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Abstract The regulatory and effector functions of T cells are initiated by the binding of their 
cell-surface T cell receptor (TCR) to peptides presented by major histocompatibility complex (MHC) 
proteins on other cells. The specificity of TCR:peptide-MHC interactions, thus, underlies nearly all 
adaptive immune responses. Despite intense interest, generalizable predictive models of TCR:-
peptide-MHC specificity remain out of reach; two key barriers are the diversity of TCR recognition 
modes and the paucity of training data. Inspired by recent breakthroughs in protein structure predic-
tion achieved by deep neural networks, we evaluated structural modeling as a potential avenue 
for prediction of TCR epitope specificity. We show that a specialized version of the neural network 
predictor AlphaFold can generate models of TCR:peptide-MHC interactions that can be used to 
discriminate correct from incorrect peptide epitopes with substantial accuracy. Although much work 
remains to be done for these predictions to have widespread practical utility, we are optimistic that 
deep learning-based structural modeling represents a path to generalizable prediction of TCR:pep-
tide-MHC interaction specificity.

Editor's evaluation
The study provides a significant step forward in the prediction of T cell receptor docking to peptide-
major histocompatibility complex ligands using a specialised version of the deep neural network 
structure prediction program AlphaFold. Progress towards this goal has implications for vaccine 
development, and cancer immunotherapy and is an intrinsically interesting structural problem due to 
the variability of the T cell receptor scaffold.

Introduction
The specificity of T cell receptors (TCR) for peptides presented by major histocompatibility complex 
proteins (pMHC) is a critical determinant of adaptive immune responses to pathogens and tumors 
and of autoimmune disease. A predictive model of TCR:pMHC interactions, capable of mapping 
between TCR sequences and pMHC targets, could lead to advances in cancer immunotherapy and in 
the diagnosis and treatment of infectious and autoimmune diseases. Despite recent progress in TCR 
sequence analysis and modeling (Gielis et al., 2019; Huang et al., 2020; Mayer-Blackwell et al., 
2021; Montemurro et al., 2021), a generalizable predictive model of TCR:pMHC interactions remains 
out of reach: existing predictors can learn to recognize new TCR sequences specific for pMHCs in 
their training set, but robust generalization to unseen pMHC epitopes has not been convincingly 
demonstrated (Moris et al., 2021). Two key difficulties are the diversity of TCR:pMHC recognition 
modes, a consequence of TCR sequence and structural diversity and flexibility in TCR:pMHC docking 
orientation, and the limited number of experimentally validated TCR:pMHC interaction examples for 
use in training.

RESEARCH ARTICLE

*For correspondence: 
pbradley@fredhutch.org

Competing interest: The author 
declares that no competing 
interests exist.

Funding: See page 15

Preprinted: 06 August 2022
Received: 18 August 2022
Accepted: 05 January 2023
Published: 20 January 2023

Reviewing Editor: Michael L 
Dustin, University of Oxford, 
United Kingdom

‍ ‍ Copyright Bradley. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.82813
mailto:pbradley@fredhutch.org
https://doi.org/10.1101/2022.08.05.503004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Bradley. eLife 2023;12:e82813. DOI: https://doi.org/10.7554/eLife.82813 � 2 of 18

We hypothesized that 3D structural modeling might offer a path toward generalizable prediction of 
TCR:pMHC interactions in the current data-limited regime. At the biophysical level, TCR:pMHC inter-
action specificity is determined by the structures and flexibilities of the interacting partners. A wealth 
of structural studies have provided valuable insights into the atomistic determinants of specificity 
(Rossjohn et al., 2015; Rudolph et al., 2006; Singh et al., 2017). Collectively, these experimentally 
determined structures define a range of docking geometries that likely covers the majority of unseen 
interactions; they also provide valuable templates for cutting-edge deep neural network structure 
prediction methods such as AlphaFold (Jumper et al., 2021) and RoseTTAfold (Baek et al., 2021). 
These prediction tools feature advanced network architectures with millions of parameters that are 
trained on structurally characterized proteins and their sequence homologs. Despite being trained 
on monomeric structures, these approaches can generate state-of-the-art structure predictions for 
protein complexes, and they have even been used to predict whether or not protein pairs will asso-
ciate (Humphreys et al., 2021).

Here we show that a version of AlphaFold specialized for TCR:pMHC modeling can be used to 
predict TCR:pMHC binding specificity with some success. Whereas the default AlphaFold version 
trained to predict protein:protein docking (AlphaFold-Multimer Evans et al., 2021) shows inconsis-
tent performance on TCR:pMHC structures (Yin et al., 2022), our specialized pipeline demonstrates 
improved accuracy and reduced computational cost. Moreover, this modeling pipeline has signifi-
cant power to discriminate target peptides from decoy peptides as evaluated on a benchmark of 
human and mouse MHC class I epitopes. Importantly, success in predicting the correct peptide target 
correlates with structural accuracy of the models, suggesting that when the pipeline succeeds, it does 
so by recapitulating key specificity determinants. This work, together with previous studies applying 
molecular modeling techniques to TCRs (Borrman et al., 2020; Jensen et al., 2019; Lanzarotti et al., 
2018; Pierce and Weng, 2013), suggests that structure-based approaches represent a promising 
path forward for predicting TCR:pMHC interaction specificity.

Results
Structure prediction
We first evaluated the structure prediction performance of a recently released version of AlphaFold 
(AlphaFold-Multimer Evans et  al., 2021) that was specifically trained for protein:protein docking. 
AlphaFold-Multimer leverages inter-chain residue covariation observed in orthologs of the target 
proteins to identify amino acid pairs making interface contacts. Given that TCR:pMHC interactions are 
determined in part by highly variable, non-germline encoded CDR3 regions, it was unclear whether 
AlphaFold’s strong docking performance on other systems would translate to TCR:pMHC interactions. 
Indeed, the AlphaFold-Multimer developers noted that it does not perform well on antibody:antigen 
complexes, which share many features with TCR:pMHC complexes.

We tested two versions of AlphaFold-Multimer, one in which the full sequences of the interacting 
partners are provided as input ('AFM_full': MHC-I or MHC-IIa, beta-2 microglobulin or MHC-IIb, 
peptide, TCRa, and TCRb variable and constant domains), and one in which only the directly inter-
acting domains are provided as input ('AFM_trim': TCR constant domains, beta-2 microglobulin, and 
C-terminal MHC domains are removed). Restricting to the core interacting domains speeds the calcu-
lations substantially at the risk of introducing decoy docking sites at the location of interfaces with 
the missing domains. Although both models were capable of generating high-quality predictions on a 
nonredundant set of 130 TCR:pMHC complexes (as indicated by CDR loop RMSDs at and below ~2 Å; 
details below), prediction quality was highly variable, and visual inspection revealed that many of the 
predicted models had displaced peptides and/or TCR:pMHC docking modes that were outside the 
range observed in native proteins. Additionally, these AlphaFold predictions took multiple hours per 
target to complete, limiting their throughput.

One limitation of AlphaFold-Multimer is that it does not support multi-chain templates (Evans 
et al., 2021): template information from the database of solved structures can inform the internal 
conformation of individual chains, but it does not guide the docking of chains into higher order 
complexes. The constrained nature of the TCR:pMHC binding mode suggests that higher and more 
consistent prediction accuracy could be obtained by providing additional template information. A 
challenge when modeling TCR structures is that the V-alpha and V-beta genes largely determine the 

https://doi.org/10.7554/eLife.82813
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best structural template, and these genes associate freely rather than in fixed pairings, which means 
that the optimal structural template for the TCR-alpha chain will often come from a different PDB 
structure as that for the TCR-beta chain. Additionally, the TCR:pMHC docking mode varies widely 
within an overall diagonal binding mode, in a way that is not easily predicted directly from sequence, 
making it challenging to select an optimal template for the TCR:pMHC relative orientation. Guided 
by these considerations, we developed an AlphaFold-based TCR docking pipeline that uses hybrid 
structural templates to provide a broad, native-like sampling of potential docking modes (Figure 1). In 
this approach, individual chain templates are first selected based on sequence similarity to the target 
TCR:pMHC (Figure 1A). Hybrid complexes are created from these individual chain templates by using 
a diverse set of representative docking geometries to orient the TCR chains relative to the pMHC (see 
Methods). Docking geometries are defined in terms of the 6 degrees of freedom that relate the MHC 
reference frame to the TCR reference frame, where the MHC and TCR reference frames are defined 
based on internal pseudo symmetry (Figure 1B and D and Methods). These hybrid complexes are 
provided as templates to multiple independent AlphaFold simulations, four templates per simulation, 
with the highest confidence model from the simulations taken as the final prediction (Figure 1C). 
During benchmarking, templates and docking geometries from structures with similar TCRs or pMHCs 
to the target are excluded to reduce bias toward the native structure (see Methods; this constraint was 
not applied to the default AlphaFold-Multimer methods). Given that we are providing template infor-
mation that constrains the inter-chain docking, we chose not to include additional multiple sequence 
alignment (MSA) information beyond the target sequence. This greatly speeds the predictions: MSA 
building is the most time-consuming part of the AlphaFold pipeline, and the neural network inference 
step is also significantly faster without MSA information.

We found that the hybrid templates AlphaFold pipeline specialized for TCR:pMHC ('AF_TCR') 
produces higher quality models than either of the Alphafold-Multimer variants on a benchmark set 
(Figure  2—figure supplement 1) of 130 TCR:pMHC complexes (Figure  2A, Wilcoxon P<10–7  vs 
AFM_full and P<10–12 vs AFM_trim on the full set; Figure 2B, P<10–3 for both comparisons on 20 
targets without a close homolog in the AlphaFold-Multimer training set; and Figure 2—figure supple-
ment 2 for peptide modeling accuracy). The AF_TCR pipeline also outperforms the state of the art 
TCRpMHCmodels pipeline (Jensen et al., 2019) for Class I MHC TCR modeling (Figure 2—figure 
supplement 3A–B), and produces better docking geometries than simply borrowing the geometry 
from the most sequence-similar template (Figure 2—figure supplement 3C). There was a significant 
positive correlation between predicted and observed model accuracy (Figure 2C).

For each benchmark target, the AlphaFold TCR pipeline is provided with 12 hybrid template 
complexes whose TCR:pMHC docking modes are taken from 12 diverse ternary structures unrelated 
to the target. We were curious to know whether the AlphaFold simulation was improving on the 
docking information present in these template structures. To answer this question, we compared the 
accuracy of the docking geometry present in the final model to the accuracies of the 12 template 
structures. Since the 12 templates differ in the sequences and structures of their CDR loops, we devel-
oped a distance between TCR:pMHC docking geometries that compares the placement of 'generic' 
CDR loops ('docking RMSD', see Methods). This docking RMSD measure is correlated with CDR 
RMSD in comparisons of models to natives (Figure 2—figure supplement 4), but it focuses exclu-
sively on the docking geometry and provides a sequence-independent way of comparing binding 
modes that emphasizes CDR loop placement. For 30% of the targets, the AlphaFold TCR final model 
had a lower RMSD than the best template docking geometry (Figure 2D); the final model improved 
over the median template RMSD for 94% of the targets (Figure 2E). To visualize the overall docking 
geometry landscape of models and natives, we calculated docking RMSD values between all of the 
native ternary structures and the AlphaFold-TCR and AlphaFold-Multimer models and transformed 
this distance matrix into a 2D projection (Figure 2—figure supplement 5) using the UMAP algorithm 
(McInnes et al., 2018). Inspection of this 2D docking geometry landscape reveals regions that are 
distant from the native structures and only sampled by the AlphaFold-Multimer models, supporting 
the view that incorporating template docking geometries helps to constrain predictions to native-
like geometries. We analyzed the factors contributing to docking prediction accuracy and found that 
two dominant factors are the degree to which the docking geometry in the native structure deviates 
from the consensus binding mode (as captured in a multidimensional Z score, see methods) and the 
MHC class (class II binding modes were better predicted than class I), with minor contributions from 

https://doi.org/10.7554/eLife.82813
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Figure 1. Constructing diverse hybrid templates for AlphaFold modeling. (A) Four structural templates for each TCR chain and for the peptide:MHC 
are identified in the Protein Databank (Berman et al., 2000) by sequence similarity search. (B) TCR:pMHC docking geometry is defined by computing 
the rigid-body transformation between TCR and pMHC coordinate frames. Coordinate frames are oriented based on internal pseudo symmetry as 
described in the Methods. (C) Three independent AlphaFold simulations are performed, each with four hybrid templates built from the four sets 

Figure 1 continued on next page
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V gene template sequence distance, CDR loop modeling accuracy, peptide modeling accuracy, and 
TCRalpha/TCRbeta docking accuracy (Figure 2—figure supplement 6).

An attractive feature of neural network architectures is the potential to 'fine tune' a general 
network for improved prediction accuracy in a specific domain. We fine-tuned the AlphaFold parame-
ters in the context of the AlphaFold TCR pipeline on the set of 93 human TCR:pMHC complexes from 
the benchmarking set and subsequently evaluated the performance of this model on the 37 mouse 
TCR:pMHC targets. Despite the small size of the TCR:pMHC ternary structure database, the fine-
tuned model showed improved performance on the mouse targets (Figure 2F; Wilcoxon p<0.015), 
which are distinct in the details of their epitope, MHC, and TCR sequences from the human training 
set, suggesting that the model was able to learn generalizable features of TCR:pMHC interactions. 
This fine-tuning procedure was facilitated by the fact that the AF2 model requires significantly less 
memory in the absence of MSA information, making it possible to perform parameter optimization on 
full TCR:pMHC systems without any residue cropping.

Binding specificity prediction
Having established that the AlphaFold TCR pipeline can generate more accurate TCR:pMHC models 
than AlphaFold-Multimer, we evaluated its performance in TCR epitope prediction. The general 
problem of predicting, de novo, which peptide:MHCs a given TCR recognizes is likely to be very 
difficult due to the diversity of TCR:pMHC recognition modes, the polyspecificity of individual TCRs, 
and the paucity of available training data (Moris et al., 2021). Here we consider instead the simpler 
problem of selecting the correct target peptide from a small set of candidates. This might correspond 
to a real-world scenario in which we know the source antigen from which the unknown peptide epitope 
is taken, or we have a positive hit in a T cell stimulation assay that implicates a pool of peptides rather 
than a unique epitope. For benchmarking, we focus on peptide-MHC epitopes for which a repertoire 
of cognate TCRs has been identified. This allows us to evaluate the sensitivity of the predictions to 
small changes in TCR sequence. It also lets us investigate a scenario in which we are given not one 
TCR, but a set of TCRs that are all predicted to recognize the same epitope, and we consider the 
extent to which this helps to constrain the target epitope. With improved single-cell technologies 
for paired TCR sequencing, and improved methods for identifying TCR sequence convergence, we 
hypothesize that this will become an increasingly common scenario.

We selected a set of 8 Class I peptide:MHC systems (Table 1) for which a repertoire of paired 
epitope-specific TCRs and a solved ternary structure were available. These systems include one human 
(A*0201) and one mouse (H2-Db) MHC allele, each with 9- and 10-residue peptides. TCR reper-
toires containing more than 50 unique TCR sequences were subsampled to a set of 50 TCRs using 
an algorithm that removed redundancy while concentrating on the more densely sampled regions of 
TCR space (see Methods). For each MHC/peptide length combination, we used the NetMHCpan-4.1 
(Reynisson et al., 2020) method to select 9 decoy peptides with binding scores in the range of the 
true peptide binders. We additionally selected 50 irrelevant TCRs at random from human and mouse 
CD8 T cell datasets made available by 10 X Genomics (these TCRs were used to correct for pMHC-
intrinsic effects; see below and Methods).

We used the AlphaFold TCR pipeline to generate docked complexes and associated interface 
accuracy estimates for pairings of each TCR with its true pMHC epitope and with 9 decoy peptides 
of the same length (Figure  3A). This produces, for each of the eight pMHCs, an Nx10 matrix of 
predicted interface accuracies (Figure 3B, left panel), where N is the number of TCRs specific for 
the given pMHC. To generate a single number representing the estimated interface accuracy of a 
complex, we summed the residue-residue predicted aligned error (PAE) for all TCR:pMHC residue 
pairs. These raw accuracy estimates showed significant TCR- and pMHC-intrinsic effects (Figure 3B). 
Certain TCRs had consistently higher or lower than average predicted interface accuracies due to 

of single-chain templates oriented relative to one another using one of twelve representative docking geometries chosen to cover a wide range of 
experimentally determined ternary complexes. (D) TCR coordinate frames from class I pMHC ternary structures and the 12 representative transforms 
(thicker arrows) are shown in a common coordinate system defined by their corresponding pMHC coordinate frames.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. MHC and TCR core residue definitions.

Figure 1 continued

https://doi.org/10.7554/eLife.82813
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features such as longer CDR3 loops or usage of V genes without a close structural template. We saw 
similar, albeit weaker, trends across different peptide:MHC complexes, perhaps due to AlphaFold’s 
confidence in the MHC-bound structure of the peptide. TCR-intrinsic factors do not change the rela-
tive order of candidate peptides, but they make comparisons of binding predictions across TCRs 
difficult; pMHC effects have the potential to change the rank ordering of candidate peptide epitopes. 
Since we are interested here in evaluating the compatibility between TCR and pMHC and not, e.g., 

Better than
the best
template

Better than
the median
template

A B C

D E F

Figure 2. TCR modeling accuracy. (A) Comparison between Alphafold-Multimer with full ('AFM_full') or trimmed ('AFM_trim') input sequences and 
the hybrid-templates TCR pipeline ('AF_TCR'). CDR RMSD values (y-axis) are computed by superimposing the native and modeled MHC coordinates 
and comparing the placement of the TCR CDR loops (see Methods). (B) Same as in (A) but for the 20 benchmark targets unrelated to any TCR:pMHC 
structure deposited before May 2018, the cutoff date for the AlphaFold-Multimer training set. (C) AlphaFold’s predicted aligned error (PAE) measure, 
evaluated between TCR and pMHC, correlates with CDR RMSD between model and native structure. (D) The docking geometry of the final AlphaFold 
model improves over the best of the 12 templates in 30% of cases (points above the line y=x). (E) The docking geometry of the final AlphaFold model 
improves over the median of the 12 templates in 94% of cases (points above the line y=x). (F) Fine-tuning AlphaFold’s parameters on human TCR:pMHC 
complexes improves prediction of mouse TCR:pMHC complexes. Boxes in A, B, and F show the quartiles of the plotted distributions.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Structure prediction benchmark.

Figure supplement 1. Composition of the TCR:pMHC ternary structure database.

Figure supplement 2. Peptide structural modeling accuracy.

Figure supplement 3. TCR:pMHC modeling performance.

Figure supplement 4. Comparison of docking RMSD to CDR RMSD.

Figure supplement 5. Docking geometry landscapes for the structure prediction benchmark.

Figure supplement 6. Factors influencing AF_TCR docking accuracy.

https://doi.org/10.7554/eLife.82813
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ranking peptides by their affinity for MHC, we corrected for these TCR- and pMHC-intrinsic effects to 
generate an array of TCR:pMHC binding scores intended to be comparable across different pMHCs 
and TCRs (Figure 3B, middle panel; lower scores indicate stronger predicted binding, see Methods).

We evaluated the accuracy of these binding predictions across the eight pMHC epitopes. First, 
we calculated the rank of the true peptide epitope amongst the 9 decoy peptides (Figure 3B, right 
panel) on a per-TCR basis. To visualize how these ranks vary across each pMHC-specific repertoire, we 
constructed hierarchical clustering trees of the TCR sequences using the TCRdist measure (Dash et al., 
2017) and colored them by the rank of the true peptide (Figure 3C and Figure 4). Internal edges, 
which correspond to multiple ‘leaf’ TCRs, are colored by the rank of the true peptide after averaging 
the binding scores over the leaf TCRs. Looking across all eight epitopes, we can see, first, that the 
predictions are not random: on average the correct peptide is ranked more favorably than most of the 
decoys (i.e. there is more blue than red). For six of the eight epitopes, the correct peptide is ranked 
first when we average the binding scores of all the TCRs in the repertoire (Figure 3D; Figure 4: the 
largest branch of the tree is dark blue). It also appears that the epitopes with more sequence-diverse 
repertoires (A*0201-GLC9 and A*02:01-NLV9) are more challenging to predict: the trees that merge 
completely at smaller TCRdist values (further to the left) are bluer than the other trees in Figure 4. 
This can be seen quantitatively by plotting the TCRdiv repertoire sequence diversity measure (Dash 
et al., 2017) against measures of binding prediction success (Figure 4—figure supplement 1). If we 
rank the peptides by binding score and compare the recovery of true binder peptides to decoys using 
receiver operating characteristic (ROC) curves, we can see that some epitopes, such as A*02:01-YLQ9 
and A*02:01-ELA10 are predicted very well (by area under the ROC curve, AUROC ≥ 0.96) and some 
predictions are only slightly better than random (Figure 3E). We find an overall AUROC value of 0.82 
when binding and non-binding TCR:pMHC pairs from all epitopes are ranked together.

We looked to see whether structural modeling accuracy correlated with binding prediction success 
(Figure 5). Although very few of the specific TCRs being modeled have been structurally characterized, 
each of the epitopes has at least one solved ternary structure in the protein structure database. For 
each TCR, we computed docking RMSDs between the TCR:pMHC model in complex with its cognate 
epitope and the solved ternary structures for that epitope and took the minimum value as a proxy 
for the accuracy of the predicted binding mode. Figure 5A shows the distribution of these RMSD 
values across each repertoire. Well-predicted epitopes such as A*02:01-YLQ9 and A*02:01-ELA10 
indeed appear to have smaller RMSD values than other repertoires. The mouse pMHC H2Db-ASN9 
is an outlier, with an RMSD distribution shifted to very high values. Examination of the three ternary 
structures for this pMHC revealed that they represent a unique population of TRBV17+ TCRs that 
is distinct from the consensus repertoire modeled here. Two of the three TCRs bind with a reversed 
docking orientation (Gras et al., 2016), and the third has a highly displaced binding footprint (Zareie 
et al., 2021); all three are outliers in a hierarchical clustering tree of Class I TCRs based on docking 
RMSD (Figure 5—figure supplement 1). If we exclude H2Db:ASN9 and plot docking RMSD to the 
closest epitope structure versus binding score for the correct peptide, we see that there is a positive 
correlation (Figure 5B). The TCRs for which the correct peptide is ranked first have a lower RMSD 
distribution than other TCRs, and this RMSD distribution shifts upward as the rank of the correct 
peptide declines (Figure 5C). These results suggest that the correct binding predictions are driven 

Table 1. Binding specificity benchmark.

Organism MHC Peptide length Peptide sequence Antigen

human HLA-A*02:01 9 GILGFVFTL Flu M1

human HLA-A*02:01 9 GLCTLVAML EBV BMLF1

human HLA-A*02:01 9 NLVPMVATV CMV pp65

human HLA-A*02:01 9 YLQPRTFLL SARS-CoV-2 Spike

human HLA-A*02:01 10 ELAGIGILTV human MART-1

human HLA-A*02:01 10 KLVALGINAV HCV POLG

mouse H2-Db 9 ASNENMETM Flu NP

mouse H2-Db 10 SSLENFRAYV Flu PA

https://doi.org/10.7554/eLife.82813


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Bradley. eLife 2023;12:e82813. DOI: https://doi.org/10.7554/eLife.82813 � 8 of 18

at least in part by recovery of native-like structural features (analysis of peptide backbone RMSDs 
shows a positive, but much weaker, correlation between binding prediction and modeling accuracy: 
Figure 5—figure supplement 2).

To further investigate the behavior of our modeling approach, we performed an in silico epitope 
alanine scan of each of the eight pMHC-specific repertoires. We built models and calculated binding 
scores for each epitope-specific TCR docked to all single-alanine mutants of the native peptide (native 
alanine residues were mutated to glycine). Binding scores for each TCR and each of the alanine 
mutants are shown in the heatmaps in Figure 6. Averaging these binding scores over all of the TCRs 
for each epitope and subtracting the score for the native peptide gives a predicted repertoire-level 
sensitivity to mutation at each peptide position (Figure 6B). From these sensitivity plots, we can see 
that the majority of the epitope-specific repertoires show the expected preference for the native 
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Figure 3. Structural modeling can sometimes discriminate correct from incorrect TCR:pMHC pairings. (A) For each of the eight peptide:MHC epitopes, 
we docked multiple cognate TCRs against multiple decoy peptides and the wild type epitope. Here three TCRs and three pMHCs are shown; 9 decoys 
and up to 50 TCRs were actually modeled. (B) For each candidate TCR:pMHC pairing, the mean AlphaFold predicted aligned error (PAE) for the 
TCR:pMHC interface was calculated (left) and transformed into a binding score by subtracting out TCR-intrinsic and pMHC-intrinsic factors (middle). 
These binding scores were averaged to define a repertoire-level binding score for the WT epitope and each of the decoys (bottom). Also calculated was 
the rank of the WT binding score within the list of all the binding scores for each TCR (right). (C) TCRdist hierarchical clustering tree of the 50 modeled 
TCRs for the A*02:01 GIL9 epitope, labeled with the TCR sequence information, top-ranked peptide, and rank of the WT peptide, and colored by the 
rank of the WT peptide. Internal edges, which correspond to multiple ‘leaf’ TCRs, are colored by the rank of the WT peptide after averaging the binding 
scores over the leaf TCRs. (D) Repertoire binding scores for each of the eight target epitopes and the 9 decoy peptides, with the lowest (most favorable) 
binding score in each row boxed. (E) Receiver operating characteristic (ROC) curves for discrimination of WT from decoy peptides by binding score. 
Area under the ROC curve (AUROC) values are given in the legend along with the sequence of the WT peptide.

The online version of this article includes the following source data for figure 3:

Source data 1. Epitope specificity benchmark TCRs.

Source data 2. Epitope specificity benchmark peptides.

https://doi.org/10.7554/eLife.82813
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peptide at most positions, with a subset of positions showing high sensitivity. Coloring the pMHC 
structures by mutation sensitivity (Figure 6A) reveals that these highly sensitive positions are largely 
TCR-exposed; several are sites of known viral escape mutations, such as A*02:01-KLV position L5 
(Wölfl et al., 2008) and H2Db-SSL position R7 (Valkenburg et al., 2013). Although the observation 
that positions predicted to disrupt TCR binding are largely TCR-exposed accords with biophysical 
intuition, this is still an important validation of the protocol. Since the binding scores are derived 
from pairwise AlphaFold confidence measures partly involving the peptide, one concern is that they 
might be reflecting peptide-MHC binding preferences rather pMHC-TCR binding. The fact that 
peptide anchor mutations are not among the most strongly predicted positions here suggests that, by 
subtracting each peptide’s average binding score for the background ‘non-binder’ TCRs, we are able 
to correct for these peptide-intrinsic features. As a final test, we evaluated the specificity protocol in 
a more challenging setting: single TCRs (rather than TCR repertoires) interacting with altered peptide 

Figure 4. Peptide decoy discrimination results for the eight benchmark epitopes. The rank of the wild type peptide relative to the 9 decoys (0=best, 
9=worst) is shown in a heatmap and a TCRdist hierarchical clustering tree of the epitope-specific TCRs. Each row of the heatmap corresponds to a 
single TCR; each column corresponds to one of the 10 modeled peptides, with the wild type peptide on the left. The vertical ordering of the TCRs in the 
heatmaps and trees is the same. Internal edges of the trees, which correspond to multiple ‘leaf’ TCRs, are colored by the rank of the wild type peptide 
after averaging the binding scores over the leaf TCRs.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Peptide specificity prediction accuracy is inversely correlated with repertoire sequence diversity.

https://doi.org/10.7554/eLife.82813
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variants, some with diverse amino acid mutations. Here we found much poorer performance than in 
the decoy-discrimination task (Figure 6—figure supplement 1), which could be somewhat improved 
by including related TCR:pMHC complexes in the template pool (suggesting that future improve-
ments to the structure prediction methods may translate into improved binding predictions).

Discussion
Prediction of TCR:pMHC interactions is challenging because of the diversity of TCR:pMHC recogni-
tion modes and the limited number of validated interactions available for training. Inspired by recent 
breakthroughs in protein structure prediction (Baek et al., 2021; Jumper et al., 2021), we hypothe-
sized that structure-based approaches, which can leverage general features of protein structures and 
interactions, might offer a path to generalizable TCR:pMHC binding predictions from limited data. 
We developed a specialized AlphaFold pipeline for TCR:pMHC structure prediction that uses hybrid 
templates assembled from existing TCR:pMHC structures to constrain the TCR docking orientation to 
native-like geometries. Here we show that this pipeline can generate more accurate structure predic-
tions of TCR:pMHC complexes than the state-of-the-art method Alphafold-Multimer. Prediction accu-
racy correlates with model confidence, and model quality can be further improved by fine-tuning the 
AlphaFold parameters on TCR:pMHC structures. When tested on peptide decoy discrimination, we 
found that the model’s docking accuracy estimates, corrected for TCR- and pMHC-intrinsic effects, 
could be used to select the correct target peptides from decoys with substantial accuracy. Success in 
this decoy discrimination task correlated with the structural accuracy of the models, suggesting that 
the pipeline was picking out the correct peptide on the basis of molecular specificity determinants. 
Prediction accuracy varied across pMHC epitopes, with those epitopes having more sequence-diverse 
TCR repertoires proving more challenging to model.

There are a number of caveats to this work. First, the overall level of accuracy falls short of what 
would be required for most practical applications of TCR:pMHC binding prediction. As described 
below, we are pursuing multiple avenues for improving this initial pipeline; it may also be possible 
to predict from the simulations themselves which systems are reliably modeled, which could allow 

A B C

Figure 5. Success in decoy discrimination correlates with structural modeling accuracy. (A) For each TCR, the structural model in complex with the wild 
type epitope was compared to all experimentally determined ternary structures for that epitope and the smallest docking RMSD was recorded. The 
resulting RMSD distributions were smoothed using kernel density estimation and plotted. (B) Scatter plot of docking RMSD to the nearest wild type 
structure versus the binding score for the wild type peptide. Favorable wild type binding scores correlate with lower RMSD values. (C) Distributions of 
docking RMSD to the nearest wild type structure (y-axis) as a function of the rank of the wild type peptide (x-axis). When the wild type peptide is ranked 
first (left violin), the corresponding docking geometries are more similar to those of ternary complexes for that epitope, suggesting higher accuracy.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Hierarchical clustering tree of TCR:pMHC class I docking geometries.

Figure supplement 2. Peptide backbone accuracy in the specificity benchmark.

https://doi.org/10.7554/eLife.82813
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Figure 6. Alanine scanning results for the eight benchmark epitopes. (A) Heatmaps showing the binding scores for the wild type peptide (left column) 
and all single-alanine mutants (columns labeled with the wild type sequence) in complex with each TCR (rows). Below each heatmap, the wild type 
pMHC crystal structure is shown with the peptide colored by the delta between mutant and wild-type repertoire-averaged binding scores. (B) Line plots 
of the delta between the mutant and wild-type repertoire-averaged binding scores reflect the predicted repertoire-level sensitivity to epitope mutations.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparison to experimental data on single TCRs binding altered peptide ligands.

https://doi.org/10.7554/eLife.82813
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useful predictions to be extracted from large-scale calculations. Second, several of the epitopes in our 
peptide decoy discrimination benchmark have been extensively characterized in structural studies. 
While we made efforts to avoid using information from related structures during template assembly 
(see Methods), it is still possible that bias toward native-like conformations was introduced. For 
example, the AlphaFold parameters that we rely on in the pipeline were trained on individual protein 
chains (not protein complexes) deposited prior to May 2018. Some of the TCR chains modeled in the 
decoy discrimination task are likely similar to protein chains present in this AlphaFold training set. 
As the database of TCR:pMHC pairs grows, future benchmarking will establish whether the perfor-
mance observed here will extend to epitopes without structural coverage. Until then, these results 
should be considered a favorable upper bound on the method’s performance. Finally, our template-
based modeling approach is unlikely to succeed on TCR:pMHC systems with highly divergent binding 
modes. Although we do see evidence that AlphaFold can improve over the best template provided 
(Figure 2D), it is unlikely that it can reliably predict complexes that deviate substantially from any 
template (e.g. reversed-orientation geometries Beringer et al., 2015; Gras et al., 2016). More gener-
ally, a template-based approach such as ours is fundamentally limited by the coverage of the structure 
database, which is highly biased toward well-studied alleles such as HLA-A*02:01 and, for MHC Class 
I, toward canonical 9-residue epitopes (Figure 2—figure supplement 1).

The modeling pipeline described here represents a first step in applying deep learning structure 
prediction tools to study TCR:pMHC interactions. We anticipate that it can be improved by further 
testing on other systems and by comparison with other experimental data types (binding affinities, 
interface mutations, etc.). This initial pipeline does not make use of multiple sequence alignment 
(MSA) information, but it may be helpful to include MSAs for individual chains or to construct ‘paired 
MSAs’ consisting of concatenated TCR:peptide:MHC sequences of known binding examples. Such 
paired MSAs could take the place of the paired ortholog alignments used by AlphaFold-Multimer 
to detect residue covariation across interfaces. We evaluated the use of AlphaFold’s residue-residue 
accuracy estimate (PAE) to discriminate wild type from decoy peptide-MHC epitopes, but it may also 
be worth exploring the use of other binding affinity estimates such as binding energies computed 
with the Rosetta software package (Leaver-Fay et  al., 2011) or other molecular modeling tools 
(Lee et al., 2018). Finally, it may be possible to fine-tune AlphaFold parameters directly to discrim-
inate TCR:pMHC binding examples from non-binding examples, as we have recently demonstrated 
for peptide:MHC interactions (Motmaen et al., 2022). This would allow us to directly leverage the 
thousands of validated TCR:pMHC interactions within the context of a structurally informed training 
procedure.

Methods
Defining TCR:pMHC docking geometry
The TCR:pMHC docking geometry is defined by the rigid body transformation that maps between 
the MHC and TCR coordinate frames (Figure 1B). The MHC coordinate frame is defined on the basis 
of the approximate 2-fold symmetry axis that relates the N- and C-terminal halves of the beta sheet 
forming the floor of the peptide binding pocket. 12 core residues in the beta sheet were selected 
(Figure 1—figure supplement 1A), 6 from the N-terminal half and 6 from the C-terminal half, that are 
related by this approximate 2-fold rotational symmetry. For a given MHC structure, the transformation 
mapping these 12 residues onto themselves, interchanging the N- and C-terminal residues and mini-
mizing the RMSD of the alpha carbon atoms, is computed. The rotation axis of this orthogonal trans-
formation, oriented to point toward the peptide, is taken as the x-axis of the MHC coordinate frame. 
The z-axis of the coordinate frame points from the center of mass (COM) of the 6 N-terminal core 
alpha carbons to the COM of the 6 C-terminal core alpha carbons. The coordinate frame is centered 
at the COM of the 12 core residues.

To define the TCR coordinate frame, 13 structurally conserved core residues from the TCR alpha 
chain and 13 aligned core residues from the TCR beta chain (Figure 1—figure supplement 1B–C) 
were selected on the basis of visual inspection of TCR multiple structural alignments. The same proce-
dure as outlined above for the MHC is used to define the TCR coordinate frame, replacing the 6 
N-terminal and 6 C-terminal core residues of the MHC with the 13 TCRA and 13 TCRB core residues 
of the TCR heterodimer. The x-axis of the coordinate frame is chosen to point along the TCR pseudo 

https://doi.org/10.7554/eLife.82813
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symmetry axis toward the CDR loops, while the z-axis points from the COM of the TCRA core residues 
to the COM of the TCRB core residues.

The docking geometry is defined by the rigid body transformation relating the MHC coordi-
nate frame to the TCR coordinate frame. This transformation naturally lives in a 6-dimensional non-
Euclidean space (SE(3)). We take advantage of the fact that, as defined above, the x-axes of the 
MHC and TCR frames point toward the typical location of their partner in order to define a local 
6-dimensional parameterization of this space in terms of the distance between the frame origins, a 
dihedral angle about the axis connecting the frame origins, the unit vector pointing from the MHC 
to TCR in the MHC frame, and the unit vector pointing from TCR to MHC in the TCR frame (see 
the README at https://github.com/phbradley/TCRdock for further details and visualizations). This 
mapping of TCR:pMHC docking geometries to 6 real-valued parameters allows us to approximate the 
space of docking geometries by a multidimensional normal distribution and assign a ‘Z score’ (using 
the Mahalanobis distance) to any observed docking geometry. This score reflects the degree to which 
the docking geometry diverges from the consensus binding mode for its MHC class and was found 
to be a strong predictor of docking accuracy (Figure 2—figure supplement 6 upper left panel). The 
Python script ​parse_​tcr_​pmhc_​pdbfile.​py in the TCRdock github repository (see Code Availability) 
computes the MHC and TCR coordinate frames for an input PDB structure and calculates the docking 
geometry.

AlphaFold modeling pipeline
To model a given TCR:pMHC target, three AlphaFold simulations (using the 'model_2_ptm' param-
eter set) are conducted and the final model with the lowest predicted aligned error (PAE) between 
the TCR and pMHC is selected (Figure 1). The model_2_ptm parameter set was chosen based on our 
experience in peptide:MHC binding predictions, but the model_1_ptm set gives very similar results. 
To reduce parameter training bias, we used the original AlphaFold monomer parameters, which were 
trained on single protein chains, rather than the AlphaFold-Multimer parameter set, whose training 
set included protein complexes. Each AlphaFold simulation can use a maximum of four templates, 
allowing for 12 total templates across the three runs (Figure 1C). These 12 templates are constructed 
from four templates for each of the pMHC, TCRA, and TCRB chains selected on the basis of sequence 
identity to the modeling target (Figure  1A) combined with 12 docking geometry templates. The 
same four templates per chain are used in each of the three AlphaFold runs; only the docking geom-
etries vary between runs. Thus the full combinatorics of chain templates by docking geometries is not 
sampled. Peptide-MHC templates are sorted by total sequence identity computed over both the MHC 
and the peptide. To create hybrid templates for AlphaFold modeling, the pMHC and TCRB template 
coordinates must be mapped into the coordinate frame of the TCRA template structure. First, the 
TCR structure from which the TCRB template coordinates are being taken is superimposed onto the 
TCRA template structure by superimposing the 13 TCRA core residues. Then the superimposed TCRB 
coordinates are appended to the hybrid template after the TCRA coordinates. To map the pMHC 
coordinates into the coordinate frame of the TCRA and TCRB coordinates, MHC and TCR coordinate 
frames are defined as described above, and 12 representative docking geometries are selected. Each 
docking geometry defines the transformation between the MHC and TCR coordinate frames, allowing 
the pMHC template coordinates to be mapped into the hybrid template TCR coordinate frame. To 
choose the 12 representative docking geometries, docking geometries from TCR:pMHC structures 
of the same MHC class as the target are hierarchically clustered and the clustering tree is cut at a 
distance threshold at which there are 12 clusters. The docking geometry from each cluster with the 
smallest mean distance to the other cluster members is chosen as the representative. For hierarchical 
clustering, a matrix of docking RMSDs (defined below) is provided to the hierarchy.linkage function 
in the SciPy (Virtanen et al., 2020) cluster module. The hierarchy.fcluster function with 'maxclust' 
criterion is used to select the distance threshold at which the docking geometry tree divides into 
12 clusters. Template structures were downloaded from the RCSB Protein Databank (Berman et al., 
2000) ftp site on 2021-08-05.

Fine-tuning AlphaFold for TCR:pMHC structure prediction
To fine tune the AlphaFold parameters for TCR:pMHC structure prediction, we used a version of the 
AlphaFold package that was modified slightly to expose the parameter training interface (Motmaen 

https://doi.org/10.7554/eLife.82813
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et  al., 2022). The Python script ​run_​finetuning_​for_​structure.​py in the alphafold_finetune github 
repository (https://github.com/phbradley/alphafold_finetune; Bradley, 2022a) with the additional 
command line flags '--model_name model_2_ptm --crop_size 419' was provided with a training 
set consisting of three runs for each of the 93 human ternary structures (279 total training exam-
ples). Due to the small size of the training dataset, training was stopped after two epochs to avoid 
over-fitting.

Structure prediction benchmark
The structure prediction benchmark set consists of 130 nonredundant ternary TCR:pMHC structures 
deposited prior to 2021-08-05 (Figure 2—source data 1). No two structures in the set have fewer 
than 3 peptide mismatches and a paired TCRdist (Dash et al., 2017) distance less than or equal to 
120. This constraint eliminates pairs of structures with the same or similar TCRs binding to the same 
or similar peptides. After visual inspection, we eliminated the following 9 outlier structures with highly 
divergent binding modes (reversed docking orientations, extremely bulged peptides, etc.): PDB IDs 
5sws, 7jwi, 4jry, 4nhu, 3tjh, 4y19, 4y1a, 1ymm, and 2wbj.

During benchmarking, we excluded templates and docking geometries that were too similar to the 
target sequence being modeled. Peptide-MHC templates were excluded if they had fewer than three 
peptide mismatches with the target peptide. TCR chain templates were excluded if they had a single-
chain TCRdist of 36 or less to the target chain (corresponding to three non-conservative mismatches 
or indels in the CDR3 loop). Docking geometries were excluded if they came from a structure with 
fewer than three peptide mismatches to the target or a TCRdist of 48 or less from the target TCR.

RMSD measures
We assessed model accuracy by comparing the placement of the CDR loops relative to the MHC in 
the native and modeled structures. The two structures were first superimposed on the MHC coordi-
nates; then an alpha-carbon RMSD was calculated (without further superposition) over the CDR loops, 
up-weighting residues in the CDR3 by a factor of 3 to reflect the greater importance of the CDR3 for 
epitope recognition (this is the 'CDR RMSD' reported in Figure 2). TCRdist CDR loop definitions were 
used.

To compare docking geometries between structures with different CDR loop sequences, we 
developed a 'docking geometry RMSD' intended to approximate the CDR RMSD in a sequence-
independent fashion. The full template database was first used to calculate a mean center of mass 
of the residues in each CDR loop with respect to the TCR coordinate frame. To compute the docking 
RMSD between two docking geometries, each docking geometry is used to build a TCR coordinate 
frame assuming the MHC coordinate frame is centered at the origin and aligned with the coordinate 
axes. Then the CDR centers of mass are built with respect to each of these two TCR coordinate frames, 
and an RMSD is calculated between these two sets of eight points (4 CDR centers of mass each for the 
TCRA and TCRB chains) without superposition, upweighting the CDR3 center of mass by a factor of 3. 
The correlation between CDR RMSD and docking RMSD is shown in Figure 2—figure supplement 4.

Epitope decoy discrimination benchmark
Eight MHC class I epitopes with TCR repertoire data and experimentally determined structures were 
selected as targets for a decoy discrimination benchmark (Table 1). Paired alpha and beta sequences 
of TCRs specific for these eight epitopes were collected from the literature (10xGenomics, 2020; 
Dash et al., 2017; Francis et al., 2022; Minervina et al., 2022; Schattgen et al., 2022; Shugay 
et al., 2018). Epitope-specific TCR repertoires with more than 50 TCRs were subsampled to 50 repre-
sentatives using a Gaussian kernel density-based algorithm designed to preferentially sample denser 
regions of TCR space without introducing excessive redundancy (see ​algorithms_​from_​the_​paper.​
py in the TCRdock github repository). The goal in sampling denser regions of TCR space was to 
avoid outlier TCR sequences that might represent experimental errors. 100 additional 'irrelevant' 
background TCR sequences (50 mouse TCRs and 50 human TCRs) were selected at random from 
naive CD8 T cells in datasets made publicly available by 10xGenomics, 2020 for human and here for 
mouse. All epitope-specific and background TCR sequences are listed in Figure 3—source data 1.

The eight MHC class I epitopes include 9 and 10 residue peptides presented by the MHC alleles 
HLA-A*02:01 and H2-Db. For each MHC and peptide length, 9 decoy peptides were selected by 

https://doi.org/10.7554/eLife.82813
https://github.com/phbradley/alphafold_finetune
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scanning a 1500 residue artificial source antigen sequence with NetMHCpan-4.1 (Reynisson et al., 
2020) and selecting the top 9 predicted binders (Figure 3—source data 2). The artificial source 
antigen sequence was created by concatenating the source antigen sequences for the nine bench-
mark targets (Table 1), shuffling, and selecting the first 1500 residues.

Each epitope-specific TCR was modeled in complex with its cognate peptide epitope and in 
complex with the nine length- and MHC-matched decoy peptides using the AlphaFold pipeline 
specialized for TCRs. The mean predicted aligned error (PAE) residue-residue accuracy measure for 
TCR:pMHC residue pairs was calculated for each complex and stored in an Nx10 matrix, where N is 
the number of TCRs (each row corresponds to a TCR and each column to a peptide). To convert these 
raw TCR:pMHC PAE values into a binding score that can be compared across TCRs and pMHCs, we 
also modeled each pMHC in complex with 50 irrelevant background TCRs from the same organism. 
The mean TCR:pMHC PAE for these background complexes was calculated for each pMHC and was 
subtracted from the matrix column of PAE values involving that pMHC. The values in the resulting 
matrix of adjusted PAE values were then shifted to have 0 row sums by subtracting its mean value from 
each row. Thus in the final Nx10 matrix of binding scores, the mean value for each row is 0, while the 
mean values of the columns reflect the overall binding preference of the full repertoire of TCRs for the 
peptide corresponding to the column ('Repertoire binding score' in Figures 3 and 6).

During modeling, the TCR- and pMHC-similarity constraints described above in 'Structure Predic-
tion Benchmark' were applied to exclude templates; in addition, ternary structures with a peptide 
having fewer than three mismatches from the wild type peptide were excluded from all simulations 
(with decoy or wild type peptides). Note that the original AlphaFold monomer network (model_2_
ptm), not the structure fine-tuned network, was used for the epitope specificity benchmark, since the 
training set used for fine-tuning overlapped with the specificity benchmark targets.

The epitope alanine-scanning benchmark was performed as described above with the difference 
that the decoys were single-residue alanine mutants of the wild type peptide (alanine residues in the 
wild type peptide were mutated to glycine). Thus there were nine decoys for 9-residue peptides and 
10 decoys for 10-residue peptides.

Software and data availability
Python software to set up and run the TCR-specialized AlphaFold pipeline described here and to parse 
TCR:pMHC ternary structures are available in the TCRdock github repository (https://github.com/​
phbradley/TCRdock, copy archived at swh:1:rev:060bdb4a59391f2d7d57b0f2a923e4b4d6c9a89f; 
Bradley, 2022b). Benchmark datasets are provided as Source Data for Figures 2 and 3.

Acknowledgements
I am grateful to Jeremy Crawford, Anastasia Minervina, Amir Motmaen, Paul Thomas, and Albert Yeh 
for helpful comments on the manuscript, to Justas Dauparas for help fine-tuning AlphaFold, to the 
creators of AlphaFold for freely sharing their software and parameters, and to Fred Hutch Scientific 
Computing and NIH ORIP S10OD028685 for outstanding computing infrastructure. This research was 
supported by NIH grants R35 GM141457 and R01 AI136514.

Additional information

Funding

Funder Grant reference number Author

National Institutes of 
Health

R35 GM141457 Philip Bradley

National Institutes of 
Health

R01 AI136514 Philip Bradley

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

https://doi.org/10.7554/eLife.82813
https://github.com/phbradley/TCRdock
https://github.com/phbradley/TCRdock
https://archive.softwareheritage.org/swh:1:dir:1ae0f2747ae6587bb308c3fdcdcf790bc7e26c9a;origin=https://github.com/phbradley/TCRdock;visit=swh:1:snp:69d59008ec0f75b8a0a9c021df0410ab88369817;anchor=swh:1:rev:060bdb4a59391f2d7d57b0f2a923e4b4d6c9a89f


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Bradley. eLife 2023;12:e82813. DOI: https://doi.org/10.7554/eLife.82813 � 16 of 18

Author contributions
Philip Bradley, Conceptualization, Resources, Data curation, Software, Formal analysis, Supervision, 
Funding acquisition, Validation, Investigation, Visualization, Methodology, Writing - original draft, 
Project administration, Writing - review and editing

Author ORCIDs
Philip Bradley ‍ ‍ http://orcid.org/0000-0002-0224-6464

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.82813.sa1
Author response https://doi.org/10.7554/eLife.82813.sa2

Additional files
Supplementary files
•  MDAR checklist 

Data availability
The current manuscript is a computational study, so no data have been generated for this manuscript. 
Benchmark datasets compiled from the literature are made available as Source Data for figures 2 and 
3. Modelling code is publicly accessible through the github repository https://github.com/phbradley/​
TCRdock, (copy archived at swh:1:rev:060bdb4a59391f2d7d57b0f2a923e4b4d6c9a89f).

References
10xGenomics. 2020. A new way of exploring immunity: linking highly multiplexed antigen recognition to 

immune repertoire and phenotype. https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN047_IP_​
A_New_Way_of_Exploring_Immunity_Digital.pdf [Accessed June 1, 2021].

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, 
Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, 
Opperman DJ, et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural 
network. Science 373:871–876. DOI: https://doi.org/10.1126/science.abj8754, PMID: 34282049

Beringer DX, Kleijwegt FS, Wiede F, van der Slik AR, Loh KL, Petersen J, Dudek NL, Duinkerken G, Laban S, 
Joosten A, Vivian JP, Chen Z, Uldrich AP, Godfrey DI, McCluskey J, Price DA, Radford KJ, Purcell AW, Nikolic T, 
Reid HH, et al. 2015. T cell receptor reversed polarity recognition of a self-antigen major histocompatibility 
complex. Nature Immunology 16:1153–1161. DOI: https://doi.org/10.1038/ni.3271, PMID: 26437244

Berkhoff EGM, de Wit E, Geelhoed-Mieras MM, Boon ACM, Symons J, Fouchier RAM, Osterhaus ADME, 
Rimmelzwaan GF. 2005. Functional constraints of influenza A virus epitopes limit escape from cytotoxic T 
lymphocytes. Journal of Virology 79:11239–11246. DOI: https://doi.org/10.1128/JVI.79.17.11239-11246.2005, 
PMID: 16103176

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 2000. The protein 
data bank. Nucleic Acids Research 28:235–242. DOI: https://doi.org/10.1093/nar/28.1.235, PMID: 10592235

Borrman T, Pierce BG, Vreven T, Baker BM, Weng Z. 2020. High-throughput modeling and scoring of TCR-pmhc 
complexes to predict cross-reactive peptides. Bioinformatics 36:5377–5385. DOI: https://doi.org/10.1093/​
bioinformatics/btaa1050, PMID: 33355667

Bradley P. 2022a. Alphafold_finetune. swh:1:rev:af1f2f7507975ffc734ae57a928786e7f90f93b1. Software 
Heritage. https://archive.softwareheritage.org/swh:1:dir:3e0d466550a96a7eed8e94327b1808aa142e7306;​
origin=https://github.com/phbradley/alphafold_finetune;visit=swh:1:snp:d9526429d564ae1b7b0a8441adec​
6d6be4ada724;anchor=swh:1:rev:af1f2f7507975ffc734ae57a928786e7f90f93b1

Bradley P. 2022b. TCRdock. swh:1:rev:060bdb4a59391f2d7d57b0f2a923e4b4d6c9a89f. Software Heritage. 
https://archive.softwareheritage.org/swh:1:dir:1ae0f2747ae6587bb308c3fdcdcf790bc7e26c9a;origin=https://​
github.com/phbradley/TCRdock;visit=swh:1:snp:69d59008ec0f75b8a0a9c021df0410ab88369817;anchor=swh:​
1:rev:060bdb4a59391f2d7d57b0f2a923e4b4d6c9a89f

Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, Crawford JC, Clemens EB, Nguyen THO, 
Kedzierska K, La Gruta NL, Bradley P, Thomas PG. 2017. Quantifiable predictive features define epitope-
specific T cell receptor repertoires. Nature 547:89–93. DOI: https://doi.org/10.1038/nature22383, PMID: 
28636592

Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J, 
Ronneberger O, Bodenstein S, Zielinski M, Bridgland A, Potapenko A, Cowie A, Tunyasuvunakool K, Jain R, 
Clancy E, Kohli P, et al. 2021. Protein Complex Prediction with AlphaFold-Multimer. bioRxiv. DOI: https://doi.​
org/10.1101/2021.10.04.463034

Francis JM, Leistritz-Edwards D, Dunn A, Tarr C, Lehman J, Dempsey C, Hamel A, Rayon V, Liu G, Wang Y, 
Wille M, Durkin M, Hadley K, Sheena A, Roscoe B, Ng M, Rockwell G, Manto M, Gienger E, Nickerson J, et al. 

https://doi.org/10.7554/eLife.82813
http://orcid.org/0000-0002-0224-6464
https://doi.org/10.7554/eLife.82813.sa1
https://doi.org/10.7554/eLife.82813.sa2
https://github.com/phbradley/TCRdock
https://github.com/phbradley/TCRdock
https://archive.softwareheritage.org/swh:1:dir:1ae0f2747ae6587bb308c3fdcdcf790bc7e26c9a;origin=https://github.com/phbradley/TCRdock;visit=swh:1:snp:69d59008ec0f75b8a0a9c021df0410ab88369817;anchor=swh:1:rev:060bdb4a59391f2d7d57b0f2a923e4b4d6c9a89f
https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN047_IP_A_New_Way_of_Exploring_Immunity_Digital.pdf
https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_AN047_IP_A_New_Way_of_Exploring_Immunity_Digital.pdf
https://doi.org/10.1126/science.abj8754
http://www.ncbi.nlm.nih.gov/pubmed/34282049
https://doi.org/10.1038/ni.3271
http://www.ncbi.nlm.nih.gov/pubmed/26437244
https://doi.org/10.1128/JVI.79.17.11239-11246.2005
http://www.ncbi.nlm.nih.gov/pubmed/16103176
https://doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
https://doi.org/10.1093/bioinformatics/btaa1050
https://doi.org/10.1093/bioinformatics/btaa1050
http://www.ncbi.nlm.nih.gov/pubmed/33355667
https://archive.softwareheritage.org/swh:1:dir:3e0d466550a96a7eed8e94327b1808aa142e7306;origin=https://github.com/phbradley/alphafold_finetune;visit=swh:1:snp:d9526429d564ae1b7b0a8441adec6d6be4ada724;anchor=swh:1:rev:af1f2f7507975ffc734ae57a928786e7f90f93b1
https://archive.softwareheritage.org/swh:1:dir:3e0d466550a96a7eed8e94327b1808aa142e7306;origin=https://github.com/phbradley/alphafold_finetune;visit=swh:1:snp:d9526429d564ae1b7b0a8441adec6d6be4ada724;anchor=swh:1:rev:af1f2f7507975ffc734ae57a928786e7f90f93b1
https://archive.softwareheritage.org/swh:1:dir:3e0d466550a96a7eed8e94327b1808aa142e7306;origin=https://github.com/phbradley/alphafold_finetune;visit=swh:1:snp:d9526429d564ae1b7b0a8441adec6d6be4ada724;anchor=swh:1:rev:af1f2f7507975ffc734ae57a928786e7f90f93b1
https://archive.softwareheritage.org/swh:1:dir:1ae0f2747ae6587bb308c3fdcdcf790bc7e26c9a;origin=https://github.com/phbradley/TCRdock;visit=swh:1:snp:69d59008ec0f75b8a0a9c021df0410ab88369817;anchor=swh:1:rev:060bdb4a59391f2d7d57b0f2a923e4b4d6c9a89f
https://archive.softwareheritage.org/swh:1:dir:1ae0f2747ae6587bb308c3fdcdcf790bc7e26c9a;origin=https://github.com/phbradley/TCRdock;visit=swh:1:snp:69d59008ec0f75b8a0a9c021df0410ab88369817;anchor=swh:1:rev:060bdb4a59391f2d7d57b0f2a923e4b4d6c9a89f
https://archive.softwareheritage.org/swh:1:dir:1ae0f2747ae6587bb308c3fdcdcf790bc7e26c9a;origin=https://github.com/phbradley/TCRdock;visit=swh:1:snp:69d59008ec0f75b8a0a9c021df0410ab88369817;anchor=swh:1:rev:060bdb4a59391f2d7d57b0f2a923e4b4d6c9a89f
https://doi.org/10.1038/nature22383
http://www.ncbi.nlm.nih.gov/pubmed/28636592
https://doi.org/10.1101/2021.10.04.463034
https://doi.org/10.1101/2021.10.04.463034


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Bradley. eLife 2023;12:e82813. DOI: https://doi.org/10.7554/eLife.82813 � 17 of 18

2022. Allelic variation in class I HLA determines CD8+ T cell repertoire shape and cross-reactive memory 
responses to SARS-cov-2. Science Immunology 7:eabk3070. DOI: https://doi.org/10.1126/sciimmunol.abk3070, 
PMID: 34793243

Gielis S, Moris P, Bittremieux W, De Neuter N, Ogunjimi B, Laukens K, Meysman P. 2019. Detection of enriched T 
cell epitope specificity in full T cell receptor sequence repertoires. Frontiers in Immunology 10:2820. DOI: 
https://doi.org/10.3389/fimmu.2019.02820, PMID: 31849987

Gras S, Chadderton J, Del Campo CM, Farenc C, Wiede F, Josephs TM, Sng XYX, Mirams M, Watson KA, 
Tiganis T, Quinn KM, Rossjohn J, La Gruta NL. 2016. Reversed T cell receptor docking on a major 
histocompatibility class I complex limits involvement in the immune response. Immunity 45:749–760. DOI: 
https://doi.org/10.1016/j.immuni.2016.09.007, PMID: 27717799

Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. 2020. Analyzing the Mycobacterium tuberculosis immune 
response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nature Biotechnology 
38:1194–1202. DOI: https://doi.org/10.1038/s41587-020-0505-4, PMID: 32341563

Humphreys IR, Pei J, Baek M, Krishnakumar A, Anishchenko I, Ovchinnikov S, Zhang J, Ness TJ, Banjade S, 
Bagde SR, Stancheva VG, Li X-H, Liu K, Zheng Z, Barrero DJ, Roy U, Kuper J, Fernández IS, Szakal B, Branzei D, 
et al. 2021. Computed structures of core eukaryotic protein complexes. Science 374:eabm4805. DOI: https://​
doi.org/10.1126/science.abm4805, PMID: 34762488

Jensen KK, Rantos V, Jappe EC, Olsen TH, Jespersen MC, Jurtz V, Jessen LE, Lanzarotti E, Mahajan S, Peters B, 
Nielsen M, Marcatili P. 2019. TCRpMHCmodels: structural modelling of TCR-pmhc class I complexes. Scientific 
Reports 9:14530. DOI: https://doi.org/10.1038/s41598-019-50932-4, PMID: 31601838

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, 
Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, 
Adler J, Back T, et al. 2021. Highly accurate protein structure prediction with alphafold. Nature 596:583–589. 
DOI: https://doi.org/10.1038/s41586-021-03819-2, PMID: 34265844

Lanzarotti E, Marcatili P, Nielsen M. 2018. Identification of the cognate peptide-MHC target of T cell receptors 
using molecular modeling and force field scoring. Molecular Immunology 94:91–97. DOI: https://doi.org/10.​
1016/j.molimm.2017.12.019, PMID: 29288899

Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, 
Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YEA, Fleishman SJ, Corn JE, Kim DE, 
Bradley P. 2011. ROSETTA3: an object-oriented software suite for the simulation and design of 
macromolecules. Methods in Enzymology 487:545–574.

Lee TS, Cerutti DS, Mermelstein D, Lin C, LeGrand S, Giese TJ, Roitberg A, Case DA, Walker RC, York DM. 2018. 
GPU-accelerated molecular dynamics and free energy methods in amber18: performance enhancements and 
new features. Journal of Chemical Information and Modeling 58:2043–2050. DOI: https://doi.org/10.1021/acs.​
jcim.8b00462, PMID: 30199633

Mayer-Blackwell K, Schattgen S, Cohen-Lavi L, Crawford JC, Souquette A, Gaevert JA, Hertz T, Thomas PG, 
Bradley P, Fiore-Gartland A. 2021. Tcr meta-clonotypes for biomarker discovery with tcrdist3 enabled 
identification of public, HLA-restricted clusters of SARS-cov-2 tcrs. eLife 10:e68605. DOI: https://doi.org/10.​
7554/eLife.68605, PMID: 34845983

McInnes L, Healy J, Saul N, Großberger L. 2018. UMAP: uniform manifold approximation and projection. Journal 
of Open Source Software 3:861. DOI: https://doi.org/10.21105/joss.00861

Minervina AA, Pogorelyy MV, Kirk AM, Crawford JC, Allen EK, Chou C-H, Mettelman RC, Allison KJ, Lin C-Y, 
Brice DC, Zhu X, Vegesana K, Wu G, Trivedi S, Kottapalli P, Darnell D, McNeely S, Olsen SR, Schultz-Cherry S, 
Estepp JH, et al. 2022. SARS-cov-2 antigen exposure history shapes phenotypes and specificity of memory 
CD8+ T cells. Nature Immunology 23:781–790. DOI: https://doi.org/10.1038/s41590-022-01184-4, PMID: 
35383307

Montemurro A, Schuster V, Povlsen HR, Bentzen AK, Jurtz V, Chronister WD, Crinklaw A, Hadrup SR, Winther O, 
Peters B, Jessen LE, Nielsen M. 2021. NetTCR-2.0 enables accurate prediction of TCR-peptide binding by 
using paired TCRα and β sequence data. Communications Biology 4:1060. DOI: https://doi.org/10.1038/​
s42003-021-02610-3, PMID: 34508155

Moris P, De Pauw J, Postovskaya A, Gielis S, De Neuter N, Bittremieux W, Ogunjimi B, Laukens K, Meysman P. 
2021. Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from 
image classification. Briefings in Bioinformatics 22:bbaa318. DOI: https://doi.org/10.1093/bib/bbaa318, PMID: 
33346826

Motmaen A, Dauparas J, Baek M, Abedi MH, Baker D, Bradley P. 2022. Peptide Binding Specificity Prediction 
Using Fine-Tuned Protein Structure Prediction Networks. bioRxiv. DOI: https://doi.org/10.1101/2022.07.12.​
499365

Pettmann J, Huhn A, Abu Shah E, Kutuzov MA, Wilson DB, Dustin ML, Davis SJ, van der Merwe PA, Dushek O. 
2021. The discriminatory power of the T cell receptor. eLife 10:e67092. DOI: https://doi.org/10.7554/eLife.​
67092, PMID: 34030769

Pierce BG, Weng Z. 2013. A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes. 
Protein Science 22:35–46. DOI: https://doi.org/10.1002/pro.2181, PMID: 23109003

Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. 2020. NetMHCpan-4.1 and netmhciipan-4.0: improved 
predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC 
eluted ligand data. Nucleic Acids Research 48:W449–W454. DOI: https://doi.org/10.1093/nar/gkaa379, PMID: 
32406916

https://doi.org/10.7554/eLife.82813
https://doi.org/10.1126/sciimmunol.abk3070
http://www.ncbi.nlm.nih.gov/pubmed/34793243
https://doi.org/10.3389/fimmu.2019.02820
http://www.ncbi.nlm.nih.gov/pubmed/31849987
https://doi.org/10.1016/j.immuni.2016.09.007
http://www.ncbi.nlm.nih.gov/pubmed/27717799
https://doi.org/10.1038/s41587-020-0505-4
http://www.ncbi.nlm.nih.gov/pubmed/32341563
https://doi.org/10.1126/science.abm4805
https://doi.org/10.1126/science.abm4805
http://www.ncbi.nlm.nih.gov/pubmed/34762488
https://doi.org/10.1038/s41598-019-50932-4
http://www.ncbi.nlm.nih.gov/pubmed/31601838
https://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
https://doi.org/10.1016/j.molimm.2017.12.019
https://doi.org/10.1016/j.molimm.2017.12.019
http://www.ncbi.nlm.nih.gov/pubmed/29288899
https://doi.org/10.1021/acs.jcim.8b00462
https://doi.org/10.1021/acs.jcim.8b00462
http://www.ncbi.nlm.nih.gov/pubmed/30199633
https://doi.org/10.7554/eLife.68605
https://doi.org/10.7554/eLife.68605
http://www.ncbi.nlm.nih.gov/pubmed/34845983
https://doi.org/10.21105/joss.00861
https://doi.org/10.1038/s41590-022-01184-4
http://www.ncbi.nlm.nih.gov/pubmed/35383307
https://doi.org/10.1038/s42003-021-02610-3
https://doi.org/10.1038/s42003-021-02610-3
http://www.ncbi.nlm.nih.gov/pubmed/34508155
https://doi.org/10.1093/bib/bbaa318
http://www.ncbi.nlm.nih.gov/pubmed/33346826
https://doi.org/10.1101/2022.07.12.499365
https://doi.org/10.1101/2022.07.12.499365
https://doi.org/10.7554/eLife.67092
https://doi.org/10.7554/eLife.67092
http://www.ncbi.nlm.nih.gov/pubmed/34030769
https://doi.org/10.1002/pro.2181
http://www.ncbi.nlm.nih.gov/pubmed/23109003
https://doi.org/10.1093/nar/gkaa379
http://www.ncbi.nlm.nih.gov/pubmed/32406916


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Bradley. eLife 2023;12:e82813. DOI: https://doi.org/10.7554/eLife.82813 � 18 of 18

Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. 2015. T cell antigen receptor recognition of 
antigen-presenting molecules. Annual Review of Immunology 33:169–200. DOI: https://doi.org/10.1146/​
annurev-immunol-032414-112334, PMID: 25493333

Rudolph MG, Stanfield RL, Wilson IA. 2006. How tcrs bind mhcs, peptides, and coreceptors. Annual Review of 
Immunology 24:419–466. DOI: https://doi.org/10.1146/annurev.immunol.23.021704.115658, PMID: 16551255

Schattgen SA, Guion K, Crawford JC, Souquette A, Barrio AM, Stubbington MJT, Thomas PG, Bradley P. 2022. 
Integrating T cell receptor sequences and transcriptional profiles by clonotype neighbor graph analysis (conga). 
Nature Biotechnology 40:54–63. DOI: https://doi.org/10.1038/s41587-021-00989-2, PMID: 34426704

Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, Komech EA, Sycheva AL, Koneva AE, 
Egorov ES, Eliseev AV, Van Dyk E, Dash P, Attaf M, Rius C, Ladell K, McLaren JE, Matthews KK, Clemens EB, 
Douek DC, et al. 2018. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. 
Nucleic Acids Research 46:D419–D427. DOI: https://doi.org/10.1093/nar/gkx760, PMID: 28977646

Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM. 2017. Emerging concepts in TCR specificity: 
rationalizing and (maybe) predicting outcomes. Journal of Immunology 199:2203–2213. DOI: https://doi.org/​
10.4049/jimmunol.1700744, PMID: 28923982

Valkenburg SA, Quiñones-Parra S, Gras S, Komadina N, McVernon J, Wang Z, Halim H, Iannello P, Cole C, 
Laurie K, Kelso A, Rossjohn J, Doherty PC, Turner SJ, Kedzierska K. 2013. Acute emergence and reversion of 
influenza A virus quasispecies within CD8+ T cell antigenic peptides. Nature Communications 4:2663. DOI: 
https://doi.org/10.1038/ncomms3663, PMID: 24173108

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, 
Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, 
Kern R, Larson E, Carey CJ, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in python. 
Nature Methods 17:261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2, PMID: 32015543

Wölfl M, Rutebemberwa A, Mosbruger T, Mao Q, Li H, Netski D, Ray SC, Pardoll D, Sidney J, Sette A, Allen T, 
Kuntzen T, Kavanagh DG, Kuball J, Greenberg PD, Cox AL. 2008. Hepatitis C virus immune escape via 
exploitation of a hole in the T cell repertoire. Journal of Immunology 181:6435–6446. DOI: https://doi.org/10.​
4049/jimmunol.181.9.6435, PMID: 18941234

Yin R, Feng BY, Varshney A, Pierce BG. 2022. Benchmarking alphafold for protein complex modeling reveals 
accuracy determinants. Protein Science 31:e4379. DOI: https://doi.org/10.1002/pro.4379, PMID: 35900023

Zareie P, Szeto C, Farenc C, Gunasinghe SD, Kolawole EM, Nguyen A, Blyth C, Sng XYX, Li J, Jones CM, 
Fulcher AJ, Jacobs JR, Wei Q, Wojciech L, Petersen J, Gascoigne NRJ, Evavold BD, Gaus K, Gras S, Rossjohn J, 
et al. 2021. Canonical T cell receptor docking on peptide-MHC is essential for T cell signaling. Science 
372:eabe9124. DOI: https://doi.org/10.1126/science.abe9124, PMID: 34083463

https://doi.org/10.7554/eLife.82813
https://doi.org/10.1146/annurev-immunol-032414-112334
https://doi.org/10.1146/annurev-immunol-032414-112334
http://www.ncbi.nlm.nih.gov/pubmed/25493333
https://doi.org/10.1146/annurev.immunol.23.021704.115658
http://www.ncbi.nlm.nih.gov/pubmed/16551255
https://doi.org/10.1038/s41587-021-00989-2
http://www.ncbi.nlm.nih.gov/pubmed/34426704
https://doi.org/10.1093/nar/gkx760
http://www.ncbi.nlm.nih.gov/pubmed/28977646
https://doi.org/10.4049/jimmunol.1700744
https://doi.org/10.4049/jimmunol.1700744
http://www.ncbi.nlm.nih.gov/pubmed/28923982
https://doi.org/10.1038/ncomms3663
http://www.ncbi.nlm.nih.gov/pubmed/24173108
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.4049/jimmunol.181.9.6435
https://doi.org/10.4049/jimmunol.181.9.6435
http://www.ncbi.nlm.nih.gov/pubmed/18941234
https://doi.org/10.1002/pro.4379
http://www.ncbi.nlm.nih.gov/pubmed/35900023
https://doi.org/10.1126/science.abe9124
http://www.ncbi.nlm.nih.gov/pubmed/34083463

	Structure-­based prediction of T cell receptor:peptide-­MHC interactions
	Editor's evaluation
	Introduction
	Results
	Structure prediction
	Binding specificity prediction

	Discussion
	Methods
	Defining TCR:pMHC docking geometry
	AlphaFold modeling pipeline
	Fine-tuning AlphaFold for TCR:pMHC structure prediction
	Structure prediction benchmark
	RMSD measures
	Epitope decoy discrimination benchmark
	Software and data availability

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


