure 2. Age-standardized TOWRE subscores of all participants. Each dot represents a participant, color-coded by group assignment. Dashed lines 
mark the score cutoffs for the two reading proficiency groups. Since scores are discrete and not unique, some dots may overlap with each other. Kernel 
density estimation plots along the perimeter show the distribution of reading scores in each group. TR, typically reading group; RD, reading disability 
group; TOWRE, Tests of Word Reading Efficiency.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Correlations between continuous phenotypic and neuroimaging variables.

Figure supplement 2. ANOVA results for site-wise comparisons between phenotypic and neuroimaging metrics.

https://doi.org/10.7554/eLife.82088
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regions in which higher FDC was significantly related to better reading abilities (‍qFDR < 0.05‍; Figure 3, 
Figure 3—figure supplement 1). There were no appreciable clusters in which an inverse relationship 
between FDC and reading skills was observed. Each tract produced by the segmentation software, 
TractSeg (Wasserthal et  al., 2018a), contained significant fixels (Table  2). We defined effect size 
in each fixel as the difference in adjusted ‍R2‍ values between the full model and a reduced model 
without the predictor of interest (e.g., TOWRE scores or group designations). The effect size of 
significant fixels varied up to a peak value of 0.030. Clusters of fixels with the largest effect sizes 
(‍∆R2

adj > 0.028‍) were observed in left-hemisphere temporoparietal and cerebellar white matter. These 
clusters survived at ‍qFDR < 0.001‍ (Table 2), which more than accounts for Bonferroni correction across 
all models described in this study (given ‍α = 0.05‍). Tract segmentation intersections (Table 2) revealed 
that the temporoparietal cluster was most likely associated with the left arcuate fasciculus (AF), supe-
rior longitudinal fasciculus (SLF), or middle longitudinal fasciculus (MLF). These tracts overlapped in 
several areas (Figure 3—figure supplement 2). The cerebellar cluster was most likely associated with 
the left superior cerebellar peduncle (SCP). Homotopic clusters of significant fixels were observed in 
right-hemisphere temporoparietal and cerebellar white matter, but they reached smaller effect sizes 
than those in the left hemisphere. Post-hoc exploration of FD and FC revealed diffuse associations 
of better reading skills with higher FC compared with fewer regions where higher FD was related 
to better reading (Figure 3—figure supplement 3). As expected, highest effect sizes of FDC were 
achieved in regions where higher FD and FC were both independently related with better reading. We 
did not find any significant differences in FDC between the TR and RD groups.

Given the wide age range of participants, we also investigated whether the correlation between 
FDC and TOWRE scores was stable across ages. We ran a smooth bivariate interaction model testing 
whether there was an interaction between age and TOWRE scores in predicting FDC. Only two triv-
ially small clusters (consisting of one and seven fixels) showed age-related variance in FDC-TOWRE 
relationships. These small clusters did not intersect with significant fixels from the primary analysis, 
suggesting that the relationship between FDC and reading skills was stable across ages. In the supple-
mentary materials, we also report the effect size maps of the individual SWE and PDE subscores with 
FDC (Figure 3—figure supplement 4). These maps were qualitatively similar, each notably retaining 
the peak effect sizes in left temporoparietal and cerebellar regions identified in the primary analysis.

DTI, DKI, and NODDI analyses
We similarly examined whether metrics from other diffusion models were related to raw TOWRE 
scores (Figure 4). We found that metrics from DTI (FA and mean diffusivity [MD]) and DKI (kurtosis 
fractional anisotropy [KFA] and mean kurtosis [MK]) did not relate to reading skills. There were a 
few small areas, primarily in the cerebellum, where the neurite density index (NDI) from NODDI was 
inversely related to TOWRE skills (max  ‍∆R2

adj‍ = 0.18). The orientation dispersion index (ODI) from 
NODDI was also inversely related to reading skills, achieving a max ‍∆R2

adj‍ of 0.20. For ODI, the regions 
of highest effect sizes overlapped with the left temporoparietal and bilateral cerebellar regions that 
were significant in the primary analysis of FDC. Clusters in neither of the NODDI models survived 
multiple comparison correction across hypotheses (Bonferroni factor of 12).

Discussion
In this study, we employed a method to study fiber-specific properties as they relate to single-word 
reading abilities and disabilities among children and adolescents. We hypothesized that FDC would 
covary with reading abilities and be lower in dyslexic readers, especially in the left arcuate fascic-
ulus, left inferior fronto-occipital fasciculus, and cerebellum. Unlike our secondary analyses and recent 
cross-sectional studies that yielded few-to-no regions exhibiting significant FA-reading relationships 
or group differences in FA (Moreau et  al., 2018; Koirala et  al., 2021; Economou et  al., 2022; 
Meisler and Gabrieli, 2022; Roy et al., 2022), we found that higher FDC related to better single-
word reading skills throughout the brain. This relationship was stable across ages. However, FDC did 
not differ between those with and without reading disabilities. Although significant correlations were 
observed bilaterally, the strongest effect sizes were in the left hemisphere, and especially in tempo-
roparietal and cerebellar white matter. The tracts most likely associated with the regions of strongest 
correlations were the left-hemisphere AF, SLF, MLF, and SCP.

https://doi.org/10.7554/eLife.82088
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Figure 3. Significant fixels (‍qFDR < 0.05‍) for relating fiber density and cross-section product (FDC) to raw composite Tests of Word Reading Efficiency 
(TOWRE) scores, colored by effect size (‍∆R2

adj‍). Model confounds included a spline fit for age and linear fits for sex, site, neighbor correlation, and 
log(ICV). Top and bottom panels are left and right hemispheres, respectively. Sagittal slices go from lateral-to-medial. Blue arrows point to larger 

Figure 3 continued on next page
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It is encouraging that the fixel-based results highlighted left-hemisphere dorsal temporoparietal 
white matter as its importance to reading and language has been well-established. The AF and SLF 
connect inferior frontal and temporoparietal gray matter regions that are essential for language and 
reading processing (Catani et al., 2005). Lesion symptom mapping studies have demonstrated that 
the AF and SLF are vital connections in the reading network (Baldo et al., 2018; Li et al., 2021). 
These tracts, particularly in the left hemisphere, are associated with phonological processing skills 
(Yeatman et al., 2011), which are critical to reading (Vellutino and Scanlon, 1987) and impaired in 
dyslexia (Swan and Goswami, 1997). However, the strongest effects in our study were not found in 
reading-related tracts projecting from the occipital lobe, such as the inferior fronto-occipital fascic-
ulus (IFOF) and inferior longitudinal fasciculus (ILF). Longitudinal studies have suggested that these 
ventral tracts are more associated with visual orthographic, as opposed to phonological, processing 
(Yeatman et al., 2012; Vanderauwera et al., 2018). Our results suggest that phonological skills, as 
opposed to lower-level visual and orthographic processing, may provide more of a bottleneck to 
single-word reading abilities in children. The present results are supported by a large-scale longitu-
dinal study finding that FA of the left AF, but not ILF, covaries with single-word reading skill trajectories 
in children (Roy et al., 2022). This notion is also consistent with a behavioral study demonstrating 
that orthographic skills are more related with the ability to read longer passages as opposed to single 
words (Barker et al., 1992). Thus, FBAs of skills relating to reading longer texts, as opposed to single 
words, might instead highlight ventral tracts. We also note that the MLF intersected with the signif-
icant fixel clusters. This tract has received less attention due to a lack of clear characterization of its 
structure and function. However, some clinical cases suggest that the left MLF may be associated with 
verbal-auditory learning and comprehension (Latini et al., 2021). We reiterate that the tract masks 
largely overlapped and should not be used to make definitive associations between fixel-location and 
bundles, especially because tracts were defined in template, as opposed to native, space.

The present findings suggest that higher FDC in the SCP is associated with better reading skills. 
Although the cerebellum is not commonly perceived as a core hub in the reading network, theories 
of reading suggest the cerebellum has a role in fluent word recognition (Alvarez and Fiez, 2018; 
D’Mello et  al., 2020; Li et  al., 2022), and cerebellar deficits have been hypothesized as central 
impairments in dyslexia (Nicolson et al., 2001). In particular, the SCP contains efferent fibers that 
connect deep cerebellar nuclei to contralateral thalamic cortical regions. Co-activation of language-
dominant hemispheric inferior frontal regions and contralateral cerebellar regions during verbal tasks 
(Jansen et al., 2005) suggests that the SCP may be a putative tract for cortico-cerebellar interac-
tions in verbal processing. Previous studies have reported that FA of bilateral SCP inversely relates 
to reading skills (Travis et al., 2015; Bruckert et al., 2020). We did not find an inverse relationship 
between FDC and reading abilities, although one should not a priori expect FA and FDC to covary. 
Despite the lack of a clear consensus of cerebellar contributions to reading abilities, our findings 
suggest that the cerebellum should remain a focus in studies of reading skills, especially since it is 
often cropped out of MRI acquisitions.

While the present results suggest a left-sided laterality in FDC-TOWRE correlation effect sizes, it 
is noteworthy that statistically significant fixels were distributed across the brain. The left-hemispheric 
laterality is consistent with the frequent focus on predominantly left-sided networks used in reading 

clusters of fixels in bilateral temporoparietal and cerebellar white matter that were associated with higher effect sizes relative to fixels in the rest of the 
hemisphere. The template fiber orientation distribution (FOD) image was used as the background image.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Significant fixels (‍qFDR < 0.05‍) relating fiber density and cross-section product (FDC) to raw composite Tests of Word Reading 
Efficiency (TOWRE) scores, colored by the beta estimates (top) and direction (bottom; red, LR; green, AP; blue, SI).

Figure supplement 2. Plots of the set of tracts in which the strongest effect sizes (‍∆R2
adj > 0.028‍) were achieved for relating fiber density and cross-

section product (FDC) to Tests of Word Reading Efficiency (TOWRE) scores (see Table 2).

Figure supplement 3. Significant fixels (‍qFDR < 0.05‍) relating fiber cross-section (FC; top), and fiber density (FD; bottom) to raw composite Tests of 
Word Reading Efficiency (TOWRE) scores, colored by direction (red, LR; green, AP; blue, SI).

Figure supplement 4. Significant fixels (‍qFDR < 0.05‍) relating fiber density and cross-section product (FDC) to raw Sight Word Efficiency (SWE; top) and 
Phonemic Decoding Efficiency (PDE; bottom) subscores, colored by effect size (‍∆R2

adj‍).

Figure 3 continued

https://doi.org/10.7554/eLife.82088
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(Houdé et  al., 2010; Paulesu et  al., 2014). 
However, since some theories of dyslexia etiology, 
such as the anchoring hypothesis (Ahissar, 2007) 
and cerebellar hypothesis (Alvarez and Fiez, 
2018; D’Mello et  al., 2020; Li et  al., 2022), 
imply that deficits in reading could also arise from 
domain-general deficits, it is plausible that neural 
signatures outside of the putative reading network 
may be informative for predicting reading abilities 
and disabilities, and that these neural bases are 
not restrained to properties of white matter. Poor 
reading abilities have been associated with more 
global neural differences, most consistently mani-
fested as reductions in intracranial volume (Ramus 
et  al., 2018), which we replicate here (Table  1, 
Figure  2—figure supplement 1). A functional 
MRI study found that whole-brain patterns of 
reading-driven activity conferred advantages to 

Table 2. Intersections of white matter tracts with 
significant fixels for correlations between fiber 
density and cross-section product (FDC) and 
reading skill.
The number of fixels is present for two 
significance thresholds. For tracts that exist 
bilaterally, results are given in the form of left/
right. Tracts in which the maximum effect 
size (‍∆R2

adj‍) exceeded 0.028 are designated 
with a bold font. This only happened in the 
left hemisphere. Tract masks are not mutually 
exclusive, and nearby tracts likely overlapped to 
various degrees.

Tract
N fixels 
(‍qFDR < 0.05‍)

N fixels 
(‍qFDR < 0.001‍)

Max 
effect size 
(‍∆R2

adj‍)

AF 2446/1571 186/0 0.030/0.020

ATR 114/297 0/0 0.017/0.017

CA 314 2 0.018

CC_1 53 0 0.015

CC_2 1351 0 0.018

CC_3 197 0 0.015

CC_4 1770 3 0.021

CC_5 1484 0 0.015

CC_6 2022 32 0.024

CC_7 250 0 0.018

CG 298/227 0/0 0.018/0.019

CST 2561/1789 90/109 0.024/0.024

FPT 3171/2809 214/221 0.024/0.024

FX 348/300 6/6 0.024/0.024

ICP 675/614 2/25 0.023/0.022

IFOF 1205/1056 26/0 0.024/0.018

ILF 811/422 27/0 0.021/0.019

MCP 2043 22 0.022

MLF 1631/824 101/0 0.029/0.020

OR 585/596 18/0 0.021/0.016

POPT 2785/2103 118/119 0.024/0.021

SCP 1453/1378 85/76 0.029/0.021

SLF I 668/903 5/4 0.019/0.020

SLF II 918/1015 50/0 0.029/0.020

SLF III 741/415 116/0 0.030/0.019

ST_FO 185/125 0/0 0.019/0.013

ST_
OCC

862/872 26/2 0.024/0.018

Table 2 continued on next page

Tract
N fixels 
(‍qFDR < 0.05‍)

N fixels 
(‍qFDR < 0.001‍)

Max 
effect size 
(‍∆R2

adj‍)

ST_
PAR

1857/1295 15/0 0.024/0.020

ST_
POSTC

1463/582 9/0 0.020/0.016

ST_
PREC

1854/671 17/2 0.024/0.016

ST_
PREF

825/537 0/0 0.019/0.017

ST_
PREM

214/95 0/0 0.019/0.018

STR 1035/531 3/2 0.017/0.014

T_
OCC

625/617 17/0 0.021/0.017

T_PAR 1436/685 4/0 0.020/0.016

T_
POSTC

1086/383 0/0 0.017/0.015

T_
PREC

1497/607 5/2 0.021/0.014

T_
PREF

748/505 0/0 0.018/0.017

T_
PREM

51/143 0/0 0.012/0.014

UF 665/406 23/0 0.021/0.016

.
AF = arcuate fasciculus; MLF = middle longitudinal 
fasciculus; SCP = superior cerebellar peduncles; SLF = 
superior longitudinal fasciculus.
Please refer to Figure 3 of the TractSeg publication 
(Wasserthal et al., 2018a) for a full list of the tract 
abbreviations.

Table 2 continued

https://doi.org/10.7554/eLife.82088
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Figure 4. Significant fixels (‍qFDR < 0.05‍) for relating neurite orientation density and dispersion index (NODDI) metrics to raw composite Tests of Word 
Reading Efficiency (TOWRE) scores, colored by direction (red, LR; green, AP; blue, SI). Model confounds included a spline fit for age and linear fits 
for sex, site, neighbor correlation, and log(ICV). Top and bottom panels are the indexes for orientation dispersion (ODI) and neurite density (NDI), 
respectively. Only the left hemisphere is shown. Sagittal slices go from lateral-to-medial. Blue arrows and circles indicate significant fixels. The template 
fiber orientation distribution (FOD) image was used as the background image.
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predicting reading outcomes among dyslexic children compared with targeted region of interest 
analyses (Hoeft et  al., 2011). A machine-learning approach to classifying dyslexic from neurotyp-
ical children found that white matter features outside of the putative reading network meaningfully 
improved discriminability (Cui et al., 2016). The same group conducted a similar study finding that 
morphometry of bilateral gray matter regions contributed to predicting continuous reading compre-
hension scores (Cui et al., 2018). Our study adds to these by suggesting that diffuse white matter 
variation, as indexed by FDC, relates to individual differences in reading abilities independent of ICV 
(since it was regressed out), although not to a categorical distinction between typical reading ability 
and reading disability. Future studies should investigate whether multivariate whole-brain patterns of 
brain morphometry, microstructure, and activity can improve prediction of reading skills, and whether 
these patterns share biological bases. Such diffuse and multimodal models for predicting reading 
abilities would likely achieve higher effect sizes than our fixel-specific measures. The changes in ‍R

2
adj‍ 

attributed to the reading measures in predicting fixel metrics were modest, peaking at around 0.030 
for the primary analysis, although they are in a similar range of ‍∆R2

adj‍ values reported in other brain–
behavior correlation studies (e.g., Pines et al., 2022).

Although there were significant correlations between single-word reading ability and FDC, there 
was not an analogous group difference between those with typical reading ability and those with 
reading disability. This could be in part due to fewer participants being included in the group analyses 
(total n = 672) compared to the continuous analyses (n = 983). It is also important to consider that 
collapsing participants into reading proficiency groups loses information about individual differences 
in reading ability. This could lead to reductions in statistical power if variation in neural metrics truly 
lies along a spectrum of reading skill. Although it is a worthwhile pursuit to investigate neurodevel-
opmental bases of dyslexia, which may be addressed by group comparisons, these questions may 
be better asked in pre-readers based on future reading outcomes (i.e., comparing children who later 
do and do not develop typical reading skills). Studying pre-readers would help rule out concerns 
that findings are due to the consequences of developing typical or poor reading skills, as opposed 
to the etiology, which is a concern for studies of late-stage readers (Protopapas and Parrila, 2018; 
Protopapas and Parrila, 2019). There has not yet been a fixel-based analysis focusing on pre-reading 
skills, but other studies have found white matter microstructural alterations, largely in the left arcuate 
fasciculus, among pre-readers who have either a familial risk for dyslexia, lower pre-reading skills 
associated with risk for dyslexia, or future diagnoses of dyslexia (Saygin et al., 2013; Vanderauwera 
et al., 2015; Vandermosten et al., 2015; Langer et al., 2017; Vanderauwera et al., 2017; Wang 
et al., 2017; Yu et al., 2020).

In our secondary analyses, we replicated recent studies suggesting that FA does not relate to 
reading skills (Moreau et al., 2018; Koirala et al., 2021; Meisler and Gabrieli, 2022; Roy et al., 
2022). These null results may arise from the many biological factors that influence FA (Beaulieu, 
2009; Johansen-Berg and Behrens, 2013; Shemesh, 2018; Friedrich et al., 2020; Lazari and Lipp, 
2021) and lack of specificity from being defined on the voxel-level (in which crossing fibers may be 
present), as opposed to fixel-level. Different manifestations of white matter plasticity from learning to 
read, such as axonal pruning and increased myelination, can have opposing effects on FA (Yeatman 
et al., 2012), confounding FA analyses and their interpretations. The present secondary results, to 
a limited extent, also replicated Koirala et  al., 2021, which found negative associations between 
NODDI metrics and reading skills. The authors attributed this relationship to a more efficient neural 
architecture. Interestingly, in the present results, areas where ODI negatively related with reading 
skills approximately overlapped with where FD positively with reading abilities (Figure 4, Figure 3—
figure supplement 3). One may have a priori expected significant FD regions to overlap with those 
from neurite density (NDI), given both metrics are neural density measures. We can only speculate as 
to what underlies the observed overlap, and future work should further investigate the relationship 
between fixel metrics and measures from other DWI models.

Our study contributes to, but still leaves open, the discussion of what properties of brain structure 
change when developing reading skills. There is a frequent focus on myelin plasticity in learning-driven 
brain development (Xin and Chan, 2020). However, DWI signal is largely insensitive to myelination 
(Beaulieu, 2002). Since this study is cross-sectional, an important unanswered question is whether 
axonal differences that drive higher FDC are induced by learning how to read, or alternatively whether 
the presence of higher FDC in putative reading white matter is static and predisposes one to better 
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reading outcomes. Longitudinal studies of white matter and reading skills have provided some related 
insights. Roy et al., 2022 suggests that variance in reading skill over multiple years precedes changes 
in FA. However, Van Der Auwera et al., 2021 found that lower FA in the left AF among future-dyslexic 
children existed prior to formal reading instruction and predicted future reading scores. The biolog-
ical basis of FA and its longitudinal change are unclear, and these studies seem to differ regarding 
the temporal dependence between white matter microstructure and reading skills. At the very least, 
these studies jointly suggest that white matter is not static in its relation to reading skills. Multimodal 
studies probing rapid intervention-driven changes have suggested that properties of myelin do not 
change throughout reading intervention (Huber et al., 2021), with mixed evidence for whether MD 
(which relates to extra-axonal properties) tracks intervention responses (Huber et al., 2018; Partanen 
et al., 2021). Future work will need to be done to distinguish age-related from learning-related devel-
opment in different time scales and to ascribe these changes to biophysical phenomena, which are 
nontrivial tasks (Jelescu et al., 2020). Liang et al., 2021 demonstrated that fixel metrics can undergo 
even rapid plasticity. Thus, we hope future studies of reading will use longitudinal FBA (Genc et al., 
2018) to investigate long-term and rapid reading-driven plasticity. FDC from the fixel-based analysis is 
more specific than FA, conveying information about intra-axonal volume on the fixel-level (Dhollander 
et al., 2021a). However, one should still interpret FDC findings cautiously. DWI alone cannot discern 
whether intra-axonal volume is driven by the number of axons or width of axons, and fixel-based 
metrics have not yet been validated against histological standards.

Our findings contribute to a growing list of cross-sectional studies suggesting that models more 
nuanced than the diffusion tensor better capture variance in reading skills (Zhao et al., 2016; Koirala 
et al., 2021; Sihvonen et al., 2021; Economou et al., 2022). Unlike many prior studies, we ran a 
whole-brain analysis instead of running statistics on metrics averaged within tracts. This has important 
implications for interpreting results. Our whole-brain findings suggest a relationship between reading 
skills and FDC in fixel-specific regions shared across participants. However, this does not preclude the 
possibility of tract-averaged diffusion metrics relating to reading skills, even among areas that yielded 
few significant fixels. A disruption in white matter leading to a deficit in reading might happen at any 
location along a tract, and variance in such locations across participants could lead to null findings on a 
fixel-by-fixel level. Whole-brain analyses are also prone to stricter correction for multiple tests. On the 
other hand, the spatial specificity achieved by whole-brain FBAs could be informative for speculating 
about the outcomes of white matter disruptions. White matter bundles do not only deliver signals 
from one end to the other; they branch off and synapse at multiple locations along its course. Thus, 
spatially specific disruptions of signal could have different downstream effects, warranting a more 
nuanced approach. Considering that tracts such as the AF and SLF have distinct cores that subserve 
reading and math processing (Grotheer et al., 2019), averaging over an entire tract may introduce 
noise by considering parts of the bundle that are not relevant to the behavior being studied. However, 
one can functionally localize white matter tracts by finding the streamlines that connect participant-
specific reading functional regions (Grotheer et al., 2022). One can also extract tract-wise measures 
similar to FDC that relate to the intra-axonal volume of the bundles (Smith et al., 2022). This approach 
may lead to appreciable insights into properties of long-range connections that underlie reading skills 
with higher and more interpretable effect sizes.

In our previous work (Meisler and Gabrieli, 2022), we correlated diffusion metrics with each 
TOWRE subtest score individually. However, in this study, we used the composite TOWRE measure 
as the primary phenotypic variable of interest. Our rationale in doing so is the same as in Sihvonen 
et  al., 2021: a composite score is more stable as it is more robust to variance due to temporary 
attention lapses, which may only affect performance on one test. In addition, running fewer models 
mitigates the problem of multiple hypothesis testing. We acknowledge, however, that real word and 
pseudoword reading may rely on different skills. Pseudoword reading ability, for example, is consid-
ered a more pure gauge of phonological processing skills because the novelty of these nonwords 
precludes one from relying on memorized representations. We share the model results for relating 
FDC to SWE and PDE scores in the supplementary materials (Figure 3—figure supplement 4). The 
two maps were qualitatively similar to the model results for the composite TOWRE measure. This is 
not entirely surprising given the high degree of correlation between the subscores (Figure 2).

Our model outputs also allowed us to visualize the impact that intracranial volume and image 
quality had on DWI-derived metrics. Recent studies relating ICV (Eikenes et al., 2022) and image 

https://doi.org/10.7554/eLife.82088


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Meisler and Gabrieli. eLife 2022;11:e82088. DOI: https://doi.org/10.7554/eLife.82088 � 14 of 28

quality (Koirala et al., 2022) to DTI measures have important implications for model specification 
that should be extended to fiber-specific metrics in future work. For each metric across fixel-based, 
DTI, DKI, and NODDI models, we found diffuse significant correlations with both ICV and neighbor 
correlation (with the exception of FD, since ICV was not part of the model). The nature of these asso-
ciations varied between the different DWI metrics and covariates, and a full characterization of these 
relationships falls outside the scope of this report. However, we encourage interested readers to 
visualize these associations using the model outputs we shared (see 'Data and code availability') and 
to consider including these metrics in their own fixel-based analysis models. It should be emphasized 
that our models include multiple predictors that may covary with ICV and image quality, or otherwise 
not be of interest if one wanted to rigorously characterize the effects of ICV or image quality. However, 
future work should comprehensively characterize and explain the impacts of brain volume and image 
quality on diffusion-weighted signal.

The present findings should be interpreted in the context of several other limitations. First, it was 
not made available what specific criteria were used to diagnose reading disabilities. This is why we 
used stringent criteria based on clinical and reading assessments to define the RD group. Secondly, 
most participants in the HBN present with at least one psychological, learning, or neurodevelop-
mental disorder (Alexander et al., 2017). The diversity of the cohort, while perhaps more represen-
tative of a population, presents multiple phenotypic factors that could confound results. To maintain 
high statistical power and a diverse sample, we did not exclude participants based on the presence 
of other neurodevelopmental or learning disorders such as ADHD or specific language impairments. 
Such co-occurring difficulties occur at high rates in reading disorders; for example, approximately 50% 
of children with reading disorders also qualify for a diagnosis of ADHD (Willcutt et al., 2010; DuPaul 
et al., 2013; Al Dahhan et al., 2022). Exclusion of such co-occurring difficulties would yield a nonrep-
resentative sample of those with reading disability.

Further, since white matter bundles can have different shapes across participants (Yeatman et al., 
2011; Wassermann et al., 2011) and analyses are performed in a single template space, an effect in 
a region of fixels could be partially driven by global geometric variations across participants. Similarly, 
the fixel-to-tract attributions should be cautiously interpreted since our tracts were delineated on the 
FOD template of 38 participants, and tract segmentations tend to overlap (Schilling et al., 2022). The 
b-value of 2000 s/mm2, while higher than the b-value of typical DTI acquisitions, is not exceptionally 
large compared to the spectrum of values typically employed in FBA. Thus, our measures of FD, and 
therefore FDC as well, may have been partially undermined by contamination from extra-axonal signal 
(Genc et al., 2020). Finally, we reemphasize that our study is cross-sectional and correlational. Thus, 
it cannot be used to make causal conclusions of white matter’s contributions to reading skills. We 
hope our work will inform future fixel-based investigations using longitudinal, mediation, modeling, 
or prediction approaches that can warrant stronger claims.

Conclusion
In this study, we examined whether fixel-based metrics from 983 children and adolescents covaried 
with single-word reading abilities or were reduced among those with reading disabilities. We found 
that higher FDC related to better single-word reading abilities, but that FDC did not differ significantly 
between children with and without reading disabilities. The strongest associations between FDC and 
reading aptitude were localized in left-hemisphere temporoparietal and cerebellar white matter, 
which is consistent with prior neuroanatomical studies of reading and literacy. The fixel-based analysis 
is a promising approach to investigating reading in future studies, capturing variance in reading skill 
when multiple other DWI-derived scalars failed to do so, and parameters of DWI acquisitions should 
be considered with this in mind.

Materials and methods
Participants
We downloaded preprocessed DWI and phenotypic data from 2136 participants across the first 
eight data releases of the HBN project (Alexander et al., 2017). Phenotypic data were accessed in 
accordance with a data use agreement provided by the Child Mind Institute. Preprocessed DWI data 
were provided as part of the HBN Preprocessed Open Diffusion Derivatives (HBN-POD2) dataset 
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(Richie-Halford et al., 2022). The HBN project was approved by the Chesapeake Institutional Review 
Board (now called Advarra, Inc; https://www.advarra.com/, protocol number: Pro00012309). Informed 
consent was obtained from all participants ages 18 or older. For younger participants, written informed 
consent was collected from their legal guardians, and written assent was obtained from the partic-
ipants. Detailed inclusion and exclusion criteria for the HBN dataset are described in the project’s 
publication (Alexander et al., 2017). Of note, each participant was fluent in English, had an IQ > 66, 
and did not have any physical or mental disorder precluding them from completing the full battery of 
scanning and behavioral examinations.

Several behavioral and cognitive evaluations were collected as part of HBN. Relevant to this study, 
participants completed the Test of Word Reading Efficiency 2nd edition (TOWRE; Torgesen et al., 
1999). The TOWRE consists of two subtests, Sight Word Efficiency (SWE) and Phonemic Decoding 
Efficiency (PDE). For these tests, each participant is shown a list of either real words (SWE) or 
pronounceable nonwords/pseudowords (PDE) and is then asked to read the items aloud as quickly as 
possible. Raw scores are based on the number of items read correctly within the 45 s time limit and 
are then converted to an age-standardized score (population mean = 100, standard deviation = 15). 
A composite standardized TOWRE score is calculated as the mean of the standardized PDE and SWE 
scores. Most participants also completed the Edinburgh Handedness Inventory (EHI; Oldfield, 1971), 
Barratt Simplified Measure of Social Status (BSMSS; Barratt, 2006), and Wechsler Intelligence Scale 
for Children 5th edition (WISC; Wechsler and Kodama, 1949).

After quality control (see 'Data inclusion and quality control'), there were 983 participants ages 
6–18 years old. We divided these participants into two groups based on diagnostic criteria and stan-
dardized reading scores (Figure 2). A total of 102 participants were diagnosed with a 'specific learning 
disability with impairment in reading; following the 5th edition of the Diagnostic and Statistical Manual 
for Mental Disorders (Edition, 2013) and scored ≤ 85 on both TOWRE subtests (age-standardized). 
These participants were placed in the RD group. A total of 570 participants who were not diagnosed 
with a reading impairment and scored ≥ 90 on both TOWRE subtests (age-standardized) were placed 
in the TR group. The remaining 311 participants were not placed into either group, but were still 
included in the correlation analyses across all participants.

Neuroimaging acquisition
Detailed scanner protocols for each site are published on the HBN project website (http://fcon_1000.​
projects.nitrc.org/indi/cmi_healthy_brain_network/File/mri/). Data were collected using either a 1.5T 
Siemens mobile scanner (Staten Island site) or a 3T Siemens MRI scanner (sites at Rutgers University 
Brain Imaging Center, Cornell Brain Imaging Center, and the City University of New York Advanced 
Science Research Center). All participants were scanned while wearing a standard Siemens 32-channel 
head coil. A high-resolution T1-weighted (T1w) image was collected for all participants, with parame-
ters that slightly varied between sites. A DKI scan was acquired with 1.8 mm isotropic voxel resolution, 
1 b = 0 s/mm2 image, and 64 noncollinear directions collected at b = 1000 s/mm2 and b = 2000 s/
mm2. A pair of PEpolar fieldmaps were collected before the diffusion scan to quantify magnetic field 
susceptibility distortions.

Neuroimaging minimal preprocessing
Minimally preprocessed data were downloaded from HBN-POD2 and produced by QSIPrep (Cieslak 
et  al., 2021) 0.12.1 (https://qsiprep.readthedocs.io/en/latest/), which is based on Nipype 1.5.1 
(Gorgolewski et al., 2011; Gorgolewski et al., 2018) (RRID:SCR_002502). Many internal operations 
of QSIPrep use Nilearn 0.6.2 (Abraham et al., 2014) (RRID:SCR_001362) and Dipy (Garyfallidis et al., 
2014). The following two sections contain text from boilerplates distributed by QSIPrep under a CC0 
license with the expressed intention of being incorporated into manuscripts for transparency and 
reproducibility. We made minor changes for succinctness and completeness.

Anatomical preprocessing
The T1w image was corrected for intensity nonuniformity (INU) using N4BiasField Correction (Tustison 
et al., 2010) (ANTs 2.3.1) and used as T1w-reference throughout the workflow. The T1w-reference 
was then skull-stripped using ​antsBrainExtraction.​sh (ANTs 2.3.1) using OASIS as target template. 
Brain tissue segmentation of CSF, white matter (WM), and gray matter (GM) was performed on the 
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brain-extracted T1w using FAST (Zhang et al., 2001) (FSL 6.0.3:b862cdd5, RRID:SCR_002823). Addi-
tionally, in order to calculate intracranial volumes, we ran recon-all (FreeSurfer 6.0.1, RRID:SCR_001847; 
Dale et al., 1999; Buckner et al., 2004; Fischl, 2012) as part of sMRIPrep 0.8.1 (Esteban et al., 2021) 
to reconstruct brain surfaces.

Diffusion image preprocessing
Denoising using dwidenoise (Veraart et  al., 2016) was applied with settings based on developer 
recommendations. Gibbs unringing was performed using MRtrix3’s mrdegibbs (Kellner et al., 2016). 
Following unringing, B1 field inhomogeneity was corrected using dwibiascorrect from MRtrix3 with 
the N4 algorithm (Tustison et al., 2010). After B1 bias correction, the mean intensity of the DWI 
series was adjusted so all the mean intensity of the b = 0 images matched across each separate DWI 
scanning sequence. FSL's (version 6.0.3:b862cdd5) eddy was used for head motion correction and 
Eddy current correction (Andersson and Sotiropoulos, 2016). eddy was configured with a ‍q‍-space 
smoothing factor of 10, a total of five iterations, and 1000 voxels used to estimate hyperparameters. A 
linear first-level model and a linear second-level model were used to characterize Eddy current-related 
spatial distortion. ‍q‍-space coordinates were forcefully assigned to shells. Field offset was attempted 
to be separated from participant movement. Shells were aligned post-eddy. eddy’s outlier replace-
ment was run (Andersson et al., 2016). Data were grouped by slice, only including values from slices 
determined to contain at least 250 intracerebral voxels. Groups deviating by more than 4 standard 
deviations from the prediction had their data replaced with imputed values. Here, b = 0 fieldmap 
images with reversed phase-encoding directions were used along with an equal number of b = 0 
images extracted from the DWI scans. From these pairs the susceptibility-induced off-resonance field 
was estimated using a method similar to that described in Andersson et al., 2003. The fieldmaps 
were ultimately incorporated into the Eddy current and head motion correction interpolation. Final 
interpolation was performed using the jac method. The preprocessed DWI time series were resam-
pled to ACPC, and their corresponding gradient directions were rotated accordingly.

Fixel-based analyses (FBA)
Fixel metric calculations
Comprehensive details of this workflow have been described elsewhere (Raffelt et  al., 2012b). 
Preprocessed DWI volumes and brain masks were reoriented to the FSL standard orientation. The 
gradient table was correspondingly rotated with MRtrix3’s dwigradcheck. We then upsampled the 
DWI image and brain masks to 1.25 mm isotropic voxels. We extracted only the highest diffusion shell 
(b = 2000 s/mm2, along with the b = 0 volumes) to proceed with estimating the constrained spher-
ical deconvolution (CSD) fiber response functions and FODs, as to limit the influence of extra-axonal 
signal (Genc et al., 2020). Response functions for white matter, gray matter, and CSF were estimated 
with MRtrix3’s unsupervised dhollander algorithm (Dhollander et al., 2016; Dhollander et al., 2019). 
For each tissue compartment, site-specific average fiber response functions were calculated across 
participants (Raffelt et al., 2012b), which enable valid inter-subject comparisons while controlling for 
scanner differences across sites (Smith et al., 2022). Participant FODs for each tissue compartment 
were calculated using Single-Shell 3-Tissue CSD (SS3T-CSD) (Dhollander and Connelly, 2016) from 
MRtrix3Tissue (https://3Tissue.github.io), a fork of MRtrix3 (Tournier et al., 2019). FODs were normal-
ized using log-domain intensity normalization (Raffelt et al., 2017a; Dhollander et al., 2021b).

We then generated an unbiased study-specific FOD template and warped individual participant 
FOD images to this template (Raffelt et al., 2011; Raffelt et al., 2012a). Due to the large size of our 
participant cohort, we could not feasibly use all FOD images to generate a population template. To 
decide which participants were used to inform the template, we divided the age range of participants 
into 10 uniformly spaced bins. In each age bin, we selected two males and two females. Within sex 
groupings, the participant in the TR and RD group with the highest quality control prediction score 
('XGB score,' see Richie-Halford et al., 2022) was selected to be in the template. There were no 
females in the RD group among the two oldest age bins, so our template was composed of 38 partici-
pants. We implemented this method to make a robust high-quality template that was unbiased by sex 
and included representation from a wide range of ages and reading levels.

Participant FOD images were registered to template space. The same transformation was used 
to warp brain masks to template space. A whole-brain template-space analysis mask was calculated 

https://doi.org/10.7554/eLife.82088
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as the intersection of all participants’ warped masks, such that each region would contain data 
from all participants. Within this voxel-wise template mask, a whole-brain fixel-wise analysis mask 
was segmented from the FOD template. Participant fixels were segmented from their warped FODs 
(Smith et al., 2013), and then reoriented and mapped to the template space. Fiber density (FD) was 
calculated for each fixel by taking the integral of its corresponding FOD lobes (Raffelt et al., 2012b). 
Fiber cross-sections (FC) were also calculated for each fixel, informed by the geometric distortions 
needed to warp from native-to-template space (Raffelt et al., 2017b). The product of FD and FC was 
also calculated (FDC) (Raffelt et al., 2017b). We applied a log transform to FC so that it would be 
normally distributed and centered around 0. FDC was calculated before this log transformation was 
applied.

A whole-brain tractogram with 20 million streamlines was generated from the FOD template using 
seeds uniformly distributed across the template-space voxel-wise mask (Tournier et al., 2010). SIFT 
filtering (Smith et al., 2013) was applied to account for false positives in streamline generation (Maier-
Hein et al., 2017), resulting in a pruned tractogram with 2 million streamlines. This was used to create 
a fixel-to-fixel connectivity matrix. This connectivity data was used to inform spatial smoothing of FD, 
log(FC), and FDC maps, such that smoothing at a given fixel only occurred within that fixel’s fiber 
population, thus mitigating partial-volume effects or influences from crossing fibers (Raffelt et al., 
2015).

Tract segmentation
We extracted the three primary spherical harmonic peaks of the template FOD image within the 
voxel-wise brain mask (Jeurissen et al., 2013). These peaks were input to TractSeg 2.3 (Wasserthal 
et al., 2018a; Wasserthal et al., 2018b; Wasserthal et al., 2019), a convolutional neural network-
based tract segmentation and reconstruction pipeline that strikes a favorable balance between the 
subjectivity of manual delineation and objectivity of automated atlas-based tracking approaches 
(Genc et al., 2020). We created tractograms for all 72 fiber-bundles produced by TractSeg. We gener-
ated 10,000 streamlines per tract (up from the default of 2000) to reduce inter-run variability from the 
stochastic nature of reconstruction. From each set of fiber bundle streamlines, we created a corre-
sponding tract fixel density map, which we binarized to create tract fixel masks.

Statistics
We considered a diverse set of potential confounds to include in our statistical models. These 
included age (Genc et al., 2018; Dimond et al., 2020), sex (Lyon et al., 2019; Kirkovski et al., 
2020), handedness (Honnedevasthana Arun et al., 2021), socioeconomic status (SES) as indexed by 
the average years of parental education from the BSMSS, visuospatial IQ index from the WISC (Ramus 
et al., 2018), globally averaged fixel metrics (gFD, gFC), log-transformed intracranial volume (ICV) 
(Smith et al., 2019), and scanning site (Schilling et al., 2021b). We also considered multiple quality 
covariates, including mean framewise displacement, and neighbor correlation (Yeh et  al., 2019). 
The machine-learning-based quality score distribution from Richie-Halford et al., 2022 was skewed 
towards 1 and not normally distributed, and thus was not a good candidate confound. Since gFD and 
gFC are calculated within fixels, and fixels are only segmented in white matter, differences in white 
matter volumetric proportions should not influence global fixel metrics. As exploratory analyses, we 
ran Spearman correlations between all continuous variables to inform our decision of model covari-
ates and look for well-established trends in behavioral and neuroimaging metrics, validating the data 
collection procedures (Figure 2—figure supplement 1).

To run our statistical models, we used ModelArray 0.1.2 (Zhao et al., 2022). This R-based software 
package minimizes memory consumption to allow analysis of all participants and enables GAM on 
fixel data, which is especially useful for cohorts with a wide age range (Bethlehem et al., 2022). We 
ran two models for our primary analyses: a regression of FDC against the raw TOWRE composite 
score, and a comparison of FDC between the TR and RD groups. We restricted our primary analyses 
to FDC based on recent guidance surrounding the control of false positives in FBA (Smith et al., 
2021), but we also ran analogous models for FD and log(FC) to explore the contributions of fiber 
microstructure and morphometry in a post hoc fashion. Model confounds included a smooth penal-
ized spline fit for age (maximum of four inflection points) and linear fits for sex, site, quality (neighbor 
correlation), and log(ICV). Log(ICV) was not included as a covariate for models of FD (Smith et al., 
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2019). Categorical variables (group, sex, and site) were coded as factors, and continuous variables 
(TOWRE scores, neighbor correlation, age, and ICV) were mean-centered and rescaled to unit vari-
ance to mitigate concerns of multicollinearity and poor design matrix conditioning. Effect sizes for the 
predictors of interest (TOWRE score or group label) were calculated as the difference in adjusted R2 
coefficients (‍∆R2

adj‍) between the full statistical model fit and the fit of a reduced model without the 
primary predictor variable (TOWRE scores or group label). p-values were corrected across the brain 
using Benjamini–Hochberg FDR correction (Benjamini and Hochberg, 1995). To ascribe significant 
fixels to tracts, we intersected significant fixels (‍qFDR < 0.05‍) and the binarized tract fixel masks. We 
note that tract masks tended to overlap (Schilling et al., 2022), so a single fixel could be associated 
with multiple fiber bundles.

Given the wide age range of participants, we additionally explored whether the relationship 
between FDC and reading skills varied with age. We ran a smooth bivariate interaction model, which 
can gauge whether there is an interaction between two continuous variables accounting for nonlinear 
effects (Wood, 2017). This model included the same linear confounds as the main FDC model, but 
had smooth terms for age, raw composite TOWRE scores, and the interaction between the two. These 
splines were unpenalized tensor product smooth terms.

Fitting and analysis of DTI, DKI, and NODDI models
As additional exploratory analyses, we also ran models relating reading abilities with scalar maps from 
diffusion tensor models, diffusion kurtosis models, and NODDI models. We used QSIPrep version 
0.15.3 to run the dipy_dki (Henriques et al., 2021) and amico_noddi (Daducci et al., 2015) recon-
struction pipelines on the preprocessed data. From the dipy_dki pipeline, we collected FA, MD, KFA, 
and MK. From amico_noddi, we collected the NDI (synonymous with ICVF) and ODI. We resampled 
and warped these scalar maps to the 1.25 mm isotropic template space, and then mapped the voxel 
values to fixels. While each fixel in a voxel was initially assigned the same value, spatial smoothing 
was still applied on the fiber population level. We then used ModelArray to run models relating each 
of these metrics to the composite raw TOWRE scores. Similar to the primary analyses of FDC, model 
confounds included a penalized spline fit for age and linear fits for sex, site, quality (neighbor correla-
tion), and log(ICV).

Data inclusion and quality control
We downloaded preprocessed DWI (Richie-Halford et  al., 2022) and phenotypic data from 2136 
participants across the first eight data releases of the HBN project (Alexander et al., 2017). HBN-
POD2 distributes a quality metric accompanying each image that predicts the probability that the 
image would pass manual expert quality review ('xgb_qc_score', or 'dl_qc_score' if the former score 
was not available) (Richie-Halford et al., 2022). It ranges from 0 (no chance of passing expert review) 
to 1 (image will definitely pass expert review). We excluded any participants with a quality score of less 
than 0.5. Twenty different DWI acquisition parameters were present across participants (Covitz et al., 
2022; Richie-Halford et al., 2022). We only included participants who had images acquired with the 
most common acquisition parameters in their site ('SITE_64dir_most_common'). We also excluded any 
participant who (1) was outside ages 6–18; (2) had missing basic demographic or TOWRE scores; or (3) 
failed FreeSurfer reconstruction. Based on these criteria, 986 participants advanced to the fixel-based 
analysis. Fiber response functions could not be obtained for two of these participants due to nonpos-
itive tissue balance factors. After registering the participant FODs to the template FOD, we overlaid 
each participant’s registered brain mask on top of the registered FOD image as a quality control check 
that registration was successful. This revealed one participant with an unsuccessful registration to 
template space who was excluded from analyses. Therefore, a total of n = 983 participants (570 TR, 
102 RD, 311 other) passed all quality control procedures and were included in subsequent analyses.

Data and code availability
Preprocessed neuroimaging data can be downloaded following directions from the HBN-POD2 
manuscript (Richie-Halford et  al., 2022), and phenotypic data can be collected following direc-
tions on the HBN data portal (http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/​
index.html) after signing a data use agreement. All instructions and code for further processing data 
and running the statistical models can be found at https://github.com/smeisler/Meisler_Reading_​
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FBA (copy archived at swh:1:rev:aefac140776bd0f04ac4abae38e6458a7cf7ec27) (Meisler, 2022). 
With minimal modification, the neuroimaging processing code should be able to run on most BIDS-
compliant datasets using the SLURM job scheduler (Yoo et al., 2003). The HBN data use agreement 
precludes us from sharing model inputs since they contain restricted phenotypic data. However, we 
share the population FOD template, tract segmentations, and model outputs (which only report data 
in the aggregate) at https://osf.io/3ady4/. These can all be viewed using MRview from MRtrix3. Some 
software we used were distributed as Docker (Merkel, 2014) containers, then compiled and run with 
Singularity 3.9.5 (Kurtzer et al., 2017):

•	 QSIPrep 0.15.3 (singularity build ​qsiprep.​simg docker://pennbbl/qsiprep:0.15.3)
•	 TractSeg 2.3 (singularity build ​tractseg.​simg docker://wasserth/tractseg:master)
•	 MRtrix3 3.0.3 (singularity build ​mrtrix.​simg docker://mrtrix3/mrtrix3:3.0.3)
•	 MRtrix3Tissue 5.2.9 (singularity build ​mrtrix3t.​simg docker://kaitj/mrtrix3tissue:v5.2.9)
•	 sMRIPrep 0.8.1 (singularity build ​smriprep.​simg docker://nipreps/smriprep:0.8.1)
•	 FSL 6.0.4 (singularity build ​fsl.​simg docker://brainlife/fsl:6.0.4-patched)
•	 ModelArray 0.1.2 (singularity build ​modelarray.​simg docker://pennlinc/modelarray_confixel:0.1.2)

We encourage anyone to use the latest stable releases of these software.
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