Phylodynamics of SARS-CoV-2 in France, Europe and the world in 2020

  1. Romain Coppée  Is a corresponding author
  2. François Blanquart
  3. Aude Jary
  4. Valentin Leducq
  5. Valentine Marie Ferré
  6. Anna Maria Franco Yusti
  7. Léna Daniel
  8. Charlotte Charpentier
  9. Samuel Lebourgeois
  10. Karen Zafilaza
  11. Vincent Calvez
  12. Diane Descamps
  13. Anne-Geneviève Marcelin
  14. Benoit Visseaux
  15. Antoine Bridier-Nahmias  Is a corresponding author
  1. Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, France
  2. Collège de France, France
  3. Sorbonne Université, Inserm, iPLESP, France
  4. Hôpital Bichat-Claude-Bernard, France

Abstract

Although France was one of the most affected European countries by the COVID-19 pandemic in 2020, the dynamics of SARS-CoV-2 movement within France, but also involving France in Europe and in the world, remain only partially characterized in this timeframe. Here, we analyzed GISAID deposited sequences from 1st January to 31th December 2020 (n = 638,706 sequences at the time of writing). To tackle the challenging number of sequences without the bias of analyzing a single subsample of sequences, we produced 100 subsamples of sequences and related phylogenetic trees from the whole dataset for different geographic scales (worldwide, European countries and French administrative regions) and time periods (from 1st January to 25th July 2020, and from 26th July to 31th December 2020). We applied a maximum likelihood discrete trait phylogeographic method to date exchange events (i.e., a transition from one location to another one), to estimate the geographic spread of SARS-CoV-2 transmissions and lineages into, from and within France, Europe and the world. The results unraveled two different patterns of exchange events between the first and second half of 2020. Throughout the year, Europe was systematically associated with most of the intercontinental exchanges. SARS-CoV-2 was mainly introduced into France from North America and Europe (mostly by Italy, Spain, United Kingdom, Belgium and Germany) during the first European epidemic wave. During the second wave, exchange events were limited to neighboring countries without strong intercontinental movement, but Russia widely exported the virus into Europe during the summer of 2020. France mostly exported B.1 and B.1.160 lineages, respectively during the first and second European epidemic waves. At the level of French administrative regions, the Paris area was the main exporter during the first wave. But, for the second epidemic wave, it equally contributed to virus spread with Lyon area, the second most populated urban area after Paris in France. The main circulating lineages were similarly distributed among the French regions. To conclude, by enabling the inclusion of tens of thousands of viral sequences, this original phylodynamic method enabled us to robustly describe SARS-CoV-2 geographic spread through France, Europe and worldwide in 2020.

Data availability

All genome sequences and associated metadata in the dataset are published in GISAID's EpiCoV database. To view the contributors of each individual sequence with details such as accession number, virus name, collection date, originating lab and submitting lab and the list of authors, visit: https://doi.org/10.55876/gis8.230120zd.All the scripts developed for this study were deposited in the following GitHub repository: https://github.com/Rcoppee/PhyloCoV

Article and author information

Author details

  1. Romain Coppée

    Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, Paris, France
    For correspondence
    romain.coppee@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3024-5928
  2. François Blanquart

    Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0591-2466
  3. Aude Jary

    Sorbonne Université, Inserm, iPLESP, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Valentin Leducq

    Sorbonne Université, Inserm, iPLESP, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Valentine Marie Ferré

    Service de Virologie, Hôpital Bichat-Claude-Bernard, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Anna Maria Franco Yusti

    Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Léna Daniel

    Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Charlotte Charpentier

    Service de Virologie, Hôpital Bichat-Claude-Bernard, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Samuel Lebourgeois

    Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Karen Zafilaza

    Sorbonne Université, Inserm, iPLESP, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Vincent Calvez

    Sorbonne Université, Inserm, iPLESP, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Diane Descamps

    Service de Virologie, Hôpital Bichat-Claude-Bernard, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Anne-Geneviève Marcelin

    Sorbonne Université, Inserm, iPLESP, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Benoit Visseaux

    Service de Virologie, Hôpital Bichat-Claude-Bernard, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Antoine Bridier-Nahmias

    Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, Paris, France
    For correspondence
    antoine.bridier-nahmias@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0376-6840

Funding

No external funding was received for this work.

Reviewing Editor

  1. Caroline Colijn, Simon Fraser University, Canada

Version history

  1. Received: August 8, 2022
  2. Preprint posted: August 11, 2022 (view preprint)
  3. Accepted: April 15, 2023
  4. Accepted Manuscript published: April 26, 2023 (version 1)
  5. Version of Record published: May 11, 2023 (version 2)

Copyright

© 2023, Coppée et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 731
    views
  • 110
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romain Coppée
  2. François Blanquart
  3. Aude Jary
  4. Valentin Leducq
  5. Valentine Marie Ferré
  6. Anna Maria Franco Yusti
  7. Léna Daniel
  8. Charlotte Charpentier
  9. Samuel Lebourgeois
  10. Karen Zafilaza
  11. Vincent Calvez
  12. Diane Descamps
  13. Anne-Geneviève Marcelin
  14. Benoit Visseaux
  15. Antoine Bridier-Nahmias
(2023)
Phylodynamics of SARS-CoV-2 in France, Europe and the world in 2020
eLife 12:e82538.
https://doi.org/10.7554/eLife.82538

Share this article

https://doi.org/10.7554/eLife.82538

Further reading

    1. Epidemiology and Global Health
    Sean V Connelly, Nicholas F Brazeau ... Jeffrey A Bailey
    Research Article

    Background:

    The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission.

    Methods:

    To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018.

    Results:

    Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes.

    Conclusions:

    Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors.

    Funding:

    This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.