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Abstract Predicting the thermodynamic stability of proteins is a common and widely used step in 
protein engineering, and when elucidating the molecular mechanisms behind evolution and disease. 
Here, we present RaSP, a method for making rapid and accurate predictions of changes in protein 
stability by leveraging deep learning representations. RaSP performs on-par with biophysics-based 
methods and enables saturation mutagenesis stability predictions in less than a second per residue. 
We use RaSP to calculate ∼ 230 million stability changes for nearly all single amino acid changes in 
the human proteome, and examine variants observed in the human population. We find that variants 
that are common in the population are substantially depleted for severe destabilization, and that 
there are substantial differences between benign and pathogenic variants, highlighting the role of 
protein stability in genetic diseases. RaSP is freely available—including via a Web interface—and 
enables large-scale analyses of stability in experimental and predicted protein structures.

Editor's evaluation
This is a valuable study of broad potential impact in structural biology, which will interest readers in 
various fields, including molecular biomedicine, molecular evolution, and protein engineering.

Introduction
Protein stability, as measured by the thermodynamic free energy difference between the native 
and the unfolded state, is an important feature of protein structure and therefore function. Protein 
stability plays a critical role when trying to understand the molecular mechanisms of evolution and has 
been found to be an important driver of human disease (Casadio et al., 2011; Martelli et al., 2016; 
Nielsen et al., 2020). Furthermore, optimisation of protein stability is a fundamental part of protein 
engineering and design (Rocklin et al., 2017).

For a given protein, single amino acid substitutions can have substantial effects on protein stability 
depending on the particular substitution and the surrounding atomic environment. Assessing such 
variant effects can be done experimentally for example via thermal or chemical denaturation assays 
(Lindorff-Larsen and Teilum, 2021). This process, however, may be laborious and time-consuming for 
even a modest number of amino acid substitutions. In contrast, computational methods have been 
developed that can predict protein stability changes. Such methods include well-established energy-
function-based methods such as for example FoldX (Schymkowitz et al., 2005) and Rosetta (Kellogg 
et al., 2011), or methods based on molecular dynamics simulations (Gapsys et al., 2016).
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Machine learning models have also been developed to predict changes in protein stability and 
can roughly be split into two types: supervised and self-supervised models. In supervised models, 
experimental protein stability measurements are used as targets for model predictions (Li et al., 2020; 
Benevenuta et al., 2021; Pires et al., 2014; Chen et al., 2020). Supervised models are immediately 
appealing as they are trained directly on experimental data and are able to make predictions at the 
correct absolute scale. Supervised models may, however, suffer from systematic biases, which can be 
hard to overcome with limited experimental data. These biases relate to issues of model overfitting of 
the training data, biases present in the experimental data towards destabilising mutations, biases of 
the types of amino acid changes that have been probed experimentally, and a lack of self-consistency 
in model predictions (Yang et al., 2018; Pucci et al., 2018; Usmanova et al., 2018; Fang, 2019; Stein 
et al., 2019; Caldararu et al., 2020).

In contrast, self-supervised models can be trained without the use of experimental protein stability 
measurements. Typically, self-supervised models are trained to predict masked amino acid labels from 
structure or sequence information, thereby learning a likelihood distribution over possible amino acid 
types at a particular position. This learned likelihood distribution can subsequently be used directly 
to predict the effects of mutations on protein stability (Lui and Tiana, 2013; Boomsma and Frellsen, 
2017; Riesselman et al., 2018; Shin et al., 2021; Elnaggar et al., 2021; Meier et al., 2021). Self-
supervised models sidestep many of the challenges associated with training on experimental data 
and have shown impressive results in recent years. These models, however, often require substantial 
computational resources during training—and sometimes during evaluation—and generally do not 
make predictions at an absolute scale, which limits their practical application.

Due to the complementary strengths and weaknesses of supervised and self-supervised models, 
the two perspectives can often be fruitfully combined. Here we present such an approach for rapid 
protein stability-change predictions, combining pre-trained representations of molecular environ-
ments with supervised fine-tuning. Our method, RaSP (Rapid Stability Prediction) provides both fast 

Figure 1. Overview of model training. We trained a self-supervised three-dimensional convolutional neural network (CNN) to learn internal 
representations of protein structures by predicting wild-type amino acid labels from protein structures. The representation model is trained to predict 
amino acid type based on the local atomic environment parameterized using a 3D sphere around the wild-type residue. Using the representations from 
the convolutional neural network as input, a second downstream and supervised fully connected neural network (FCNN) was trained to predict Rosetta 
‍∆∆G‍ values.

https://doi.org/10.7554/eLife.82593
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and accurate predictions of protein stability changes and thus enables large-scale, proteome-wide 
applications.

Results
Development of the RaSP model
We trained the RaSP model in two steps (Figure 1). First, we trained a self-supervised representation 
model to learn an internal representation of protein structure. We selected a 3D convolutional neural 
network architecture for the representation model, as this has previously been shown to yield predic-
tions that correlate well with changes in protein stability (Boomsma and Frellsen, 2017). Second, we 
trained a supervised downstream model using the learned structure representation as input to predict 
protein stability changes on an absolute scale. The task of the downstream model is therefore to 
re-scale and refine the input from the representation model. The supervised downstream model was 
trained on a set of calculated protein stability changes to enable the generation of a larger and more 
powerful training data set while minimizing the effects from experimental data biases. We chose to 
estimate protein variant stability values using the Rosetta ‘cartesian_ddg’ protocol, which has shown 
to be a reliable and well-established predictor of stability (Park et al., 2016; Frenz et al., 2020), and 
as shown below the model generalizes to a wide range of situations. We expect that similar results 
could have been obtained using other variant stability prediction methods such as FoldX.

Building on earlier work (Boomsma and Frellsen, 2017), we first trained a self-supervised 3D 
convolutional neural network on a large, homology-reduced set of high-resolution structures. This 
model was trained to predict the wild type amino acid labels of a protein given its local atomic 
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Figure 2. Overview of RaSP downstream model training and testing. (A) Learning curve for training of the RaSP downstream model, with Pearson 
correlation coefficients (‍ρ‍) and mean absolute error (‍MAEF ‍) of RaSP predictions. During training we transformed the target ‍∆∆G‍ data using a 
switching (Fermi) function, and ‍MAEF ‍ refers to this transformed data (see Methods for further details). Error bars represent the standard deviation of 10 
independently trained models, that were subsequently used in ensemble averaging. Val: validation set; Train: training set. (B) After training, we applied 
the RaSP model to an independent test set to predict ‍∆∆G‍ values for a full saturation mutagenesis of 10 proteins. Pearson correlation coefficients and 
mean absolute errors (MAE) were for this figure computed using only variants with Rosetta ‍∆∆G‍ values in the range [–1;7] kcal/mol.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Learning curve for the self-supervised 3D convolutional neural network.

Figure supplement 2. Mean absolute prediction error for RaSP on the validation set, split by amino acid type of the wild-type and variant residue.

Figure supplement 3. RaSP versus Rosetta ‍∆∆G‍ values for a full saturation mutagenesis of 10 test proteins separated into either exposed (A) or 
buried (B) residues.

https://doi.org/10.7554/eLife.82593
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environment (see Methods and Figure 2—figure supplement 1 for further details). In the second step 
of developing RaSP, we trained a downstream supervised fully-connected neural network to predict 
stability changes; this model uses the internal representation of the 3D convolutional neural network 
as well as the corresponding wild type and mutant amino acid labels and frequencies as input. We 
trained this model on ‍∆∆G‍ values generated by saturation mutagenesis using Rosetta to limit the 
effects of biases from experimental assays and amino acid compositions; as described further below 
we validated the model using a range of different experiments. In the training of the supervised 
model, we used a custom loss function to focus the model on ‍∆∆G‍ values in the range from approx-
imately -1 to 7 where Rosetta is known to be most accurate (Kellogg et al., 2011) and where many 
loss-of-function variants relevant for human disease can be identified (Casadio et al., 2011; Cagiada 
et al., 2021).

After training (Figure 2a), the downstream model achieves a Pearson correlation coefficient of 0.82 
and a mean absolute error (MAE) of 0.73 kcal/mol on a test data set comprised of 10 proteins with 
full saturation mutagenesis which was not seen by the model until after it had been developed and 
trained (Figure 2b and Table 1). In practice, the downstream model predictions were made using the 
median of an ensemble of 10 model predictions with each model trained using different initialization 
seeds. The accuracy of the model is relatively uniform for the different types of amino acid substitu-
tions, with bigger errors in particular when substituting glycine residues, or when changing residues 
to proline (Figure 2—figure supplement 2). In terms of location of the residue in the protein struc-
ture, the model accuracy is slightly better at exposed relative to buried residues (Figure 2—figure 

Table 1. Overview of RaSP model test set prediction results including benchmark comparison with 
the Rosetta protocol.
When comparing RaSP to Rosetta (column: "Pearson |‍ρ‍| RaSP vs. Ros."), we only compute the 
Pearson correlation coefficients for variants with a Rosetta ‍∆∆G‍ value in the range [–1;7] kcal/mol. 
Experimental data is from Kumar, 2006; Ó Conchúir et al., 2015; Nisthal et al., 2019; Matreyek 
et al., 2018; Suiter et al., 2020.

Data set Protein name PDB, chain
Pearson |ρ| 
RaSP vs. Ros.

Pearson |ρ| 
RaSP vs. Exp.

Pearson |ρ| 
Ros. vs. Exp.

RaSP test 
set

MEN1 3U84, A 0.85 - -

F8 2R7E, A 0.71 - -

ELANE 4WVP, A 0.81 - -

ADSL 2J91, A 0.84 - -

GCK 4DCH, A 0.84 - -

RPE65 4RSC, A 0.84 - -

TTR 1F41, A 0.88 - -

ELOB 4AJY, B 0.87 - -

SOD1 2CJS, A 0.84 - -

VANX 1R44, A 0.83 - -

ProTherm 
test set

Myoglobin 1BVC, A 0.91 0.71 0.76

Lysozyme 1LZ1, A 0.80 0.57 0.65

Chymotrypsin inhib. 2CI2, I 0.79 0.65 0.68

RNAse H 2RN2, A 0.78 0.79 0.71

Protein G Protein G 1PGA, A 0.90 0.72 0.72

MAVE test 
set

NUDT15 5BON, A 0.83 0.50 0.54

TPMT 2H11, A 0.86 0.48 0.49

PTEN 1D5R, A 0.87 0.52 0.53

https://doi.org/10.7554/eLife.82593
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supplement 3), although we note also that the distribution of stability changes are different in the 
two different locations.

Validating RaSP using experimental data
After having shown that the RaSP model can successfully reproduce Rosetta ‍∆∆G‍ values, we 
proceeded to test it on experimental measurements for five proteins. Specifically, we selected four 
proteins with stability measurements from ProTherm (Kumar, 2006; Ó Conchúir et al., 2015) and 
the B1 domain of protein G for which stability measurements are available for almost all possible 
single amino acid substitutions (Nisthal et al., 2019). We compared RaSP predictions for the five test 
proteins to Rosetta as a baseline (Figure 3, Figure 3—figure supplement 1). Pearson correlation 
coefficients of RaSP model predictions versus experimental stability measurements ranged from 0.79 
(RNAse H, Rosetta baseline: 0.71)–0.57 (lysozyme, Rosetta baseline: 0.65). Although these correlations 
are not very high on an absolute scale, our results indicate that the RaSP model is approximately as 
accurate as the Rosetta protocol for predicting experimental ‍∆∆G‍ values (Table 1). We also note that 
this accuracy is close to what is computationally achievable given the available data; it has been shown 
that there exists a natural upper bound on the achievable accuracy when predicting experimental 

A B

Figure 3. Comparing RaSP and Rosetta predictions to experimental stability measurements. Predictions of changes in stability obtained using (A) RaSP 
and (B) Rosetta are compared to experimental data on five test proteins; myoglobin (1BVC), lysozyme (1LZ1), chymotrypsin inhibitor (2CI2), RNAse H 
(2RN2) and Protein G (1PGA) (Kumar, 2006; Ó Conchúir et al., 2015; Nisthal et al., 2019). Metrics used are Pearson correlation coefficient (‍ρ‍), mean 
absolute error (MAE) and mean error (ME). In the experimental study of Protein G, 105 variants were assigned a ‍∆∆G‍ value of at least 4 kcal/mol due to 
low stability, presence of a folding intermediate, or lack expression (Nisthal et al., 2019).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparing RaSP and Rosetta predictions to experimental stability measurements.

Figure supplement 2. RaSP performance on three recently published data sets (Pancotti et al., 2022): (A) The S669 data set, (B) The Ssym+ direct data 
set, (C) The Ssym+ reverse data set.

Figure supplement 3. RaSP performance on the recently published mega-scale experiments (Tsuboyama et al., 2022).

Figure supplement 4. Benchmarking RaSP and Rosetta using VAMP-seq data.

https://doi.org/10.7554/eLife.82593
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‍∆∆G‍ values due to variations between exper-
iments (Montanucci et  al., 2019). Furthermore, 
we find the bias of the predictions (assessed via 
the mean error) is roughly the same between 
RaSP and Rosetta.

In order to further validated RaSP, we compared 
its performance versus other methods on the 
recently published S669 experimental direct 
data set (Pancotti et al., 2022; Figure 3—figure 
supplement 2). The data set includes 669 vari-
ants and 94 experimental structures. We observe 
that RaSP performs as well as Rosetta in terms 
of Pearson correlation on this particular data set 
(Figure 3—figure supplement 2) and that RaSP 
performs relatively close to several of the best 
performing methods (Table 2). We also test the 
performance of RaSP on a high-accuracy version 
of the recently published experimental mega-
scale data set from Rocklin and collaborators 
(Tsuboyama et al., 2022). We observe that RaSP 
achieves a zero-shot Pearson correlation coef-
ficient of 0.62 and an MAE of 0.94 (Figure  3—
figure supplement 3). Taken together, these 
results suggest the RaSP performs on-par with 
other computational methods although differ-
ences in training and parameterization makes 
direct comparison difficult. For example, a given 
method might have been parameterized either 
directly or independently from experimental data. 
In the case of RaSP, parameterization is made indi-
rectly from experimental data since the Rosetta 
‍∆∆G‍ itself has been parameterized using a range 
of different types of experimental data (Park 
et al., 2016).

A common challenge for many machine 
learning-based methods is the ability to satisfy 
the anti-symmetry condition, which states that 
the ‍∆∆G‍ of a single point mutation must equal 
its reverse mutation with opposite sign (Pancotti 
et al., 2022). In order to assess this property, we 

tested RaSP on the Ssym+ data set, which includes both a direct and a reverse data set (Pancotti 
et  al., 2022). The direct data set includes 352 variants and 19 experimental structures while the 
reverse data set includes 352 experimental structures for each of the corresponding reverse variants. 
RaSP achieves a Pearson correlation of 0.58 and a MAE of 1.01 kcal/mol on the direct data set, while 
it only achieves a Pearson correlation of 0.18 and a MAE of 1.82 kcal/mol on the reverse data set 
(Figure 3—figure supplement 2). The failure of RaSP to accurately capture anti-symmetric effects 
is expected following the one-sided training method and provides an interesting avenue for further 
method development.

Multiplexed assays of variant effects (MAVEs, also known as deep mutational scanning assays) 
leverage recent developments in high-throughput DNA synthesis and sequencing to probe large 
(e.g. thousands per protein) libraries of protein variants (Kinney and McCandlish, 2019). A partic-
ular type of MAVE termed ‘Variant Abundance by Massively Parallel sequencing’ (VAMP-seq) probes 
variant effects on cellular protein abundance (Matreyek et al., 2018), and correlates with both in vitro 
measurements (Matreyek et al., 2018; Suiter et al., 2020) and computational predictions (Cagiada 
et al., 2021) of protein stability. We therefore compared RaSP calculations with VAMP-seq data for 

Table 2. Benchmark performance of RaSP versus 
other structure-based methods on the S669 
direct experimental data set (Pancotti et al., 
2022).
Results for methods other than RaSP have 
been copied from Pancotti et al., 2022. We 
speculate that the higher RMSE and MAE values 
for Rosetta relative to RaSP are due to missing 
scaling of Rosetta output onto a scale similar to 
kcal/mol.

Method

S669, direct

Pearson‍ρ‍

RMSE 
[kcal/
mol]

MAE 
[kcal/mol]

Structure-based

ACDC-NN 0.46 1.49 1.05

DDGun3D 0.43 1.60 1.11

PremPS 0.41 1.50 1.08

RaSP 0.39 1.63 1.14

ThermoNet 0.39 1.62 1.17

Rosetta 0.39 2.70 2.08

Dynamut 0.41 1.60 1.19

INPS3D 0.43 1.50 1.07

SDM 0.41 1.67 1.26

PoPMuSiC 0.41 1.51 1.09

MAESTRO 0.50 1.44 1.06

FoldX 0.22 2.30 1.56

DUET 0.41 1.52 1.10

I-Mutant3.0 0.36 1.52 1.12

mCSM 0.36 1.54 1.13

Dynamut2 0.34 1.58 1.15

https://doi.org/10.7554/eLife.82593
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three proteins and find that it correlates about as well as Rosetta calculations (Table 1 and Figure 3—
figure supplement 4).

Prediction of protein stability-change using computationally modelled 
structures
For maximal utility for proteome-wide stability predictions, our model should be generally robust 
to the quality of input protein structures (Caldararu et al., 2021). To test this, we used template-
based (homology) modelling to generate structures of the four proteins selected from ProTherm 
that we analysed above. To minimize issues of leakage between training and testing data, we have 
recently used MODELLER (Martí-Renom et al., 2000; Webb and Sali, 2016) to construct models 
of the four proteins, using templates with decreasing sequence identities to the original structures 
(Valanciute et al., 2023). We used these structures as input to RaSP in order to calculate ‍∆∆G‍ values 
to compare with experiments; we also performed similar tests using ‍∆∆G‍ values calculated using 
Rosetta (Figure 4). Overall we find that both RaSP and Rosetta are relatively insensitive to the input 
models, with some decrease in accuracy for both methods when models are created using more 
distant homologues.

The development of AlphaFold 2 (Jumper et al., 2021) and other protein structure prediction 
algorithms has enabled large-scale generation of accurate structural models (Varadi et al., 2022). 
Recently, it has been shown that high-confidence models generated by AlphaFold 2 are sufficiently 
accurate to be used as input for protein stability predictions using for example FoldX and Rosetta 
(Akdel et al., 2022). We therefore tested whether AlphaFold 2 structures could similarly be used 
as input to RaSP. More specifically, we asked whether ‍∆∆G‍ could be predicted as accurately from 
AlphaFold 2 structures as from crystal structures. We selected three proteins that each had two high-
resolution crystal structures and used these as well as an AlphaFold 2 model to predict ‍∆∆G‍. Overall 
we find a high correlation between the RaSP predictions from the pairs of crystal structures (‍ρ = 0.97‍), 
only slightly greater than the correlation between values predicted from a crystal structure and an 
AlphaFold 2 structure (‍ρ = 0.94‍) (Table 3). This correlation is highest in regions of the proteins where 
AlphaFold 2 is most confident about the structure prediction (i.e. residues with high pLDDT scores). 
Interpreting this observation is, however, complicated by the fact that low pLDDT scores are often 
found in loop regions that might have naturally lower ‍∆∆G‍ scores, thus increasing the effects of 
noise and minor outliers on correlation scores. Overall, these results, together with those using the 
homology models above, indicate that RaSP can also deliver accurate predictions using computa-
tionally generated protein structures; we note that similar results have been obtained using other 
stability prediction methods (Akdel et al., 2022; Valanciute et al., 2023; Lihan et al., 2023; Keskin 
Karakoyun et al., 2023).

Large-scale calculations of stability-changes and analysis of disease-
causing missense variants
Protein stability has been shown to be an important driver of human disease (Casadio et al., 2011; 
Martelli et al., 2016; Nielsen et al., 2020) and knowledge about changes in protein stability can 
provide important mechanistic insights into the molecular origins of a disease (Abildgaard et  al., 
2023; Cagiada et al., 2021). In particular, predictions of changes in protein stability can help sepa-
rate variants into mechanistic classes depending on how they affect protein function (Cagiada et al., 
2022). In this light, developing accurate predictors of ‍∆∆G‍ values is an important step in under-
standing the mechanisms behind human diseases.

Large-scale predictions often require models that are specifically suited for the task. As such, we 
designed RaSP to be fast, yet retain the accuracy of the Rosetta protocol. We benchmarked the speed 
of RaSP against both Rosetta and FoldX (well-established energy-function-based methods) (Kellogg 
et  al., 2011; Schymkowitz et  al., 2005) as well as two recent machine learning-based methods; 
ACDC-NN and ThermoNet (Benevenuta et al., 2021; Li et al., 2020; Table 4). We find that RaSP 
enables saturation mutagenesis ‍∆∆G‍ calculations at a speed of ∼0.4 s per position—independent of 
total protein length—after pre-processing of the protein structure. At this speed, saturation mutagen-
esis scans are possible for most proteins in a few minutes—orders of magnitude faster than Rosetta 
(Table 4; note differences in hardware used for the two sets of calculations). Furthermore, we find that 
RaSP is also faster than the other machine learning-based methods that have not been optimized for 

https://doi.org/10.7554/eLife.82593
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Figure 4. Stability predictions from structures created by template-based modelling. Pearson correlation coefficients (‍ρ‍) between experimental 
stability measurements and predictions using protein homology models with decreasing sequence identity to the target sequence. Pearson correlation 
coefficients were computed in the range of [–1;7] kcal/mol.
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Table 3. Comparing RaSP predictions from crystal and AlphaFold 2 (AF2) structures.
Pearson correlation coefficients (‍ρ‍) between RaSP ‍∆∆G‍ predictions using either two different 
crystal structures or a crystal structure and an AlphaFold 2 structure for six test proteins: PRMT5 
(X1: 6V0P_A, X2: 4GQB_A), PKM (X1: 6B6U_A, X2: 6NU5_A), FTH1 (X1: 4Y08_A, X2: 4OYN_A), FTL 
(X1: 5LG8_A, X2: 2FFX_J), PSMA2 (X1: 5LE5_A, X2: 5LE5_O) and GNB1 (X1: 6CRK_B, X2: 5UKL_B). 
We also divided the analysis into residues with high (pLDDT ≥ 0.9) and medium-low (pLDDT <0.9) 
pLDDT scores from AlphaFold 2.

Protein

All [‍ρ‍] High AF2 pLDDT [‍ρ‍] Medium-Low AF2 pLDDT [‍ρ‍]

X1-X2 X1-AF2 X2-AF2 X1-X2 X1-AF2 X2-AF2 X1-X2 X1-AF2 X2-AF2

PRMT5 0.93 0.89 0.95 - 0.90 0.95 - 0.66 0.89

PKM 0.99 0.95 0.95 - 0.95 0.95 - 0.88 0.89

FTH1 0.99 0.97 0.97 - 0.97 0.97 - 0.92 0.95

FTL 0.97 0.96 0.97 - 0.96 0.97 - 0.96 0.94

PSMA2 0.99 0.95 0.95 - 0.96 0.96 - 0.78 0.80

GNB1 0.96 0.94 0.94 - 0.94 0.94 - 0.93 0.89

Table 4. Run-time comparison of RaSP and four other methods for three test proteins ELOB (PDB: 
4AJY_B, 107 residues), GCK (PBD: 4DCH_A, 434 residues) and F8 (PDB: 2R7E_A, 693 residues).
The RaSP model is in total 480–1,036 times faster than Rosetta. RaSP, ACDC-NN and ThermoNet 
computations were performed using a single NVIDIA V100 16 GB GPU machine, while Rosetta 
and FoldX computations were parallelized and run on a server using 64 2.6 GHz AMD Opteron 
6380 CPU cores. The number of ‍∆∆G‍ computations per mutation was set to 3 for both Rosetta 
and FoldX. For ThermoNet, we expect that the pre-processing speed can be made comparable to 
Rosetta via parallelization.

Method Protein

Wall-clock time [s]

Pre-processing ‍∆∆G‍ ‍∆∆G‍/ residue

RaSP

ELOB 7 41 0.4

GCK 11 173 0.4

F8 20 270 0.4

Rosetta

ELOB 677 44,324 414.2

GCK 7,996 118,361 272.7

F8 17,211 133,178 192.2

FoldX

ELOB 78 42,237 394.7

GCK 728 309,762 713.7

F8 1,306 559,050 806.7

ACDC-NN

ELOB 81 158 1.5

GCK 169 619 1.4

F8 325 1,080 1.6

ThermoNet

ELOB 80,442 884 8.3

GCK 4,586,522 4,227 9.7

F8 11,627,433 8,732 12.6

https://doi.org/10.7554/eLife.82593
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large-scale applications. The ACDC-NN model is the closest performing model to RaSP in terms of 
speed, and ACDC-NN has also shown to have good predictive performance on experimental test data 
(Table 2). ACDC-NN is, however, somewhat slower than RaSP both in time for pre-processing and for 
computing ‍∆∆G‍; it also uses information from multiple sequence alignments, which might not always 
be available.

To demonstrate how the speed of RaSP enables large-scale applications, we used it to perform 
saturation scans for 1381 experimentally determined structures of human proteins or domains (see 
Methods for further details on selection criteria), yielding a data set of ∼ 8.8 million ‍∆∆G‍ values. The 
‍∆∆G‍ values predicted by RaSP follow the expected distribution (Tokuriki et al., 2007; Nisthal et al., 
2019) with a small number of stabilizing variants, a large number of slightly destabilizing variants and 
a long tail of very destabilizing variants (Figure 5—figure supplement 1).

As an example of the kinds of analyses that these large-scale calculations enable, we examined vari-
ants that have been observed in the human population. Specifically, we extracted validated disease-
causing and benign variants from ClinVar (Landrum et al., 2018) and variants observed more broadly 
in the human population from the Genome Aggregation Database (gnomAD) (Karczewski et  al., 
2020), and annotated them with their predicted ‍∆∆G‍ values (Figure 5). We find that benign variants 
generally only have a smaller effect on stability (median ‍∆∆G‍ 0.54 kcal/mol, and 95% within the range 
–0.9–2.7 kcal/mol; Figure 5A) whereas many disease causing missense variants are predicted to be 
destabilizing (median ‍∆∆G‍ 1.4 kcal/mol, and 95% within the range –1.4–6.7 kcal/mol; Figure 5A). 
Thus, a substantial fraction of the pathogenic variants are predicted to be destabilized to an extent 
that is likely to cause lowered abundance (Cagiada et al., 2021; Høie et al., 2022). We observe that 
this difference in median ‍∆∆G‍ values between the benign and the pathogenic group is statistically 
significant using bootstrap sampling. We resample each of the pathogenic and benign distributions 
with replacement 104 times and compute the difference in medians between the two groups along 
with a 95% confidence interval (CI). Using this method, the difference in medians is estimated at 0.82 
kcal/mol (CI: 0.73 kcal/mol – 0.93 kcal/mol).

Similarly, variants that are common in the human population (i.e. with an allele frequency in gnomAD 
> 10-2) generally only have a small effect on the stability (median ‍∆∆G‍ 0.41 kcal/mol), whereas rarer 
variants have a broader distribution including more destabilizing variants (Figure 5B). Thus, in line 
with previous observations (Casadio et al., 2011; Martelli et al., 2016; Stein et al., 2019) we find 
that loss of protein stability is likely to be the underlying cause for loss of function for a large fraction 
of pathogenic variants. Using the bootstrapping method described above, we observe that the differ-
ence in median ‍∆∆G‍ values between the common (gnomAD > 10-2) and the rare (gnomAD < 10-4) 
variants is estimated at 0.35 kcal/mol (CI: 0.27 kcal/mol – 0.43 kcal/mol).

Following the prediction of ∼8.8 million RaSP ‍∆∆G‍ values, we decided to expand our analysis 
to the entire human proteome corresponding to ∼ 300 million predicted RaSP ‍∆∆G‍ values across 
23,391 protein structures obtained from the AlphaFold2 database (Varadi et al., 2022; Figure 5—
figure supplement 3); because of overlapping fragments in AlphaFold predictions for large proteins, 
this corresponds to ca. 230 million unique variants. We note that RaSP has only been trained and 
benchmarked on soluble, globular and folded proteins and may therefore not expected to perform 
equally well on proteins outside this category including e.g. membrane proteins and intrinsically disor-
dered proteins. Furthermore, AlphaFold2 may not predict reliable structural models in regions that 
are highly flexible and disordered (Jumper et al., 2021; Varadi et al., 2022). For convenience, we 
however provide the data for all human proteins. Despite these caveats, we observe that the RaSP 
predictions follow the same expected distributional shape as described above. We believe that these 
predictions could serve as a fruitful starting point for large-scale studies of protein stability and have 
therefore made these RaSP predictions freely available online (see ‘Data and code availability’).

Discussion
Here, we have presented a novel deep-learning-based model for making rapid predictions of protein 
stability changes using a combination of supervised and self-supervised methods. Our model uses 
the latent-space representation of a 3D convolutional neural network for protein structures as input 
to a supervised model to predict ‍∆∆G‍. Our results show that the RaSP model performs on-par with 
the Rosetta protocol that we used as target for our optimization, but at a speed that is several orders 
of magnitude faster. We analysed RaSP’s sensitivity towards using predicted protein structures, and 

https://doi.org/10.7554/eLife.82593
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Figure 5. Large-scale analysis of disease-causing variants and variants observed in the population. The grey 
distribution shown in the background of all plots represents the distribution of ‍∆∆G‍ values calculated using RaSP 
for all single amino acid changes in the 1,366 proteins that we analysed (15 of the 1381 proteins that we calculated 
‍∆∆G‍ for did not have variants in ClinVar or gnomAD and were therefore not included in this analysis). Each plot 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.82593
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applied it to generate a unique and large set of stability-change predictions for 8.8 million variants of 
1,381 human proteins. As an example of the kinds of applications that RaSP may enable, we analysed 
the role of protein stability for genetic diseases, and hope that this data and the RaSP model will be a 
broadly useful tool to study the effects of amino acid changes on protein stability.

Methods
A convolutional neural network for protein structures
We use a 3D convolutional neural network as a model to represent protein structures based on the 
architectures presented in Boomsma and Frellsen, 2017. During training, the model is tasked with 
predicting the amino acid type given its local 3D atomic environment. Specifically, for each residue 
in the polypeptide chain, the model aims to predict the amino acid type based on the local atomic 
environment lying inside a sphere centered on the ‍Cα‍ atom of the target residue to be predicted with 
a radius of 9 Å. Before prediction, all atoms in the target residue are removed from the environment. 
Each local spherical environment is parameterized using a Cartesian grid and so divided into multiple 
cubic voxels each with a volume of ‍(1Å)3

‍. Each cubic voxel has six input channels corresponding to the 
one-hot encoding of C, N, O, H, S, and P atoms. The model consists of a series of three 3D convo-
lutional layers that is applied to the local spherical atomic environment. All convolutional filters have 
a size of ‍(3Å)3

‍ and the number of filters at each convolutional layer is 16, 32, and 64, respectively. 
The three 3D convolutional layers are connected using leaky ReLU activation (He et al., 2015), max 
pooling (Riesenhuber and Poggio, 1999) and batch normalization functions (Ioffe and Szegedy, 
2015). We apply Gaussian blurring to the input local environment before the convolutional layers. 
After the convolutional layers, the output is flattened and the dimensionality is reduced by two fully 
connected layers with 100 and 20 nodes, respectively. Model predictions are optimized by minimizing 
the cross-entropy between the predicted 20-length vector and the one-hot encoded amino acid label.

We trained the above model on a data set of 2336 high resolution protein structures obtained 
using the PISCES server with maximal sequence identity set to 30% (Wang and Dunbrack, 2003). 
All structures were pre-processed using the Reduce program (Word et  al., 1999) to add missing 
hydrogen atoms and OpenMM PDBFixer (Eastman et al., 2013) to correct for common PDB errors; 
during pre-processing, three proteins gave errors and were thus discarded. Out of the remaining 2333 
proteins, 2099 proteins were used for training while 234 were withheld for validation. Optimization 
was performed using Adam (Kingma and Ba, 2014) with a learning rate of ‍3 · 10−4‍ and a batch size of 
100 residues. After training, the representation model achieves a wild-type amino acid classification 
accuracy of 63% on a validation set (Figure 2—figure supplement 1).

is also labelled with the median ‍∆∆G‍ of the subset analysed as well as a range of ‍∆∆G‍ values that cover 95% 
of the data in that subset (box plot shows median, quartiles and outliers). The plots only show values between 
–1 and 7 kcal/mol (for the full range see Figure 5—figure supplement 2). (A) Distribution of RaSP ‍∆∆G‍ values 
for benign (blue) and pathogenic (tan) variants extracted from the ClinVar database (Landrum et al., 2018). We 
observe that the median RaSP ‍∆∆G‍ value is significantly higher for pathogenic variants compared to benign 
variants using bootstrapping. (B) Distribution of RaSP ‍∆∆G‍ values for variants with different allele frequencies (AF) 
extracted from the gnomAD database Karczewski et al., 2020 in the ranges (i) AF>10-2 (green), (ii) 10-2 > AF>10-4 
(orange), and (iii) AF<10-4 (purple). We observe a gradual shift in the median RaSP ‍∆∆G‍ going from common 
variants (AF>10-2) towards rarer ones (AF<10-4).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Histogram of ‍∆∆G‍ values from saturation mutagenesis using RaSP on 1,366 PDB 
structures corresponding to ∼8.8 million predicted ‍∆∆G‍ values.

Figure supplement 2. Large-scale analysis of disease-causing variants and variants observed in the population 
using the RaSP model.

Figure supplement 3. Histogram of ‍∆∆G‍ values from saturation mutagenesis using RaSP on predicted structures 
of the entire human proteome corresponding to ∼300 million predicted ‍∆∆G‍ values predicted from 23,391 
protein structures.

Figure 5 continued

https://doi.org/10.7554/eLife.82593
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Downstream model architecture and training
We used the convolutional neural network described above to represent protein structures when 
predicting protein stability changes. Specifically, for each variant, the downstream model takes as 
input (i) a flattened 100-dimensional representation of the atomic environment extracted for the wild-
type structure using the self-supervised model, (ii) one-hot encoded labels of the wild type and variant 
amino acid, and (iii) the amino acid frequencies of the wild type and variant amino acid in the PISCES 
set of proteins. These inputs are concatenated and passed through three fully connected layers with 
128, 64, and 16 nodes, respectively, resulting in a scalar value. During training, this value is passed 
through a sigmoid function corresponding to the transformation of the target data described below. 
Between each layer, we apply batch normalization (Ioffe and Szegedy, 2015) and leaky ReLU acti-
vation (He et al., 2015). We train the model by minimizing the mean absolute error between the 
predicted values of the stability-change and Rosetta ‍∆∆G‍ values, after being transformed using a 
switching function (see below).

We trained the downstream model using ‍∆∆G‍ values from saturation mutagenesis of 35 training 
proteins and 10 validation proteins, and tested using 10 different proteins. Before training, we trans-
formed all Rosetta ‍∆∆G‍ values using a switching (Fermi) function to focus model training on the ‍∆∆G‍ 
range from -1 to 7, as this is where Rosetta is expected to be most accurate (Kellogg et al., 2011), 
where most experimental values lie (Kumar, 2006; Ó Conchúir et al., 2015; Nisthal et al., 2019), 
and covering an important range for detecting missense variants that cause disease via loss of protein 
stability and abundance (Stein et al., 2019; Cagiada et al., 2021; Høie et al., 2022). The Fermi func-
tion was defined as:

	﻿‍
F(∆∆G) = 1

1 + e−β(∆∆G−α) ‍�
(1)

with ‍β = 0.4‍ and ‍α = 3.0‍. Optimization was performed using Adam (Kingma and Ba, 2014) with a 
learning rate of ‍5 · 10−4‍ and a batch size of 40 variants. Stability changes for (disulfide-bonded) cystine 
residues were removed from the training, validation and test set as they are not predicted using our 
Rosetta protocol. In practice, this means that RaSP will tend to underestimate the magnitude of ‍∆∆G‍ 
values for mutations at cysteine residues involved in disulfide-bonds and that these predicted ‍∆∆G‍ 
values should therefore not be taken to be accurate.

Rosetta protocol
We used Rosetta (GitHub SHA1 99d33ec59ce9fcecc5e4f3800c778a54afdf8504) and the the Cartesian 
‍∆∆G‍ protocol (Park et al., 2016) to predict ‍∆∆G‍ values. Values from Rosetta values were divided by 
2.9 to convert to a scale corresponding to kcal/mol (Park et al., 2016).

Calculation of SASA
We analyse the differences in correlation between RaSP and Rosetta ‍∆∆G‍ predictions at exposed and 
buried residues respectively (Figure 2—figure supplement 3). The solvent accessible surface area 
(SASA) was calculated using BioPython and default Sander and Rost values (Cock et al., 2009; Rost 
and Sander, 1994). The cut-off between exposed and buried residues was set at 0.2.

Filtering of mega-scale data set
We tested the performance of RaSP on a recently published mega-scale folding stability experiment 
(Tsuboyama et al., 2022). We included variants with single amino acid substitutions with well-defined 
experimental ‍∆∆G‍ values. As RaSP has only been trained on ‍∆∆G‍ values from natural protein struc-
tures, we also decided to include only those in our test. Furthermore, we excluded any synonymous 
substitutions. The filtered data set contains a total of 164,524 variants across 164 protein domain 
structures.

Speed test benchmarking
We compare the speed of RaSP to other predictors of ‍∆∆G‍ namely Rosetta, FoldX, ACDC-NN and 
ThermoNet (Kellogg et al., 2011; Schymkowitz et al., 2005; Benevenuta et al., 2021; Li et al., 
2020). The Rosetta protocol was implemented as described above. The FoldX protocol was imple-
mented using FoldX version 5.0 with a custom script to enable full saturation mutagenesis calculations. 

https://doi.org/10.7554/eLife.82593
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ACDC-NN was implemented using the GitHub source code (https://github.com/compbiomed-unito/​
acdc-nn, Computational Biology and Medicine Group, 2023 accessed January 2023). ThermoNet 
was implemnted using the GitHub source code (https://github.com/gersteinlab/ThermoNet, Gerstein 
Lab, 2022 accessed January 2023).

Selection of proteins and structures for large-scale analysis
Our selection of experimental structures was based on 5,557 human proteins annotated with cytosolic 
location. To make this list, we extracted UniProt identifiers from the human genome assembly GRCh38.
p13 filtered for the Gene Ontology (Ashburner et al., 2000) term ‘cytosol’ (GO:0005829). We aligned 
the sequences of all chains of all PDB entries in the SIFTS map (Dana et al., 2019) (June 2021) to the 
UniProt sequences for the cytosolic proteins and calculated how much the protein structure in each 
PDB file covered the UniProt entries (explicitly considering mismatches, indels, residues that are not 
resolved in the structure, and modified residues). Based on these features, we calculated a score for 
each protein structure and the highest scoring structure was selected to represent a PDB entry. When 
calculating the score, we gave the highest priority to the coverage of the UniProt sequence and the 
experimental method. Specifically, given that RaSP was initially developed and benchmarked using 
crystal structures, we prioritized methods in the following order: (i) X-ray, (ii) cryo-electron microscopy, 
(iii) NMR. For our final selection, we chose 1,381 structures from the above selection, where the struc-
ture was of high quality in a canonical PDB format and where at least 50% of the UniProt sequence 
was covered by the structure.

Benchmarking on the S669 dataset
We used RaSP to predict stability changes for 669 variants using 94 experimental structures from a 
recently described dataset (Pancotti et al., 2022). We note that one of the proteins in the S669 set (​
1XXN.​pdb) is highly similar to one of the proteins we used to train our downstream model on (​1C5H.​
pdb). We also used the Ssym+ data set (Pancotti et al., 2022), which includes 352 variants and 19 
experimental structures for the ‘forward’ substitutions, and 352 experimental structures for each of 
the corresponding reverse variants.

Selection of ClinVar and gnomAD variants
The extraction of variants from ClinVar and gnomAD is based on Tiemann et al., 2023. Briefly, we 
extracted data from gnomAD using an in-house database (scripts available at: https://github.com/​
KULL-Centre/PRISM/tree/main/software/make_prism_files, Linderstrøm-Lang Centre for Protein 
Science, University of Copenhagen, 2021 release-tag v0.1.1). This was constructed using exome 
data from gnomAD v2 and whole-genome data from gnomAD v3, selecting exome GRCh38 liftover 
for v2 and whole-genome files for v3, and annotated with Variant Effect Predictor with the GRCh38 
release 100 human transcripts set from Ensembl. As previously described (Tiemann et  al., 2023), 
we computed gnomAD allele frequencies for all protein variants from the extracted exome- and 
genome data combined (if present, otherwise solely for the exome- or genome allele frequencies). 
The reported allele frequencies are calculated as the sum of exome- and genome allele counts divided 
by the sum of total exome- and genome allele counts, and all DNA variants leading to the same 
protein-level variant were combined (Tiemann et al., 2023). Similarly, ClinVar data were extracted 
from an in-house database constructed using the NCBI data source: here (May 2021). For our analysis, 
only single nucleotide variants with a mapping to GRCh38 and with a rating of at least one star were 
used. We did not find any variants in gnomAD or ClinVar for 15 of the 1381 proteins that we calculated 
‍∆∆G‍ for; the data shown in Figure 5 thus refers only to 1366 proteins.

Selection of data for human proteome analysis
The structures used for the human proteome analysis were obtained from the AlphaFold2 database 
UP000005640_9606_HUMAN_v2 (Varadi et al., 2022; Figure 5—figure supplement 3). The struc-
tures in the database were pre-processed following the RaSP protocol using Reduce and PDBFixer, 
but were otherwise unmodified so that each protein is defined by a single UniProt sequence and a 
single predicted structure. For longer proteins the AlphaFold2-predicted structures have been split 
into fragments; for those proteins we also split our RaSP predictions into corresponding fragments.

https://doi.org/10.7554/eLife.82593
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Data and code availability
Scripts and data to repeat our analyses are available via: https://github.com/KULL-Centre/_2022_​
ML-ddG-Blaabjerg/, where we also provide a link to run RaSP via resources at Google Colaboratory.
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Data availability
Scripts and data to repeat our analyses are available via: https://github.com/KULL-Centre/_2022_​
ML-ddG-Blaabjerg/ (copy archived at Linderstrøm-Lang Centre for Protein Science, University of 
Copenhagen, 2023). Data is available at http://doi.org/10.17894/ucph.7f82bee1-b6ed-4660-8616-​
96482372e736. A browsable version is available at https://sid.erda.dk/sharelink/fFPJWflLeE.

The following dataset was generated:
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