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Abstract Cellular growth is the result of passive physical constraints and active biological 
processes. Their interplay leads to the appearance of robust and ubiquitous scaling laws relating 
linearly cell size, dry mass, and nuclear size. Despite accumulating experimental evidence, their 
origin is still unclear. Here, we show that these laws can be explained quantitatively by a single 
model of size regulation based on three simple, yet generic, physical constraints defining altogether 
the Pump-Leak model. Based on quantitative estimates, we clearly map the Pump-Leak model 
coarse-grained parameters with the dominant cellular components. We propose that dry mass 
density homeostasis arises from the scaling between proteins and small osmolytes, mainly amino 
acids and ions. Our model predicts this scaling to naturally fail, both at senescence when DNA and 
RNAs are saturated by RNA polymerases and ribosomes, respectively, and at mitotic entry due to 
the counterion release following histone tail modifications. Based on the same physical laws, we 
further show that nuclear scaling results from a osmotic balance at the nuclear envelope and a large 
pool of metabolites, which dilutes chromatin counterions that do not scale during growth.

Editor's evaluation
This important theoretical work deals with the problem of homeostasis of protein density within 
cells, relying on the Pump and Leak model. The model makes predictions both for growing and 
senescent cells, which they convincingly compare to experimental data on budding yeast. The 
authors further study the long-standing problem of nuclear scaling (the constant ratio between the 
nucleus and cell volume), and show that within their model it arises naturally from osmotic balance at 
the nuclear envelope, with metabolites playing a major role.

Introduction
Although cell size varies dramatically between cell types, during the cell cycle, and depends on various 
external stresses (Cadart et al., 2019), each cell type often shows small volumetric variance at a given 
stage of its cycle. This tight control reflects the importance of size in monitoring cell function. It is 
often associated to generic linear scaling relations between cell volume, cell dry mass, and the volume 
of the nucleus (Neurohr and Amon, 2020; Cantwell and Nurse, 2019b; Webster et al., 2009). These 
scaling laws have fascinated biologists for more than a century (Wilson, 1925; Conklin, 1912) because 
of the inherent biological complexity and their ubiquity both in yeasts, bacteria, and mammals, hence 
raising the question of the underlying physical laws.

Although robust, these scaling relations do break down in a host of pathologies. The nuclear-to-
cytoplasmic (NC) ratio (also called karyoplasmic ratio) has long been used by pathologists to diagnose 
and stage cancers (Jevtić and Levy, 2014; Slater et al., 2005; Zink et al., 2004). Similarly, senescent 
cells such as fibroblasts are known to be swollen and their dry mass diluted (Neurohr et al., 2019), a 
feature suspected to be of fundamental biological importance since it could represent a determinant 
of stem cell potential during ageing (Lengefeld et al., 2021).

Paradoxically, although cells are the simplest building blocks of living organisms, the principles 
ruling their size, their growth, and the associated scaling laws have not yet been fully resolved. This 

Research Article

*For correspondence: 
romain.rollin@curie.fr (RR); 
jean-francois.joanny@college-de-​
france.fr (J-FJ); 
pierre.sens@curie.fr (PS)

Competing interest: See page 
22

Funding: See page 22

Preprinted: 03 August 2022
Received: 05 August 2022
Accepted: 28 April 2023
Published: 02 May 2023

Reviewing Editor: Ariel Amir, 
Harvard University, United States

‍ ‍ Copyright Rollin et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.82490
mailto:romain.rollin@curie.fr
mailto:jean-francois.joanny@college-de-france.fr
mailto:jean-francois.joanny@college-de-france.fr
mailto:pierre.sens@curie.fr
https://doi.org/10.1101/2022.08.01.502021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Rollin et al. eLife 2023;12:e82490. DOI: https://doi.org/10.7554/eLife.82490 � 2 of 43

is in part due to the experimental difficulty to perform accurate volume and dry mass measurements 
(Model, 2018; Cadart et al., 2017; Park et al., 2018). Many methods were developed in the past 
decades, but they sometimes lead to contradictory observations, highlighting the need of comparing 
and benchmarking each method (Guo et al., 2017; Venkova et al., 2022).

Moreover, extensive experimental investigations have identified a plethora of biological features 
influencing these scalings (Lang et al., 1998; Hoffmann et al., 2009) but comparatively fewer theo-
retical studies have precisely addressed them, leaving many experimental data unrelated and unex-
plained. Several phenomenological theories have emerged to understand individual observations, but 
they are still debated among biologists. The ‘nucleoskeletal theory’ emphasizes the role of the DNA 
content in controlling the NC ratio based on the idea that ploidy dictates cell and nuclear sizes since 
tetraploid cells tend to be larger than their diploid homologs (Webster et al., 2009). Other experi-
ments suggest that genome size is not the only determining factor: indeed it would not explain why 
cells from different tissues, having the same amount of DNA, have different sizes. Instead, it has been 
shown that nuclear size depends on cytoplasmic content, nucleo-cytoplasmic transport, transcription, 
RNA processing, and mechanics of nuclear envelope structural elements such as lamina (Cantwell and 
Nurse, 2019b).

In parallel, theoretical models, based on nonequilibrium thermodynamics, were developed (Kedem 
and Katchalsky, 1958; Mori, 2012; Marbach and Bocquet, 2019), often based on the ‘Pump-Leak’ 
principle (Cadart et al., 2019; Venkova et al., 2022; Adar and Safran, 2020). Charged impermeant 
molecules in cells create an imbalance of osmotic pressure at the origin of the so-called Donnan effect 
(Sten-Knudsen, 2007). Cells have two main ways to counteract the osmotic imbalance. They can 
adapt to sustain a high hydrostatic pressure difference as plants do by building cellulose walls. Or, 
as done by mammalian cells, they can use ion pumps to actively decrease the number of ions inside 
the cells, thus decreasing the osmotic pressure difference across the cell membrane and therefore 
impeding water penetration. However, due to the large number of parameters of these models, we 
still have a poor understanding of the correspondence between biological factors and physical param-
eters of the model.

In this article, we bridge the gap between phenomenological and physical approaches by building 
a minimal framework based on a nested Pump-Leak model to understand the cell size scaling laws as 
well as their breakdown in specific cases. Performing order of magnitude estimates, we precisely map 
the coarse-grained parameter of a simplified version of the Pump-Leak model to the main microscopic 
biological components. We find that the dry mass of the cell is dominated by the contribution of the 
proteins, while the cell volume is mostly fixed by the contribution to the osmotic pressure of small 
osmolytes, such as amino acids and ions. The maintenance of a homeostatic cell density during growth 
is then due to a linear scaling relation between protein and small osmolyte numbers. Combining 
simplified models of gene transcription and translation and of amino acid biosynthesis to the Pump-
Leak model, we show that the linear scaling relation between protein and small osmolyte numbers 
is obtained in the exponential growth regime of the cell by virtue of the enzymatic control of amino 
acid production.

On the other hand, the absence of linear scaling relation between protein and small osmolyte 
numbers is at the root of the breakdown of density homeostasis. This conclusion is in line with two 
biological mechanisms that were proposed to explain the regulation of size and density respectively 
during cell spreading and under hyper-osmotic shocks. Recent studies Venkova et al., 2022; Adar 
and Safran, 2020 have indeed shown that the change of mechanical tension at the plasma membrane 
during cell spreading alters the permeability of ion channels and results in a volume adaptation at 
constant dry mass. Another important way through which cells control their size independently of their 
mass is through metabolite synthesis. An example is the synthesis of glycerol that occurs in budding 
yeast following a hypertonic shock (Neurohr and Amon, 2020). While these two mechanisms are now 
well established, here, we propose a new physical interpretation of two other important biological 
events, namely the dilution that occurs at senescence and the dilution that occurs at the beginning 
of mitosis, due to two distinct physical phenomena. At senescence, cells cannot divide properly. Our 
theory then predicts that DNA and RNAs become saturated by RNA polymerases (RNAPs) and ribo-
somes, respectively, leading to a change of the growth regime: the protein number saturates while 
the amino acid number increases linearly with time, resulting in the experimentally observed dry mass 
dilution. This prediction is quantitatively tested using published data of growing yeast cells prevented 
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from dividing (Neurohr et al., 2019). At mitotic entry, chromatin rearrangements, such as histone tail 
modifications, induce a counterion release inside the cell, resulting in an influx of water and dry mass 
dilution in order to maintain the osmotic balance at the cell membrane.

Finally, to further illustrate the generality of our model, we show that the linear scaling of nucleus 
size with cell size originates from the same physical effects. Using a nested Pump-Leak model for the 
cell and for the nucleus, we show that nuclear scaling requires osmotic balance at the nuclear enve-
lope. The osmotic balance is explained by the nonlinear osmotic response of mammalian nuclei that 
we attribute to the presence of folds at the surface of many nuclei (Lomakin et al., 2020), which in 
turn buffer the nuclear envelope tension and enforce scaling. Nonetheless, the condition on osmotic 
balance appears to be insufficient to explain the robustness of the NC ratio during growth. Counter-
intuitively, metabolites, though permeable to the nuclear envelope, are predicted to play an essential 
role in the NC ratio. Their high concentrations in cells, a conserved feature throughout living cells, 
is shown to dilute the chromatin counterions that do not scale during growth, thereby allowing the 
scaling of nuclear size with cell size both at the population level and during individual cell growth.

Results
Pump-Leak model
Our theoretical approach to understand the various scaling laws associated to cell size is based on 
the Pump-Leak model (Tosteson and Hoffman, 1960 and Figure 1A). The Pump-Leak model is a 
coarse-grained model emphasizing the role of mechanical and osmotic balance. The osmotic balance 
involves two types of osmolytes, impermeant molecules such as proteins and metabolites, which 
cannot diffuse through the cell membrane, and ions, which cross the cell membrane and for which at 
steady state the incoming flux into the cell must equate the outgoing flux. For simplicity, we restrict 
ourselves to a two-ion Pump-Leak model where only cations are pumped outward of the cell. We 
justify in the ‘Discussion’, section ‘Physical grounds of the model’, why this minimal choice is appro-
priate for the purpose of this article. Within this framework, three fundamental equations determine 
the cell volume. (1) Electroneutrality: the laws of electrostatics ensure that in any aqueous solution 
such as the cytoplasm, the solution is neutral at length scales larger than the Debye screening length, 
that is, the electrostatic charge of any volume larger than the screening length vanishes. In physiolog-
ical conditions, the screening length is typically on the nanometric scale. Therefore, the mean charge 
density of the cell vanishes in our coarse-grained description (Equation A.1). (2) Osmotic balance: 
balance of the chemical potential of water inside and outside the cell; the timescale to reach the 
equilibrium of water is of few seconds after a perturbation (Venkova et al., 2022; Milo and Phillips, 
2015). Note that the second part of the equality in Equation 2 assumes that both the cellular and 
outer media are dilute solutions. This assumption may seem odd since the cytoplasm is crowded. 
Yet, we justify this approximation in the ‘Discussion’ (see section ‘Physical grounds of the model’). 
(3) Balance of ionic fluxes: the typical timescales of ion relaxation observed during a cell regulatory 
volume response after an osmotic shock are of the order of a few minutes (Venkova et al., 2022; 
Hoffmann et al., 2009). Together, this means that our quasi-static theory is designed to study cell 
volume variations on timescales larger than a few minutes. We emphasize that although Equation 2 
and Equation 3 are stationary equations, the volume of the cell may vary, for example, through the 
biosynthesis of impermeant molecules ‍X ‍ (see Equation 4), but this is a slow process at the timescale 
of equilibration of water and ion fluxes and we use a quasistatic approximation. Mathematically, the 
three equations read (see Appendix 1, section 1.1 for the full derivations of these equations):

	﻿‍ n+ − n− − z · x = 0‍� (1)

	﻿‍ ∆P = ∆Π = kBT ·
(
n+ + n− + x − 2n0

)
‍� (2)

	﻿‍ n+ · n− = α0 · n2
0‍� (3)

where, ‍n+‍, ‍n−‍ are respectively the ionic concentrations of positive and negative ions inside the cell. 
The concentrations of cations and anions are equal in the external medium to enforce electroneutrality 
since the concentrations of non-permeant molecules in the outer medium are typically much lower 
than their ionic counterparts (Milo and Phillips, 2015). We call ‍n0‍ the corresponding concentrations, 
and the associated osmotic pressure in the outer medium reads ‍Π0 = kBT · 2n0‍. The cell is modeled 
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Figure 1. The Pump-Leak model coupled to order of magnitude estimates predicts that the cellular wet volume is mainly accounted for by metabolites 
(mainly amino acids, mostly glutamate) and their counterions in mammalian cells. (A) Schematic of the Pump-Leak model. Species in black are 
impermeant molecules such as proteins, mRNAs, and metabolites (black circles). In average, those molecules are negatively charged and thus carry 
positive counterions (red species) to ensure electroneutrality. Ions can freely cross the plasma membrane through channels. Their concentrations in the 
cell result from the balance of three fluxes: the electrical conduction, the entropic diffusion, and pumping. In the model, only cations are pumped out of 
the cell to model the Na/K pump but this assumption is not critical (see ‘Discussion’, section ‘Physical grounds of the model’ and Appendix 1, section 
2.1.3). (B) Fraction of volume and (C) of the dry mass occupied by the constituents of a mammalian cell (see Appendix 1, section 3.1 and Alberts et al., 
2002).
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as a compartment of total volume ‍n0‍ divided between an excluded volume occupied by the dry 
mass ‍R‍ and a wet volume. The cell contains ions and impermeant molecules such as proteins, RNA, 
free amino acids, and other metabolites. The number ‍X ‍, respectively the concentration ‍x = X

V−R‍, of 
these impermeant molecules may vary with time due to several complex biochemical processes such 
as transcription, translation, plasma membrane transport, and degradation pathways. The average 
negative charge ‍−z‍ of these trapped molecules induces a Donnan potential difference ‍Uc‍ across 
the cell membrane. The Donnan equilibrium contributes to the creation of a positive difference of 
osmotic pressure ‍∆Π‍ that inflates the cell. Cells have two main ways to counteract this inward water 
flux. They can either build a cortex stiff enough to prevent the associated volume increase, as done 
by plant cells. This results in the appearance of a hydrostatic pressure difference ‍∆P‍ between the cell 
and the external medium. Or they can pump ions outside the cell to decrease the internal osmotic 
pressure, a strategy used by mammalian cells. We introduce a pumping flux of cations ‍p‍. Cations can 
also passively diffuse through the plasma membrane via ion channels with a conductivity ‍g+

‍. In Equa-

tion 3, the pumping efficiency is measured by the dimensionless number ‍α0 = e−
p

kBTg+
‍ where ‍T ‍ is the 

temperature and ‍kB‍ the Boltzmann constant. The pumping efficiency varies between ‍0‍ in the limit of 
‘infinite pumping’ and ‍1‍ when no pumping occurs (see Appendix 1, section 1.1 for an explanation on 
the origin of this parameter).

Volume and dry mass scaling
Although proposed more than 60 years ago (Tosteson and Hoffman, 1960) and studied in depth by 
mathematicians (Mori, 2012) and physicists (Kay, 2017), little effort has been done to precisely map 
the coarse-grained parameters of the Pump-Leak model to microscopic parameters. We adopt here 
the complementary strategy and calculate orders of magnitude in order to simplify the model as much 
as possible, only keeping the leading order terms. We summarize in Table 1 the values of the Pump-
Leak model parameters that we estimated for a ‘typical’ mammalian cell. Three main conclusions can 

Table 1. Estimation of the coarse-grained Pump-Leak model parameters for a typical Mammalian 
cell.

Symbol Typical value Meaning

‍n+‍ 160 mmol
Cation concentration (Milo and Phillips, 
2015)

‍n−‍ 20 mmol
Anion concentration (Milo and Phillips, 
2015)

‍n0‍ 150 mmol
External cationic/anionic concentrations 
(Milo and Phillips, 2015)

‍∆P‍ 10–100 Pa

Difference of hydrostatic pressure through 
the plasma membrane (Smeets et al., 
2019; Pegoraro et al., 2017)

‍
R
V ‍ 30%

Volume fraction occupied by the dry mass 
(Venkova et al., 2022; Alberts et al., 
2002)

‍α0‍ 0.14

Dimensionless parameter comparing 
pumping and passive leaking of cations 
(Equation 3)

‍Uc‍ –52 mV
Cytoplasmic membrane potential 
(Equation A.8)

‍Π0‍ 7.2 · 105Pa External osmotic pressure

‍Π‍ 7.2 · 105Pa
Cellular Van’t Hoff osmotic pressure 
(Equation 2)

‍x‍ 120 mmol
Cellular concentrations of species other 
than ions (Equation 2)

‍−z‍ –1.2
Average charge of species other than ions 
(Equation 1)

https://doi.org/10.7554/eLife.82490
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be drawn: (1) pumping is important, as indicated by the low value of the pumping efficiency ‍α0 ∼ 0.14‍. 
Analytical solutions presented in the main text will thus be given in the ‘infinite pumping’ limit, that is, 

‍α0 ∼ 0‍, corresponding to the scenario where the only ions present in the cell are the counterions of 
the impermeant molecules (see Appendix 1, section 2.1 for the general solutions). Though not strictly 
correct, this approximation gives a reasonable error of the order 10% on the determination of the 
volume due to the typical small concentration of free anions in cells (Table 1). This error is comparable 
to the typical volumetric measurement errors found in the literature. (2) Osmotic pressure is balanced 
at the plasma membrane of a mammalian cell since hydrostatic and osmotic pressures differ by at least 
three orders of magnitude. This result implies that even though the pressure difference ‍∆P‍ plays a 
significant role in shaping the cell, it plays a negligible role in fixing the volume (see Equation A.15 
for justification). (3) The cellular density of impermeant species is high, ‍x ∼ 120mMol‍, comparable with 
the external ionic density ‍n0‍.

In this limit, the volume of the cell hence reads (the complete expression is given in Appendix 1, 
section 2.1):

	﻿‍ V = R + (z+1)·X
2n0 ‍� (4)

The wet volume of the cell is thus slaved to the number of impermeant molecules that the cell contains. 
While this conclusion is widely acknowledged, the question is to precisely decipher which molecules 
are accounted for by the number X. We first estimate the relative contributions of the cellular-free 
osmolytes to the volume of the cell and then compute their relative contributions to the dry mass of 
the cell. We provide a graphical summary of our orders of magnitudes in Figure 1B and C as well as 
the full detail of their derivations in Appendix 1, section 3.1. The conclusion is twofold. Metabolites 
and their counterions account for most of the wet volume of the cell, 78% of the wet volume against 
1% for proteins. On the other hand, proteins account for most of the dry mass of mammalian cells, 
accounting for 60% of the cellular dry mass against 17% for metabolites.

We further note that metabolites are mainly amino acids and in particular three of them, glutamate, 
glutamine, and aspartate, account for 73% of the metabolites (Park et al., 2016). It is important to 
note that the relative proportion of free amino acids in the cell does not follow their relative proportion 
in the composition of proteins. For instance, glutamate represents 50% of the free amino acid pool 
while its relative appearance in proteins is only 6% (King and Jukes, 1969). This is evidence that some 
amino acids have other roles than building up proteins. In particular, we demonstrate throughout this 
article their crucial role on cell size and its related scaling laws.

These conclusions may appear surprising due to the broadly reported linear scaling between cell 
volume (metabolites) and dry mass (proteins), hence enforcing a constant dry mass density ‍ρ‍ during 
growth. Theoretical papers often assume a linear phenomenological relation between volume and 
protein number in order to study cell size (Lin and Amir, 2018; Wu et al., 2022). Our results instead 
emphasize that the proportionality is indirect, only arising from the scaling between metabolites 
(mostly amino acids) and proteins. The dry mass density reads (to lowest order):

	﻿‍
ρ = M

V ≈ Ma·lp·Ptot

vp·Ptot+
(zAf +1)·Af

2n0 ‍�
(5)

where ‍Ma‍, ‍zAf ‍ , and ‍Af ‍ are respectively the average mass, charge, and number of amino acids; ‍lp‍, ‍vp‍, 
and ‍Ptot‍ the average length, excluded volume, and number of proteins. Note that density homeostasis 
is naturally achieved in the growth regime where ‍Af ‍ is proportional to ‍Ptot‍.

Model of gene expression and translation
To further understand the link between amino acid and protein numbers, we build upon a recent 
model of gene expression and translation (Lin and Amir, 2018 and Figure 2A). The key feature of 
this model is that it considers different regimes of mRNA production rate ‍Ṁj‍ and protein production 
rate ‍Ṗj‍ according to the state of saturation of respectively the DNA by RNA polymerases (RNAPs) and 
mRNAs by ribosomes. For the sake of readability, we call enzymes both ribosomes and RNAPs, their 
substrates are respectively mRNAs and DNA and their products proteins and mRNAs. The scenario of 
the model is the following. Initially, the majority of enzymes are bound to their substrates and occupy 
a small fraction of all possible substrate sites. In this nonsaturated regime, that is, when the number 

https://doi.org/10.7554/eLife.82490
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Figure 2. The Pump-Leak model coupled to a growth model predicts quantitatively dry mass homeostasis and its subsequent dilution at senescence. 
(A) Schematic of the growth model. RNAPs (‍Pp‍) transcribe DNA and form mRNAs (‍Mj‍) at an average rate k0. mRNAs are then read by ribosomes 
(‍Pr‍) to produce proteins (‍Pj‍) at an average rate ‍kt‍. Proteins are degraded at an average rate 

‍
1
τp ‍

 into free amino-acids (‍Af ‍). Free amino acids are 

also synthetized from nutrients (blue circles) at a rate ‍kcat‍. This reaction is catalyzed by enzymes (‍Pe‍). (B–E) Comparison between theory (black) and 

Figure 2 continued on next page
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of enzymes is smaller than a threshold value ‍P
∗
p‍ and ‍P∗

r ‍ (Equation A.37), the production rates of the 
products of type j read (Lin and Amir, 2018):

	﻿‍ Ṁj = k0 · ϕj · Pp − Mj
τm

, if Pp ≤ P∗
p‍� (6)

	﻿‍
Ṗj = kt · Mj∑

Mj
· Pr − Pj

τp
, if Pr ≤ P∗

r ‍� (7)

Both production rates have two contributions. (1) A source term characterized by the rates k0 and kt at 
which the enzyme produces the product once it is bound to its substrate, times the average number 
of enzymes per substrate coding for the product of type j. This number is the fraction of substrates 
coding for product of type j – which can be identified as a probability of attachment (

‍
ϕj = gj∑

gj ‍
 and 

‍
Mj∑

Mj ‍
, where ‍gj‍, ‍Mj‍ accounts for the number of genes and mRNAs coding for the product of type j) 

– multiplied by the total number of enzymes (‍Pp‍ and ‍Pr‍). (2) A degradation term characterized by the 
average degradation times ‍τm‍ and ‍τp‍ of mRNAs and proteins. Note that we added a degradation 
term for proteins not present in Lin and Amir, 2018, which turns out to be of fundamental importance 
below. Although these timescales vary significantly between species their ratio remains constant, ‍τm‍ 
being at least one order of magnitude smaller than ‍τp‍ in yeast, bacteria, and mammalian cells (Milo 
and Phillips, 2015). This justifies a quasistatic approximation, ‍Ṁj ∼ 0‍, during growth such that the 
number of mRNAs of type j adjusts instantaneously to the number of RNAPs, in the nonsaturated 
regime:

	﻿‍ Mj = k0 · τm · ϕj · Pp‍� (8)

During interphase, the number of enzymes grows, increasingly more enzymes attach to the 
substrates up to the saturation value due to their finite size. In this regime, we use the same functional 
form for the production rates only replacing the average number of enzymes per substrate by their 
saturating values: ‍gj · Nmax

p ‍ for RNAPs and ‍Mj · Nmax
r ‍ for ribosomes (see Appendix 1, section 4.1 and 

Equations A.35 and A.36), where ‍N
max
p ‍ and ‍Nmax

r ‍ are the average maximal number of RNAPs and 
ribosomes per mRNAs and genes. Note that the model predicts that the saturation of DNA precedes 
that of mRNAs, whose number initially increases with the number of RNAPs (Equation 8) while the 
number of genes remains constant. We also highlight that a more general gene expression model was 
recently proposed (Wang and Lin, 2021), in which the saturation of DNA by RNAPs is due to a high 
free RNAP concentration near the promoter. Yet, we do not expect the exact saturation mechanism 
to change our conclusions. Once DNA is saturated, the number of mRNAs plateaus, leading to their 
saturation by ribosomes (see Appendix 1, section 4.1 and Equation A.41).

Our previous analysis has highlighted the fundamental importance of free amino acids on cell 
volume regulation Figure 1B. The production rate of free amino acids can be related to the number of 
enzymes catalyzing their biosynthesis using a linear process by assuming that the nutrients necessary 
for the synthesis are in excess:

	﻿‍ Ȧf = kcat · Pe − lp · Ṗtot‍� (9)

where ‍kcat‍ is the rate of catalysis and ‍Pe‍ the number of enzymes. The second term represents the 
consumption of amino acids to form proteins, with ‍Ptot =

∑
Pj‍. Although Equation 9 is coarse-

grained, we highlight that, since glutamate and glutamine are the most abundant amino acids in 

experiment (red). (B, C, and E) have respectively been adapted from Figure 3.A, B and H of Neurohr et al., 2019. (D) has been adapted from Figure 
3C,D and S5C of Neurohr et al., 2019. (D, E) Model predictions without any fitting parameters. The total mass density ‍ρtot‍ is defined as the total mass 
of the cell (water and dry mass) over the total volume of the cell. The online version of this article includes the following source data for Figure 2: Figure 
2—source data 1–4. Data tables extracted from Neurohr et al., 2019.

The online version of this article includes the following source data for figure 2:

Source data 1. Data tables extracted from Figure 3.A of Neurohr et al., 2019.

Source data 2. Data tables extracted from Figure 3.B of Neurohr et al., 2019.

Source data 3. Data tables extracted from Figure 3.C,D and S5C of Neurohr et al., 2019.

Source data 4. Data tables adapted from Figure 3.H of Neurohr et al., 2019.

Figure 2 continued

https://doi.org/10.7554/eLife.82490
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the cell, it could in particular model the production of these specific amino acids from the Krebs 
cycle (Alberts et al., 2002). Note that we also ignored amino acid transport through the plasma 
membrane. The rationale behind this choice is twofold. (1) We do not expect any qualitative change 
when adding this pathway to our model since amino acid transport is also controlled by proteins. 
(2) We realized that the amino acids that actually play a role in controlling the volume, mainly gluta-
mate, glutamine, and aspartate, are nonessential amino acids, hence that can be produced by the 
cell.

Dry mass scaling and dilution during cell growth
We now combine the Pump-Leak model, the growth model, and the amino acid biosynthesis model 
to make predictions on the variation of the dry mass density during interphase. A crucial prediction 
of the growth model is that as long as mRNAs are not saturated, that is, ‍Pr < P∗

r ‍, all the protein 
numbers scale with the number of ribosomes, ‍Pj ∼

ϕj
ϕr

· Pr‍. Moreover, the autocatalytic nature of ribo-
some formation makes their number grow exponentially (Equation 7), that is, ‍Pr = Pr,0 · ekr·t

‍, where 

‍kr = kt · ϕr − 1
τp ‍ is the effective rate of ribosome formation (and also the rate of volume growth in this 

regime; Equation A.39) . The most important consequence of this exponential growth coupled to the 
equation modeling amino acid biosynthesis (Equation 9) is that it implies that both amino acids and 
total protein content scale with the number of ribosomes ultimately leading to a homeostatic dry mass 
density independent of time (see Appendix 1, section 4.1):

	﻿‍
ρH = Ma

vp
lp

+
(zAf +1)

2n0
·
(

ϕe
lp
· kcat

kr
−1

)
‍�

(10)

We emphasize that Equation 10 only applies far from its singularity since it was obtained assuming 
that the volume of the cell is determined by free amino acids, that is, ‍

ϕe
lp · kcat

kr
>> 1‍.

Not only does our model explain the homeostasis of the dry mass, but it also makes the salient 
prediction that this homeostasis naturally breaks down if the time spent in the G1 phase is too long. 

Indeed, after a time 
‍
t∗∗ = 1

kr · ln
(Nmax

r ·Nmax
p ·k0·τm·

∑
gj

Pr,0

)
‍
 (see Appendix 1, section 4.1), mRNAs become 

saturated by ribosomes, drastically changing the growth of proteins from an exponential growth to 
a plateau regime where the number of proteins remains constant. After the time ‍t

∗∗ + τp‍, all protein 
numbers reach their stationary values ‍P

stat
j = kt · k0 · τp · τm · Nmax

R · Nmax
p · gj‍. In particular, the enzymes 

coding for amino acids also plateau implying the loss of the scaling between free amino acids and 
proteins as predicted by Equation 9. The number of amino acids then increases linearly with time, 
whereas the number of proteins saturates. In this regime, the volume thus grows linearly with time but 
the dry mass remains constant, leading to its dilution and the decrease in the dry mass density (see 
Appendix 1, section 4.1 and Equation A.45):

	﻿‍
ρlin(t) = Ma

vp
lp

+
(zAf +1)

2n0
·
(

ϕe·kcat
ϕr·kr·kt·lp·τp

−1+ kcat·ϕe
lp

·t
)

‍�
(11)

Finally, our model makes other important predictions related to the cell ploidy that we briefly 
enumerate. First, the cut-off ‍P∗

r ‍ (Equation A.41) at which dilution is predicted to occur depends 
linearly on the genome copy number ‍

∑
gj‍. Intuitively, mRNAs are saturated only if DNA has previously 

saturated. At saturation, the RNA number is proportional to the genome size. As a consequence, 
the volume ‍V∗ ∝ P∗

r ‍ at which dilution occurs scales with the ploidy of the cell, a tetraploid cell is 
predicted to be diluted at twice the volume of its haploid homolog. On the other hand, by virtue of 
the exponential growth, the time ‍t∗∗‍ (Equation A.42) at which the saturation occurs only depends 
logarithmically on the number of gene copies making the ploidy dependence much less pronounced 
timewise. Second, the growth rate in the linear regime scales with the ploidy of the cell, as opposed 
to the growth rate in the exponential regime. Indeed, in the saturated regime, the growth rate scales 
as ‍kcat · Pstat

e ‍ (see Appendix 1, section 4.1 and Equation A.43), where ‍Pstat
e ‍ is the number of enzymes 

catalyzing the reaction of amino acids biosynthesis after their numbers have reached their stationary 
values, while in the exponential regime, the growth rate ‍kr = ϕr · kt − 1

τp ‍ scales with the fraction of 
genes coding for ribosomes ‍ϕr‍, which is independent of the ploidy.

https://doi.org/10.7554/eLife.82490
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Comparison to existing data
Our main prediction, namely that the cell is diluted after the end of the exponential growth, is remi-
niscent of the intracellular dilution at senescence recently reported in fibroblasts, yeast cells, and 
more recently suspected in aged hematopoietic stem cells (Neurohr et al., 2019; Lengefeld et al., 
2021). Here we quantitatively confront our theory to the data of Neurohr et al., 2019, where the 
volume, the dry mass, and the protein number were recorded during the growth of yeast cells that 
were prevented from both dividing and replicating their genome. Though our theory was originally 
designed for mammalian cells, it can easily be translated to cells with a cell wall provided that the 
hydrostatic pressure difference across the wall ‍∆P‍ is maintained during growth by progressive incor-
poration of cell wall components (see Appendix 1, section 2.1.2). Indeed, our conclusions rely on the 
fact that the cell volume is primarily controlled by small osmolytes whose concentration in the cell 
dominates the osmotic pressure, a feature observed to be valid across cell types (Park et al., 2016).

We first check the qualitative agreement between our predictions and the experiments. Two 
distinct growth regimes are observed, at least on the population level, in the volume data of nondi-
viding yeast cells (Neurohr et al., 2019) an initial exponential growth followed by a linear growth 
(Figure 2C). The occurrence of linear or exponential growth has been the object of intense debate. 
One of the ambiguity may come from the fact that cells often divide before there is a clear distinction 
between the linear and the exponential regimes (‍et ≈ 1 + t + O(t2), for t << 1‍). Note that our model 
only requires the exit of the exponential growth regime to observe the dilution. Moreover, our results 
suggest that both regimes of growth are not equivalent for proper cell function. Cells that would 
remain in the ‘nonexponential’ growth regime for too long will be diluted. This may be at the root of 
the observed cell cycle defects (Neurohr et al., 2019) and be the cause of functional decline towards 
senescence in particular for fibroblasts (Neurohr et al., 2019) and hematopoietic stem cells (Lenge-
feld et al., 2021). We think that a more precise understanding of the relationship between dilution 
and cell cycle defects remains an exciting avenue for future research. Our theory also predicts that 
as long as protein number is constant the volume must grow linearly (Equations 9 and A.45). This is 
precisely what is observed in the experiments: cells treated with rapamycin exhibit both a constant 
protein content and a linear volume increase during the whole growth (see Figure S6.F in Neurohr 
et al., 2019). Finally, our predictions on the relationship between ploidy and dilution are in very good 
agreement with experiments as well. Indeed, while the typical time to reach the linear growth regime 
– of the order of 3 hr – seems independent of the ploidy of the cell, the volume at which dilution 
occurs is doubled (see Figure S7.A in Neurohr et al., 2019). Moreover, the growth rate during the 
linear regime scales with ploidy as the haploid cells growth rate is of order ‍129 fL/h‍ against ‍270 fL/h‍ for 
their diploid counterparts (Neurohr et al., 2019).

Encouraged by these qualitative correlations, we further designed a scheme to test our theory 
more quantitatively. Although our theory has a number of adjustable parameters, many of them can 
be combined or determined self-consistently as shown in Appendix 1, section 4.1.4. We end up fitting 
four parameters, namely ‍τp‍, ‍t

∗∗‍, ‍kr‍ and the initial cell volume ‍v1‍, using the cell volume data (Figure 2B). 
We detail in Appendix 1, section 4.1.5 the fitting procedure and the values of the optimal parameters. 
Interestingly, we find a protein degradation time ‍τp = 1 hr 9 min‍, corresponding to an average protein 
half-life time: ‍τ1/2 ∼ 48 min‍, which is very close to the value ‍43 min‍, measured in Belle et al., 2006. 
Moreover, we obtain a saturation time ‍t∗∗ = 2 hr 44 min‍, which remarkably corresponds to the time at 
which the dry mass density starts to be diluted (Figure 2E), thus confirming the most critical prediction 
of our model. We can then test our predictions on the two other independent datasets at our disposal, 
that is, the dry mass density, obtained from suspended microchannel resonator (SMR) experiments, 
and the normalized protein number, from fluorescent intensity measurements. We emphasize that the 
subsequent comparisons with experiments are done without any adjustable parameters. The agree-
ment between theory and experiment is satisfactory (Figure 2D and E) and gives credit to our model. 
We underline that the value of the density of water that we used is 4% higher than the expected value, 

‍ρw = 1.04 kg/L‍ to plot Figure 2E. This slight difference originates from the fact that our simplified 
theory assumes that the dry mass is entirely due to proteins whereas proteins represent only 60% of 
the dry mass. This hypothesis is equivalent to renormalizing the density of water as shown in Appendix 
1, section 4.1.4.

In summary, our theoretical framework combining the Pump-Leak model with a growth model and 
a model of amino acid biosynthesis provides a consistent quantitative description of the dry mass 

https://doi.org/10.7554/eLife.82490


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Rollin et al. eLife 2023;12:e82490. DOI: https://doi.org/10.7554/eLife.82490 � 11 of 43

density homeostasis and its subsequent dilution at senescence without invoking any genetic response 
of the cell; the dilution is due to the physical crowding of mRNAs by ribosomes. It also solves a seem-
ingly apparent paradox stating that the volume is proportional to the number of proteins although 
their concentrations are low in the cell without invoking any nonlinear term in the osmotic pressure 
(see ‘Discussion’ and Appendix 1, section 3.1.12).

Mitotic swelling
Our previous results explain well the origin of the dilution of the cellular dry mass at senescence. 
But can the same framework be used to understand the systematic dry mass dilution experienced 
by mammalian cells at mitotic entry? Although this so-called mitotic swelling or mitotic overshoot is 
believed to play a key role in the change of the physicochemical properties of mitotic cells, its origin 
remains unclear (Son et al., 2015; Zlotek-Zlotkiewicz et al., 2015).

We first highlight five defining features of the mitotic overshoot. (1) It originates from an influx of 
water happening between prophase and metaphase, resulting in a typical 10% volume increase in the 
cells. (2) The swelling is reversible and cells shrink back to their initial volume between anaphase and 
telophase. (3) This phenomenon appears to be universal to mammalian cells, larger cells displaying 
larger swellings. (4) Cortical actin was shown not to be involved in the process, discarding a possible 
involvement of the mechanosensitivity of ion channels, contrary to the density increase observed 
during cell spreading (Venkova et al., 2022) (5) Nuclear envelope breakdown (NEB) alone cannot 
explain the mitotic overshoot since most of the swelling is observed before the prometaphase where 
NEB occurs (Son et al., 2015; Zlotek-Zlotkiewicz et al., 2015).

The dry mass dilution at mitotic overshoot is thus different from the cases studied in the previous 
section. First, it happens during mitosis when the dry mass is constant (Zlotek-Zlotkiewicz et al., 
2015). Second, the 10% volume increase implies that we need to improve the simplified model used 
above, which considers only metabolites and proteins (and their counterions). Having in mind that ions 
play a key role in the determination of the cell volume (Figure 1B), we show how every feature of the 
mitotic overshoot can be qualitatively explained by our theory, based on a well-known electrostatic 
property of charged polymer called counterion condensation first studied by Manning, 1969. Many 
counterions are strongly bound to charged polymers (such as chromatin) because the electrostatic 
potential at their surface creates an attractive energy for the counterions much larger than the thermal 
energy ‍kBT ‍. The condensed counterions partially neutralize the charge of the object and reduce the 
electrostatic potential. Condensation occurs up to the point where the attractive energy for the free 
counterions is of the order ‍kBT ‍. The condensed counterions then do not contribute to the osmotic 
pressure given by Equation 2, which determines the cell volume. These condensed counterions act 
as an effective ‘internal’ reservoir of osmolytes. A release of condensed counterions increases the 
number of free cellular osmolytes and thus the osmotic pressure inside the cell. Therefore, it would 
lead to an influx of water in order to restore osmotic balance at the plasma membrane (Figure 3).

But how to explain such a counterion release at mitotic overshoot? For linear polymers such as 
DNA, the condensation only depends on a single Manning parameter ‍u = lb

A ‍; where ‍lb‍ is the Bjerrum 
length (Appendix 1—table 1) that measures the strength of the coulombic interaction and ‍A‍ the 
average distance between two charges along the polymer. The crucial feature of Manning condensa-
tion is the increase in the distance between charges ‍A‍ by condensing counterions and thus effectively 
decreasing ‍u‍ down to its critical value equal to ‍ueff = 1‍ (see Appendix 1, section 5.1 for a more precise 
derivation). Hence, the number of nominal elementary charges carried by a polymer of length ‍Ltot‍ is 

‍Qtot = Ltot
A ‍. Due to condensation, the effective distance between charges increases to ‍Aeff = lb‍ such 

that the effective number of charges on the polymer is reduced to ‍Q
eff = Qtot

u ‍. The number of counte-
rions condensed on the polymer is ‍Q

cond = Qtot · (1 − 1
u )‍. The most important consequence of these 

equations is that they suggest that a structural modification of the chromatin could lead to a counte-
rion release. Indeed, making the chromatin less negatively charged, that is, increasing ‍A‍, is predicted 
to decrease ‍u‍ and thus to lead to the decrease in ‍Qcond

‍. Detailed numerical simulations of chromatin 
electrostatics show that this description is qualitatively correct (Materese et al., 2009).

Biologists have shown that chromatin undergoes large conformational changes at mitotic entry. 
One of them attracted our attention in light of the mechanism that we propose. It is widely accepted 
that the affinity between DNA and histones is enhanced during chromatin compaction by stronger 
electrostatic interactions thanks to specific covalent modifications of histone tails by enzymes. Some 

https://doi.org/10.7554/eLife.82490
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of these modifications such as the deacetylation of lysines add a positive charge to the histone tails, 
hence making the chromatin less negatively charged (Alberts et al., 2002). Moreover, histone tails are 
massively deacetylated during chromatin compaction (Zhiteneva et al., 2017), potentially meaning 
that this specific reaction plays an important role in counterion release and thus on the observed 
mitotic swelling. However, we underline that the idea that we propose is much more general and 
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Figure 3. Dry mass dilution at mitosis is explained with the Pump-Leak model by the decondensation of chromatin counterions following histone tail 
modifications. (A, B) Microscopic working model. An enzyme gives its positive charge to a histone, resulting in the release of a condensed counterions. 
Ions depicted within the chromatin (dark blue cylinder) are condensed and those outside are freely diffusing and participate in the nuclear osmotic 
pressure. (C, D) The subsequent increase in the number of osmolytes lead to a water influx in order to sustain osmotic balance at the plasma membrane 
of mammalian cells. For readability, other osmolytes are not displayed.
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that any reaction modifying chromatin electrostatics is expected to impact the swelling. The question 
whether deacetylation of lysines is the dominant effect is left open here.

Is the proposed mechanism sufficient to explain the observed 10%  volume increase? We esti-
mate the effective charge of chromatin for a diploid mammalian cell to be ‍Qeff = 2 · 109 e−‍ and the 
number of condensed monovalent counterions to be ‍Qcond = 8 · 109

‍ (see Appendix 1, section 3.1.6 
and 3.1.7). The Pump-Leak model framework predicts the subsequent volume increase induced by the 
hypothetical release of all the condensed counterions of the chromatin. We find an increase of order 

‍∆V ∼ 100 − 150µm3
‍, which typically represents 10% of a mammalian cell size (see Appendix 1, section 

3.1.8 and Equation A.29). Admittedly crude, this estimate suggests that chromatin counterion release 
can indeed explain the amplitude of mitotic swelling.

In summary, the combination of the Pump-Leak model framework with a well-known polymer 
physics phenomenon allows us to closely recapitulate the features displayed during mitotic swelling. 
In brief, the decondensation of the chromatin condensed counterions, hypothetically due to histone 
tail modifications, is sufficient to induce a 10% swelling. This implies that all mammalian cells swell 
during prophase and shrink during chromatin decondensation after anaphase; again, consistent with 
the dynamics of the mitotic overshoot observed on many cell types. Another salient implication is that 
the amplitude of the swelling is positively correlated with the genome content of the cells: cells having 
more chromatin are also expected to possess a larger ‘internal reservoir’ of osmolytes, which can 
participate in decondensation. This provides a natural explanation for the observed larger swelling of 
larger cells. For instance, Hela cells were shown to swell on average by 20%, in agreement with the 
fact that many of them are tetraploid. Admittedly, many other parameters enter into account and may 
disrupt this correlation such as the degree of histone tail modifications or the initial state of chromatin; 
The existence of a larger osmolyte reservoir does not necessarily mean that more ions are released.

Finally, we point out that the ideas detailed in this section can be tested experimentally using 
existing in vivo or in vitro methods. For example, we propose to massively deacetylate lysines during 
interphase by either inhibiting lysine acetyltransferases (KATs) or overexpressing lysine deacetylases 
(HDACS) in order to simulate the mitotic swelling outside mitosis. We also suggest to induce mitotic 
slippage or cytokinesis failure for several cell cycles, to increase the genome content, while recording 
the amplitude of swelling at each entry in mitosis (Gemble et al., 2022).

Nuclear scaling
Another widely documented scaling law related to cell volume states that the volume of cell organ-
elles is proportional to cell volume (Chan and Marshall, 2010; Cantwell and Nurse, 2019b). As an 
example, we discuss here the nuclear volume. We develop a generalized ‘nested’ Pump-Leak model 
that explicitly accounts for the nuclear and plasma membranes (see Figure 1A). Instead of writing one 
set of equation (Equations 1–3) between the interior and the exterior of the cell, we write the same 
equations both inside the cytoplasm and inside the nucleus (see Equation A.55). Before solving this 
nonlinear system of equations using combined numerical and analytical approaches, we draw general 
conclusions imposed by their structure. As a thought experiment, we first discuss the regime where 
the nuclear envelope is not under tension so that the pressure jump at the nuclear envelope ‍∆Pn‍ 
is much smaller than the osmotic pressure inside the cell ‍∆Pn << Π0‍. The osmotic balance in each 
compartment implies that the two volumes have the same functional form as in the Pump-Leak model, 
with two contributions: an excluded volume due to dry mass and a wet volume equal to the total 
number of particles inside the compartment divided by the external ion concentration (see Equation 
A.56). It is noteworthy that the total cell volume, the sum of the nuclear and cytoplasmic volumes, is 
still given by Equation 4 as derived in the simple Pump-Leak model. This result highlights the fact that 
the Pump-Leak model strictly applies in the specific condition where the nuclear envelope is under 
weak tension. In addition, a crucial consequence of the osmotic balance condition at the nuclear 
envelope is that it leads to a linear scaling relation between the volumes of the two compartments:

	﻿‍
Vn = Ntot

n
Ntot

c
· Vc +

(
Rn − Ntot

n
Ntot

c
· Rc

)
‍� (12)

where ‍Vi‍, ‍Ri‍, and ‍N
tot
i ‍ denote, respectively, the total volume, dry volume, and total number of 

osmolytes of compartment i, the index ‍i = n, c‍ denoting either the nucleus, ‍n‍, or the cytoplasm, ‍c‍. 
Importantly, this linear scaling between the nucleus and the cytoplasm was reported repeatedly over 
the last century and is known as nuclear scaling (Webster et al., 2009; Cantwell and Nurse, 2019b). 
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While this conclusion is emphasized in some recent papers (Lemière et al., 2022; Deviri and Safran, 
2022), we point out that Equation 12 is only a partial explanation of the robustness of the nuclear-
scaling law. To further understand this affirmation and also to motivate our work, we first consider the 
simpler case of a cell containing proteins, chromatin, and their counterions (no metabolites). For the 
sake of readability, we assume that the volume fraction occupied by the dry mass is the same in the 
nucleus and in the cytoplasm (see Appendix 1, section 6.1.1). The NC ratio is then given by the ratio 
of the wet volumes. The osmotic balance at the nuclear envelope reads

	﻿‍ (zp + 1) · pn + qeff = (zp + 1) · pc‍� (13)

where zp is the average charge of proteins, ‍qeff
‍ is the concentration of the counterions of chromatin, 

and ‍p‍ is the protein concentration either in the nucleus, subscript ‍n‍, or in the cytoplasm, subscript 
‍c‍. The term ‍zp · pn‍ hence accounts for the concentration of counterions associated to the proteins 
trapped in the nucleus. The NC ratio can thus be expressed as

	﻿‍
Vn
Vc

= (zp+1)·Pn+Qeff

(zp+1)·Pc ‍� (14)

where the capital letters ‍Pi‍ and ‍Qeff
‍ now account for the number of proteins and chromatin counte-

rions. It is noteworthy that although being permeable to the nuclear envelope, ions can still play a 
role in the NC ratio. A flawed reasoning would state that their permeability implies that their concen-
tration is balanced at the nuclear envelope, and hence that their contribution to the NC ratio can 
be discarded. Here, the condition of electroneutrality inside the nucleus leads to the appearance of 
a nuclear difference of potential that effectively traps the ions inside the nucleus and thus creates 
an imbalance of ion concentration. Of course, this effect would be negligible if ‍Q

eff << (zp + 1) · Pn‍. 
However, our estimate goes against this hypothesis as ‍Q

eff ∼ (zp + 1) · Pn‍ for both mammalian and 
yeast cells (see Appendix 1, sections 3.1.6 and 3.1.10). The problem that arises is that ‍Qeff

‍, which 
we remind is not negligible here, does not scale during growth. This would imply that the NC ratio 
decreases during growth (see Figure 4). We solve this apparent paradox in the next section by consid-
ering metabolites; a consideration that has largely been overlooked in the recent literature (Wu et al., 
2022; Lemière et al., 2022; Deviri and Safran, 2022).

Role of metabolites on the NC ratio in the low tension regime
We now examine the influence of the metabolites on the NC ratio. Following the lines of our previous 
discussion, four different components play a role in volume regulation: chromatin (indirectly through 
its noncondensed counterions), proteins (mainly contributing to the dry volume), and metabolites 
and ions (mainly contributing to the wet volume). It is noteworthy that these components do not play 
symmetric roles in the determination of the NC ratio. This originates from the fact that metabolites 
are permeable to the nuclear membrane and that chromatin, considered here as a polyelectrolyte 
gel, does not contribute directly to the ideal gas osmotic pressure because its translational entropy is 
vanishingly small (de Gennes, 1979). The nested Pump-Leak model leads to highly nonlinear equa-
tions that cannot be solved analytically in the general case (see Equation A.55). Nevertheless, in the 
particular regime of monovalent osmolytes and high pumping ‍za = 1‍, ‍zp = 1‍ and ‍α0 = 0‍ corresponding 
to the case where there is no free anions in the cell, the equations simplify and are amenable to analyt-
ical results. This regime is physically relevant since it corresponds to values of the parameters close to 
the ones that we estimated (Table 1). For clarity, we first restrict our discussion to this particular limit. 
We will also discuss both qualitatively and numerically the influence of a change of the parameters 
later. In this scenario, the nested Pump-Leak model equations reduce to

	﻿‍




pc + af
c + nc = 2n0

pn + af
n + nn = 2n0

nc − af
c − pc = 0

nn − af
n − pn − qeff = 0

nc · af
c = nn · af

n ‍�

(15)
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Figure 4. The nested Pump-Leak model explains nuclear scaling. (A) Schematic of the nested Pump-Leak model. Species in black are impermeant 
molecules (X) and are now partitioned between the cytoplasm and the nucleus. Among those, only metabolites (black circles) can cross the nuclear 
envelope. The nuclear envelope is composed of the membrane (green) and the lamina (red) can be stretched when the nuclear folds are flattened. 
(B, C) Simulations of the nested Pump-Leak model (Equation A.55) during growth when the osmotic pressure is balanced at the nuclear envelope. 
The growth rate was adjusted to data in Zlotek-Zlotkiewicz et al., 2015 (B) Though permeable to the nuclear envelope, metabolites play a role in 
the homeostasis of the nuclear-to-cytoplasmic (NC) ratio by diluting chromatin (free) counterions which do not scale during growth (top plot). Higher 
variations of the NC ratio correlate with higher variations of the nuclear envelope potential (bottom plot). (C) Variations of the NC ratio during growth 
for different chromatin charges. (D) Normalized nuclear volume after a hypo-osmotic shock. Nuclear volume saturates because of the tension at the 
nuclear envelope, leading to the decrease in the NC ratio (inset: log–log plot). The dash-dotted line represents the nuclear volume if the number of 
osmolytes in the nucleus were assumed constant throughout the shock. Thus, showing that metabolites leave the nucleus during the shock which 
strongly decreases nucleus swelling. The value at the saturations are given by Equation 19. The square black dots are data extracted from Figure 3 
from Finan et al., 2009. We used ‍K = 50mN/m‍ and ‍s = 4%‍ folds to fit the data. The envelope stretching modulus ‍K ‍ used is twice the measured value 
in Dahl et al., 2004. The rationale is threefold. (1) Nuclei used in Finan et al., 2009 are chondrocyte nuclei originating from articular cartilage. They 
possess a high lamina A to lamina B ratio and are thus likely to be stiffer (Swift et al., 2013). (2) We could lower the value of the fitted ‍K ‍ by increasing 
the pumping efficiency ‍α0‍. A more detailed characterization of the Pump-Leak model parameters for chondrocytes would be required to precisely infer 
the elastic properties of the nuclear envelope. (3) Considering the chromatin mechanical contribution would increase ‍K ‍ by a factor ‍EDNA · Rnucleus‍; 
with ‍EDNA‍ the elastic modulus of the chromatin and ‍Rnucleus‍ the radius of the nucleus. Additional results of the nested Pump-Leak model are plotted in 

Figure 4 continued on next page
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where the first and second equations correspond to osmotic pressure balance in the two compart-
ments; the third and fourth equations correspond to macroscopic electroneutrality in each compart-
ment; and the fifth equation is the balance of the chemical potential of the cations and metabolites 
on each side of the nuclear envelope. ‍pi, ni, af

i ‍ respectively account for the concentrations of proteins, 
cations, and metabolites either in the cytoplasm – subscript c – or in the nucleus, subscript n. ‍qeff

‍ 
accounts for the effective chromatin charge density. From these equations, we express the concen-
trations of cations in each compartment as functions of the extracellular concentration ‍n0‍ and the 
chromatin charge density ‍qeff

‍ (Equation A.60) , leading to the following expression of the nuclear 
envelope potential:

	﻿‍
Un = −ln

(
1 + qeff

2n0

)
= −ln

(
1 + Qeff

Qeff+2Af
n+2Pn

)
‍� (16)

A salient observation from Equation 16 is that the nuclear envelope potential difference ‍Un‍ is a proxy 
of the chromatin charge density. At low ‍qeff

‍, ‍Un = 0‍, that is, the respective concentrations of metab-
olites and cations are equal on each side of the membrane. Equation 15 also shows that the protein 
concentrations are equal in the two compartments. This implies that when the charge of chromatin is 
diluted, the volumes of the nucleus and of the cytoplasm adjust such that the NC ratio equals the ratio 
of protein numbers in the two compartments ‍NC1 = Pn

Pc ‍. In the Pump-Leak model, which considers a 
single compartment, a membrane potential appears as soon as there exist trapped particles in the 
compartment (see Appendix 1, section 6.1.2 and Equation A.58). In contrast, our extended nested 
Pump-Leak model predicts that in the case of two compartments, the system has enough degrees of 
freedom to adjust the volumes as long as ‍qeff

‍ is small, thereby allowing the potential to be insensitive 
to the trapped charged proteins. At high values of the chromatin charge ‍Qeff

‍, ‍Un‍ saturates to the 
value ‍−ln(2)‍, which in physical units is equivalent to ‍−17 mV‍ at ‍300 K‍. Note that this lower bound for 
the potential is sensitive to the average charge of the proteins ‍zp‍ and can be lowered by decreasing 
this parameter. We also highlight that Equation 16 makes another testable prediction, namely, that 
the nuclear envelope potential is independent of the external ion concentration. In the literature, 
nuclear envelope potentials were recorded for several cell types (Mazzanti et al., 2001). They can 
vary substantially between cell types ranging from ‍∼ 0 mV‍ for Xenopus oocytes to ‍−33 mV‍ for Hela 
cells. This result is in line with our predictions. The Xenopus oocyte nucleus has a diameter roughly 
20 times larger than typical somatic nuclei, but its chromatin content is similar (Dahl et al., 2004), 
resulting in a very diluted chromatin and a vanishing nuclear envelope potential. On the other hand, 
Hela cells are known to exhibit an abnormal polyploidy that may lead to a large chromatin charge 
density and a large nuclear membrane potential.

This last observation allows to understand the influence of the metabolites on the NC ratio. An 
increase in the number of metabolites in the cell ‍A

f
tot‍ induces growth of the total volume (Equation 

A.56), leading to the dilution of the chromatin charge and a strong decrease in the nuclear membrane 
potential (Equation 16). In the limit where ‍A

f
tot‍ is dominant, we thus expect the NC ratio to be set to 

the value ‍NC1‍. On the other hand, at low ‍A
f
tot‍, metabolites do not play any role on the NC ratio, which 

is then given by ‍NC2 > NC1‍ (see Equation A.59 for the general formula), with

	﻿‍ NC1 = Pn
Pc

, NC2 = Pn+Qeff/2
Pc ‍� (17)

The actual NC ratio is intermediate between the two limiting behaviors (see Appendix 1—figure 
1B and Equation A.65). Note that the regime ‍NC2‍ is equivalent to the regime given by Equation 14 
found in our preliminary discussion.

During cell growth, the ratio ‍NC1‍ is constant, while the ratio ‍NC2‍ varies with time. Indeed, if 
nucleo-cytoplasmic transport is faster than growth, the protein numbers ‍Pn‍ and ‍Pc‍ are both propor-
tional to the number of ribosomes in the exponential growth regime and the ratio ‍NC1‍ does not vary 

Appendix 1—figure 1. The online version of this article includes the following source data for Figure 1: Figure 4—source data 1. Data table extracted 
from Finan et al., 2009.

The online version of this article includes the following source data for figure 4:

Source data 1. Data table exctracted from Figure 3 of Finan et al., 2009.

Figure 4 continued
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with time (see Appendix 1, section 6.1.5). On the other hand, the DNA charge ‍Qeff
‍ is constant during 

G1 phase while ‍Pn‍ grows with time, so ‍NC2‍ decreases with time. The fact that the NC ratio remains 
almost constant during growth (Neumann and Nurse, 2007; Pennacchio et al., 2022) suggests that 
cells are closer to the ‍NC1‍ regime and point at the crucial role of metabolites in setting the NC ratio 
(Figure 4 and Appendix 1—figure 1B). Importantly, these conclusions are overlooked in a large part 
of the existing literature that often assumes that metabolites do not play any role on the NC ratio due 
to their permeability at the nuclear envelope. We end this qualitative discussion by predicting the 
effect of a variation of the parameters ‍zp, za‍ and ‍α0‍ that were so far assumed to be fixed. Our main 
point is that any parameter change that tends to dilute the chromatin charge also tends to increase 
the (negative) nuclear envelope potential and make the NC ratio closer to the regime ‍NC1‍ and 
farther from the regime ‍NC2‍. Consequently, when ‍zp‍ or ‍za‍ are increased, the number of counterions 
carried by each protein or metabolite increases. This in turn results in a global growth of the volume 
and hence leads to the dilution of the chromatin charge and to the increase in the nuclear envelope 
potential difference. Any increase in the pumping parameter ‍α0‍ (decrease in pumping efficiency) 
has a similar effect. It increases the number of ions in the cell, resulting again in the dilution of the 
chromatin charge. Note that in the absence of pumping (‍α0 = 1‍), the Pump-Leak model predicts a 
diverging volume because this is the only way to enforce the balance of osmotic pressures at the 
plasma membrane (Equation A.11) (if there is no pressure difference at the membrane due to a cell 
wall).

Five crucial parameters have emerged from our analytical study: (1) ‍
Pn
Pc ‍ ; (2) ‍

Af

2Pn ‍; (3) ‍
Qeff

2Pn ‍; (4) ‍α0‍ ;and 
(5) ‍zp‍ and ‍za‍. But what are the biological values of these parameters? We summarize our estimates in 
Appendix 1, section 3.1. Importantly, the ratio between chromatin (free) counterions and the number 
of nuclear trapped proteins (and their counterions) is estimated to be of order one (see Appendix 
1, section 3.1 and Figure 4C). As a key consequence, we find that the NC ratio would be four times 
larger in the absence of metabolites (see Appendix 1—figure 1B). This nonintuitive conclusion sheds 
light on the indirect, yet fundamental, role of metabolites on the NC ratio, which have been over-
looked in the literature.

We now turn to a numerical solution to obtain the normalized variations of the NC ratio during 
growth in the G1 phase for different parameters (Figure 4). Interestingly, variations of the NC ratio 
and variations of the nuclear envelope potential are strongly correlated, a feature that can be tested 
experimentally (Figure 4B). Moreover, we deduce from our numerical results that, in order to main-
tain a constant NC ratio during the cell cycle, cells must contain a large pool of metabolites (see 
Figure 4C). Our estimates point out that this regime is genuinely the biological regime throughout 
biology, thus providing a natural explanation on the origin of the nuclear scaling.

In summary, many of the predictions of our analysis can be tested experimentally. Experiments 
tailored to specifically modify the highlighted parameters are expected to change the NC ratio. For 
example, we predict that depleting the pool of metabolites by modifying amino acid biosynthesis 

pathways, that is, lowering ‍
Af

2Pn ‍, would lead to an increase in the NC ratio. Importantly, good meta-
bolic targets in these experiments could be glutamate or glutamine because they account for a large 
proportion of the metabolites in the cell (Park et al., 2016). We also point out that cells with a smaller 
metabolic pool are expected to experience higher variations of the NC ratio during growth and thus 
larger fluctuations of this ratio at the population level (Figure 4B). These predictions could shed light 
on understanding the wide range of abnormal karyoplasmic ratio among cancer cells. Indeed, meta-
bolic reprogramming is being recognized as a hallmark of cancer (Fujita et al., 2020) some cancer 
cells increase their consumption of the pool of glutamate and glutamine to fuel the TCA cycle and 
enhance their proliferation and invasiveness (Altman et al., 2016).

Moreover, disruption of either nuclear export or import is expected to change ‍
Pn
Pc ‍ and thus the 

NC ratio. Numerical solutions of the equations displayed in Appendix 1—figure 1 show a natural 
decrease of the NC ratio due to the disruption of nuclear import. On the other hand, if nuclear export 
is disrupted, we expect an increase in the NC ratio. This is in agreement with experiments done 
recently in yeast cells (Lemière et al., 2022). The authors reported a transient decrease followed by 
an increase in the diffusivities in the nucleus. This is in line with what our theory would predict. The 
initial decay is due to the accumulation of proteins in the nucleus, resulting in an associated crowding. 
On the other hand, the following increase is due to the impingement of ribosome synthesis as this 

https://doi.org/10.7554/eLife.82490
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step requires nuclear export. Our model would then predict the loss of the exponential growth and 
a decoupling between protein and amino acid numbers that would drive the dilution of the nuclear 
content.

Finally, our framework also predicts that experiments that would maintain the five essential param-
eters unchanged would preserve the nuclear scaling. We thus expect that, as long as the nuclear 
envelope is not under strong tension, changing the external ion concentration does not influence the 
scaling directly. Experiments already published in the literature (Guo et al., 2017) show precisely this 
feature.

Mechanical role of the lamina on the NC ratio
So far we have assumed that the osmotic pressure is balanced at the nuclear envelope, which is a key 
condition for the linear relationship between nuclear and cytoplasmic volume. But why should this 
regime be so overly observed in biology? We first address this question qualitatively. For simplicity 
in the present discussion, we assume that DNA is diluted so that the nuclear envelope potential is 
negligible. This implies that metabolites and ions are partitioned so that their concentrations are equal 
in the nucleoplasm and the cytoplasm, hence canceling their contribution to the osmotic pressure 
difference at the nuclear envelope. This allows to express the volume of the nucleus as

	﻿‍
Vn = Pn

∆Pn
kBT +pc ‍� (18)

While the previous expression is not the exact solution of the equations, it qualitatively allows 
us to realize that the nuclear envelope hydrostatic pressure difference plays a role in the volume of 
the nucleus if it is comparable to the osmotic pressure exerted by proteins. This pressure is in the 
1000 Pa range since protein concentration are estimated to be in the millimolar range (Appendix 1, 
section 3.1). We further estimated an upper bound for the nuclear pressure difference to be in the 
104 Pa range (Equation A.33). Admittedly crude, these estimates allow us to draw a threefold conclu-
sion. (1) The nuclear pressure difference ‍∆Pn‍ can be higher than the cytoplasmic pressure difference 
‍∆Pc‍, in part due to the fact that lamina has very different properties compared to cortical actin: it is 
much stiffer and its turnover rate is lower. This points out the possible role of nuclear mechanics in 
the determination of the nuclear volume contrary to the cortical actin of mammalian cells that does 
not play any direct role for the cell volume. (2) The typical hydrostatic pressure difference at which 
mechanical effects become relevant is at least two orders of magnitude lower for the nucleus than 
for the cytoplasm, for which it is of order ‍Π0‍, (3) Assuming linear elasticity, small nuclear envelope 
extensions of 10% would be sufficient to impact nuclear volume. These conclusions stand in stark 
contrast to the observed robustness of the nuclear scaling, thus pointing out that the constitutive 
equation for the tension in the lamina is nonlinear. Biologically, we postulate that this nonlinearity 
originates from the folds and wrinkles that many nuclei exhibit (Lomakin et al., 2020). These folds 
could indeed play the effective role of membrane reservoirs, preventing the nuclear envelope tension 
to grow with the nuclear volume, hence setting the nuclear pressure difference to a small constant 
value, and maintaining cells in the scaling regime discussed in the previous sections. This conclusion 
is consistent with the results of Finan et al., 2009, which observed that the nucleus exhibits nonlinear 
osmotic properties.

To further confirm our conclusions quantitatively, we consider the thought experiment of nonad-
hered cells experiencing hypo-osmotic shock. This experiment is well adapted to study the mechan-
ical role of nuclear components on nuclear volume because it tends to dilute the protein content while 
increasing the hydrostatic pressure by putting the nuclear envelope under tension. For simplicity, we 
ignore the mechanical contribution of chromatin that was shown to play a negligible role on nuclear 
mechanics for moderate extensions (Stephens et al., 2017). To gain insight into the nonlinear set 
of equations, we split the problem into two parts. First, we identify analytically the different limiting 
regimes of nuclear volume upon variation of the number of impermeant molecules ‍Xn‍ present in 
the nucleus and the nuclear envelope tension ‍γn‍. We summarize our results in a phase portrait (see 
Appendix 1, section 6.1.6 and Appendix 1—figure 1). Two sets of regimes emerge: those, studied 
above, where nuclear and cytoplasmic osmotic pressures are balanced, and those where the nuclear 
hydrostatic pressure matters. In the latter situations, the nuclear volume does not depend on the 
external concentration and saturates to the value (see Appendix 1, section 6.1.7):

https://doi.org/10.7554/eLife.82490
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	﻿‍
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n
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n

·
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π ·Viso

n
)1/3

‍�
(19)

where ‍s‍ and ‍Viso
n ‍ are respectively the fraction of membrane stored in the folds and the volume of the 

nucleus at the isotonic external osmolarity ‍2 · niso
0 ‍ is an effective adimensional modulus comparing 

the stretching modulus of the nuclear envelope ‍K ‍ with an osmotic tension that depends on the total 
number of free osmolytes contained by the nucleus ‍Ntot

n ‍. The saturation of the nuclear volume under 
strong hypo-osmotic shock originating from the pressure build up in the nucleus after the unfolding 
of the folds implies a significant decrease in the NC ratio and a loss of nuclear scaling (Figure 4D).

As a second step, we investigate the variations of ‍Xn = Af
n + Pn‍ after the shock. Our numerical solu-

tion again highlights the primary importance of considering the metabolites ‍A
f
n‍ for the modeling of 

nuclear volume. Indeed, disregarding their contribution would lead to an overestimation of the number 
of trapped proteins. Additionally, ‍Xn‍ would remain constant during the osmotic shock, resulting in the 
reduction of the effective modulus of the envelope (Equation 19). We would thereby overestimate the 
nuclear volume (Figure 4D, dashed line). In reality, since free osmolytes are mainly accounted for by 
metabolites that are permeable to the nuclear envelope, the number of free osmolytes in the nucleus 
decreases strongly during the shock. This decrease can easily be captured in the limit where metab-
olites are uncharged ‍za = 0‍. The balance of concentrations of metabolites in this regime implies that 
the number of free metabolites in the nucleus, ‍A

f
n‍, passively adjusts to the NC ratio:

	﻿‍
Af

n = 1
1+ 1

NC
· Af

‍� (20)

As mentioned earlier, the tension of the envelope is responsible for the decrease in the NC ratio. This 
in turn decreases the number of metabolites inside the nucleus, reinforcing the effect and thus leading 
to a smaller nuclear volume at saturation (Figure 4D). We find the analytical value of the real saturation 
by using Equation 19 with ‍N

tot
n = (zp + 1) · Pn + Qeff

‍, that is, no metabolites remaining in the nucleus.
Our investigations on the influence of the hydrostatic pressure term in the nested Pump-Leak 

model lead us to identify another key condition to the nuclear scaling, that is, the presence of folds at 
the nuclear envelope. Moreover, although not the purpose of this article, using our model to analyze 
hypo-osmotic shock experiments could allow a precise characterization of the nucleus mechanics.

Discussion
In this study, we have investigated the emergence of the cell size scaling laws, which are the linear 
relations between dry mass, nuclear size, and cell size, and which seem ubiquitous in living systems. 
Using a combination of physical arguments ranging from thermodynamics, statistical physics, polymer 
physics, mechanics, and electrostatics, we have provided evidence that the robustness of these scaling 
laws arises from three physical properties: electroneutrality, balance of water chemical potential, and 
balance of ionic fluxes. The set of associated equations defines a model developed 60 years ago 
named the Pump-Leak model. The major challenge in probing the origin of the scaling laws using 
the Pump-Leak model, which we have addressed in this study, is to link a wide range of cell constitu-
ents and microscopic biological processes, such as ion transport, translation, transcription, chromatin 
condensation, nuclear mechanics, to the mesoscopic parameters of the Pump-Leak model (Table 1). 
A host of experimental papers has gathered evidence on these scaling laws and their breakdown over 
the past century (Neurohr and Amon, 2020; Cantwell and Nurse, 2019b; Webster et al., 2009), but 
there is still a lack of theoretical understanding of these observations.

In order to go in this direction, we have simplified the Pump-Leak model to its utmost based on 
the determination of precise orders of magnitude of the relevant parameters. The use of a simpli-
fied model focusing on the leading order effects, such as the homeostasis between amino acids and 
proteins, is a powerful way to isolate and better study the origin of the scaling laws. This is embodied 
in the accurate predictions, without any adjustable parameters, for the dry mass dilution and the 
protein dynamics of yeast cells, which are prevented from dividing. A phenomenon that was so far 
unexplained (Neurohr et al., 2019) despite the fact that it is believed to be of fundamental biological 
importance (Lengefeld et al., 2021) by establishing a functional relationship between cell size (and 
density) and cell senescence, potentially providing a new mechanism driving this important aging 
process. We emphasize that while we claim that the physical laws and the coarse-grained physical 
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parameters that constrain cell size are ubiquitous, the specific set of biological processes described 
in this article at the root of the variation of such parameters is not. In particular, the new biological 
mechanism, namely the saturation of DNA and mRNA, proposed here to explain dry mass dilution at 
senescence, is not the only biological mechanism that affects dry mass density. We can indeed quote 
at least two other identified processes. Variations of the mechanical tension at the plasma membrane 
during cell spreading were shown to alter the permeability of ion channels, resulting in a volume adap-
tation at constant dry mass (Venkova et al., 2022; Adar and Safran, 2020). Similarly, activation of 
metabolic pathway synthesis such as glycerol for budding yeast cells upon hypertonic stress (Neurohr 
and Amon, 2020), allows us to recover cell volume at almost constant dry mass (since glycerol is a 
metabolite). Nevertheless, the latter two processes can be easily included in our framework.

The key ingredient of our model is the consideration of small osmolytes and in particular metab-
olites and small ions. Their high number of fractions among cell-free osmolytes implies that they 
dominate the control of cell volume. We make three quantitative predictions from this finding. (1) The 
homeostasis between amino acids and proteins, originating from the enzymatic control of the amino 
acid pool, explains the dry mass density homeostasis. The disruption of homeostasis, due to mRNA 
crowding by ribosomes or pharmacological treatment such as rapamycin, is predicted to lead to dry 
mass dilution upon cell growth due to the saturation of the protein content while the number of amino 
acids and thus the volume keeps increasing with time. (2) The dry mass dilution observed at mitotic 
entry for mammalian cells can naturally be explained by the release of counterions condensed on the 
chromatin, leading to the increase in the number of osmolytes inside the cell and to the subsequent 
influx of water to ensure osmotic pressure balance at the plasma membrane. (3) The robustness of the 
NC ratio to the predicted value ‍

Pn
Pc ‍ is due to the high pool of metabolites within cells, resulting in the 

dilution of the chromatin (free) counterions that do not scale during growth.
Interestingly, only a few amino acids represent most of the pool of the metabolites possessed by 

the cell, that is, glutamate, glutamine, and aspartate. This emphasizes their crucial role on cell and 
nucleus sizes. Our investigations thus link two seemingly distinct hallmark of cancers: the disruption 
of the cell size scaling laws such as the abnormal karyoplasmic ratio, historically used to diagnose 
cancer, and metabolic reprogramming, some cancer cells showing an increased consumption of their 
pool of glutamate and glutamine to fuel the TCA cycle; hence, enhancing their proliferation and inva-
siveness (Altman et al., 2016). This may thus represent possible avenues for future research related 
to the variability of nucleus size in cancer cells (Rizzotto and Schirmer, 2017). Moreover, the large 
pool of metabolites is a robust feature throughout biology (Park et al., 2016), making it one of the 
main causes of the universality of the cell size scaling laws observed in yeasts, bacteria, and mamma-
lian cells. We believe that the more systematic consideration of such small osmolytes will allow us to 
understand nontrivial observations. For instance, the recent observation of the increase in diffusivities 
in the nucleus after blocking nuclear export is explained in our model by the decoupling between 
protein and amino acid homeostasis after the impingement of ribosome synthesis, a step that requires 
nuclear export (Lemière et al., 2022). Several other published data also seem highly related to the 
predictions of the model of growth that we propose (Knapp et al., 2019; Odermatt et al., 2021). 
We leave open the precise comparison of our model’s predictions with these data for future studies.

The nucleoskeletal theory
To study the nuclear-scaling law, we developed a model for nuclear volume by generalizing the 
Pump-Leak model that includes both nuclear mechanics, electrostatics, and four different classes of 
osmolytes. The clear distinction between these classes of components is crucial according to our anal-
ysis and is new. (1) Chromatin, considered as a polyelectrolyte gel, does not play a direct role in the 
osmotic pressure balance because its translational entropy is vanishingly small. Yet, it plays an indirect 
role on nuclear volume through its counterions. This creates an asymmetry in our system of equations, 
leading to the unbalance of ionic concentrations across the nuclear envelope and to the appear-
ance of a nuclear envelope potential related to the density of chromatin. (2) Proteins are considered 
trapped in the nucleus, their number being actively regulated by nucleo-cytoplasmic transport. (3) 
Metabolites are considered freely diffusable osmolytes through the nuclear envelope but not through 
the plasma membrane. Note that proteins that have a mass smaller than the critical value 30–60 kDa 
(Milo and Phillips, 2015) are not trapped in the nucleus as they can freely diffuse throughout the 
nuclear pores. This nevertheless represents more a semantic issue than a physical one, and permeant 
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proteins are rigorously taken into account as metabolites in the model, but are negligible in practice 
due to the larger pool of metabolites. (4) Free ions are able to diffuse through the plasma membrane 
and the nuclear envelope.

As a consequence, we show that the nuclear scaling originates from two features. The first one 
is the balance of osmotic pressures at the nuclear envelope that we interpret as the result of the 
nonlinear elastic properties of the nucleus likely due to the presence of folds in the nuclear membrane 
of mammalian cells. Interestingly, yeast cells do not possess lamina such that the presence of nuclear 
folds may not be required for the scaling. In this regard, our model adds to a recently growing body 
of evidence suggesting that the osmotic pressure is balanced at the nuclear envelope in isotonic 
conditions (Deviri and Safran, 2022; Lemière et al., 2022; Finan et al., 2009). The second feature is 
the presence of the large pool of metabolites accounting for most of the volume of the nucleus. This 
explains why nuclear scaling happens during growth while the number of chromatin counterions does 
not grow with cell size.

Interestingly, although not the direct purpose of this article, our model offers a natural theoret-
ical framework to shed light on the debated nucleoskeletal theory (Webster et al., 2009; Cantwell 
and Nurse, 2019b). Our results indicate that the genome size directly impacts the nuclear volume 
only if the number of (free) counterions of chromatin dominates the number of trapped proteins and 
the number of metabolites inside the nucleus. We estimate that this number is comparable to the 
number of trapped proteins while it is about 60 times smaller than the number of metabolites. This 
is in agreement with recent observations that genome content does not directly determine nuclear 
volume (Cantwell and Nurse, 2019b). Although not directly, chromatin content still influences nuclear 
volume. Indeed, nuclear volume (Equation A.61) is mainly accounted for by the number of metabo-
lites, which passively adjusts according to (Equation 55) ; Jevtić and Levy, 2014. In the simple case, 
of diluted chromatin and no NE potential, metabolite concentration is balanced and ‍NC = Pn

Pc ‍, such 
that the metabolite number depends on two factors (Equation 20). The first one is the partitioning 
of proteins, ‍

Pn
Pc ‍, that is biologically ruled by nucleo-cytoplasmic transport in agreement with experi-

ments that suggest that the nucleo-cytoplasmic transport is essential to the homeostasis of the NC 
ratio (Cantwell and Nurse, 2019b). The second one is the total number of metabolites, ruled by the 
metabolism Equation 9, which ultimately depends upon gene expression (Appendix 1, section 4.1). 
This prediction is in line with genetic screen experiments done on fission yeast mutants (Cantwell 
and Nurse, 2019a). However, when the chromatin charge is not diluted, which is likely to occur for 
cells exhibiting high nuclear envelope potential such as some cancer cells, our theory predicts that 
the number of metabolites in the nucleus also directly depends on the chromatin content due to 
electrostatic effects. This highlights the likely importance of chromatin charge in the nuclear-scaling 
breakdown in cancer.

Role of nuclear envelope breakdown in cell volume variations
The nested Pump-Leak model predicts that the cell swells upon NEB if the nuclear envelope is under 
tension. NEB occurs at prometaphase and does not explain most of the mitotic swelling observed in 
Son et al., 2015; Zlotek-Zlotkiewicz et al., 2015, which occurs at prophase. Within our model based 
on counterion release, mitotic swelling is either associated with cytoplasm swelling if the released 
counterions leave the nucleus or with nuclear swelling if they remain inside. In the latter case, swelling 
at prophase would be hindered by an increase in nuclear envelope tension, and additional swelling 
would occur at NEB. This prediction can be tested by artificially increasing the nuclear envelope 
tension through strong uniaxial cell confinement (Berre et al., 2014), which would synchronize mitotic 
swelling with NEB.

Physical grounds of the model
Physically, why can such a wide range of biological phenomena be explained by such a simple theory? 
A first approximation is that we calculated the osmotic pressure considering that both the cytoplasm 
and the nucleus are ideal solutions. However, it is known that the cytoplasm and the nucleoplasm are 
crowded (Feig et al., 2015; McGuffee and Elcock, 2010). The qualitative answer again comes from 
the fact that small osmolytes constitute the major part of the free osmolytes in a cell so that steric 
and short-range attractive interactions are only a small correction to the osmotic pressure. We confirm 
this point by estimating the second virial coefficient that gives a contribution to the osmotic pressure 

https://doi.org/10.7554/eLife.82490


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Rollin et al. eLife 2023;12:e82490. DOI: https://doi.org/10.7554/eLife.82490 � 22 of 43

only of order 2 kPa (see Appendix 1, section 3.1), typically two orders of magnitude smaller than 
the ideal solution terms (Table 1). However, note that we still effectively take into account excluded 
volume interactions in our theory through the dry volume ‍R‍. Moreover, we show in Appendix 1, 
section 7.1 that although we use an ideal gas law for the osmotic pressure, the Donnan equilibrium 
effectively accounts for the electrostatic interactions. Finally, our theory can be generalized to take 
into account any ions species and ion transport law while keeping the same functional form for the 
expressions of the volume (Equation A.21) as long as only monovalent ions are considered. This is 
a very robust approximation because multivalent ions such as calcium are in the micromolar range. 
Together, these observations confirm that the minimal formulation of the Pump-Leak model that we 
purposely designed is well adapted to study cell size.

Future extensions of the theory
As a logical extension of our results, we suggest that our framework be used to explain the scaling of 
other membrane bound organelles such as vacuoles and mitochondria (Chan and Marshall, 2010). 
Provided that the organelles are constrained by the same physical laws, namely the balance of water 
chemical potential, the balance of ionic fluxes and the electroneutrality condition, we show in Appendix 
1 (Equation A.83) that the incorporation of other organelles into our framework leads to the same 
equations as for the nucleus, thus pointing out that the origin of the scaling of other organelles may 
also arise from the balance of osmotic pressures. The precise experimental verification of such predic-
tion for a specific organelle is left opened for future studies. We also propose that our theory be used 
to explain the scaling of membraneless organelles such as nucleoids (Gray et al., 2019). Indeed, the 
Donnan picture that we are using does not require membranes (Barrat and Joanny, 1996). However, 
we would have to add other physical effects in order to explain the partitioning of proteins between 
the nucleoid and the bacterioplasm.

Taken as a whole, our study demonstrates that cell size scaling laws can be understood and 
predicted quantitatively on the basis of a remarkably simple set of physical laws ruling cell size as 
well as a simple set of universal biological features. The new interpretations of previous empirical 
biological phenomena that our approach allows to provide indicates that this theoretical framework 
is fundamental to cell biology and will likely benefit the large community of biologists working on cell 
size and growth.
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Appendix 1
1.1 Pump-Leak model fundamental equations
In this section, we derive and discuss the three physical constraints that we used throughout our 
article to study cell volume regulation. These results are classical and can be found in a reference 
textbook such as Sten-Knudsen, 2007.

1.1.1 Electroneutrality
The intrinsic length scale associated to the Poisson equation is the Debye length. It appears explicitly 
in the linearized version of the Poisson equation also called the Debye–Huckel equation. It reads

	﻿‍
λD =

(
1

4π·lb·(n++n−)

) 1
2

‍�
(A.1)

where ‍lb = e2

4πkBTϵrϵ0 ‍ is the Bjerrum length, which qualitatively corresponds to the distance between 
two elementary charges at which the electrostatic energy will be comparable to the thermal energy. 
‍lb ≈ 0.7nm‍ in water at ‍300 K‍. In the unit used in this article (concentrations in mmol), the Debye 
length can be estimated using the following formula:

	﻿‍
λD ≈ 9.7√

n+(mM)+n−(mM)
· nm

‍� (A.2)

For a typical mammalian cell ‍n+(mM) + n−(mM) ≈ 180mM‍ (Table 1) which leads to a Debye length 
‍λD ≈ 0.7nm‍. Thus, the Debye length is at least three orders of magnitude smaller than the typical 
radius of a cell or of a nucleus. This justifies the approximation of electroneutrality used throughout 
the main article for length scales much larger than the Debye length.

1.1.2 Balance of water chemical potential
We define the osmotic pressure as

	﻿‍ Π = − 1
vw

· (µw − µ∗
w)‍� (A.3)

where ‍vw‍ is the molecular volume of water, and ‍µw‍, ‍µ
∗
w‍ are the chemical potential of water, 

respectively, in the real solution and in a pure water solution. Assuming that water is incompressible, 
the chemical potential of pure water reads:

	﻿‍ µ∗
w = µ0(T) + vw · P‍� (A.4)

where ‍P‍ is the hydrostatic pressure, and ‍µ0(T)‍ the standard chemical potential of pure water 
that only depends on the temperature. Injecting Equation A.4 into Equation A.3, we express the 
chemical potential of water as

	﻿‍ µw = µ0(T) + vw · (P −Π)‍� (A.5)

As emphasized in the main text, we assume that water equilibrates instantaneously at the 
timescale of cellular growth. As such, we impose that the chemical potential of water is balanced 
on each side of the plasma membrane: ‍µ

c
w = µo

w‍, where the upper-script ‍o‍ and ‍c‍ refer to the outer 
medium and the cellular medium. Using the expression of the chemical potential of water derived in 
Equation A.5 in each medium, we obtain

	﻿‍ Pc − P0 = Πc −Π0‍� (A.6)

The latter equation corresponds to the first equality in Equation 2. Note that it does not assume 
the dilute solution assumption. To further express the osmotic pressure, we assume that the solutions, 
either the cellular or the outer media, are dilute and hence we use a perfect gas law for the osmotic 
pressure. This is how we obtained the second equality in Equation 2.

1.1.3 Balance of ionic fluxes
The total flux J of cations – respectively anions – is decomposed between three main contributions: 
active pumping, electrical conduction, and entropic diffusion. For simplicity, we assumed that only 

https://doi.org/10.7554/eLife.82490


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Rollin et al. eLife 2023;12:e82490. DOI: https://doi.org/10.7554/eLife.82490 � 28 of 43

cations are pumped out of the cell. This simplifying choice was made to model the Na/K pump, 
which is one of the most relevant cationic pumps. Though, we show in Appendix 1, section 2.1.3 that 
this assumption is not critical since the equations keep the same functional form if it is relaxed. We 
also assume a slight deviation from equilibrium so that the ion fluxes are proportional to the chemical 
potential difference between both sides of the plasma membrane. As a convention, we choose ‍J ‍ to 
be positive when ions are entering the cell. At steady state, the fluxes vanish:

	﻿‍




J+,tot = g+ ·
[
−e · Uc − kBT

(
n+

n0

)]
− p = 0

J−,tot = g− ·
[
e · Uc − kBT · ln

(
n−
n0

)]
= 0

‍�
(A.7)

where ‍p‍ is the pumping flux, ‍g±‍ are the membrane conductivities for cations and anions, and ‍Uc‍ is 
the cell transmembrane potential, which can be expressed as

	﻿‍
Uc = − kBT

e · ln
(

n+

n0

)
− p

g+
= kBT

e · ln
(

n−
n0

)
‍� (A.8)

For Equation A.8 to be verified, the following relationship between ‍n+‍ and ‍n−‍ must be imposed:

	﻿‍




n+ · n− = α0 · n2
0

α0 = e−
p

kBTg+

‍�
(A.9)

The latter equation takes the form of a generalized Donnan ratio that includes the active pumping 
of cations. The usual Donan ratio (Sten-Knudsen, 2007) is recovered when ‍p = 0‍. The generalized 
Donnan ratio Equation 3, together with the electroneutrality condition Equation 1, yields analytic 
expressions for the ionic densities ‍n+‍ and ‍n−‍ (the notations are defined in the main text):

	﻿‍




n+ = zx+
√

(zx)2+4α0n2
0

2

n− = −zx+
√

(zx)2+4α0n2
0

2 ‍�
(A.10)

The cell osmotic pressure can thus be expressed as:

	﻿‍
Π

kBT =
√

(zx)2 + 4α0n2
0 + x

‍� (A.11)

2.1 General expressions of the volume in the Pump-Leak model
The system of equation formed by Equations 1–3 is nonlinear and cannot be solved analytically in 
its full generality. One complexity arises from the difference of hydrostatic pressure ‍∆P‍. Intuitively, if 
the volume increases, the surface increases, which may in some situations increase the tension of the 
envelope and in turn impede the volume growth. Mathematically, Laplace law relates the difference 
of hydrostatic pressure to the tension ‍γ‍ and the mean curvature of the interface, which simplifies to 
the radius of the cell ‍R‍ in a spherical geometry. The difference of hydrostatic pressure then reads:

	﻿‍ ∆P = 2γ
R ‍� (A.12)

In the case where the interface exhibits a constitutive law that is elastic ‍γ = K · S−S0
S0 ‍, it is easy to see 

that ‍∆P‍ exhibits power of ‍V ‍, which makes the problem nonanalytical. However, we can get around 
this limitation in two biologically relevant situations:

•	 When ‍∆P‍ is negligible. As shown in Table 1, this happens for mammalian cells that do not 
possess cellular walls.

•	 When ‍∆P‍ is buffered by biological processes. We argue that this situation applies for yeasts 
and bacteria during growth. Indeed, if the volume increase is sufficiently slow, one can hypoth-
esize that cells have time to add materials to their cellular walls such that the tension does not 
increase during growth.

We give the corresponding analytical expressions under these two hypotheses in the next two 
sections.

https://doi.org/10.7554/eLife.82490
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2.1.1 Analytical expression of the volume when hydrostatic pressure differ-
ence is negligible
The balance of water chemical potential (Equation 2), neglecting the difference of pressure and 
injecting the expressions for the ionic densities (Equation A.10), leads to the following equation for 
the density of impermeant molecules ‍x‍:

	﻿‍ (z2 − 1) · x2 + 4n0 · x − 4 · (1 − α0) · n2
0 = 0‍� (A.13)

Solving this equation and using the definition of the density of impermeant molecules ‍x = X
V−R‍ yield 

the expression for the volume of the cytoplasm:

	﻿‍




V − R = kBT·Ntot

Π0

Ntot = X · (z2−1)
−1+

√
1+(1−α0)(z2−1)‍�

(A.14)

The volume can thus be written as an ideal gas law with a total number of free osmolytes ‍Ntot‍. This 
number takes into account the different ions and is thus larger than the actual number of impermeant 
molecules ‍X ‍. In the limit of very fast pumping – ‍α0 → 0‍ – (Equation A.14) reduces to the expression 
given in the main text (Equation 4). On the other hand, when ‍α0 → 1‍, the volume diverges. This 
is due to the fact that the osmotic pressure in the cell (Equation A.11) is always higher than the 
external osmotic pressure in this limit. In the absence of a hydrostatic pressure difference, the cell 
would swell to make the concentration of trapped macromolecules ‍x‍ infinitely small. This shows the 
importance of ion pumps to achieve a finite volume for mammalian cells.

2.1.2 Analytical expression of the volume when ‍∆P‍ is buffered
The same procedure can be used when ‍∆P‍ is buffered (independent of the volume). The final 
expression reads

	﻿‍




V − R = kBT·Ntot(∆P)(
π0+∆P

)

Ntot(∆P) = X · z2−1

−1+

�����1+(z2−1)·


1− α0(

1+ ∆P
kBT·2n0

)2




‍�

(A.15)

Interestingly, the wet volume ‍V − R‍ remains proportional to the number of impermeant molecules 
‍X ‍ in this limit.

2.1.3 Analytical expression of the volume for an arbitrary number of ions and 
active transports
In this subsection, we generalize the Pump-Leak model to any type of ions and any ionic transport. 
Each ion can be actively transported throughout the membrane. Importantly, we show that – as long 
as ions are monovalent – the Pump-Leak model equations and solutions take the same functional 
form as the two-ion model used in the main text. We use the same notations as in the main text 
(section ‘Pump and leak model’ and Table 1), except that we now add subscript ‍i‍ to refer to the ion 
of type ‍i‍. For instance, ‍z

−
i ‍ – respectively ‍n

−
i ‍ – refers to the valency – respectively the concentration 

– of the anion ‍i‍. The densities of positive/negative charges in the cell read:

	﻿‍




d+ =
∑

j z+
j · n+

j

d− =
∑

j z−j · n−j ‍�
(A.16)

Electroneutrality thus simply reads:

	﻿‍ d+ − d− − z · x = 0‍� (A.17)

Balancing ionic fluxes for each ion types, as in Equation A.7, leads to:

https://doi.org/10.7554/eLife.82490
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	﻿‍




n+/−
j = n0

j · αj · e(−/+)·zj· e·Uc
kBT

αj = e
−

pj
gj

‍� (A.18)

Using Equations A.16–A.18 and assuming that all ions are monovalent, the product of the 
cationic and anionic densities can be expressed as:

	﻿‍

d+ · d− =


∑

j
n+,0

j · αj


 ·

(∑
i

n−,0
i · αi

)

� �� �
≡
def
α̃(n0

i )
‍� (A.19)

and the analytical solution of the full problem reads:

	﻿‍




d+ = zx+
√

(zx)2+4α̃(n0
i )

2

d− = −zx+
√

(zx)2+4α̃(n0
i )

2 ‍� (A.20)

	﻿‍




V − R = kBT·Ntot(∆P)(
π0+∆P

)

Ntot(∆P) = X · z2−1

−1+

�����1+(z2−1)·


1−

4α̃(n0
i )

(
1

kBT ·Π0+ 1
kBT ·∆P

)2




‍� (A.21)

which shows a similar form as the two-ion model (Equations A.10; A.15).

3.1 Order of magnitudes
Throughout the main text, we used order of magnitudes to guide our investigations and justify our 
approximations. For the sake of readability, we gather all the parameter significations, values, and 
origins in Appendix 1—table 1.

Appendix 1—table 1. Description and values of the parameters used for the order of magnitudes.

Symbol Typical Value Meaning

‍ρ‍ ‍0.1 kg.L−1
‍

Typical dry mass density in a mammalian cell 
(Zlotek-Zlotkiewicz et al., 2015)

‍Ma‍ ‍100 Da‍
Average mass of an amino acid (Milo and 
Phillips, 2015)

‍lp‍ ‍400a.a‍
Average length of a eukaryotic protein (Milo 
and Phillips, 2015)

‍lmRNA‍ ‍3 · lp‍
Average length of an mRNA (Milo and 
Phillips, 2015)

‍lbp‍ ‍1/3 nm‍ Average length of one base pair

‍Qbp‍ ‍2‍
Average number of negative charges per base 
pair

‍Lnucleosome‍ ‍200 bp‍ Average length of DNA per nucleosome

‍Llink‍ ‍53 bp‍ Length of the DNA linking two histones

‍Lwrap‍ ‍147 bp‍
Length of the DNA wrapped around one 
histone

Appendix 1—table 1 Continued on next page
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Symbol Typical Value Meaning

‍uDNA‍ ‍4‍

Manning parameter for pure DNA, i.e., 75% 
of the charges will be screened by manning 
condensation

‍Ltot‍ ‍6 · 109bp‍

Total length of the DNA within a diploid 
human cell

‍Qhist‍ ‍76‍

Average number of positive charges per 
histone at less than 1 nm from the wrapped 
DNA backbone (Materese et al., 2009)

‍Qwrap‍ ‍174‍

Average number of condensed counterions 
around the wrapped DNA (Materese et al., 
2009)

‍lb‍ ‍0.7 nm‍ Bjerrum length in water at 300k

‍K ‍ ‍25 mN/m‍
Stretching modulus of lamina (Dahl et al., 
2004)

3.1.1 Protein concentration
We use data published in Zlotek-Zlotkiewicz et al., 2015 to estimate the typical concentration of 
proteins in mammalian cell ‍ptot‍ as

	﻿‍
ptot = %mass

p · ρ
Ma·lp·(1− R

V ) ∼ 2 mMol
‍� (A.22)

where ‍%
mass
p ‍ is the fraction of dry mass occupied by proteins (Figure 1C).

3.1.2 mRNA to protein fraction
In Figure 1B, we neglected the contribution of mRNAs to the wet volume of the cell. The rationale 
behind this choice is twofold. (1) Proteins represent less than 1% of the wet volume. (2) The mRNA 
to protein number fraction is estimated to be small due to the fact that the mass of one mRNA is 
nine times greater than the one of a protein while the measured fraction of mRNA to dry mass is of 
the order 1% (Milo and Phillips, 2015):

	﻿‍
Mtot
Ptot

= Mp
MmRNA

· massmRNA
massp

∼ 1
500‍� (A.23)

Thus, mRNAs contribute even less than proteins to the wet volume.

3.1.3 Metabolite concentration
We find the metabolite concentration self-consistently by enforcing balance of osmotic pressure at 
the plasma membrane (Equation 2):

	﻿‍ af = 2n0 − ptot − n+ − n− ∼ 118mMol‍� (A.24)

where the concentrations of ions were reported in Milo and Phillips, 2015 (see Table 1). This high 
value of metabolite concentration is coherent with reported measurements (Park et al., 2016).

3.1.4 Contribution of osmolytes to the wet volume of the cell (Figure 1B) 

The contribution of osmolytes to the wet volume fraction is simply equal to the ratio of the 
osmolyte concentration to the total external ionic concentration, here equal to 2n0 (Equation 4). 
The concentration of specific amino acids and metabolites was estimated using their measured 
proportion in the metabolite pool (Park et al., 2016) times the total concentration of metabolites 
af (Equation A.24).

3.1.5 Amino acids contribution to the dry mass
One of the main conclusions from our order of magnitude estimates is that amino acids play an essential 
role in controlling the volume but have a negligible contribution to the cell’s dry mass. This originates 

Appendix 1—table 1 Continued
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from the large average size of proteins ‍lp ∼ 400a.a‍. The contribution of amino acids to the dry mass reads: 

	﻿‍ %mass
a.a = %number

a.a · af

Ptot
· %mass

P
lp ∼ 6%‍� (A.25)

where ‍%number
a.a ∼ 73%‍ is the number of fraction of amino acids among metabolites.

3.1.6 Effective charge of chromatin
The average effective charge per nucleosome is estimated to be:

	﻿‍ Qeff
pernucleosome = LLink ·

Qbp
uDNA

+ Lwrap · Qbp − Qhist − Qwrap = 71‍� (A.26)

where the right-hand side can be understood as the total negative charge of pure DNA, screened 
in part by histone positive charges and by the manning condensed counterions. Note that the 
number of condensed counterions ‍Qwrap‍ around the wrapped DNA simulated in Materese et al., 
2009 is similar to the value expected by the manning theory that we estimate to be 164 elementary 
charges.

The number of nucleosomes is simply ‍Nhist = Ltot
Lnucleosomes

= 3 · 107
‍ such that the effective charge of 

chromatin is estimated to be:

	﻿‍ Qeff = 2 · 109
‍� (A.27)

Note that the size of the budding yeast genome is 12 Mbp (Goffeau et al., 1996) such that, assuming 
for simplicity that 75% of this charge is screened either by manning condensation or by histones, we 
find that ‍Qeff ∼ 6 · 106

‍.

3.1.7 Condensed counterions on chromatin
The condensed counterions on chromatin can simply be found from the effective charge of the 
chromatin, the total charge of pure DNA, and the charge of histones. We obtain:

	﻿‍ Qcond = Qbp · Ltot − Qeff − Qhist · Nhist ∼ 8 · 109
‍� (A.28)

3.1.8 Estimation of the amplitude of the mitotic swelling
At mitosis, cells have doubled their genome content such that we double the number of condensed 
counterions estimated earlier for a diploid mammalian cell. Using the Pump-Leak model, we compute 
the amplitude of swelling if all the chromatin condensed counterions were released at the same 
time, assuming an external osmolarity of ‍n0 = 100 − 150 mM‍:

	﻿‍ ∆V = 2·Qcond

2n0
∼ 100µm3

‍� (A.29)

Note that ‍∆V ‍ must scale with the number of genome duplications. For instance, for tetraploid cells, 
the previous amplitude must be doubled.

3.1.9 Average charge of proteins and metabolites
The average charge of proteins used in the article is ‍zp ∼ 0.8‍. To obtain this value, we used the data 
analysis performed in Requião et al., 2017. The authors plotted the net-charge frequency histogram 
of the amino acid segments in all 551,705 proteins from the SwissProt database respectively assuming 
that the histidine charge is 0 or 1. To obtain ‍zp‍, we computed the average of the histogram assuming 
neutral histidines. This choice is reasonable because the Pka of the histidine amino acid is of order 6 
while the typical physiological pH is of order 7.4, so that only 4% of histidines are charged in the cell. 
Note that this estimate is not very precise since it does not take into account the relative proportion 
of proteins. We nevertheless checked that our conclusions remain valid by varying ‍zp‍ from 0 to 3.

The average charge of metabolites is assumed to be ‍za ∼ 1‍ since glutamate is the most abundant 
(Park et al., 2016). We have checked that changing this parameter does not alter our conclusions.

https://doi.org/10.7554/eLife.82490
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3.1.10 Absolute number of osmolytes
To obtain the Figure 4, we had to estimate the parameter ‍NC1 = Pn

Pc ‍ and thus, the number of protein 
trapped inside the nucleus ‍Pn‍ at the beginning of interphase. The total number of proteins and 
metabolites at the beginning of interphase is simply obtained by multiplying the concentration of 
proteins ‍ptot‍, ‍mtot‍ estimated earlier by the volume at the beginning of interphase, measured to be 
equal to ‍1250µm3

‍(Zlotek-Zlotkiewicz et al., 2015), minus the dry volume that roughly represent 
30% of the total volume (Table 1).

	﻿‍ Ptot = ptot · (V − R) ∼ 109
‍� (A.30)

	﻿‍ Af = af

ptot
· Ptot ∼ 60 · 109

‍� (A.31)

In the regime where the chromatin is diluted (large amount of metabolites), the NC ratio can be well 
approximated by ‍NC1 = Pn

Pc ‍. Usual values of NC reported in the literature typically range from 0.3 to 
0.6 (Guo et al., 2017; Wu et al., 2022). We thus estimate reasonable values of ‍Pn‍ as

	﻿‍ Pn = NC
1+NC · Ptot ∼ 3 · 108

‍� (A.32)

Note that we also used the numerical solutions of Equation A.55 in Appendix 1, section 6.1 to infer 
‍NC1‍ from ‍NC‍ exactly. This method made no qualitative difference to the results plotted in Figure 4.

For budding yeasts, similarly to the chromatin effective charge, the number of protein in the 
nucleus is typically three orders of magnitudes smaller. Indeed, it is reported that ‍Ptot ∼ 5 · 107‍ both 
in Ho et al., 2018; Ghaemmaghami et al., 2003; von der Haar, 2008. Moreover, using a typical NC 
ratio of 0.1 (Lemière et al., 2022 and Equation A.32), we find that ‍Pn ∼ 4 · 106‍.

3.1.11 Estimation of an upper bound for the hydrostatic pressure difference 
of the nucleus
Even though the stiffness of the lamina layer is susceptible to vary according to the tissue the cell is 
belonging to Swift et al., 2013, its stretching modulus was reported to range from 1 to 25 mN/m 
(Dahl et al., 2004; Stephens et al., 2017). Also, lamina turnover rate is much slower than the actin 
turnover rate. Together, this suggests that lamina – at the difference to the cortical actin – can sustain 
bigger pressure difference on longer timescales. This solid-like behavior of lamina was observed 
during micropipette aspiration of oocyte nuclei through the formation of membrane wrinkles at the 
pipette entrance (Dahl et al., 2004). We thus chose to mathematically model lamina with an elastic 
constitutive equation when it is tensed (Equation A.74). Using Laplace law, we estimate an upper 
bound for ‍∆Pn‍, assuming a typical nuclear radius of 5 μm, to be

	﻿‍ ∆Pn ∼ 2K
R ∼ 104Pa‍� (A.33)

3.1.12 Estimation of the second virial term in the osmotic pressure
We estimate the steric term in the osmotic pressure to be

	﻿‍ Πsteric ∼ kBT · vp · p2
tot ∼ 2kPa‍� (A.34)

where ‍vp‍ is the excluded volume per protein, estimated to be ‍vp ∼ R
Ptot

∼ 375nm3
‍. This corresponds 

to a protein radius of 4.5 nm, a value coherent with observations (Milo and Phillips, 2015). This 
steric contribution in the osmotic pressure may thus be safely neglected, as ‍Πsteric << Π0‍.

4.1 A cell growth model
We summarize here the equations derived and discussed in the main text (Equations 6 and 7). The 
rates of production of mRNAs and proteins in the nonsaturated and saturated regimes read:

	﻿‍




Ṁj = k0 · ϕj · Pp − Mj
τm

, if Pp ≤ P∗
p

Ṁj = k0 · gj · Nmax
p − Mj

τm
, if Pp ≥ P∗

p‍� (A.35)

https://doi.org/10.7554/eLife.82490
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	﻿‍




Ṗj = kt · Mj∑
Mj

· Pr − Pj
τp

, if Pr ≤ P∗
r

Ṗj = kt · Mj · Nmax
r − Pj

τp
, if Pr ≥ P∗

r ‍�
(A.36)

The cut-off values – ‍P
∗
p‍, ‍P

∗
r ‍ – above which the substrates become saturated are obtained by imposing 

continuities of the production rates at the transition:

	﻿‍




P∗
p = Nmax

p ·
∑

gj

P∗
r = Nmax

r ·
∑

Mj‍�
(A.37)

4.1.1 Neither DNA nor mRNAs are saturated: ‍Pp ≤ P∗
p‍ and ‍Pr ≤ P∗

r ‍
The fast degradation rate of mRNAs ensures that their number is determined by the steady state 
of Equation A.35. Equation 8 with Equation 7 thus yields an exponential growth of the number 
of ribosomes ‍Pr = Pr,0 · ekr·t

‍ (with, ‍kr = kt · ϕr − 1/τp‍) and of any other protein, ‍Pj = ϕj
ϕr

· Pr‍; where we 
call ‍Pr,0‍ the initial number of ribosomes and we neglect the initial conditions on proteins other than 
ribosomes due to the exponential nature of the growth. Incorporating the dynamics of growth of 
the enzyme catalyzing the amino acid biosynthesis ‍Pe‍ into Equation 9, we obtain the number of free 
amino acids in the cell:

	﻿‍
Af =

(
ϕe · kcat

kr
− lp

)
· Pr
ϕr ‍� (A.38)

Using the expression of the volume (Equation 4) derived from the Pump-Leak model coupled to our 
quantitative order of magnitudes, it is straightforward to show that the volume grows exponentially:

	﻿‍
V =

(
vp +

(zA,f+1)·
(
ϕe· kcat

kr
−lp

)

2n0

)
· Pr
ϕr

‍�
(A.39)

where we assumed the dry volume to be mainly accounted for by proteins. Incorporating the previous 
expressions in the equation for the dry mass density (Equation 5), we obtain the homeostatic dry 
mass density written in the main text (Equation 10). These expressions were obtained assuming that 
neither the DNA nor the mRNA were saturated. Importantly, mRNAs cannot be saturated if DNA is 
not saturated because the cut-off value ‍P∗

r ‍ for which ribosomes saturates mRNAs grows at the same 
speed as the number of ribosomes: ‍P

∗
r = Nmax

r · k0 · τm · ϕp
ϕr

· Pr‍. Hence, DNA will saturate before 
mRNAs during interphase, at a time ‍t∗‍ given by:

	﻿‍
t∗ = 1

kr
· ln

(
gr
gp

· Nmax
p ·

∑
gj

Pr,0

)
‍� (A.40)

4.1.2 DNA is saturated but not mRNAs: ‍Pp ≥ P∗
p‍ and ‍Pr ≤ P∗

r ‍
The only difference with the previous regime is that mRNA number saturates to the value 

‍Mj = k0 · gj · τm · Nmax
p ‍. Hence, the threshold ‍P∗

r ‍ will saturate to the value:

	﻿‍ P∗
r = Nmax

r · Nmax
p · k0 · τm ·

∑
gj‍� (A.41)

This allows for the subsequent saturation of mRNAs by ribosomes after a time ‍t∗∗‍, whose expression 
can be derived after simple algebra as:

	﻿‍
t∗∗ = t∗ + 1

kr
· ln

(
gp
gr

· Nmax
r · k0 · τm

)
‍� (A.42)

However, before reaching this time, there will not be any consequence on the proteomic dynamics, 
which still scales with the number of ribosomes ‍Pj = ϕj

ϕr
· Pr‍. This regime thus still corresponds to an 

exponential growth and the dry mass density remains at its homeostatic value (Equation 10).

4.1.3 Both DNA and mRNAs are saturated: ‍Pp ≥ P∗
p‍ and ‍Pr ≥ P∗

r ‍
The dynamics of growth is profoundly impacted by mRNA saturation. The protein number no longer 
grows exponentially, but saturates to the stationary value ‍P

stat
j = kt · k0 · τp · τm · Nmax

r · Nmax
p · gj‍ after 

a typical time ‍t
∗∗ + τp‍ according to:

https://doi.org/10.7554/eLife.82490
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	﻿‍
Pj = Pstat

j +
(

Pj(t∗∗) − Pstat
j

)
· e−

t−t∗∗
τp

‍�
(A.43)

The loss of the exponential scaling of proteins implies a breakdown of the proportionality between 
amino acid and protein numbers as predicted by the amino acid biosynthesis equation (Equation 9). 
The total amino acid pool in the cell ‍Atot = Af + lp · Ptot‍ now scales as:

	﻿‍
Atot = Atot(t∗∗) + kcat ·

[
Pstat

e ·
(
t − t∗∗

)
− τp ·

(
Pe(t∗∗) − Pstat

e
)
·
(

e−(t−t∗∗)/τp − 1
)]

‍� (A.44)

with ‍Atot(t∗∗) = ϕe
ϕr

· kcat
kr

· Nmax
r · Nmax

p · k0 · τm ·
∑

gj‍. Although expressions still remain analytical in 
the transient regime and were implemented in Figure 2 in order to quantitatively test our theory, we 
avoid analytical complications here by writing expressions after saturation has been reached, that is, 
after a typical time ‍t

∗∗ + τp‍. The volume thus increases linearly with time:

	﻿‍ Vlin = vp · Pstat
tot + (zAf +1)·

(
Atot(t∗∗)+kcat·Pstat

e ·(t−t∗∗)−lp·Pstat
tot

)
2n0 ‍� (A.45)

As emphasized in the main text, the fundamental property of this regime is that the dry mass density 
is predicted to decrease with time with no other mechanism than a simple crowding effect on mRNAs 
(see Equation 11 in the main text).

4.1.4 Quantification of the model of growth with published data
Many of the parameters involved in the growth model can be obtained independently, so that four 
parameters suffice to fully determine the volume, the amount of protein, and the dry mass density 
during interphase growth. Here, we summarize the equations used to fit the data displayed in 
Figure 2. The volume can be expressed as:

	﻿‍

V=




v1 · ekr·t, if t ≤ t∗∗

v2 · (t − t∗∗) + v3 · e−(t−t∗∗)/τp + v4, if t ≥ t∗∗‍�
(A.46)

in which (‍v1, v2, v3, v4‍) are volumes that can be, if needed, expressed function of the previously 
defined parameters. We obtain (‍v2, v3, v4‍) as a function of ‍v1, τp‍ and ‍t∗∗‍ by imposing regularity 
constraints on the volume and growth rate:

	﻿‍




v3 = τ2
p · k2

r · v1 · ekr·t∗∗

v2 = v3
τp

+ kr · v1 · ekr·t∗∗

v4 = v1 · ekr·t∗∗ − v3 ‍�

(A.47)

Similarly, the normalized total number of protein can be expressed as:

	﻿‍

Ptot/Ptot(1h) =




ekr·(t−1), if t ≤ t∗∗

p1 + p2 · e−(t−t∗∗)/τp , if t ≥ t∗∗‍�
(A.48)

Again imposing regularity constraints at the mRNA saturating transition allows us to relate ‍p1‍ and 
‍p2‍ to ‍kr‍, ‍τp‍ and ‍t∗∗‍.

	﻿‍




p2 = −τp · kr · ekr·(t∗∗−1)

p1 = ekr·(t∗∗−1) − p2 ‍�
(A.49)

Finally, we can express the total mass density ‍ρtot‍ of the cell (including water and dry mass, see 
Figure 2) using the expressions of total protein number and volume Equations A.46; A.48:

	﻿‍

(ρtot − ρw)/(ρtot,0 − ρw) =




1, if t ≤ t∗∗

Ptot
Ptot(0h) ·

v1
V , if t ≥ t∗∗‍� (A.50)

https://doi.org/10.7554/eLife.82490
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We use a density of water 4% larger than that of pure water (‍ρw,eff = 1.04kg/L‍ instead of ‍∼ 1 kg/L‍) to 
compensate for our approximation to consider the dry mass as entirely made of proteins. Proteins are 
known to only occupy ‍%

mass
p = 0.6‍ of the dry mass, itself being of order ‍ρ = 0.1 kg/L‍ (Appendix 1—table 

1). Thus, we simply use as the effective water mass density, ‍ρw,eff = ρw + (1 − %mass
p ) · ρ ∼ 1.04 kg/L‍.

4.1.5 Fitting procedure
We detail in this appendix the method used to determine the four fitting parameters: ‍τp‍, ‍t

∗∗‍, ‍kr, v1‍ 
from the cell volume data (Figure 2B). Our model (Equations A.46; A.47) displays two different 
regimes of growth according to the saturation state of mRNAs. Our fitting procedure is thus divided 
into two steps. First, we impose an arbitrary transition time ‍t∗∗‍ to determine by a least mean square 
minimization the three other parameters. Then, we minimize the variance between the obtained 
solution with the data to determine ‍t∗∗‍. The optimal values of the fitting parameters are

	﻿‍ t∗∗ = 2h44min , τp = 1h9min , kr = 0.62−1 , v1 = 30fL‍� (A.51)

5.1 Manning condensation
We give a simple description of the phenomenon of Manning condensation, based on Barrat and 
Joanny, 1996. The electrostatic potential close to an infinitely charged thin rod, in a salt bath, reads

	﻿‍ ψ = 2·lb
A · ln(κr)‍� (A.52)

where ‍lb‍ is the Bjerrum length. It is the length at which the electrostatic interaction between two 
elementary particles is on the order of ‍kBT ‍. Its value in water at room temperature is ‍lb ≈ 0.7nm‍. A 
is the average distance between two charges on the polymer. ‍κ =

√
8π · lb · (n+ + n−)‍ is the inverse 

of the Debye length. At equilibrium, the distribution of charges around the rod follows a Boltzmann 
distribution:

	﻿‍
n+ = n0 · e−Ψ = n0

(κr)2· lb
A ‍�

(A.53)

The total number of positive charges per unit length of the rod reads within a distance ‍R‍:

	﻿‍
N(R) =

ˆ R

0
n+2πrdr = 2π · n0

κ2· lb
A

·
ˆ R

0

1

(r)2 lb
A −1

dr
‍�

(A.54)

When ‍u = lb
A < 1‍, ‍N(R)‍ is dominated by its upper bond and goes to 0 close to the rod. On the other 

hand, when ‍u = lb
A > 1‍, ‍N(R)‍ diverges as ‍R → 0‍ indicating a strong condensation of the counterions 

on the rod. This singularity is symptomatic of the breakdown of the linear Debye–Huckel theory. 
The solution of the nonlinear Poisson–Boltzmann equation shows that there is formation of a 
tightly bound layer of counterions very near the rod, which effectively decreases the charge density 
(increases ‍A‍) up to the value ‍ueff = 1‍(Schiessel, 2014). It means that if ‍A‍ is smaller than ‍lb‍ the manning 
condensation will renormalize ‍A‍ to ‍Aeff = lb‍. The rationale behind this renormalization is to decrease 
the electrostatic energy of the system by condensing free ions on the polymer. Note that there 
is an energy penalty associated to the loss of entropy of the condensed counterions. For weakly 
charged polymers, this loss of entropy is not energetically favorable – case where ‍u = lb

A < 1‍ and 
no condensation occurs. If the density of charge of the polymer increases, Manning condensation 
becomes energetically favorable – case where ‍u = lb

A > 1‍. By virtue of the high lineic charge of DNA, 
Manning condensation will be favorable, ‍uDNA ∼ 4‍, that is, 75% of the DNA charge is screened by 
counterion condensation.

6.1 The nested Pump-Leak model
The nested Pump-Leak model is described by a set of nonlinear equations, that is, the electroneutrality, 
the balance of pressures, and the balance of ionic fluxes, in the cytoplasm, subscript c, and in the 
nucleus, subscript n. In its most general form, the system reads

https://doi.org/10.7554/eLife.82490
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	﻿‍




n+
c − n−c − zp · pc − za · af

c = 0

n+
n − n−n − zp · pn − za · af

n − q = 0

∆Πc = ∆Pc

∆Πn = ∆Pn

n+
c · n−c = α0 · n2

0

n+
n · n−n = n+

c · n−c
(n+

n )za · af
n = (n+

c )za · af
c ‍�

(A.55)

Here, we apply the nested Pump-Leak model to mammalian cells, such that we can neglect the 
cytoplasmic difference of hydrostatic pressure with respect to the external osmotic pressure. If the 
nuclear envelope is not under tension, the condition of osmotic balance at the nuclear envelope 
simply implies that the volume of each compartment takes the same functional form as in the Pump-
Leak model:

	﻿‍




Vn = Rn + Ntot
n

2n0

Vc = Rc + Ntot
c

2n0 ‍�
(A.56)

It is thus straightforward to show that both the volume of the nucleus and the volume of the cytoplasm 
scale with each other (Equation 12).

6.1.1 Dry volumes in the nucleus and in the cytoplasm
We assume that the dry volumes in the nucleus and in the cytoplasm are proportional to the total 
volumes of each compartments and are equal to each other: ‍Rn = r · Vn‍ and ‍Rc = r · Vc‍. Under this 
assumption, the NC ratio simply becomes the ratio of the wet volumes:

	﻿‍ NC = Vn
Vc

= Vn−Rn
Vc−Rc ‍� (A.57)

This hypothesis is practical rather than purely rigorous. It is based on experiments that suggest that 
dry mass occupies about 30% of the volume of both the nucleus and the cytoplasm for several cell 
types and conditions (Venkova et al., 2022; Lemière et al., 2022; Rowat et al., 2006). Nonetheless, 
even if this assumption were to be inexact, our discussion would then rigorously describe the slope 
of the linear relationship between nucleus and cell volume (Equation 12) which was shown to be 
robust to perturbation (Guo et al., 2017).

6.1.2 Membrane potential in the simple Pump-Leak model
We insert the expression for the volume (Equation A.14) and ion concentrations (Equation A.10) 
into the expression of the transmembrane potential found in the simple Pump-Leak model (Equation 
A.8) to show that a nonvanishing potential exists as soon as there are trapped charged particles. In 
the simple Pump-Leak model, the plasma membrane potential difference hence reads

	﻿‍




U = ln
(

−z·(−1+r)+
√

z4+α0−z2·(−1+α0+2·r)
z2−1

)

With, r =
√

1 + (z2 − 1) · (1 − α0) ‍�

(A.58)

We find that ‍U ‍ monotonically increases (in absolute value) with the average charge of the cell trapped 
components. This differs from the nuclear membrane potential that vanishes when the charge of the 
chromatin is diluted regardless of the properties of the trapped proteins (Equation 16).

6.1.3 General formula for the regime ‍NC2‍, that is, no metabolites
As stated in the main text, an important limit regime, ‍NC2‍, is achieved when there are no metabolites 
in the cell. Specifically, the previous system of equations becomes uncoupled with respect to the 
nuclear and cytoplasmic set of variables such that we can solve the system analytically. Using the 
exact same algebra as used in the simple Pump-Leak model, we express the volumes and the NC 
ratio as

https://doi.org/10.7554/eLife.82490
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	﻿‍




Vtot = (Rc + Rn) + Ntot
n +Ntot

c
2n0

Ntot
c = Pc ·

z2
p−1

−1+
√

1+
(

1−α0
)
·(z2

p−1)

Ntot
n = Pn ·

(z2
n,eff−1)

−1+
√

1+(1−α0)(z2
n,eff−1)

zn,eff = zp + Qeff

Pn

NC = NC2 = NC1 ·
(z2

n,eff−1)
(z2

p−1) ·
−1+

√
1+(1−α0)(z2

p−1)

−1+
√

1+(1−α0)(z2
n,eff−1)‍�

(A.59)

6.1.4 Analytical solutions in the regime ‍zp = 1, za = 1‍, and ‍α0 ∼ 0‍
In this regime of high pumping, no anions occupy the cell. We simplify the notations by denoting by 
‍n‍ the concentration of cations. The system of equation to solve is stated in the main text (Equation 
15). We first express the concentrations of cations and metabolites in the cytoplasm and nucleus as a 
function of ‍n0‍, ‍qeff

‍, and ‍p‍ thanks to the electroneutrality equations and balance of osmotic pressures:

	﻿‍




nn = n0 + qeff

2

af
n =

(
n0 − qeff

2

)
− pn

nc = n0

af
c = n0 − pc ‍�

(A.60)

This allows us to write the nuclear envelope potential as Equation 16 in the main text. Using the 
balance of nuclear osmotic pressure, we express the nuclear volume function of the number of 
nuclear osmolytes:

	﻿‍ Vn − Rn = Qeff+2Af
n+2Pn

2n0 ‍� (A.61)

This implies that the nuclear envelope potential can be written without the dependence on ‍n0‍ as in 
Equation 16. We then express the NC ratio in two different manners. First, using the interpretation 
of wet volumes, namely, the total number of osmolytes in the compartments over ‍2n0‍. Second, we 
take advantage of the concentrations of metabolites and cations in Equation A.60 to express the 
ratio of protein concentrations. After simple algebra, we obtain:

	﻿‍




NC = Pn
Pc

· pc
pn

= NC1 ·
(

1 + Qeff

2Pn+2Af
n+Qeff + Qeff2

2Pn+2Af
n+Qeff

)

NC = 1
2 · 2Af

n+2Pn+Qeff

Af
tot−Af

n+Pc ‍�

(A.62)

For clarity, we now normalize each number by ‍2Pn‍, for example, ‍Atot = Atot
2Pn ‍. Equating both 

expressions of the NC ratio leads to a second order polynomial in ‍A
f
n‍:

	﻿‍
2(1 + 1

NC1
) ·

(
Af

n

)2
+
(
−2Atot + (1 + Qeff)2 + 1

NC1
· (1 + 2Qeff)

)
· Af

n − Atot · (1 + Qeff)2 = 0
‍�

(A.63)

The solution ‍A
f
n‍ now reads

	﻿‍
Af

n =
2Atot− 1

NC1
·(1+2Qeff)−(1+Qeff)2+

√(
2Atot− 1

NC1
·(1+2Qeff)−(1+Qeff)2

)2
+8·(1+ 1

NC1
)·Atot·(1+Qeff)2

4·(1+ 1
NC1

) ‍�
(A.64)

which leads to the following expression for NC:

	﻿‍
NC = NC1 ·

2Atot+ 1
NC1

+(1+Qeff)2+
√(

2Atot− 1
NC1

·(1+2Qeff)−(1+Qeff)2
)2

+8·(1+ 1
NC1

)·Atot·(1+Qeff)2

2·
(

1+2Atot+ 1
NC1

+Qeff
)

‍�
(A.65)

As a sanity check, we verify some asymptotic expressions discussed in the main text. For example, 

when ‍Q
eff << 1‍ or ‍Atot >> 1‍, we recover that NC becomes equal to ‍NC1‍. On the other hand, when 

‍Atot << 1‍, we recover that ‍NC = NC1 · (1 + Qeff) = NC2‍

https://doi.org/10.7554/eLife.82490
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6.1.5 Control parameters of the nested Pump-Leak model during growth
The precise value of the parameter ‍NC1 = Pn

Pc ‍ is biologically set by an ensemble of complex active 
processes ranging from transcription, translation to the Ran GTPase cycle, and nuclear transport. 
The precise modeling of nucleo-cytoplasmic transport is out of the scope of this article but could 
easily be incorporated to our framework. Nonetheless, we can safely assume that nucleo-cytoplasmic 
transport is fast compared to the typical timescale of growth. In this case, neglecting protein 
degradation on the timescale of the G1 phase, the total number of proteins in the nucleus is simply 
the number of proteins assembled that possessed a nuclear import signal (NIS) in their sequence. 
Using the same notation as earlier, in the exponential growth regime, the total number of proteins 
in the nucleus reads

	﻿‍ Ptot,n(t) =
∑

j∈NIS
ϕj
ϕr

· Pr(t)‍� (A.66)

where ‍Pr(t)‍ accounts for the number of ribosomes, ‍ϕj‍ is the fraction of genes coding for the protein 
j (see Appendix 1, section 4.1). The subscript j is summed over the genes coding for proteins having 
nuclear import signals in their sequence. Proteins in the nucleus can either be DNA bound or 
unbound. For example, histones or DNA polymerases bind to the DNA. Only the unbound proteins 
contribute to the osmotic pressure. Denoting ‍ku,j‍ and ‍kb,j‍ the reaction rate of binding and unbinding 
of protein j and assuming that the reactions of binding and unbinding are fast compared to the 
timescale of growth, we finally express the number of free proteins in the nucleus as

	﻿‍ Pfree,n(t) =
∑

j∈NIS
ku,j

kb,j+ku,j
· ϕj
ϕr

· Pr(t)‍� (A.67)

It is then straightforward to express ‍NC1‍ as

	﻿‍
NC1 =

∑
j∈NIS

ku,j
kb,j+ku,j

·
ϕj
ϕr∑

j /∈NIS
ku,j

kb,j+ku,j
·
ϕj
ϕr ‍�

(A.68)

An important result of this abstract modeling is that ‍NC1‍ is independent of time during the exponential 
growth due to the fact that both ‍Pn(t)‍ and ‍Pc(t)‍ are proportional to ‍Pr(t)‍, which is why we adopted it 
as a control parameter. The same goes for our second control parameter ‍

Atot
2Pn ‍, which is also constant 

during exponential growth.

6.1.6 Phase diagram
In this section, we address the case ‍∆Pn ̸= 0‍ and assume that the cell does not adhere to the substrate 
such that we consider the nucleus to be spherical. For simplicity, we neglect the dry volume because 
we want to consider hypo-osmotic shock experiment where dry mass will be diluted, making a dry 
volume a second order effect of the order 10%. We first make the problem dimensionless. There 
are two dimensions in our problem: an energy and a length. This means that we can express all our 
parameters that possess a dimension with a unit energy and a unit length. Moreover, we have three 
parameters with physical dimensions: the extracellular osmolarity ‍n0‍, the nuclear envelope tension 
‍γ‍, and the thermal energy ‍kBT ‍. The theorem of Buckingham, 1914 tells us that we can fully describe 
our problem with a single dimensionless parameter and the three parameters with by definition no 

dimensions. In this geometry, we choose 
‍
[
(

4π
3

)1/3
· γ0

kBTX1/3
n n2/3

0
,α0, zn, Xn]

‍
. Laplace law reads:

	﻿‍
∆Pn = 2γn

( 3
4π Vn)1/3 ‍� (A.69)

Using the following dimensionless quantities:

	﻿‍




Vn = 2n0
Xn

· Vn

γn =
(

4π
3

)1/3
· γ0

kBTX1/3
n n2/3

0 ‍�

(A.70)

Equality of pressures becomes

	﻿‍

√(
zn
Vn

)2
+ α0 + 1

Vn
− 1 − γn

V1/3
n

= 0
‍� (A.71)

https://doi.org/10.7554/eLife.82490
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Equation A.71 cannot be solved analytically for ‍Vn‍. However, five asymptotic regimes can be 
identified (see Appendix 1—figure 1):

	﻿‍




V1 =
(

3
16π

) 1
2 ·

(
kBTXn
zn·γn

) 3
2

V2 =
(

3
210·π

) 1
5 ·

(
kBT·z2

n·X
2
n

n0·
√
α0·γn

) 3
5

V3 =
(

3
16π

) 1
2 ·

(
kBT·Xn
γn

) 3
2

V4 = Xn
2n0

· 1
1−√

α0

V5 = Xn
2n0

· zn√
1−α0 ‍�

(A.72)

•	 V4 and V5 are the limit regimes where osmotic pressure is balanced at the nuclear envelope.
•	 V3 is the limit regime where the difference of osmotic pressure is dominated by the imper-

meant molecules trapped inside the nucleus. This happens when the proteins are not or very 
weakly charged. This difference of osmotic pressure is balanced by the Laplace pressure of 
the lamina.

•	 V1 is the limit regime where the difference of osmotic pressure is dominated by the counterions 
of the impermeant molecules. This difference of osmotic pressure is balanced by the Laplace 
pressure of the lamina.

•	 V2 is an intermediate regime that can arise when ‍α0 ≈ 1‍. The difference of osmotic pressure 

takes the form of 
‍
∆Πn ≈ kBT · 1√

α0
·
(

zn·xn
)2

4n0 ‍
. This osmotic pressure defines an effective virial 

coefficient between monomers of DNA and proteins 
‍
vel = 1√

α0

z2
n

2n0 ‍
. This difference of osmotic 

pressure is balanced by the Laplace pressure at the nuclear envelope.
•	 Note that when ‍α0 ≈ 0‍ (strong pumping), only the counterion necessary for electroneutrality 

remain in the nucleus. ‍Πn‍ is simply ‍(zn + 1) · xn‍ and is either balanced by the Laplace pressure 
of the lamina or the external osmotic pressure (see Appendix 1—figure 1).

Finally, the analytical expressions for the crossover lines ‍γi,j‍ between regime of volume ‍Vi‍ and volume 

‍Vj‍, plotted in Appendix 1—figure 1 read

	﻿‍




γ1,2 = (4 · α0 · zn)
1
3

γ1,4 = zn · (1 −√
α0)

2
3

γ1,5 = z
1
3
n · (1 − α0)

1
3

γ2,5 = z
1
3
n ·(1−α0)

5
6

2·√α0

γ2,4 = z2
n·(1−

√
α0)

5
3

2·√α0

γ2,3 = z−
4
3

n · (4 · α0)
1
3

γ3,5 = z−
2
3

n · (1 − α0)
1
3

γ3,4 = (1 −√
α0)

2
3

z1,3 = 1

z4,5 =
√

1−α0
1−√

α0 ‍�

(A.73)

6.1.7 Saturating volume after a hypo-osmotic shock
The saturation occurs when the nuclear osmotic pressure is balanced by the Laplace pressure making 
nuclear volume insensitive to the external osmolarity (Equation A.72). We assume that the nuclear 
envelope behaves elastically with a stretching modulus ‍K ‍ beyond a surface area ‍S∗‍ for which nuclear 
envelope folds are flattened:

	﻿‍

γn =




0 , if Sn ≤ S∗

K ·
(

Sn
S∗ − 1

)
, if Sn ≥ S∗

‍�
(A.74)
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As justified in the main text, metabolites tend to leave the nucleus with decreasing external 
osmolarity. The saturating volume is obtained when ‍∆Pn >> Π0‍ and ‍A

f
n << Pn‍. From Equation A.15 

applied to the volume of the nucleus, we thus obtain

	﻿‍ ∆P = (zeff
n + 1) · Pn

Vmax
n ‍� (A.75)

where ‍z
eff
n = zp + Qeff

Pn ‍. Similarly to the last subsection, we normalize tensions by ‍(
3

4π )1/3 · kBT · P1/3
n · n2/3

0 ‍ 

and volumes by ‍
2·Pn
2n0 ‍. Equation A.75 leads to the equation ruling the saturating volume:

	﻿‍
(vmax

n )4/3 − (viso
n )2/3 · (1 + s) · ( n0

niso
0

)2/3 · (vmax
n )2/3 − (viso

n )2/3 · (1 + s) · ( n0
niso

0
)2/3 ·

1
2 ·(z

eff
n +1)
K

= 0
‍�

(A.76)

where 
‍
s = S∗

Siso
n

− 1
‍
 is the fraction of folds that the nucleus possesses at the isotonic osmolarity. 

‍v
max
n = 2n0·Vmax

n
2Pn ‍ is the normalized saturating nuclear volume and ‍viso

n ‍ the normalized nuclear volume 
at the isotonic osmolarity. 

‍
K = K

( 3
4π )1/3·kBT·P1/3

n ·n2/3
0 ‍

 is the normalized effective stretching modulus of the 

nuclear envelope. Solving the previous equation, coming back to real volumes 
‍
Vmax

n
Viso

n
= vmax

n
viso

n
· niso

0
n0 ‍

 and 

Taylor develop the result for ‍n0 −→ 0‍ leads to Equation 19 in the main text.

https://doi.org/10.7554/eLife.82490
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Appendix 1—figure 1. Additional results of the nested Pump-Leak model. (A) Variation of the nuclear-to-
cytoplasmic (NC) ratio during growth after blocking nuclear import. (B) Variations of the NC ratio according to 
the effective charge of the chromatin normalized by the number of trapped proteins in the nucleus ‍

Q
2Pn ‍. The NC 

ratio is bounded by two limit regimes. NC1, if the number of metabolites is assumed infinite. NC2, if there are 
no metabolites. The vertical black dashed line depicts the value of ‍

Q
2Pn ‍ estimated in Appendix 1, section 3.1 for 

diploid mammalian cells. (C–E) log–log plot of the different regimes of V Equation A.72 in the plan (‍zn‍, ‍γn‍) for ‍α0‍ 
fixed (C) ‍α0 = 0.99‍, (D) ‍α0 = 0.8‍, and (E) ‍α0 = 0.001‍. The crossover lines plotted are given in Equation A.73.

6.1.8 Geometrical impact
The previous equations were conducted for a spherical geometry. Interestingly, while the precise 
geometry does not qualitatively change our results, we expect the saturation of nuclear volume to 
occur more easily for a pancake shape – a shape closer to the shape of adhered cells. Indeed, the 
scaling between surface and volume is approximately linear in this case: ‍V ∼ h · S‍, while it is sublinear 
for spheres ‍S ∼ V2/3‍. Thus, smaller osmotic shocks will be required to tense the nuclear envelope and 
so as to reach the saturating regime.

https://doi.org/10.7554/eLife.82490
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7.1 Electrostatic interactions are encompassed within our framework
We directly compute the contribution of electrostatic interactions to the osmotic pressure based on 
Barrat and Joanny, 1996. The total interaction energy of a solution of charged particles of average 
density ‍x‍ within a volume ‍V ‍ is, using the Poisson–Boltzmann framework,

	﻿‍

Eel
kBT

= lb · z2

2

ˆ ˆ
x(⃗r) · x(r⃗′) · e−κ|⃗r−r⃗′ |

|⃗r − r⃗′|
d3⃗r · d3r⃗′

‍�
(A.77)

where ‍x(⃗r)‍ is the local density of impermeant molecules in the cell. Fourier analysis allows us to 
rewrite this equation:

	﻿‍

Eel
kBT

= lb · z2

2

ˆ
x(⃗k) · x(−⃗k) · 4π

k2 + κ2 d3k⃗ ≈ lb · z2

2
· x2 · 4π

κ2 · V
‍�

(A.78)

From which, we derive the expression of the osmotic pressure:

	﻿‍
Πel
kBT ≈ 1

2 · z2

2n0
· x2

‍� (A.79)

We now show that this term is already encompassed within our framework. For the simplicity of the 
discussion, we neglect pumping, that is, ‍α0 ∼ 1‍. The difference of osmotic pressure then reads (see 
Equation A.11)

	﻿‍
∆Π
kBT =

√
(zx)2 + 4n2

0 + x − 2n0‍� (A.80)

which, under the right regime, that is, ‍zx << 2n0‍, leads to the same term. As mentioned above, this 
osmotic pressure defines an effective electrostatic virial coefficient between monomers:

	﻿‍ vel = z2

2n0 ‍� (A.81)

8.1 Possible extension to explain the scaling of other organelles
Organelles are also known to display characteristic scaling trends with cell size (Chan and Marshall, 
2010). We emphasize that these scalings may be of different origins and would require a much more 
careful treatment with respect to the specificity of the organelle. Nevertheless, in this subsection, 
we highlight that, if we assume that the organelles are constrained by the same physical laws, our 
model then easily extends to the inclusion of other organelles and in particular would predict the 
proportionality between organelle and cell volumes.

We model an organelle in our theory by a compartment bound by a membrane that trap some 
molecules. For the sake of generality, we assume that there is an active transport of cations through 

this membrane. As a matter of coherence with the previous notations, we will call by ‍αorg = e−
porg

kBTg+‍ 
the parameter that compares the active pumping through the organelle’s membrane versus the 
passive leakage. Donnan equilibrium on both side of the organelle reads

	﻿‍ n+
org · n−org = αorg · (n+

c · n−c ) = αorg · α0 · n2
0‍� (A.82)

Hence, the results derived previously also apply to the organelle provided the parameter ‍α0‍ is 
changed into ‍αorg · α0‍. Interestingly, in the case of osmotic balance at the membrane of the organelle, 
it is straightforward to show that the volume of the organelle also scales with the cell volume:

	﻿‍





Vorg =
(

Ntot
org

Ntot

)
· Vtot +

[(
Ntot

c +Ntot
n

Ntot

)
· Rorg −

(
Ntot

org
Ntot

)
· (Rc + Rn)

]

Ntot = Ntot
c + Ntot

n + Ntot
org

Ntot
org = Xorg · (z2

org−1)

−1+
√

1+(1−α0·αorg)(z2
org−1) ‍� (A.83)
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