The regional distribution of resident immune cells shapes distinct immunological environments along the murine epididymis

  1. Christiane Pleuger  Is a corresponding author
  2. Dingding Ai
  3. Minea L Hoppe
  4. Laura T Winter
  5. Daniel Bohnert
  6. Dominik Karl
  7. Stefan Guenther
  8. Slava Epelman
  9. Crystal Kantores
  10. Monika Fijak
  11. Sarina Ravens
  12. Ralf Middendorff
  13. Johannes U Mayer
  14. Kate L Loveland
  15. Mark Hedger
  16. Sudhanshu Bhushan
  17. Andreas Meinhardt
  1. Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University Giessen, Germany
  2. Hessian Center of Reproductive Medicine, Justus-Liebig-University of Giessen, Germany
  3. ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Germany
  4. Ted Rogers Center of Heart Research, Peter Munk Cardiac Centre, Toronto General Hospital Research Institute, University Health Network, Canada
  5. Institute of Immunology, Hannover Medical School, Germany
  6. Institute of Anatomy and Cell Biology, Unit of Signal Transduction, Justus-Liebig-University of Giessen, Germany
  7. Department of Dermatology and Allergology, Philipps-University of Marburg, Germany
  8. Centre of Reproductive Health, Hudson Institute of Medical Research, Australia
  9. Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Australia
7 figures, 1 table and 1 additional file

Figures

Figure 1 with 3 supplements
Analysis of differential immune responses of caput and cauda epididymides following uropathogenic Escherichia coli (UPEC) infection in C57BL/6J wild type mice.

(A) Male C57BL/6J mice (10–12 weeks of age) were intravasally injected with UPEC or saline vehicle alone (sham) after ligation of the vas deferens. For the study organs were harvested and analyzed at the indicated time points. (B) Bacterial loads were assessed by determining colony forming units per mg tissue at the indicated time points within testis and the four main epididymal regions (initial segment [IS], caput, corpus, cauda; n=4 per time point, mean ± SD). (C and D) Modified Masson-Goldner trichrome staining of caput (C) and cauda (D) epididymides showing histological differences between sham- and UPEC-infected mice at day 1, day 5, and day 10 post infection. Scale bar 50 µm. (E and F) Pearson’s correlation plot of infection time point (days post infection) and disease score of caput (E) and cauda (F). The average ± SEM disease score per time point (n=4 per time point) for sham- and UPEC-infected mice is shown. Pearson’s correlation was considered to be statistically significant at p<0.05. (G) Volcano plot of differentially expressed genes (DEG) identified between sham- and UPEC-infected mice within caput and cauda epididymides by RNASeq analysis. Numbers of DEG are indicated below the respective plot. Cut-off criteria: FDR ≤0.05, –1 < logFC > 1. (H) Top 30 DEG by comparing caput and cauda epididymides of sham- and UPEC-infected mice. Cut-off criteria: FDR ≤0.05, –1 < logFC > 1. (I) Gene set enrichment analysis using DEG between caput and cauda epididymides of UPEC-infected mice. Cut-off criteria: FDR < 0.2, Top up/downregulated gene sets based on gene ontology.

Figure 1—figure supplement 1
Morphometric assessment of the differential immune responses within caput and cauda epididymides in C57BL/6J mice.

(A) Changes in weight (in mg) of caput and cauda epididymides throughout different infection time points post infection (mean ± SD, n=4–5, two-way ANOVA with Bonferroni post hoc test, *p<0.05, **p<0.005, ***p<0.001). (B) Luminal diameter of the epididymal duct (in µm) within caput and cauda epididymides; 30–50 duct cross sections were measured per region of the biological replicate and averaged (mean ± SD, n=4–5, two-way ANOVA with Bonferroni post hoc test, *p<0.05, **p<0.005, ***p<0.001). (C) Pearson’s correlation plot of disease score and luminal diameter. The average luminal diameter per disease score is shown. A Pearson’s correlation was considered to be statistically significant at p<0.05. (D) Pearson’s correlation plot of disease score and area of immune cell infiltrates assessed by histological measurement. The average area of immune cell infiltrates per disease score is shown. A Pearson’s correlation was considered to be statistically significant at p<0.05.

Figure 1—figure supplement 2
Histological images (modified Masson-Goldner trichrome staining) of the epididymis of naïve, sham- and uropathogenic Escherichia coli (UPEC)-infected C57BL/6J mice at different time points (day 1, 5, 10 post infection).

Scale bar = 100 µm.

Figure 1—figure supplement 3
RNASeq analyses of sham- and uropathogenic Escherichia coli (UPEC)-infected C57BL/6J wild type mice.

(A) Principal component analysis of all investigated in vivo epididymitis samples in RNASeq analysis (n=3–4 per group). (B) Heatmap showing differentially expressed genes (DEG) between the caput of sham- and UPEC-infected mice in vivo – related to the volcano plot shown in Figure 1G, cut-off criteria are indicated above the heatmap. (C) Heatmap showing DEG between the cauda of sham- and UPEC-infected mice in vivo – related to the volcano plot shown in Figure 1G, cut-off criteria are indicated above the heatmap. (D) Heatmap showing DEG between the caput sham and cauda of sham mice in vivo – related to the volcano. Cut-off criteria are indicated above the heatmap. (E) Pie chart showing upregulated gene sets and pathway enrichment within cauda epididymidis of UPEC-infected mice 10 days post infection (p.i.) (compared to sham control mice, based on Panther database analysis).

Figure 2 with 3 supplements
Analysis of changes in immune cell populations following infection with uropathogenic Escherichia coli (UPEC) in C57BL/6J wild type mice.

(A) Pearson’s correlation plot of infection time points (days post infection) and the area of immune cell infiltration within the total cauda area (%) determined by histological evaluation. Mean ± SD of at least two independent experiments with each n=4 are plotted per time point for sham- and UPEC-infected mice. Pearson’s correlation was considered to be statistically significant at p<0.05 (*p<0.05, **p<0.005, ***p<0.001). (B) Percentage of CD45+ cells in single live cells within caput and cauda assessed by flow cytometry at different time points (days) post infection (mean ± SD, n=4, two-way ANOVA with Bonferroni post hoc test, *p<0.05, **p<0.005, ***p<0.001). (C) Pearson’s correlation plot showing disease score and percentage of CD45+ cells in single live cells. Pearson’s correlation was considered to be statistically significant at p<0.05. (D) FltSNE plots of CD45+ populations in naïve, sham- and UPEC-infected mice 10 days after infection. Cells were gated as described in Figure 2—figure supplement 1 and downsampled to equal cell numbers for each segment. Samples from all biological groups (three biological replicates, respectively) were concatenated, FltSNE plots (perplexity: 20, max. iterations 1000, exaggeration factor: 12) were generated and individually gated cell populations were overlaid using FlowJo software and colored according to the legend on the right. (E) Bar diagram showing the ratio of neutrophils (GR-1+SSChi cells) within single live cells in initial segment (IS), caput, corpus, cauda of naïve, sham- and UPEC-infected mice 10 days after infection, 4–6 biological replicates from two independent experiments were grouped, mean ± SD, two-way ANOVA with Bonferroni post hoc test, *p<0.05, **p<0.005, ***p>0.001. (F) Bar diagram showing the ratio of monocytes (GR-1+SSClo cells) within single live cells in IS, caput, corpus, cauda of naïve, sham- and UPEC-infected mice 10 days after infection (4–6 biological replicates from two independent experiments were grouped, mean ± SD, two-way ANOVA with Bonferroni post hoc test, *p<0.05, **p<0.005, ***p>0.001). (G) Stacked bar diagrams showing the ratio of analyzed GR-1- immune cells within single live cells in IS, caput, corpus, cauda of naïve, sham- and UPEC-infected mice 10 days after infection (4–6 biological replicates from two independent experiments were grouped, mean ± SD, two-way ANOVA with Bonferroni post hoc test, *p<0.05, **p<0.005, ***p>0.001). Identified immune cells are colored equally to the FltSNE plots shown in (D). In both panels indicated immune cells were identified according to the gating strategy displayed in Figure 2—figure supplement 1. (H) Bar diagram showing the ratio of CCR2+ cells in the total macrophage population (F4/80+CX3CR1+/-), 4–6 biological replicates from two independent experiments were grouped, mean ± SD, two-way ANOVA with Bonferroni post hoc test, *p<0.05, **p<0.005, ***p>0.001. (I) Confocal microscopy images showing the location of Ly6G+Ly6C+ cells (GR-1+, red) within caput and cauda of UPEC-infected mice 5, 10, and 14 days post infection (nuclei in gray) including bar diagrams showing the semi-quantified summary of all immunostained tissues (by counting Ly6G+Ly6C+ cells within caput and cauda of sham- and UPEC-infected mice, n=4, for each biological replicate three representative areas were counted, mean ± SD). Scale bar 50 µm.

Figure 2—figure supplement 1
Gating strategy behind flow cytometry analyses of all immune cell populations under pathological conditions (displayed Figure 2).

Representative plots from a sham-infected corpus epididymis.

Figure 2—figure supplement 2
Infiltration of neutrophils in relation the bacterial appearance.

Percentage of infiltrating neutrophil granulocytes (blue) in relation to colony forming units (CFU)/mg tissue in proximal (IS/caput) and distal epididymis (corpus/cauda) of sham- and uropathogenic Escherichia coli (UPEC)-infected mice at indicated time points.

Figure 2—figure supplement 3
Multiplex assay-based determination of cytokine levels from ex vivo organ culture.

Related to Figure 2. (A) Indicated cytokines (IL-1α, IL-1β, TNFα, MCP-1, IL-6, IL-10) were measured within the culture media after ex vivo stimulation of the indicated epididymal regions with lipopolysaccharide (LPS) (50 ng) for 6 hr, (n = 4 biological replicates, mean ± SD, Student´s t-test pairwise comparison for each region control vs. LPS-treated, *p<0.05, **p<0.005, ***p>0.001). (B) Bacterial uptake potential of the different epididymal regions (initial segment [IS], caput, corpus, cauda) was determined by assessing the intracellular bacterial load after 4 hr ex vivo organ culture with 1×106 uropathogenic Escherichia coli (UPEC) and subsequent treatment with gentamicin to eliminate extracellular bacteria (n=4, mean ± SD).

Figure 3 with 3 supplements
Single-cell RNA sequencing (scRNASeq) of different epididymal regions reveals immune cell heterogeneity within the murine epididymis under physiological conditions.

(A) Schematic overview of the experimental procedure for isolating extravascular CD45+ cells from different epididymal regions. (B) Uniform manifold approximation and projection (UMAP) plot of 12,966 FACS-sorted CD45+ cells isolated from the four epididymal regions, showing immune cell populations identified by unsupervised clustering. (C) Heatmap of the Top45 marker by stringent selection of markers (only present in one cluster, 585 in total) showing expression differences among clusters. (D) Dot plot corresponding to the UMAP plot showing the expression of selected subset-specific genes – dot size resembles the percentage of cells within the cluster expressing the respective gene and dot color reflects the average expression within the cluster. (E) UMAP plots showing the expression of selected key markers for the indicated immune cell population (APC – antigen-presenting cells, mdC – monocyte-derived cells, DC – dendritic cells). (F) UMAP plots and pie charts showing regional distribution of identified clusters.

Figure 3—figure supplement 1
Extravascular CD45+ cells of different epididymal regions were sorted following the indicated gating strategy prior to single-cell RNASeq.
Figure 3—figure supplement 2
Quality controls for single-cell reads and re-confirmation of identified CD45+.

(A) Number of total cells, total genes and average reads per cells are indicated for different epididymal regions that were separately isolated. (B) Uniform manifold approximation and projection (UMAP) plot showing the expression of Ptprc (encoding CD45) in the identified cluster.

Figure 3—figure supplement 3
Expression of key marker genes for the identified immune cell populations within epididymal regions.

Uniform manifold approximation and projection (UMAP) plots showing the expression of selected key marker for the indicated immune cell population within the epididymal regions: initial segment, caput, corpus, cauda.

Figure 4 with 1 supplement
Quantification and localization of identified immune cell populations among epididymal regions (scale bar 20 µm).

(A) Distribution (assessed by flow cytometry n=4-8, bar diagram showing mean ± SD) of total leukocytes (CD45+ cells) and localization within the initial segment and corpus, as shown by immunostaining of CD45. (B–H) Quantification and localization of the following immune cell populations were assessed by flow cytometry and immunostaining using selected markers (n=4–8, mean ± SD). The following markers were used: CD45, F4/80, CD11B, Ly6C, MHC-II, CLEC9A, CD209A, CD163, CCR2, CX3CR1 for identifying myeloid cell populations, and CD45, B220/CD45R, CD3, TCRβ, TCRγδ, NK1.1 for lymphoid cell populations (further panel information and gating strategies are displayed in the Methods section and supplemental material, respectively). Representative immunofluorescence images are displayed from the corpus (CS) regions: (B) total macrophages (F4/80+, red), located in the interstitial, intraepithelial, and peritubular compartments, (C) monocytes (Ly-6C+), located in the peritubular compartment, (D and E) conventional dendritic cells cDC 1 (Clec9a+) and 2 (DC-Sign/CD209a+), (F) NK cells (NK1.1+ for flow cytometry and NCR1 for immunostaining), located in the intraepithelial compartment, (G) B cells (B220/CD45R+ for flow cytometry and CD19+ for immunostaining), (H) T cells that were further segregated into αβ T cells (TCRβ+, red) and γδ T cells (TCRγδ+, green), scale bar 20 µm.

Figure 4—figure supplement 1
Gating strategy behind flow cytometry analyses of all immune cell populations under physiological conditions.

(A) General gating that has been applied to each sample included exclusion of debris und sperm based on SSC-A vs. FSC-A, followed by a two-step single-cell gating (based on FSC and SSC), live cells were discriminated using a viability dye (see Appendix 1-key resources table), according to the respective panel all leukocytes were identified by CD45 staining. (B) F4/80-CD11blo-hi cells were further distinguished by Ly6C to identify monocytes (Ly6C+), and Ly6C- cells were segregated using MHC-II in combination with Clec9a and CD209a to differentiate cDC1 (MHC-IIhiClec9a+) and cDC2 (MHC-IIhiCD209a+), respectively. (C) Lymphocytes were segregated into B cells (B220+) and T cells (CD3+) that were further differentiated into αβ and γδT cells, as well as NK cells (NK1.1+ cells). Representative plots are from the cauda due to the most diverse immune cell distribution in this region. Red overlays represent the respective isotype controls.

Figure 5 with 2 supplements
Distinct macrophage subgroups exist within the murine epididymis.

(A) Uniform manifold approximation and projection (UMAP) plot and violin plots showing segregation of macrophages (clusters 1, 2, 7) and monocytes (clusters 8, 10) based on clustering and expression of the selected key genes C1qa, Ccr2, Ly6c2, Napsa, Plac8. (B) UMAP plot showing re-clustering of macrophage population (clusters 1, 2, 7) under exclusion of all other previously identified CD45+ cluster resulting in the formation of nine Adgre1+ subclusters. (C) Heatmap of the 50 most differentially expressed marker genes in each cluster from Figure 4B. (D) Violin plots showing the expression level of selected genes. (E) Dot plot corresponding to the UMAP plot showing the expression of selected subset-specific genes – dot size resembles the percentage of cells within the cluster expressing the respective gene and dot color reflects the average expression within the cluster. (F) UMAP plots and pie charts showing the distribution of identified macrophage populations among epididymal regions.

Figure 5—figure supplement 1
Uniform manifold approximation and projection (UMAP) plots showing the expression of selected key markers for identified macrophage subgroups, related to violin plots in Figure 4D.
Figure 5—figure supplement 2
Violin plots showing the expression of immediate-early activation genes (Fos, Jun, Egr1) as well as upregulated cytokines Tnf, Cxcl2, Ccl4 among identified macrophage subgroups.
Figure 6 with 4 supplements
Distribution and localization of identified macrophage subgroups by flow cytometry and immunofluorescence.

(A) Bar diagram showing the percentage of F4/80+ cells within the CD45+ population throughout the epididymal regions, assessed by flow cytometry (n=8, mean ± SD). (B) Stacked bar diagram displaying the percentages of identified macrophage subtypes within the F4/80+ population throughout epididymal regions assessed by flow cytometry. Markers were selected based on single-cell RNA sequencing (scRNASeq) results (n=4). (C) Confocal microscopy images of F4/80 staining (purple) on Cx3cr1GFPCcr2RFP adult reporter mice. The majority of interstitial and intraepithelial CX3CR1+ cells were F4/80+. Arrowheads indicate a small fraction of intraepithelial CX3CR1+ F4/80 cells found within the initial segment (IS). Arrows indicate interstitial F4/80+ cells that were CX3CR1- and CCR2+ within caput, corpus, and cauda epididymides. Asterisks (*) label a small fraction of F4/80 single positive cells (CX3CR1-CCR2-) found in the corpus and cauda. Scale bar 50 µm (L=lumen). (D) Confocal microscopy images of MHC-II staining (purple) on Cx3cr1GFPCcr2RFP adult reporter mice. Asterisks (*) indicate intraepithelial CX3CR1+MHC-II- cells within the IS and caput epididymides. Arrowheads indicate CX3CR1+MHC-II+ cells, lining the epididymal duct within the IS and situated within the epithelium within caput, corpus, and cauda epididymides. Arrows indicate interstitial CX3CR1+MHC-II+CCR2+ cells additionally found within corpus and cauda epididymides. Scale bar 50 µm (L=lumen). (E) Confocal microscopy images of CD163 staining (purple) on Cx3cr1GFPCcr2RFP adult reporter mice in corpus and cauda epididymides. Arrows indicate CD163 single positive cells that were found in close proximity to vessels within the corpus and cauda. Arrowheads indicate CD163+CCR2+ cells found solitarily distributed within the interstitium in the corpus and cauda. Scale bar 50 µm.

Figure 6—figure supplement 1
Gating strategy of macrophage subsets according to obtained single-cell RNA sequencing (scRNASeq) data.

Arrows indicate the gating strategy and identified subsets.

Figure 6—figure supplement 2
Macrophage subpopulations within CD45+ population.

Bar diagrams showing the percentage of identified macrophage subgroups within the CD45+ population throughout the epididymal regions, assessed by flow cytometry and mirroring the distribution obtained by single-cell RNA sequencing (scRNASeq) (n=4, mean ± SD).

Figure 6—figure supplement 3
Single channel reads of anti-F4/80 (purple) staining on epididymal cryo-sections from adult Cx3cr1GFPCcr2RFP reporter mice.

The majority of CX3CR1+ cells were F4/80+. Arrowheads indicate the small fraction of intraepithelial F4/80- CX3CR1+ cells within the initial segment (IS). Arrows indicate interstitial F4/80+ CX3CR1- cells that were CCR2+ within caput, corpus, and cauda epididymides. Asterisks (*) label a small fraction of F4/80 single positive cells (CX3CR1-CCR2-) found in the corpus and cauda. Scale bar 50 µm (L=lumen).

Figure 6—figure supplement 4
Single channel reads of anti-MHC-II (purple) staining on epididymal cryo-sections from adult Cx3cr1GFPCcr2RFP reporter mice.

Asterisks (*) indicate intraepithelial CX3CR1+MHC-II- cells within the initial segment (IS) and caput epididymides. Arrowheads indicate CX3CR1+MHC-II+ cells, lining the epididymal duct within the IS and situated within the epithelium within caput, corpus, and cauda epididymides. Arrows indicate interstitial CX3CR1+MHC-II+CCR2+ cells within corpus and cauda epididymides. Scale bar 50 µm (L=lumen).

Figure 7 with 2 supplements
Resident macrophages differentially depend on monocytes within epididymal regions.

(A) Parabiosis was conducted by surgically conjoining wild type CD45.1+ donor mice with CD45.2 recipient Ccr2-/- mice for 6 months. Donor chimerism was confirmed on CD115+CD11b+Ly6Chi monocytes. (B) Flow cytometry contour plots showing the segregation of resident macrophages (CD11b+CD64+) isolated from different epididymal regions using the ontogeny marker TIMD4 and CCR2. Epididymal fat served as control tissue. Plots are representative for six parabionts. (C) Flow cytometry contour plots showing the chimerism in CCR2+, TIMD4+, and CCR2-TimD4- macrophages within different epididymal regions based on the CD45.1 and CD45.2 labeling. Plots are representative for six parabionts. (D–F) Bar diagrams showing the number of CCR2+ (D), TIMD4+ (E), and CCR2-TimD4-(F) macrophages (CD64+CD11b+) within different epididymal regions of the analyzed recipient Ccr2-/- mice (mean ± SEM, n=6). (G–I) Bar diagrams showing the percentage of chimerism normalized to blood chimerism in CCR2+ (G), TimD4+ (H), and CCR2-TIMD4- (I) epididymal macrophages (CD64+CD11b+) in the recipient Ccr2-/- mice after 6 months (n=6, n.s.=not significant, *p<0.05, **p<.0.005, ***p<0.001, n=6, mean ± SEM, one-way ANOVA with Bonferroni multiple comparison test).

Figure 7—figure supplement 1
Gating strategy that was applied on blood samples from recipient Ccr2-/- mice.

General gating was initially performed based on FSC and SSC in order to exclude debris and doublets, before neutrophils were excluded by selecting Ly6G- cells. Monocytes were further gated using CD115 and CD11b. Ratios of CD45.1+ and CD45.2+ events were assessed on Ly6C+ monocytes.

Figure 7—figure supplement 2
Representative plots (cauda) that were applied for the epididymal regions starting with general gating based on FSC and SSC in order to exclude debris and doublets.

Total CD64+CD11b+ cells were gated and further segregated using TIMD4 and CCR2. The ratio of CD45.1 and CD45.2+ events was assessed in CCR2+, TIMD4+, and CCR2-TIMD4- cells.

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Escherichia coli)CFT073Welch et al., 2002NCBI: txid19.9310Provided by T.Chakraborty, Justus-Liebig-University, Giessen, Germany
Strain, strain background (Mus musculus, male)C57BL/6 J wild typeCharles RiverJAX ID: 00066410–12 weeks old
Strain, strain background (Mus musculus, male)B6.129(Cg)-Cx3cr1tm1Litt
Ccr2tm2.1Ifc
/JernJ (Cx3cr1GFPCcr2RFP)
Jackson Laboratory Jung et al., 2000; Saederup et al., 2010JAX ID: 032127
Strain, strain background (Mus musculus, male)B6.SJL-Ptprca Pepcb/
BoyJ (B6 CD45.1)
Jackson Laboratory
(Janowska-Wieczorek et al., 2001;
Schluns et al., 2002;
Yang et al., 2002)
JAX ID: 002014
Strain, strain background (Mus musculus, male)B6.129S4-Ccr2tm1Ifc/J (Ccr2-/-)Jackson Laboratory
(Boring et al., 1997)
JAX ID: 004999
Strain, strain background (Mus musculus, male)C57/BL/6-Trdctm1Mal/J
(Trcd-H2BeGFP)
Jackson Laboratory
(Prinz et al., 2006)
JAX ID: 016941
AntibodyPerCP/C5.5 anti-mouse
CD45 (rat monoclonal)
BioLegendCat.No.: 103131;
RRID: AB_893344
FC (1:200) for infection study
AntibodyAF700 anti-mouse CD3 (rat monoclonal)BioLegendCat.No.: 100216;
RRID: AB_493697
FC (1:50) for infection study
AntibodyBrilliant Violet 511 anti-mouse/ human CD45R/B220 (rat monoclonal)BioLegendCat.No.: 103247;
RRID: AB_2561394
FC (1:200) for infection study
AntibodyBrilliant Violet 605 anti-
mouse NK1.1 (mouse
monoclonal)
BioLegendCat. No.: 108753;
RRID: AB_2686977
FC (1:200) for infection study
AntibodyBrilliant Violet 650 CD11c
(Armenian Hamster
monoclonal)
BioLegendCat.No.: 117339;
RRID: AB_2562414
FC (1:100) for infection study
AntibodyBrilliant Violet 711 anti-mouse
Ly-6G/Ly-6C (GR-1) (rat monoclonal)
BioLegendCat.No.: 108443;
RRID: AB_2562549
FC (1:200) for infection study
AntibodyBrilliant Violet 785 anti-mouse
I-A/I-E (MHC-II) (rat monoclonal)
BioLegendCat.No.: 107645;
RRID: AB_2565977
FC (1:200) for infection study
AntibodyPE/Dazzle594 anti-mouse
F4/80 (rat monoclonal)
BioLegendCat.No.:123145;
RRID: AB_2564132
FC (1:100) for infection study
AntibodyPE/Cyanine7 anti-mouse
CX3CR1 (mouse monoclonal)
BioLegendCat.No.:149015;
RRID: AB_2565699
FC (1:1000) for infection study
AntibodyFITC anti-mouse CCR2
(rat monoclonal)
BioLegendCat. No.: 150608;
RRID: AB_2616980
FC (1:200) for infection and steady-state study
AntibodyBrilliant Violet 421 anti-mouse
CX3CR1 (mouse monoclonal)
BioLegendCat.No.: 149023;
RRID: AB_2565706
FC 1:1000 for steady-state study
AntibodyPerCP/Cyanine5.5 anti-mouse
CD45 (rat monoclonal)
BioLegendCat.No.:157207;
RRID: AB_2860727
FC 1:100 for steady-state study
AntibodyPE/Cyanine7 anti-mouse
F4/80 (rat monoclonal)
BioLegendCat.No.: 123113;
RRID: AB_893490
FC 1:100 for steady-state study
AntibodyAPC anti-mouse CD163
(rat monoclonal)
BioLegendCat.No.:155305;
RRID: AB_2814059
FC 1:200 for steady-state study
AntibodyAPC/Cy7 anti-mouse I-A/I-E
(rat monoclonal)
BioLegendCat.No.: 107627;
RRID: AB_1659252
FC 1:200 for steady-state study
AntibodyBrilliant Violet 421 anti-mouse
NK1.1 (mouse monoclonal)
BioLegendCat.No.: 108731;
RRID: AB_10895916
FC 1:200 for steady-state study
AntibodyFITC anti-mouse CD3
(rat monoclonal)
BioLegendCat.No.: 100203;
RRID: AB_312660
FC 1:50 for steady-state study
AntibodyPE anti-mouse B220
(CD45R) (rat monoclonal)
MiltenyiCat.No.: 130-120-077;
RRID: AB_2751992
1:50 for steady-state study
AntibodyPE/Cyanine7 anti-mouse
TCRbeta chain (Armenian
Hamster monoclonal)
BioLegendCat.No. 109221;
RRID: AB_893627
1:100 for steady-state study
AntibodyAPC anti-mouse TCR g/d
(Armenian Hamster monoclonal)
BioLegendCat.No.: 118115;
RRID: AB_1731824
1:100 for steady-state study
AntibodyAPC/Fire750 anti-mouse
CD45 (mouse monoclonal)
BioLegendCat.No.: 103153;
RRID: AB_2572115
1:100 for steady-state study
AntibodyBrilliant Violet 421 anti-
mouse F4/80 (mouse monoclonal)
BioLegendCat.No.: 123131;
RRID: AB_10901171
1:100 for steady-state study
AntibodyPE anti-mouse CD209a
(DC-Sign) antibody
(mouse monoclonal)
BioLegendCat.No.: 833003;
RRID: AB_2721636
FC 1:50 for steady-state study
AntibodyPerCP/Cy5.5 anti-mouse/
human CD11b (rat monoclonal)
BioLegendCat.No.: 101228;
RRID: AB_893232
FC 1:200 for steady-state study
AntibodyAPC anti-mouse I-Ab
(mouse monoclonal)
BioLegendCat.No:116418;
RRID: AB_10574160
FC 1:200 for steady-state study and parabiosis
AntibodyPerCP/Cyanine5.5 anti-
mouse CD45.1 (mouse monoclonal)
BioLegendCat.No.: 110728;
RRID: AB_893346
FC 1:100 for steady-state study and parabiosis
AntibodyAPC/Cyanine7 anti-mouse
CD45.2 (mouse monoclonal)
BioLegendCat.No.: 109824;
RRID: AB_830789
i.v. injection 1:100
AntibodyPE anti-mouse CD64
(FcγRI) (mouse monoclonal)
BioLegendCat.No:. 139303;
RRID: AB_10612740
FC 1:100 for steady-state study and parabiosis
AntibodyPE/Cyanine7 anti-mouse
Tim-4 (rat monoclonal)
BioLegendCat.No.: 130010;
RRID: AB_2565719
FC 1:100 for parabiosis
AntibodyBrilliant Violet 785 anti-
mouse/human CD11b (rat monoclonal)
BioLegendCat.No.: 101224;
RRID: AB_755986
FC 1:100 for parabiosis
AntibodyAlexa Fluor 700 anti-mouse Ly-6G (rat monoclonal)BioLegendCat.No.: 127622;
RRID: AB_10643269
FC 1:100 for parabiosis
AntibodyPE anti-mouse CD115 (CSF-1R) (rat monoclonal)BioLegendCat.No.: 135506;
RRID: AB_1937253
FC 1:100 for parabiosis
AntibodyFITC anti-mouse Ly-6C (rat monoclonal)BioLegendCat.No.: 128006;
RRID: AB_1186135
FC 1:100 for parabiosis
Antibodyanti-mouse F4/80 (rat monoclonal)BioLegendCat.No. MCA497G;
RRID: AB_872005
IF 1:200
Antibodyanti-mouse Ly-6G+Ly-6C (rat monoclonal)abcamCat.No. ab25377;
RRID: AB_470492
IF 1:500
AntibodyPurified anti-mouse I-A/I-E
(mouse monoclonal)
BioLegendCat.No.: 107601;
RRID: AB_313316
IF 1:200
AntibodyPurified anti-mouse Ly-6C
(rat monoclonal)
BioLegendCat.No. 128002
RRID: AB_1134214
IF 1:100
AntibodyPurified anti-mouse CD3
(mouse monoclonal)
BioLegendCat.No. 100202
RRID: AB_312659
IF 1:50
AntibodyAnti-mouse Clec9a (sheep polyclonal)R&D SystemsCat.No. AF6776
RRID: AB_10890771
IF 1:50
Antibodyanti-mouse CD163 [TNKUPJ]
(rat monoclonal)
Invitrogen/ eBioscienceCat.No. 14-1631-82
RRID: AB_2716934
IF 1:200
Antibodyanti-NCR1 antibody
[EPR23097-35] (rabbit monoclonal)
abcamCat.No. ab233558
RRID: AB_2904203
IF 1:50
AntibodyAni-mouse DC-Sign (DC28)
(mouse monoclonal)
Santa CruzCat.No. sc-65740
RRID: AB_1121347
IF 1:50
AntibodyGoat anti-rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488InvitrogenCat-No. 11008
RRID: AB_143165
IF 1:2000
AntibodyGoat anti-rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 546InvitrogenCat.No. A-11010
RRID: AB_2534077
IF 1:2000
AntibodyGoat anti-rat IgG (H+L) Cross-Adsorbed secondary Antibody, Alexa Fluor 546InvitrogenCat.No. A-11081
RRID: AB_141738
IF 1:2000
AntibodyGoat Anti-Rat IgG H+L Alexa Fluor 647abcamCat.No. ab150159;
RRID: AB_2566823
IF 1:2000
AntibodyDonkey Anti-Sheep IgG (H+L) Alexa fluor 546InvitrogenCat.No.:A-21098
RRID: AB_2535752
IF: 1:2000
AntibodyBrilliant Violet 421 Mouse
IgG2a, κ Isotype Ctrl antibody
BioLegendCat.No.: 400259;
RRID: AB_10895919
FC 1:200 Isotype control
AntibodyBrilliant Violet 421 Rat IgG2a, κ Isotype Ctrl antibodyBioLegendCat.No.: 400535;
RRID: AB_10933427
FC 1:200 Isotype control
AntibodyBrilliant Violet 510 Rat IgG2a, κ, Isotype Ctrl antibodyBD BioscienceCat.No. 562952;
RRID: AB_2869438
FC 1:200 Isotype control
AntibodyFITC Rat IgG2b, κ Isotype Ctrl antibodyBioLegendCat.No.: 400605;
RRID: AB_326549
FC 1:200 Isotype control
AntibodyAlexa Fluor 488 Rat IgG2a, κ Isotype Ctrl antibodyBioLegendCat.No.: 400525;
RRID: AB_2864283
FC 1:200 Isotype control
AntibodyAlexa Fluor 488 Rat IgG2b, κ Isotype Ctrl antibodyBioLegendCat.No.: 400625;
RRID: AB_389321
FC 1:200 Isotype control
AntibodyPE Isotype Control Antibody, Rat IgG2aMiltenyiCat.No.: 130-123-747;
RRID: AB_2857628
FC 1:200 Isotype control
AntibodyPE Rat IgG2a, κ Isotype Ctrl antibodyBioLegendCat.No.: 400507;
RRID: AB_326530
FC 1:200 Isotype control
AntibodyPE Mouse IgG2a, κ Isotype Ctrl antibodyBioLegendCat.No.: 400213;
RRID: AB_2800438
FC 1:200 Isotype control
AntibodyPE Rat IgG2b kappa Isotype ControleBioscienceCat.No.: 12-4031-82;
RRID: AB_470042
FC 1:200 Isotype control
AntibodyPerCP/Cyanine5.5, Rat IgG2b, κ Isotype Ctrl antibodyBioLegendCat.No. 400631;
RRID: AB_893693
FC 1:200 Isotype control
AntibodyPE/Cyanine 7 Mouse IgG1, κ Isotype Ctrl antibodyBioLegendCat.No.: 400125;
RRID: AB_2861533
FC 1:200 Isotype control
AntibodyPE/Cyanine 7 Rat IgG2a, κ Isotype Ctrl antibodyBioLegendCat.No.: 400521; RRID: AB_326542FC 1:200 Isotype control
AntibodyPE/Cyanine 7 Armenian Hamster IgG Isotype Ctrl antibodyBioLegendCat.No.:400921; RRID: AB_2905473FC 1:200 Isotype control
AntibodyAPC Rat IgG2a, κ Isotype Ctrl antibodyBioLegendCat.No.: 400511; RRID: AB_2814702FC 1:200 Isotype control
AntibodyAPC Armenian Hamster IgG Isotype Ctrl antibodyBioLegendCat.No.: 400911; RRID: AB_2905474FC 1:200 Isotype control
AntibodyAPC Mouse IgG2a,
κ Isotype Ctrl (FC) antibody
BioLegendCat.No.: 400221; RRID: AB_2891178FC 1:200 Isotype control
AntibodyAPC/Cyanine7 Rat IgG2b,
κ Isotype Ctrl antibody
BioLegendCat.No.: 400628; RRID: AB_326565FC 1:200 Isotype control
AntibodyAPC/Fire750 Rat IgG2b,
κ Isotype Ctrl antibody
BioLegendCat.No.: 400669; RRID: AB_2905475FC 1:200 Isotype control
Commercial assay or kitM.O.M. (Mouse on Mouse)
Immunodetection Kit
Vector LaboratoriesCat.No. BMK-2202
Commercial assay or kitRNeasy Mini KitQiagenCat.No.: 74004
Commercial assay or kitLEGENDPlex with Mouse Inflammation PanelBioLegendCat.No.: 740446
Commercial assay or kitSMARTer Stranded Total
RNA-Seq Kit – Pico Input
Mammalian
TakaraCat.No.: 634488
Chemical compound, drugCollagenase D from Clostridium histolyticumRocheCat.No. 11088858001
Chemical compound, drugDNase ISigmaCat.No. D4513
Chemical compound, drugHyaluronidase type I-SSigmaCat.No. H3506
Chemical compound, drugRBC Lysis SolutionQiagenCat.No.: 158904
Chemical compound, drugUltraPure Lipopolysaccharide
from Escherichia coli O55:B5
SigmaCat.No.: L2880
Chemical compound, drugGibco RPMI1640 mediaFisher ScientificCat-No.: 11530586
Chemical compound, drugQIAzol Lysis ReagentQiagenCat.No.: 79306
Chemical compound, drugFc blocking reagentMiltenyiCat.No. 130-092-575
Chemical compound, drugGentamicin solutionSigma/ MerckCat.No. G1397
Other (dyes)ZombieAquaBioLegendCat.No.: 423101
Other (dyes)ZombieNIRBioLegendCat. No.: 423105
Other (dyes)Viobility 405/452 Fixable DyeMiltenyiCat.No.: 130-092-575
Other (dyes)DAPIInvitrogenD13061 µg/ml
OtherProLong Antifade Gold with DAPIInvitrogenP36931
OtherProLong Antifade Gold w/o DAPIInvitrogenP36930
Software, algorithmFlowJo v10.8.2BD Life SciencesRRID: SCR_008520https://www.flowjo.com/
Software, algorithmAdobe Illustrator 2020 (v24.0.1)AdobeRRID: SCR_010279https://www.adobe.com/de/products/illustrator.html
Software, algorithmGraphPad Prism v5GraphPad SoftwareRRID: SCR_002798https://www.graphpad.com/scientific-software/prism/
Software, algorithmInkScape v0.92.4The Inkscape ProjectRRID: SCR_014479https://inkscape.org/de/release/inkscape-0.92.4/
Software, algorithmImageJ 1.53 aWayne Rasband National Institute of Health, USARRID: SCR_003070https://imagej.nih.gov/ij/index.html
Software, algorithmZen 2.3 Version 14.0.26.201Carl Zeiss Microscopyhttps://www.zeiss.de/mikroskopie/produkte/mikroskopsoftware/zen-lite/zen-lite-download.html
Software, algorithmLEGENDPlex Software v8.0BioLegendsoftware provied by
BioLegend as part of the
LegendPlex kit for protein analysis
https://www.biolegend.com/en-us/legendplex
Software, algorithmFastQCAndrews, 2010RRID: SCR_014583http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Software, algorithmSTAR 2.6.1dDobin et al., 2013RRID: SCR_004463https://github.com/alexdobin/STAR/releases?page=2
Software, algorithmSubread packageLiao et al., 2013RRID: SCR_009803http://subread.sourceforge.net/
Software, algorithmDESeq2 V1.18.1Love et al., 2014RRID: SCR_015687https://bioconductor.org/packages/release/bioc/html/DESeq2.html
OtherBD Aria FusionBD BioScienceN/AInstrument
OtherHomogenizer MM400RetschN/AInstrument
OtherLabChip Gx Touch 24Perkin ElmerN/AInstrument
OtherLeica Cryotome CM1850LeicaN/AInstrument
OtherLeica Microtome RM2255LeicaN/AInstrument
OtherMACS Quant Analyzer 10MiltenyiN/AInstrument
OtherBD LSRFortessa Cell AnalyzerBD BiosciencesN/AInstrument
OtherNextSeq500IlluminaN/AInstrument
OtherZeiss LSM710 Confocal
Microscope
Carl Zeiss MicroscopyN/AInstrument
OtherOlympus BX51OlympusN/Ainstrument

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christiane Pleuger
  2. Dingding Ai
  3. Minea L Hoppe
  4. Laura T Winter
  5. Daniel Bohnert
  6. Dominik Karl
  7. Stefan Guenther
  8. Slava Epelman
  9. Crystal Kantores
  10. Monika Fijak
  11. Sarina Ravens
  12. Ralf Middendorff
  13. Johannes U Mayer
  14. Kate L Loveland
  15. Mark Hedger
  16. Sudhanshu Bhushan
  17. Andreas Meinhardt
(2022)
The regional distribution of resident immune cells shapes distinct immunological environments along the murine epididymis
eLife 11:e82193.
https://doi.org/10.7554/eLife.82193