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Abstract Biological age, distinct from an individual’s chronological age, has been studied 
extensively through predictive aging clocks. However, these clocks have limited accuracy in short 
time-scales. Here we trained deep learning models on fundus images from the EyePACS dataset to 
predict individuals’ chronological age. Our retinal aging clocking, ‘eyeAge’, predicted chronological 
age more accurately than other aging clocks (mean absolute error of 2.86 and 3.30 years on quality-
filtered data from EyePACS and UK Biobank, respectively). Additionally, eyeAge was independent 
of blood marker-based measures of biological age, maintaining an all-cause mortality hazard ratio 
of 1.026 even when adjusted for phenotypic age. The individual-specific nature of eyeAge was 
reinforced via multiple GWAS hits in the UK Biobank cohort. The top GWAS locus was further vali-
dated via knockdown of the fly homolog, Alk, which slowed age-related decline in vision in flies. This 
study demonstrates the potential utility of a retinal aging clock for studying aging and age-related 
diseases and quantitatively measuring aging on very short time-scales, opening avenues for quick 
and actionable evaluation of gero-protective therapeutics.

Editor's evaluation
This paper is an important contribution to the biological aging field using eye image data to create 
an aging clock of the retina in data from eyePACS with validation in the UK Biobank. The authors 
provide compelling evidence that the clock correlates with chronological and phenotypic age, 
predicting mortality independently of chronological age and showing longitudinal evidence. The 
work identifies novel genetic loci with a top site located in the ALKAL2 region, which is functionally 
validated in a Drosophila model.

Introduction
Aging causes molecular and physiological changes throughout all tissues of the body, enhancing the 
risk of several diseases (López-Otín et al., 2013). Identifying specific markers of aging is a critical area 
of research, as each individual ages uniquely depending on both genetic and environmental factors 
(Ahadi et al., 2020). While a variety of aging clocks have recently been developed to track the aging 

RESEARCH ARTICLE

*For correspondence: 
saraahadi@gmail.com (SA); 
cym@google.com (CYMcL); 
Pkapahi@buckinstitute.org (PK)
†These authors contributed 
equally to this work
‡These authors also contributed 
equally to this work

Competing interest: See page 
12

Funding: See page 12

Preprinted: 27 July 2022
Received: 02 August 2022
Accepted: 22 March 2023
Published: 17 April 2023

Reviewing Editor: Sara Hägg, 
Karolinska Institutet, Sweden

‍ ‍ Copyright Ahadi et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.82364
mailto:saraahadi@gmail.com
mailto:cym@google.com
mailto:Pkapahi@buckinstitute.org
https://doi.org/10.1101/2022.07.25.501485
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Ahadi et al. eLife 2023;12:e82364. DOI: https://doi.org/10.7554/eLife.82364 � 2 of 16

process, including phenotypic age (Liu et al., 2018; a combination of chronological age and nine 
biomarkers predictive of mortality) and epigenetic clocks derived from DNA methylation (Horvath 
and Raj, 2018), many require a blood draw and multiplex assay of many analytes.

A growing body of evidence suggests that the microvasculature in the retina might be a reliable 
indicator of the overall health of the body’s circulatory system and the brain. Changes in the eyes 
accompany aging and many age-related diseases such as age-related macular degeneration (AMD) 
(Luu and Palczewski, 2018), diabetic retinopathy (Namperumalsamy et al., 2009), and neurodegen-
erative disorders like Parkinson’s (Luu and Palczewski, 2018; Archibald et al., 2009) and Alzheimer’s 
(Frost et al., 2013). Eyes are also ideal windows for early detection of systemic diseases by ophthal-
mologists, including AIDS (Sun et al., 2009; Cunningham and Margolis, 1998), chronic hypertension 
(Wong and McIntosh, 2005), and tumors (Kreusel et al., 2002). This broad utility is perhaps unsur-
prising, as any subtle changes in the vascular system first appear in the smallest blood vessels, and 
retinal capillaries are amongst the smallest in the body.

The subtle changes induced in these small vessels often go undetected by even the most sophisti-
cated instruments, necessitating the use of better approaches involving deep learning. Fundus imaging 
has proven to be a powerful and non-invasive means for identifying specific markers of eye-related 
health. Deep-learning was initially employed to predict diabetic retinopathy from retinal images at 
accuracies matching, or even exceeding, experts (Gulshan et al., 2016). Since then, retinal images 
have been employed to identify at least 39 fundus diseases including glaucoma, diabetic retinopathy, 
age-related macular degeneration (Wong and McIntosh, 2005; Cen et  al., 2021), cardiovascular 
risk (Poplin et al., 2018), chronic kidney disease (Sabanayagam et al., 2020), and, most recently, in 
predicting age (Zhu et al., 2023). Given its non-invasive, low-cost nature, retinal imaging provides an 
intriguing opportunity for longitudinal patient analysis to assess the rate of aging.

Here, we use deep learning models to predict chronological age from fundus retinal images, here-
after ‘eyeAge’, and use the deviation of this value from chronological age, hereafter ‘eyeAgeAccel’, 

Figure 1. Schematic of analysis pipeline. EyePACS images were split into train and tune sets based on the patient. The model was then trained with 
the final model step being selected via the tune set. Prediction results on the EyePACS tune set were used for longitudinal analysis of aging. After 
filtering for image quality, inference was performed with the same model on the UK Biobank dataset and filtering for image quality, and the resulting 
eyeAgeAccel was used for GWAS analysis. Enrichment analysis was performed on the GWAS hits with a homolog of the top gene (ALKAL2) validated 
experimentally in Drosophila.

https://doi.org/10.7554/eLife.82364
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for mortality and association analyses. We train this model on the well-studied EyePACS dataset and 
apply it on both the EyePACS and UK Biobank cohorts. Together, our results suggest that the trajec-
tory of an individual’s biological age can be predicted in timelines under a year and that statistically 
significant genome-wide associations are possible. Enrichment analysis of top GWAS hits as well as 
experimental validation of the Drosophila homolog of ALKAL2, a gene in the top GWAS locus, indi-
cates genetic markers of visual decline with age and demonstrates the potential predictive power of 
a retinal aging clock in assessing biological age.

Results
Prediction of age from fundus images
Figure 1 summarizes the analysis workflow for the study. Using the EyePACS dataset, we trained 
a fundus image model on 217,289 examples from 100,692 patients and tuned it on 54,292 images 
from 25,238 patients. These models were employed for longitudinal analysis of repeat patients and 
also applied on the UK Biobank dataset (119,532 images) which had a notably distinct demographic 
distribution (Table 1). For both studies, most visits generated two images, one image each for the left 
and right eye, the EyePACs dataset had more repeat visits by patients making the ratio of total images 
to total patients slightly larger (Table 1). In both analyses, we took the average of the predictions 
between the left and right eye from a single visit to infer age (See Materials and methods).

The model showed a strong correlation between chronological age and predicted age (eyeAge) 
in both the EyePACS (0.95) and UK Biobank (0.87) datasets (Figure 2—figure supplement 1). Using 
mean absolute error (MAE) to assess the fidelity of the aging clock showed that the model performed 
favorably on both datasets (2.86 and 3.30, respectively, after quality filtering) relative to previous 
studies (Zhu et  al., 2023; Galkin et  al., 2021; McEwen et  al., 2020; Horvath, 2013). Next, we 
evaluated the efficacy of our predictions in one to two year time scales using longitudinal data. Using 
the EyePACS Tune dataset, we restricted ourselves to data from patients with exactly two visits 
(1719 subjects) and examined the models’ ability to order the two visits over multiple time scales. 
Note that no longitudinal information about patients was specifically used to train or tune the model 
to predict chronological age. While the observed and predicted age differences between the two 
visits (M=0.033, SD = 2.34, Figure 2—figure supplement 2) had low correlation (pearson ⍴=0.17, 
p-value = 1.4e-12), Figure 2A shows that the model correctly ordered 71% of visits within a year with 
an MAE less than 2 years. In both metrics, the fidelity decreased in older groups and with smaller age 
gaps.

To understand if this effect was simply a result of the noise of our innate age prediction, we 
performed an age-matched control experiment. We compared correlations between data points of 
one individual to data from a random pair of age-matched individuals (see Materials and methods). 

Table 1. Characteristics of patients in the development and validation sets (before filtering).

Development set (EyePACS)
Test set (UK 
Biobank)Train Tune

Patients 100,692 25,238 64,019

Images 217,289 54,292 119,532

Ethnicity

Black: 11908 [7%]
Asia Pacific Islander: 11842 
[7%]
White: 22539 [13%]
Hispanic: 125595 [71%]
Native American: 1791 [1%]
Other: 3809 [2%]

Black: 3040 [7%]
Asia Pacific Islander: 2923 
[7%]
White: 5657 [13%]
Hispanic: 31521 [71%]
Native American: 426 [1%]
Other: 918 [2%]

Black: 1540 [1%]
Asia Pacific Islander: 
4183 [4%]
White: 107967 [91%]
Hispanic: 0 [0%]
Native_american: 0 
[0%]
Other: 5015 [4%]

Self-
reported Sex

Female: 127075 [59%]
Male: 90128 [41%]

Female: 31743 [58%]
Male: 22531 [42%]

Female: 65739 [55%]
Male: 53793 [45%]

Age

median = 55.13
mean = 54.21
std = 11.50

median = 55.19
mean = 54.20
std = 11.46

median = 57.94
mean = 56.85
std = 8.18

https://doi.org/10.7554/eLife.82364
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Comparisons were performed between each eye and timepoint. For all comparisons, the robust 
correlation observed within an individual’s data was lost in data between time-matched individuals 
(Figure  2B and D). Additionally, the positive predictive ratio and MAE exhibited reduced perfor-
mance, 55% and 3.6 years (Figure 2—figure supplement 3), suggesting a reproducible, individual-
specific eyeAge component. To further explore this individual-specific component, Figure  2C 
compares eyeAge and chronological age within an individual between eyes and timepoints, showing 
strong correlation in each quadrant.

Figure 2. Longitudinal analysis of patients with exactly two visits in the EyePACS cohort. (A) Changes of PPR (positive prediction ratio: the ratio of data 
whose eyeAge increased between subsequent visits) and MAE (mean absolute error) calculated on the same individual in relationship to chronological 
age at the first visit (left) and time between longitudinal visits (right). (B) Scatter plots representing correlation between eyeAge Gap (difference between 
predicted age and chronological age) of two consecutive visits from an individual (Same) or two consecutive visits from two different individuals 
(Random). (C) Correlation of eyeAge and chronological age between left and right and two consecutive visits of the same individual. (D) Scatter plots 
representing the correlation of left and right eyeAge Gap from the same or two random individuals.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. MAE and positive prediction ratio for time-matched and random individuals based on age at visit 1.

Source data 2. MAE and positive prediction ratio for time-matched and random individuals based on months between visits.

Source data 3. Age gap for random and time-matched individuals at visit 1 and 2.

Source data 4. Chronological and predicted age for left and right eye.

Source data 5. Age gap for random and time-matched individuals for left and right eyes.

Source data 6. Scatter plot of eyeAge with chronological age.

Figure supplement 1. Scatter plot of eyeAge with chronological age (Pearson ⍴=0.96).

Figure supplement 2. Scatterplot showing the time elapsed (x-axis) vs. the difference between time elapsed and change in eyeAge (y-axis).

Figure supplement 3. Positive prediction ratio and MAE for random, time-matched individuals.

https://doi.org/10.7554/eLife.82364
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Testing the model in UK Biobank cohort
We next applied our EyePACS-trained eyeAge model to the UK Biobank dataset. The UK Biobank 
cohort included retinal fundus images from 64,019  patients as well as extensive clinical labs and 
genomic data. These clinical markers enabled comparison of eyeAge with phenoAge, a clinical blood 
marker-based aging clock (Liu et  al., 2018). The observed 0.87 correlation between eyeAge and 
chronological age in the UK Biobank cohort was consistent with (and slightly higher than) the observed 
correlation of phenoAge and chronological age (0.82) (Figure 3A and B). Notably, the correlation 
between phenoAge and eyeAge was substantially lower (0.72; Figure  3—figure supplement 1) 
and, in fact, roughly equivalent to the product of their respective correlations with chronological 
age, suggesting that they were largely independent. To explore this further, we computed the resid-
uals from linear models that independently regressed chronological age on phenoAge and eyeAge, 
as described previously (Liu et  al., 2018), yielding phenoAge acceleration (phenoAgeAccel) and 
eyeAge acceleration (eyeAgeAccel), and observed little correlation between the two age acceleration 
measures (Figure 3C). We then performed Cox proportional hazards regression analysis to assess 

Figure 3. Relationships between eyeAge, phenoAge, and chronological age in the UK Biobank cohort. (A) Correlation between eyeAge and 
chronological age (Pearson ⍴=0.86). (B) Correlation between phenoAge and chronological age (Pearson ⍴=0.82). (C) Correlation between 
eyeAgeAcceleration and phenoAgeAcceleration (Pearson ⍴=0.12). (D) Forest plot of all-cause mortality hazard ratios (diamonds) and confidence 
intervals (lines) for the UK Biobank dataset. Purple lines are adjusted only for sex; orange lines are adjusted for sex and age; blue lines are adjusted for 
sex, age, and phenoAge.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Age, eyeAge, phenoAge, eyeAge Acceleration and phenoAge Acceleration values for each individual.

Figure supplement 1. Scatter plot of eyeAge and phenoAge (Pearson ⍴=0.71).

Figure supplement 2. eyeAge hazard ratio adjusted with and without visual acuity.

https://doi.org/10.7554/eLife.82364
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mortality risk (Cox, 1972). The hazard ratio for eyeAge was statistically significant when adjusting 
for (self-reported) sex (1.09, CI=[1.08, 1.10], p-value = 1.6e-53), sex and age (1.04, CI=[1.02, 1.06], 
p-value = 1.8e-4), and sex, age, and phenoAge (1.03, CI=[1.01, 1.05], p-value = 2.8e-3) (Figure 3D). 
Stratifying the hazard ratio analysis showed a slight increase in the hazard ratio for women compared 
to men (1.035 vs 1.026), however the confidence intervals overlapped heavily (Supplementary file 1). 
Hazard ratio results adjusted for visual acuity are presented in (Figure 3—figure supplement 2 and 
Supplementary file 2).

We also investigated the relationship between eyeAge and multiple additional measures of 
morbidity and disability available in the UK Biobank. We performed Cox proportional hazards regres-
sion on six additional chronic disease outcomes when adjusting for age and sex: chronic obstructive 
pulmonary disease (COPD), myocardial infarction, asthma, stroke, Parkinsonism, and dementia. Nomi-
nally significant associations between eyeAge and both COPD (p-value = 0.0048) and myocardial 
infarction (p-value = 0.049) were observed (Supplementary file 3). We performed linear regression 
on seven morbidity measurements reported at the time of imaging: fluid intelligence, systolic and 
diastolic blood pressure, the ‘Health score (England)’ index of multiple deprivation, pulse wave arte-
rial stiffness, self-reported overall health rating, and self-reported presence of a longstanding illness. 
Increased eyeAgeAccel corresponded to significantly increased systolic blood pressure (p-value = 
1.025e-7) and decreased levels of deprivation (p-value = 2.26e-5) as measured by the Health score 
(England) index of multiple deprivation (Supplementary file 4). Interestingly, increased eyeAgeAccel 
also corresponded with significantly increased performance in fluid intelligence scores (p-value = 
5.34e-27).

As visual acuity has long been known to degrade with age (Gittings and Fozard, 1986), we exam-
ined the extent to which eyeAge explains the known correlation between chronological age and 
visual acuity. Although chronological age and eyeAge are highly correlated (Figure 3A), we observed 
a slightly higher correlation of eyeAge with visual acuity (⍴=0.221) compared to chronological age vs. 
visual acuity (⍴=0.218). Both measures of age appear relevant for visual acuity decline, as the influence 
of chronological age remained significant even after regressing out the influence of eyeAge on visual 
acuity (p-value = 1.6e-13, Supplementary file 5).

GWAS and experimental validation of ALK
Based on the patient-specific eyeAgeAccel effects and its independence from phenoAgeAccel, a 
GWAS was conducted to identify genetic factors associated with eyeAgeAccel. We subsetted the 
cohort to individuals of European ancestry, performed genotype quality control, and utilized a single 
eyeAgeAccel value per individual, resulting in a cohort of 45,444 individuals for GWAS analysis. 
GWAS was performed using BOLT-LMM (see Materials and methods) with chronological age, sex, 
genotyping array type, the top five principal components of genetic ancestry, and indicator variables 
for the six assessment centers used for the imaging as covariates. Full GWAS summary statistics are 
available in Supplementary file 6.

Genomic inflation was low (1.05; Figure 4—figure supplement 1). The stratified linkage disequilib-
rium (LD) score regression-based intercept was 1.02 (SEM = 0.01), indicating that polygenicity, rather 
than population structure, drove the test statistic inflation. The SNP-based heritability was 0.11 (SEM 
= 0.02), an appreciable fraction of the estimated broad-sense heritability of biological age (27–57% 
via twin and family studies). The GWAS identified 38 independent suggestive hits (R2 ≤0.1, p≤1 × 
10−6) at 28 independent loci, 12 of which reached genome-wide significance (p≤5 × 10−8) (Figure 4, 
Supplementary file 7).

Many of the hits were associated with eye function and age-related disease (truncated list of 
candidate hits summarized in Supplementary file 8). The most significant locus spanned 650 kb and 
included three genes in a highly significant LD block: SH3YL1, ACP1, and ALKAL2 (Figure 4—figure 
supplement 2). The SH3YL1 gene has recently been implicated as a biomarker for nephropathy in 
type 2 diabetes (Choi et al., 2021), whereas ALKAL2 enables protein tyrosine kinase activity (Wood-
ling et al., 2020). In other significant gene candidates, we identified variants in the genes OCA2, 
POC5, and GJA3, which have all been implicated in eye development and function. OCA2 specifically 
is known to be important for eye pigmentation (Kamaraj and Purohit, 2014), whereas POC5 is linked 
to AMD (Yan et al., 2018). GJA3 has been implicated in age-related cataract development (Tang 
et al., 2019). MEF2C has reported roles in numerous age-related conditions, including Alzheimer’s 

https://doi.org/10.7554/eLife.82364
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disease (Xue et al., 2021) and muscle wasting in cancer (Judge et al., 2020) and GRM is associated 
with age-related hearing loss (Liu et al., 2021b). Additional candidates are reported to be involved in 
cancer prognosis and progression, including TSPAN11 (Liu et al., 2021a), NKX6-1 (Su et al., 2021), 
and SLC16A1 (Zhang et al., 2021).

Gene enrichment analysis (Xie et al., 2021) identified significant associations (adjusted p<0.05) 
between our gene candidates and macular thickness and degeneration, as seen in previous human 
GWAS studies (Buniello et al., 2019) and cataract formation (Elsevier pathway collection; Cheadle 
et al., 2017) as well as non-eye related diseases such as bone mineralization, tumor suppression, and 
Amyloid Precursor Protein pathways (Biocarta; Nishimura, 2001). Gene Ontology (GO) term analysis 
of our gene candidates revealed significant enrichment (adjusted p<0.05) for protein tyrosine kinase 
activator activity, gap junction channel activity, and wide pore channel activity (Figure 4B).

Sum of single effects regression (Wang et al., 2020) was used to identify putative causal variants 
for each locus (Supplementary file 9). In the most significant locus (Figure 4—figure supplement 
2), we identified the deletion variant rs56350804 as the single variant with a posterior inclusion prob-
ability (PIP) above 0.45 (rs56350804 PIP = 0.9998). While rs56350804 is intronic to SH3YL1, expres-
sion quantitative trait locus (eQTL) analysis by the Genotype-Tissue Expression consortium identified 
significant eQTL between rs56350804 and each of SH3YL1, ACP1, and ALKAL2 (GTEx Consortium 
2020). In particular, the ALKAL2 gene had its expression modulated by rs56350804 in cervical spinal 
cord tissue (p=3.0 × 10–16), and inhibition of the Drosophila homolog of ALKAL2, Alk, has been shown 

Figure 4. GWAS analyses and experimental validation. (A) Manhattan plot representing significant genes associated with eyeAgeAcceleration. (B) 
p-Values for enriched pathways: Macular thickness, ADHD (attention deficit hyperactivity disorder), AMD (age-related macular degeneration), spherical 
equivalent, and refractive error. (C) Assessment of visual performance of transgenic and control flies with age. p-Value is relative to control (*=p < 
0.05). p-Value for ALK RNAi vs. control is 0.009; p-value for UAS-ALK-DN vs. control is 0.006. Error bars show standard deviation between 3 biological 
replicates. n = 100 flies per replicate.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. eyeAgeAcceleration qq-plot.

Figure supplement 2. Zoom in on significant locus covering three genes in a highly significant LD block.

https://doi.org/10.7554/eLife.82364
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to extend lifespan (Woodling et al., 2020), making it a good candidate for exploring a potential role 
in visual function.

Previously, D. melanogaster has been used to study the impact of aging interventions on retinal 
health by using the phototaxis index, a fly’s ability to be attracted toward light (Hodge et al., 2022). 
We used D. melanogaster to observe visual decline via phototaxis with transgenic ALK inhibition. 
We crossed the pan-neuronal RU486-inducible Gal4 driver elav-Gal4-GS with UAS-AlkRNAi flies or 
UAS-AlkDN to determine the effects of neuron-specific Alk inhibition. Both transgenic interventions 
resulted in significantly increased visual performance with age, whereas background controls showed 
no change in performance with RU486 treatment (Figure 4C). These results support the implication 
from the GWAS that ALK influences the aging of the visual system.

Discussion
Retinal health has long been an important factor for visual aging, manifested as glaucoma, AMD, and 
other age-related retinal diseases, but until recently it was not known whether it could be indicative 
of overall health and aging. In this study, we applied deep learning models for predicting an indi-
vidual’s age from retinal fundus images and showed that these predictions may be informative for 
tracking aging patterns longitudinally. While other cellular and blood-related molecular markers of 
aging have recently been identified, these are at times invasive and, although accurate, take a long 
time to develop (Horvath, 2013). Other aging clocks from blood (Horvath, 2013; Peters et  al., 
2015), saliva (Bocklandt et al., 2011), skin (Bocklandt et al., 2011; Fleischer et al., 2018), muscle 
(Mamoshina et al., 2018), and liver (Wang et al., 2017) showed an MAE deviating 4–8 years from the 
actual age. More dynamic markers such as proteins and metabolites can track aging in shorter time 
intervals but are still limited to 2–4 years (Ahadi et al., 2020; Wang et al., 2017; Chen et al., 2012). 
In contrast, using deep learning models on retina fundus images, we were able to predict changes in 
aging at a granularity of less than a year. These small time-scales, and relative low-cost of imaging, 
makes eyeAge promising for longitudinal studies.

Correlation and hazard ratio analyses from our study suggest that eyeAge and phenotypic age are 
conditionally independent given chronological age. Therefore, eyeAge is a potential biomarker that 
reflects a layer of biological aging not included in blood markers. This is supported by our GWAS 
findings; different genes were associated with eyeAgeAccel compared to phenoAgeAccel (Kuo et al., 
2021). However, there are limitations with this approach. Similar to other aging clocks (such as DNA-
methylome), eyeAge underperforms phenotypic age in mortality prediction. This is likely because the 
biomarkers used to calculate phenotypic age were explicitly selected based on their ability to predict 
mortality. New algorithms that incorporate blood markers and retinal clocks have the potential to be 
better predictors of morbidity and mortality. Additionally, it remains to be seen whether eyeAgeAccel 
would reflect interventions such as behavioral changes or medication.

Our GWAS identified candidate genes associated with several eye- and age-related functions, 
such as POC5 (Yan et al., 2018) and GJA3 (Tang et al., 2019). Additional significant candidates had 
previously identified functions that are not restricted to the eye but are still related to age, e.g. MEF2C 
being associated with Alzheimer’s disease (Xue et  al., 2021) and multiple candidates (TSPAN11, 
NKX6-1, SLC16A1, RAET1G, SNTG1, ARRDC3, RASSF3, DIRC3, and GCNT3) associated with cancer 
(Supplementary file 8). These suggest that eyeAge may identify general signatures of aging rather 
than purely eye-related traits. Pathway analyses similarly were split between eye-related pathways and 
others that were not eye-specific. While we suspect many of the eye-related pathways to have an aging 
component, some pathways may be enriched artifactually. For example, though melanin biosynthesis 
has been associated with protection from photodamage (Hodge et al., 2022), the predicted quality 
of fundus images has also been shown to be influenced by eye color (Guenther et al., 2020). Notably, 
an independent group separately identified our top GWAS candidate locus as the most significant 
locus (Goallec et al., 2021). This combined with previous studies showing ALK to be important for 
lifespan extension in flies (Woodling et al., 2020) and our own experimental validation confirming 
improved ocular health in a fly homolog, Alk, is compelling evidence of a true biological signal in the 
GWAS.

https://doi.org/10.7554/eLife.82364
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Taken together, our work reinforces the utility of fundus imaging for evaluating overall health and 
opens up new opportunities for using it to predict longevity. eyeAge has substantial applications in 
aging and aging-related diseases, from biomarker application to tracking therapeutics. In particular, 
the retinal aging clock because of its ease of use, low cost, and non-invasive sample collection, has 
the unique potential to additionally assess lifestyle and environmental factors implicated in aging. 
Retinal aging clocks can be immensely valuable to future clinical trials of rejuvenation/anti-aging ther-
apies and for personalized medicine to measure improvements in aging over short periods, not only 
improving actionability but also enabling rapid iteration.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, wDah background 
(Drosophila melanogaster, 
females) wDah control strain

Laboratory of Linda 
Partridge, Woodling 
et al., 2020 Maintained in Kapahi Lab

Strain, wDah background 
(Drosophila melanogaster, 
females) UAS-ALKRNAi RNAi for ALK

Laboratory of Linda 
Partridge, Woodling 
et al., 2020 VDRC GD 11446 Maintained in Kapahi Lab

Strain, wDah background 
(Drosophila melanogaster, 
females)

UAS-ALKDN dominant 
negative ALK overexpression

Laboratory of Linda 
Partridge, Woodling 
et al., 2020 Maintained in Kapahi Lab

Strain, wDah background 
(Drosophila melanogaster, 
females)

elav-GS Ru486 inducible Gal4 
driver

Bloomington Drosophila 
Stock Center, Woodling 
et al., 2020 BDSC 43642 Maintained in Kapahi Lab

Chemical compound, drug RU486 (mifepristone)

United States Biological, 
Osterwalder et al., 
2001 282888

For inducting fly GeneSwitch expression 
system; 200 µM final concentration in food

EyeAge model development
Model development was done on the EyePACS train dataset (Table 1). A deep learning model with 
an Inception-v3 architecture (Deng et al., 2009; Szegedy et al., 2015) was trained to take a color 
fundus photo as input and predict the chronological age (referred to as chronologicalAge below) 
using L1 loss. Age values were normalized to have zero mean and unit variance before training (and 
during inference this normalization is reversed to get back to year units). Model training was stopped 
after 363,200 steps by looking at performance on the EyePACS tune dataset. The hyperparameters 
of the model were as follows: the initial learning rate was 0.0001, which was warmed up to 0.001 over 
40,751 steps; after the warm up phase, the learning rate was decayed by a factor of 0.99 every 13,584 
steps; dropout was applied to the prelogits at a rate of 0.2; a weight decay of 4e-5 was used. The 
model backbone was pre-trained using the ImageNet dataset (Deng et al., 2009). As some of the 
color fundus images in the UK Biobank dataset were of very low quality, we also trained a separate 
deep learning model to predict image quality, similar to what was reported in our prior work (Mitani 
et al., 2020; Varadarajan et al., 2018).

EyeAge model evaluation
The model described above was applied to images to predict chronological age. The image quality 
model described above was used to discard low quality images – reducing the initial 85,645 patient 
(174,049 image) dataset to 66,533 patients (120,362 images). Finally, we restricted the data to the 
first assessment visit to UK Biobank. This was done to reduce bias associated with image quality 
differences, as we observed quality differences between images captured in the later follow-up visits. 
Since these follow-up visits happened several years after the initial assessment, the time to event 

https://doi.org/10.7554/eLife.82364
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or censorship is much smaller, and a model could exploit this association. For participants that had 
images of both eyes passing the quality filter, we averaged the predictions across the two eyes. After 
these processing steps, we ended up with 55,267 data points total, one per remaining participant. 
Next, using the predicted eyeAge and the chronologicalAge of the participant at the time of imaging, 
an ‘eyeAgeAcceleration’ score was calculated for each participant as the residuals of the ordinary least 
squares regression model ‘chronologicalAge ~eyeAge’ (Liu et al., 2018). In order to compare with 
another well-known biological marker of age, phenoAge (Liu et al., 2018) was also computed using 
the values of blood markers available for the participants. PhenoAgeAcceleration was then computed 
in an analogous manner to eyeAgeAcceleration.

Method on selection of random set
Figure  2 required identification of matched, random individuals to assess the potential person-
specific component of eyeAge predictions. For Figure 2—figure supplement 3, we created matched 
sets of visit pairs for each patient’s first visit by identifying a randomly matching patient visit that was 
0–2 years after a patient’s first visit. To eliminate artifacts due to sampling differences between first 
and second visits, once we identified a patient’s first visit to match, we constrained its set of poten-
tial randomly matched patient visits to only be from second visits. For the longitudinal analysis in 2B 
(right), individuals were split both by age and by time between visits (using 2 month buckets) and, 
again, randomly matched. For Figure 2D, the individuals were split evenly in 2-year buckets. Individ-
uals within the same bucket had their left and right predictions compared to one another.

Regression analyses in UK Biobank
Cox proportional hazards regression was performed using the lifelines package, https://github.com/​
CamDavidsonPilon/lifelines. Since retinal imaging was performed at the initial visit, individuals with 
events with an unknown date or date prior to the initial visit were excluded. All UK Biobank algo-
rithmically defined outcomes with at least 4000 events were analyzed: asthma (field 42014), COPD 
(field 42016), dementia (field 42018), myocardial infarction (field 42000), all-cause Parkinsonism (field 
42030), and stroke (field 42006). We note that because eyeAgeAccel is defined as eyeAge - alpha * 
age - beta for constants alpha and beta identified through regression of age on eyeAge, hazard ratios 
for eyeAge are identical to those in which eyeAgeAccel is used in the model instead.

Linear regression was performed on morbidity-related measurements taken at the same visit during 
which retinal imaging occurred, and was implemented using the statsmodels package with the model 
INT(outcome)~INT(age)+sex + INT(eyeAgeAccel), where INT(...) represents the rank-based inverse 
normal transformation. Individuals for which any of the outcome, age, or eyeAgeAccel variables were 
in the top 1% of outlier values were excluded. Measurements analyzed were: Overall health rating 
(field 2178), Long-standing illness (field 2188), Systolic blood pressure (field 4080), Diastolic blood 
pressure (field 4079), Pulse wave arterial stiffness index (field 21021), Health score (England) (field 
26413), Fluid intelligence score (field 20016).

GWAS
The eyeAgeAccel value defined above was used as the target for GWAS analysis. GWAS analysis 
was performed on the fundus-based phenotype as described previously (Alipanahi et  al., 2021). 
Briefly, samples were restricted to individuals of European ancestry to avoid confounding effects due 
to population structure. European genetic ancestry was defined by computing the medioid of the 
15-dimensional space of the top genetic principal components in individuals who self-identified as 
‘British’ ancestry and defining all individuals within a distance of 40 from the medioid as ‘European’ 
(corresponding to the 99th percentile of distances of all individuals who self-identified as British or 
Irish). Samples were further restricted to those who also passed sample quality control measures 
computed by UK Biobank, that is those not flagged as outliers for heterozygosity or missingness, 
possessing a putative sex chromosome aneuploidy, or whose self-reported and genetically inferred 
sex were discordant.

https://doi.org/10.7554/eLife.82364
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BOLT-LMM v2.3.4 was used to examine associations between genotype and eyeAgeAccel-
eration in European individuals in the UK Biobank (n=45,444). All genotyped variants with minor 
allele frequency >0.001 were used to perform model fitting and heritability estimation. GWAS was 
performed in genotyped variants and imputed variants on autosomal chromosomes, with imputed vari-
ants filtered to exclude those with minor allele frequency (MAF) <0.001, imputation INFO score <0.8, 
or Hardy-Weinberg equilibrium (HWE) P<1 × 10–10 in Europeans. In total, 13,297,147 variants passed 
all quality control measures. Covariates included in the association study were chronological age, sex, 
genotyping array type, the top five principal components of genetic ancestry, and indicator variables 
for the six assessment centers used for the imaging.

Genome-wide suggestive (p≤1 × 10−6) lead SNPs, independent at R2 ≤0.1, were identified using the 
–clump command in PLINK version v1.90b4. The LD reference panel contained 10,000 unrelated UK 
Biobank subjects of European ancestry (as defined above). To identify distinct non-overlapping loci of 
association, all variants with R2 ≥0.1 with a lead SNP were grouped into a ‘cluster’ with that lead SNP, 
and subsequently clusters within 250 kilobases of each other were merged, with the lowest p-value 
lead SNP retained as the locus representative. Putative causal variants were identified using susieR 
version 0.9.0. At each locus containing at least 10 variants in LD, the susieR::susie_suff_stat function 
was used to estimate posterior inclusion probabilities for each variant in the locus, using the same LD 
reference panel as was used to generate loci and with a maximum of L=10 causal variants per locus 
and 200 iterations of coordinate ascent.

Validation of Alk in fly
Fly husbandry and phenotyping
For fly crosses, 15 virgin females were crossed with 3 males in bottles containing 1.55% live yeast, 
cornmeal, sugar, and agar (Wilson et al., 2020). Crosses were dumped 5 days following crossing, 
and female progeny were sorted into 4 replicate vials of 25 flies each, with food containing 200 μm 
RU486 to induce activation of the Gal-UAS system (Nicholson et al., 2008). Flies were maintained in 
65% relative humidity at 25 °C in a 24 hr light/dark cycle throughout life. Two weeks post-induction, 
phototaxis was tested as previously described Hodge et al., 2022 by placing flies in a clear, empty 
30 cm-long vial horizontally in a dark room. Light was shined on one end and the number of flies in 
the last 10 cm closest to the light source after 1 min was scored for responsiveness to light signals. 
This was tested across each of the four vials per group in three biological replicates (total 100 flies 
per replicate). Strains used were 3xelav-GS (provided from the lab of Geetanjali Chawla) Parkhitko 
et al., 2020 for RU486-dependent pan-neuronal Gal4, wDah control strain, UAS-AlkRNAi, and UAS-AlkDN 
(provided from the lab of Linda Partridge) (Woodling et al., 2020).

Pathway analysis
All significant (p<1.0 × 10–6) GWAS candidates were used to assess pathway enrichment via Enrichr 
(Xie et al., 2021).

Statistical analysis
For Drosophila phototaxis results, significance (p<0.05) was assessed using unpaired t-test. For 
Figure 4C, error bars represent SD across at least three biological replicates. Significant differences 
between experimental groups and controls are indicated by *. *, p<0.05. Statistical analyses were 
calculated with GraphPad Prism 4.

Data and code availability
A subset of EyePACS data is freely available online (https://www.kaggle.com/competitions/diabetic-​
retinopathy-detection/data). To enquire about access to the full EyePACS dataset, researchers should 
contact Jorge Cuadros (jcuadros@eyepacs.com). The UK Biobank data are available for approved proj-
ects (application process detailed at https://www.ukbiobank.ac.uk/enable-your-research/apply-​for-ac-
cess) through the UK Biobank Access Management System (https://www.ukbiobank.ac.uk). We have 
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deposited the derived data fields and model predictions following UK Biobank policy, which will be 
available through the UK Biobank Access Management System. Full GWAS summary statistics are avail-
able in the Supplementary File. To develop the eyeAge model we used the TensorFlow deep learning 
framework, available at https://www.tensorflow.org. Code and detailed instructions for both model 
training and prediction of chronological age from fundus images is open-source and freely available 
as a minor modification (https://gist.github.com/cmclean/a7e01b916f07955b2693112d​cd3edb60), 
(Ahadi, 2023 copy archived at swh:1:rev:ba002c0a6edddd13814ecc9e07ec14249b2375f4) of our 
previously published repository for fundus model training (https://zenodo.org/record/7154413) 
(Cosentino et al., 2021).
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The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Cosentino J, 
Alipanahi B, 
Hormozdiari F, 
McLean CY

2021 Code for training fundus 
models

https://​zenodo.​org/​
record/​7154413

Zenodo, 10.5281/
zenodo.7154413
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