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Abstract During perceptual decision- making tasks, centroparietal electroencephalographic (EEG) 
potentials report an evidence accumulation- to- bound process that is time locked to trial onset. 
However, decisions in real- world environments are rarely confined to discrete trials; they instead 
unfold continuously, with accumulation of time- varying evidence being recency- weighted towards its 
immediate past. The neural mechanisms supporting recency- weighted continuous decision- making 
remain unclear. Here, we use a novel continuous task design to study how the centroparietal posi-
tivity (CPP) adapts to different environments that place different constraints on evidence accumula-
tion. We show that adaptations in evidence weighting to these different environments are reflected 
in changes in the CPP. The CPP becomes more sensitive to fluctuations in sensory evidence when 
large shifts in evidence are less frequent, and the potential is primarily sensitive to fluctuations in 
decision- relevant (not decision- irrelevant) sensory input. A complementary triphasic component 
over occipito- parietal cortex encodes the sum of recently accumulated sensory evidence, and its 
magnitude covaries with parameters describing how different individuals integrate sensory evidence 
over time. A computational model based on leaky evidence accumulation suggests that these find-
ings can be accounted for by a shift in decision threshold between different environments, which is 
also reflected in the magnitude of pre- decision EEG activity. Our findings reveal how adaptations 
in EEG responses reflect flexibility in evidence accumulation to the statistics of dynamic sensory 
environments.

Editor's evaluation
This important study by Ruesseler, Weber and colleagues employs psychophysical kernels and 
EEG reverse correlation methods to identify the decision process adjustments used to account for 
variations in target frequency and duration in a task in which targets emerge periodically within a 
continuous stimulus stream. The paper provides solid evidence for the role of leak and threshold 
adjustments. The paper will be of interest to researchers studying mathematical models and neuro-
physiological correlates of decision making and more broadly authors with an interest in the applica-
tion of reverse correlation techniques for neural signal analysis.

Introduction
Unlike in most experiments, the choices that we make in daily life rarely occur in discrete trials. Natu-
ralistic decisions instead arise organically and continuously in dynamic environments that evolve over 
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time (Huk et al., 2018; Hunt et al., 2021), leading to uncertainty regarding the onset of decision- 
relevant changes in the environment (Orsolic et al., 2021; Shinn et al., 2022). When making deci-
sions in such dynamic environments, more recently presented evidence should therefore usually be 
given greater weight and more historical evidence gradually discounted – a strategy known as ‘leaky’ 
evidence accumulation. Optimising leaky evidence accumulation involves adapting one’s behaviour to 
the overall statistics of the environment. This can be achieved by changing the rate at which previous 
evidence is leaked (the ‘decay’) and the amount of cumulative evidence required before a categorical 
decision is made (the ‘decision threshold’) (Glaze et al., 2015; Kilpatrick et al., 2019; Veliz- Cuba 
et al., 2016).

While it is known that humans (Ganupuru et al., 2019; Glaze et al., 2018; Harun et al., 2020; 
Ossmy et al., 2013) and other animals (Levi et al., 2018; Piet et al., 2018) can adapt the decay 
and decision threshold of sensory evidence accumulation to different dynamic environments, the 
neural mechanisms that underlie this adaptation remain unclear. In conventional trial- based para-
digms, neurophysiological correlates of perceptual decision- making have been well characterised, 
particularly signals that resemble an evidence accumulation- to- bound process (Gold and Shadlen, 
2007; Hanks and Summerfield, 2017; O’Connell and Kelly, 2021). Two of the best- studied human 
electroencephalographic (EEG) correlates of decision formation are an effector- independent centro-
parietal positivity (CPP) that shows accumulator- like dynamics during decision formation (Kelly and 
O’Connell, 2013; O’Connell et al., 2012; Pisauro et al., 2017; Twomey et al., 2015), and motor 
preparation signals that emerge prior to a response (Donner et al., 2009; Steinemann et al., 2018; 
Wyart et al., 2012). Both signals can adapt their properties according to the overall statistics of a 
task. For example, CPP amplitude at the time of making a response is increased by emphasising 
speed over accuracy (Steinemann et al., 2018), while pre- trial motor lateralisation can reflect the 
prior expectation of a leftward or rightward action in the upcoming trial (de Lange et al., 2013; Kelly 
et al., 2021). Yet it remains unclear whether and how these signals reflect the ability to behaviourally 
adapt the decay of past information in continuous (dynamic) environments, which are more akin to 
many decisions faced in naturalistic settings.

Perhaps one reason why decision- making in dynamic environments has been less studied than 
trial- based choice is the uncertainty concerning how best to analyse the time- varying neural data. For 
example, without clearly defined discrete trials, it appears unclear to which timepoint data should be 
epoched. As the stimulus is continuously changing, it is also ambiguous how to disentangle responses 
to previous versus current sensory evidence, which may be overlapping in time. However, recent 
innovations in trial- based task design (Brunton et al., 2013; Cheadle et al., 2014; Orsolic et al., 
2021) and unmixing of overlapping EEG responses (Crosse et al., 2016; Ehinger and Dimigen, 2019; 
Hassall et al., 2021; Smith and Kutas, 2015) have suggested potential solutions to some of these 
challenges. By tightly controlling how sensory evidence fluctuates over time, it becomes possible to 
relate moment- to- moment stimulus fluctuations to subsequent behavioural and neural responses. In 
addition, by using data analysis techniques that explicitly target overlapping neural responses, it is 
also possible to establish the temporal response function (TRF) to each new fluctuation in a continuous 
sensory evidence stream (Gonçalves et al., 2014). By combining these two approaches, we hypoth-
esised that we would be able to characterise decision- related EEG responses in a continuous and 
dynamic setting, even in the absence of repeated experimental trials.

In this study, we examine how the EEG response to evidence fluctuations during a continuous 
perceptual decision task is affected by the overall statistics of the sensory environment. Participants 
were trained to attend to a continuously changing sensory evidence stream, in which brief ‘response 
periods’ were embedded that were reported via buttonpress. We demonstrate a CPP- like potential 
that is sensitive to each fluctuation in the stream of continuous sensory evidence, a motor preparation 
signal prior to buttonpress, and a triphasic occipito- parietal component that reflects the integrated 
sum of recently presented evidence. We then show that subjects’ behaviour adapts appropriately 
to different sensory environments, and that changes in centroparietal and motor preparation prior 
to buttonpress signals reflect adaptation of leaky sensory evidence integration to different environ-
ments. This is not a simple feature of adaptation to sensory surprise as the CPP- like potential largely 
responds to decision- relevant, not decision- irrelevant, evidence fluctuations.

We also show substantial between- subject variability in the decay time constant of the ‘integration 
kernel’, a measure that reflects the structure of evidence that is presented prior to a participant’s 
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response. This behavioural measure correlates across subjects with a neural measure of evidence 
accumulation: it predicts the amplitude of the triphasic centroparietal TRF to absolute recent sensory 
evidence. We show via computational modelling that these changes in integration kernels are most 
likely explained via a change in the decision threshold of a leaky evidence accumulator. Collectively, 
these results provide a neural characterisation of human decision- making in a dynamic, continuously 
evolving perceptual environment and how this can adapt to the overall statistics of the environment.

Results
A novel task for exploring behavioural and EEG adaptations to the 
statistics of dynamic sensory environments
To study evidence accumulation in a continuous setting, we designed a novel variant of the classic 
random dot kinematogram (RDK) paradigm (Britten et al., 1992; Donner et al., 2009; Kelly and 
O’Connell, 2013; Newsome and Paré, 1988). Subjects continuously monitored a stream of time- 
varying sensory evidence (hereafter referred to as ‘motion coherence’) for blocks of 5 min (Figure 1a). 
During extended ‘baseline periods’ (grey shaded area in Figure  1b), the average level of motion 
coherence (black line) in the stimulus was zero, whereas during shorter intermittent ‘response periods’ 
(green shaded area), the mean level of motion coherence became non- zero (either 30, 40, or 50% 
motion coherence). The participants’ task was to report whenever they detected such a period of 
coherent motion using a left or right buttonpress. Importantly, the onset of response periods was 
not explicitly signalled to the participant. If they responded accurately (during a response period or 
within 500 ms of it ending), they received a reward (+3 points); if they failed to report a response 
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Figure 1. A novel, continuous version of the random dot kinematogram (RDK) paradigm allows empirical measurement of participants’ leaky evidence 
integration kernels in dynamic environments. (a) Task design. Participants continuously attend to a centrally presented RDK stimulus, for 5 min at a 
time. They aim to successfully report motion direction during ‘response periods’ (when coherent motion signal is on average non- zero) and withhold 
responding during ‘baseline periods’ (when signal is on average zero). (b) Task structure (example block; response periods are ‘rare’). During both 
baseline (grey) and response periods (green), the signal (black line) is corrupted with experimenter- controlled noise (grey line). The noise fluctuations 
that precede each response (arrows) can be averaged to obtain the evidence integration kernel. (c) The resulting evidence integration kernel for false 
alarms is well described by an exponential decay function, whose decay time constant in seconds is controlled by the free parameter  τ  . The equation 
for this kernel is in the main text, and details of kernel fitting are provided in ‘Methods’.
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period (‘missed response period’), or they responded during a baseline period (‘false alarm’), they 
received a small punishment (–1.5 points). Participants also received a larger punishment (–3 points) 
if they reported the incorrect motion direction during a response period; in practice, such errors 
were very rare. Feedback was presented by changing the colour of the central fixation point for 
500 ms (Figure  1a), and they were trained on the meaning of these colours as part of extensive 
pre- experiment training (see ‘Methods’). The accumulated total points were then converted into a 
monetary pay- out at the end of the task. Participants completed six runs, each consisting of four 5 min 
blocks; they were given a short break between each block and a longer break between runs.

Crucially, the net motion presented to the participant on each frame of the stimulus was not the 
average level of motion coherence (black line in Figure 1b), but instead was a noisy sample from a 
Gaussian distribution about this mean (grey line). This noisy sample was resampled on average every 
280 ms (inter- sample interval drawn from an exponential distribution, truncated at 1000 ms). This 
‘experimenter- controlled sensory noise’ confers several benefits.

First, the injection of sensory noise places a stronger demand on temporal evidence integration 
than a classical RDK task. This is because any individual period of strong motion coherence could be 
driven by a noisy sample during a baseline period, rather than necessarily signalling the onset of a 
response period (Figure 1b). As such, continuous and temporally extended integration is essential 
to successfully disambiguate changes in the mean from noisy samples around the baseline. Indeed, 
participants would occasionally make ‘false alarms’ during baseline periods in which the structure of 
the preceding noise stream mistakenly convinced them they were in a response period (see Figure 3, 
below). Indeed, this means that a ‘false alarm’ in our paradigm has a slightly different meaning than in 
most psychophysics experiments; rather than it referring to participants responding when a stimulus 
was not present, we use the term to refer to participants responding when there was no shift in the 
mean signal from baseline.

Second, the noise fluctuations allow a ‘reverse correlation’ approach to studying subjects’ evidence 
integration. Simply by averaging the noisy stimulus that was presented prior to each response, we 
could extract an ‘integration kernel’ that empirically reveals how far back in time the motion coher-
ence is being integrated – in other words, how quickly previous motion is decaying in the participant’s 
mind – and how strong this motion coherence needed to be on average to support a choice. We 
performed this reverse correlation for both false alarm responses (example shown in Figure 1c; these 
responses are well described by an exponential decay function detailed below) and correct responses. 
The fact that integration kernels naturally arise from false alarms, in the same manner as from correct 
responses, demonstrates that false alarms were not due to motor noise or other spurious causes. 
Instead, false alarms were driven by participants treating noise fluctuations during baseline periods as 
sensory evidence to be integrated across time, and the motion coherence that preceded ‘false alarms’ 
need not even distinguish targets from non- targets.

Finally, and perhaps most importantly, the experimenter- controlled sensory noise allows us to char-
acterise how continuous sensory evidence fluctuations cause changes in the simultaneously recorded 
continuous EEG signal. To study this, we used a deconvolutional general linear model (GLM) approach 
(Crosse et al., 2016; Ehinger and Dimigen, 2019; Gonçalves et al., 2014; Hassall et al., 2021) 
to estimate TRFs to various events relating to the time- varying sensory evidence. We describe this 
approach and the resulting TRFs in more detail below.

Behavioural adaptations to environments with different statistical 
properties
We used this paradigm to investigate whether and how participants adapted their evidence integra-
tion behaviour to the overall statistics of the sensory environment. To test this, we manipulated both 
the duration and frequency of ‘response periods’ in the task. We hypothesised that this would affect 
the decay of past sensory evidence and/or the decision threshold used to commit to a response. 
Importantly for our subsequent analyses, we kept the generative statistics of the Gaussian noise 
during ‘baseline periods’ consistent across conditions. This allowed us to directly compare behavioural 
evidence integration kernels for false alarms and EEG TRFs across conditions without any potential 
confound from how the noise was structured.

Within each 20 min run, participants completed four pseudorandomly ordered 5 min blocks drawn 
from a 2 * 2 factorial design (Figure 2a). Response periods were either LONG (5 s) or SHORT (3 s), 

https://doi.org/10.7554/eLife.82823


 Research article      Neuroscience

Ruesseler, Weber et al. eLife 2023;12:e82823. DOI: https://doi.org/10.7554/eLife.82823  5 of 28

-1

-0.5

0

0.5

1

R
es

po
ns

e 
pe

rio
ds

 
LO

N
G

Response periods 
FREQUENT

Response periods 
RARE

0 1 2 3 4 5
Time (minutes)

-1

-0.5

0

0.5

1

0 1 2 3 4 5
Time (minutes)

Si
gn

al
 m

ot
io

n 
co

he
re

nc
e

Si
gn

al
 m

ot
io

n 
co

he
re

nc
e

duration: 5s (or until response)

duration: 3s (or until response)

0.2 0.3 0.4 0.5 0.6
Response period coherence

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
ct

 d
et

ec
tio

n 
ra

te

SHORT/FREQUENT
LONG/FREQUENT
SHORT/RARE
LONG/RARE

0.3 0.4 0.5
Response period coherence

1.6

1.8

2

2.2

2.4

2.6

M
ed

ia
n 

re
ac

tio
n 

tim
e 

(s
)

-4 -3 -2 -1 0
Time to response period button press [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
co

he
re

nc
e 

(s
ig

na
l +

 n
oi

se
)

Response periods:

p<0.05 (F-test FREQUENT vs. RARE,
corrected for multiple comparisons across time)

a

b c d

R
es

po
ns

e 
pe

rio
ds

 
SH

O
R

T

baseline periods: 3-8s (uniform) baseline periods: 5-40s (uniform)

Figure 2. Variations in response period structure across different environments elicit behavioural adaptations in decision- making. (a) Structure of 
response periods (signal only, before noise was added to the stimulus stream) across the different environments. This was manipulated in a 2 * 2 design, 
where response periods were either FREQUENT or RARE, and LONG or SHORT. Participants were extensively trained on these statistics prior to the 
task, and the current environment was explicitly cued to the participant. (b) Correct detection rate for all response periods. Participants successfully 
detected more response periods when they were LONG than SHORT (as would be expected, because the response period is longer), but also detected 
more when they were FREQUENT than RARE. (c) Median reaction time (time taken to respond after start of response period) for successfully reported 
response periods across the four conditions. Participants took longer in RARE versus FREQUENT conditions, and in LONG versus SHORT conditions. 
(d) Integration kernels for ‘response periods’ shows a main effect of FREQUENT versus RARE response periods, but unexpectedly no effect of LONG 
versus SHORT response periods. See main text for further discussion of this analysis. All plots in (b–d) show mean ± s.e. across 24 participants. Note that 
to make reaction times and integration kernels comparable between the four conditions, we only include those responses that were shorter than 3.5 s in 
analyses for (c) and (d) (i.e. the maximum response time in SHORT response periods).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Logistic mixed model of subjects choices during response periods, with regressors of mean motion coherence (avgCoh), 
variance of motion coherence (cohVar), response period Frequency (trlFrq), response period length (trlLen), and interaction terms between these 
regressors.
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and either FREQUENT (baseline periods between 3 and 8 s in duration) or RARE (baseline periods 
between 5 and 40 s). Participants were extensively trained on these trial statistics prior to completing 
the task and were then explicitly cued which environment they were currently in. As a consequence, 
participants neither had to learn nor infer the higher- order statistics of the sensory environment during 
the task; instead, they had to adapt their decision behaviour according to the pre- learnt statistics of 
the cued environment.

Response periods
We first tested whether participants adjusted their behaviour across the four conditions by analysing 
detection behaviour for response periods. We used a three- way repeated- measures ANOVA to test 
for effects of motion coherence, response period length, and response period frequency.

As expected, participants were faster (F(2,46) = 29.51, p=7.45 * 10–9) and more accurate (F(2,46) 
= 17.6, p=0.00035) at detecting response periods with a higher level of average motion coherence 
(Figure 2b and c).

Examining the effects of response period frequency, participants were less likely (F(1,23) = 41.99, 
p=1.30 * 10–6) and slower (F(1,23) = 83.24, p=6.23 * 10–9) to detect response periods when these 
were RARE (blue lines in Figure 2b and c) than when they were FREQUENT (red lines in Figure 2b 
and c). We hypothesised that this could be explained by participants requiring a stronger overall level 
of recently accumulated evidence before committing to a response when response periods were 
rare. Indeed, when we examined the ‘integration kernel’ of average sensory evidence for successful 
responses, significantly more cumulative evidence was required for RARE than FREQUENT response 
periods, stretching back up to 3.5 s prior to the commitment to a response (Figure 2d; F- test with 
permutation- based correction for multiple comparisons, p<0.05).

We also found that participants detected response periods more frequently when these were 
LONG than when they were SHORT (Figure 2b; F(1,23) = 178.52, p=2.51 * 10–12). This is unsurprising 
as there was simply more time to detect the change in motion during these response periods. In fact, 
participants were slightly more conservative in their responding when trials were LONG, as shown by 
a longer average reaction time for LONG response periods relative to SHORT (even when restricting 
this analysis to focus on LONG responses that were less than 3.5 s, the maximum possible SHORT 
response duration including 500 ms response tolerance period; Figure 2c; F(1,23) = 70.00, p=2.78 * 
10–8). This was also reflected in their false alarm frequency, as shown below. Surprisingly, the sensory 
evidence integration properties (i.e. the ‘integration kernels’, calculated by averaging the signal prior 
to the decision, collapsing across all levels of mean motion coherence) were not affected by the length 
of response periods (Figure 2d). This ran contrary to our initial hypothesis that participants would 
integrate evidence for longer when response periods were LONG. We suggest that this may result 
from the manipulation of response period duration being relatively small (3 s versus 5 s) compared to 
the manipulation of response period frequency. We also note that the significant difference between 
FREQUENT and RARE trials in Figure 2d should not be over- interpreted as it could be influenced 
by RT differences (Figure 2c) and the associated shift in the onset of the signal contribution and/or 
the difference in average coherence detection across conditions (Figure 2b). Importantly, we control 
for these confounds below by examining the integration kernels to false alarms (in the absence of 
changes in mean signal).

We also considered an alternative stimulus detection strategy of changes in stimulus variance across 
time rather than changes in stimulus mean. This hypothesis relied upon the fact that response periods 
had smaller standard deviations in the Gaussian noise distribution than baseline periods – a stimulus 
feature that we introduced to avoid excessive samples of ‘maximal’ (100%) motion coherence when 
the mean was non- zero. To test whether the variance of the stimulus might also affect participants’ 
detection, we performed a logistic mixed effects model on participants’ responses (Figure 2—figure 
supplement 1). Detection probability was the dependent variable, and mean motion coherence, vari-
ance of motion coherence, response period frequency, and length were independent variables, along 
with interaction terms. We found that stimulus variance during response periods did indeed impact 
detection probability; response periods with a higher variance in motion coherence were less likely 
to be detected. Crucially, however, the main effects of mean motion coherence, trial frequency, and 
trial length (equivalent to the effects plotted in main Figure 2b) were left unaffected by the inclusion 
of this coregressor.

https://doi.org/10.7554/eLife.82823
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False alarms
We then examined whether false alarms differed across conditions, testing for effects of response 
period frequency and length on false alarm rate using a two- way repeated- measures ANOVA. We 
found that despite the structure of the noise stream being identical across the four conditions, there 
was a lower overall frequency of false alarms in LONG versus SHORT conditions (Figure 3a; F(1,23) = 
58.67, p=8.98 * 10–8). This provides further evidence that participants were overall more conservative 
in their responses in LONG conditions than SHORT. (In other words, for an equivalent level of sensory 
evidence, the participants were less likely to make a response.) There was no effect of response period 
frequency on false alarm rate (F(1,23) = 0.37, p=0.55).

We then examined what caused participants to false alarm during baseline periods. Were partic-
ipants still integrating evidence continuously during these periods of the task, or might false alarms 
be driven by other spurious factors, such as motor noise? We tested this by calculating integration 
kernels derived from these responses. We found the recovered evidence integration kernels showed 
exponential decay weighting, implying that participants were indeed performing continuous evidence 
integration throughout baseline periods as well as response periods, and that evidence accumu-
lation was more temporally extended when response periods were RARE rather than FREQUENT 
(Figure 3b). The slight differences in integration kernels between Figure 3b and Figure 2d (shorter 
duration, and return to baseline close to the response) are due to the inclusion of the average motion 
signal in Figure 3b, rather than just the noise.

Between-participant variation in evidence integration
We then sought to characterise the time constant of leaky evidence integration within each individual 
participant. To do this, we fit an exponential decay model (Figure 1c) to the empirical integration 
kernel from false alarm responses:
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Figure 3. Changes in false alarm response frequency and evidence integration kernels across environments with different statistical structure. (a) False 
alarm rates (responses during baseline periods) showed a main effect of response period duration – participants showed significantly lower false 
alarm rates when response periods were LONG versus SHORT (F(1,23) = 58.67, p=8.98 * 10–8). This is consistent with having a more cautious response 
threshold (also evidenced by longer reaction times during response periods, see Figure 2c), although it could also be interpreted as shorter response 
periods inducing more confusion between signal and noise. (b) Integration kernels calculated for false alarms across the four conditions. Lines show 
mean +/- s.e. across 24 participants. (c) Exponential decay model fitted to individual participants’ kernels during false alarms shows a significantly longer 
decay time constant when response periods were RARE versus FREQUENT. The data points show the time constant,  τ  , for each participant after fitting 
a model of exponential decay to the integration kernel. The equation for this kernel is in the main text, and details of kernel fitting are provided in 
‘Methods’.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Between- subject variability in evidence integration kernels exceeds between- condition variability.

https://doi.org/10.7554/eLife.82823
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 k(t) = Ae
−t
τ    

where k(t) is the height of the integration kernel t seconds before its peak; A is the peak amplitude of 
the integration kernel (in units that denote the fraction of dots moving towards the chosen response 
direction); and  τ   is the decay time constant (in units of seconds). We note that this exponential decay 
model is theoretically motivated by the leaky evidence accumulation model, which implies that past 
evidence will leak from the accumulator with an exponential decay (Bogacz et al., 2006).

Our exponential decay model provided a good fit to data at a single- subject level (median R2 = 0.82, 
95% confidence intervals for R2 = [0.42,0.93]; see Figure 3—figure supplement 1 for example fits), as 
demonstrated by the strong reliability across conditions for both A and  τ   (Figure 3c, Figure 3—figure 
supplement 1a; Pearson’s correlation between SHORT and LONG conditions:  τ  : R(23) = 0.71; A: R(23) 
= 0.72; Pearson’s correlation between RARE and FREQUENT conditions:  τ  : R(23) = 0.87; A: R(23) = 
0.81; all p<0.0001). Indeed, a striking feature of these integration kernels was that variation across 
individuals exceeded the variation observed across conditions (e.g. see Figure 3c).

Consistent with our earlier analyses (Figures 2d and 3b), we found that by fitting this single- subject 
model,  τ   was significantly longer when response periods were RARE than FREQUENT (paired T(23) = 
3.62, p=0.0014; Figure 3c) but A did not differ between these conditions (paired T(23) = 0.03, p=0.97; 
Figure 3—figure supplement 1a). Again consistent with our analyses of behaviour during response 
periods (Figure 2d), there was no difference between these parameters for LONG versus SHORT 
response periods ( τ  : paired T(23) = 0.82, p=0.42; A: paired T(23) = -0.97, p=0.34; Figure 3—figure 
supplement 1a).

In summary, these results indicate that participants adapted to response periods being rarer by 
accumulating sensory evidence with a longer time constant of integration, but that there was also 
substantial between- subject variability in evidence accumulation across participants.

Computational modelling of leaky evidence accumulation
We next considered what adjustments within a computational model of leaky evidence accumulation 
might account for the behavioural adaptation across different environments, and the variability across 
participants. We simulated a well- established model of leaky evidence accumulation, the Ornstein–
Uhlenbeck process (Bogacz et al., 2006; Brunton et al., 2013; Ossmy et al., 2013). Here, evidence 
is accumulated over time according to

 Xt = (1 + λ)Xt−1 + gMt + εt  

where is a parameter that (when constrained to be negative) determines the leak of past sensory 
evidence in the decision variable;  g  is a parameter that determines the gain applied to the momentary 
sensory evidence at each timepoint  Mt  ; and  t  denotes Gaussian- distributed white noise with mean 
0 and variance σ. The model emits a response every time that a decision threshold ±θ is exceeded, 
at which point  Xt+1  is reset to 0. Note that if were set to 0 rather than negative, this model would 
be equivalent to the widely used Drift Diffusion Model, in which previously accumulated evidence is 
perfectly retained in the decision variable  Xt  . Such a model would be inappropriate in the current para-
digm as the structure of the task demands that past sensory evidence should gradually be discounted.

We first considered what adjustments of the model parameters governing leak and decision 
threshold, and θ, would lead to optimal performance in terms of points gained across the entire block 
(Figure 4). We simulated model behaviour using a range of possible values of these parameters, while 
holding  g  constant and assuming σ is primarily a property of low- level sensory processing and so 
also remains constant. The optimal parameterisation of the Ornstein–Uhlenbeck process depended 
upon the number of correct responses/missed trials in response periods versus the number of false 
alarms during baseline periods (Figure 4—figure supplement 1). For example, setting the response 
threshold θ to a low value (e.g. <1 in Figure 4—figure supplement 1) leads to the model correctly 
detecting virtually all response periods, but also emitting so many false alarms that the total points 
obtained would be negative. By contrast, setting the threshold slightly higher still allows for correct 
responses, but they now outnumber false alarms, meaning that the model accumulates points across 
the block.

Figure 4a shows the area of model performance that performs in the top 10% of all parameterisa-
tions that we considered, and Figure 4b shows the best parameterisations for 30 streams of evidence 

https://doi.org/10.7554/eLife.82823
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that were presented to participants in the task. Notably, the optimal decision threshold θ was traded 
off against the optimal setting for leak (Figure 4a, Figure 4—figure supplement 2). In other words, a 
model in which past sensory evidence leaked more rapidly (i.e. was more negative) could be compen-
sated by a decrease in θ, to retain a high level of overall points gained. This led to a ‘ridge’ in param-
eter space where a given set of values for and θ would provide high task performance. The location 
of this ridge differed across the four environments, implying that participants would indeed need to 
adapt these parameters across conditions.

We confirmed the optimal settings for and θ by presenting the actual stimulus streams that were 
presented to our participants, and identifying the values of these two parameters that maximised 
total points won (Figure 4b). This demonstrated that when response periods were LONG rather than 
SHORT, the optimal adjustment was to reduce the amount of leak in the model, so that incoming 
sensory evidence persisted for longer within the decision variable. When response periods were RARE 
rather than FREQUENT, the model could be optimised by increasing the decision threshold. This, in 
turn, would make the model more conservative, consistent with the reduced detection rates and accu-
racy shown in Figure 2b and c. (We note, however, that this is slightly inconsistent with the pattern 
of behavioural false alarm rates shown in Figure 3a. We suggest that this may be under the control 
of further factors such as time- varying urgency [Geuzebroek et  al., 2022], something we do not 
consider in the current model.)

If changes in θ are primarily driven by the frequency of response periods, and changes in are 
primarily driven by their length, then how can we explain the fact that the decay time constant  τ   of 
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Figure 4. Optimal leak and threshold for a leaky accumulator model differs as a function of task condition. (a) We performed a grid search over the 
parameters and θ to evaluate the performance (points won) for different parameterisations (Figure 4—figure supplement 1). The shaded area denotes 
the areas of model performance that lay in the top 10% of all models considered. The optimal area differs across conditions, and the optimal setting for 
leak and threshold co- vary with one another. (b) We used the evidence stream presented to each participant (each dot = one 5 min block), to identify 
the model parameterisation that would maximise total reward gained for each subject in each condition (see also Figure 4—figure supplement 2).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Grid search across parameter space for Ornstein–Uhlenbeck process.

Figure supplement 2. The optimal model parameters for leak and threshold correlate with each other.
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integration kernels is affected by frequency but not length? To answer this, we performed an equiva-
lent analysis of integration kernels on our model simulations. We epoched and averaged the sensory 
evidence that preceded each response made by the decision model and examined the effects of and 
θ on the recovered integration kernels (Figure 5). Surprisingly, we found that θ, not λ, was primarily 
responsible for the recovered decay time constant  τ  . At first sight, this appears counterintuitive 
because is directly responsible for the decay of past sensory evidence in the model of leaky accumu-
lation. However, this is counteracted by the fact that the only data that enters this analysis is when the 
model has passed decision threshold, and a response is emitted – if the threshold is set higher, then 
a consistent stream of positive evidence is required before threshold will be reached, producing the 
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on false alarms emitted by the Ornstein–Uhlenbeck process with different settings for leak (λ, left column) and threshold (θ, right column) while holding 
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effect shown in Figure 5. By contrast, we found that the amplitude of the integration kernel A was 
affected by manipulations of both θ and λ.

In summary, our conclusions from the computational modelling are threefold: (i) our manipulations 
of response period frequency and length elicited different settings for model threshold and leak 
respectively to maximise reward (Figure 4b); (ii) the ‘ridge’ in parameter space that performed well 
(top 10%) for each condition showed a trade- off between threshold and leak (Figure 4a, Figure 4—
figure supplement 1), and may explain how different participants could show very different inte-
gration kernels (Figure 3—figure supplement 1) while still performing well on the task; and (iii) the 
between- condition and between- subject variation in integration kernel time constants  τ   is principally 
driven by variation in response threshold, θ (Figure 5).

EEG correlates of continuous sensory evidence integration
Having established behavioural differences in evidence integration across individuals and across envi-
ronments with different statistical structures, we then examined how participants’ EEG responses 
reflected these differences. To test this, we examined the effects of the noise fluctuations on the EEG 
signal during baseline periods. We focussed on this time period for three reasons: (i) the generative 
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Figure 6. Deconvolutional general linear model to estimate electroencephalographic (EEG) temporal response functions to continuous, time- varying 
decision regressors. The left- hand side of the figure shows an example evidence stream during the baseline period (note that inter- sample intervals are 
shown as fixed duration for clarity, rather than Poisson distributed as in the real experiment). Three example regressors are shown: (a) ‘jump event’, when 
there was a change in the noise coherence level; (b) '|Δ evidence|’, reflecting the magnitude of the jump update at each jump event; and (c) continuous 
|evidence|, reflecting the continuous absolute motion strength. For each of these regressors, a lagged version of the regressor timeseries is created to 
estimate the temporal response function (TRF) at each peri- event timepoint. This is then included in a large design matrix X, which is regressed onto 
continuous data Y at each sensor. This leads to a set of temporal response functions for each regressor at each sensor, shown on the right- hand side 
of the figure. The timecourse for each regressor shows the average regression weights at the three sensors highlighted with triangles on the scalp 
topography. Full details of the design matrix used in our analysis of the EEG data are provided in ‘Methods’.

https://doi.org/10.7554/eLife.82823


 Research article      Neuroscience

Ruesseler, Weber et al. eLife 2023;12:e82823. DOI: https://doi.org/10.7554/eLife.82823  12 of 28

statistics of the noise were identically matched across all four task conditions; (ii) behavioural evidence 
from ‘false alarms’ clearly indicated that participants were still integrating sensory evidence during 
baseline (Figure 3, Figure 3—figure supplement 1); and (iii) the large number of noise fluctuations 
embedded in the stimulus (>1000 per 5 min block) meant that we had many events of interest to 
recover EEG TRFs with a high signal- to- noise ratio (Gonçalves et al., 2014; Lalor et al., 2006).

We therefore built a deconvolutional GLM to estimate TRFs to various events relating to the time- 
varying noise fluctuations during baseline periods. In particular, this GLM included regressors that 
described (Figure 6) (a) ‘jump events’ in the experimenter- controlled noise (‘stick functions’ that were 
1 whenever the motion coherence changed, and 0 elsewhere); (b) the ‘change in evidence’ associated 
with each jump event (stick functions with a parametric modulator of |Δevidence|, i.e. absolute differ-
ence between previous and current motion coherence); and (c) the current |evidence| (a continuous 
regressor, reflecting the absolute difference from 0 across time; note that this regressor is absoluted 
to look for effector- independent signals processing current motion strength, as opposed to those 
signed towards leftward/rightward motion). We also included several further regressors to capture 
EEG correlates of the onset of response periods, the level of motion coherence, and correct and false 
alarm buttonpresses (see ‘Methods’ for full details).

Using this approach, we found a set of consistent TRFs that reliably reflected the continuous updates 
in the time- evolving sensory evidence during baseline (Figure 6). In particular, the two regressors that 
reflected changes in the sensory evidence (‘jump events’) and the magnitude of |Δevidence| both 
elicited positive- going scalp topographies over centroparietal electrodes, peaking ~300 ms after this 
change occurred (Figure 6a and b). This scalp topography, timecourse, and reporting of |Δevidence| 
are consistent with the P300 component (Donchin, 1981; Duncan- Johnson and Donchin, 1977; Mars 
et al., 2008; Squires et al., 1976). The scalp topography is also consistent with the CPP (Kelly and 
O’Connell, 2013; O’Connell et  al., 2012; O’Connell and Kelly, 2021), whose ramp- to- threshold 
dynamics have been proposed to account for many established effects in the P300 literature (Twomey 
et al., 2015). In addition, the continuous |evidence| regressor elicited a triphasic potential over centro-
parietal electrodes (Figure 6c). This triphasic potential is notably similar to EEG potentials reflecting 
‘decision update’ signals during trial- based tasks that require integration of multiple, discrete pieces 
of evidence (Wyart et al., 2012).

Increased CPP responses to Δevidence and response thresholds when 
response periods are rare
We then examined whether these TRFs to noise fluctuations were adapting across the different sensory 
environments. Given our behavioural findings concerning integration kernels (Figures 2d and 3b), we 
reasoned that we would most likely identify differences as a function of response period frequency 
rather than length. Indeed, we found that the centroparietal response to the same change in sensory 
evidence was larger when response periods were RARE than when they were FREQUENT (Figure 7a, 
Figure 7—figure supplement 2; p=0.017, cluster- based permutation test). As large changes in mean 
evidence are less frequent in the RARE condition, the increased neural response to |Δevidence| may 
reflect the increased statistical surprise associated with the same magnitude of change in evidence 
in this condition. In addition, when making a correct response, preparatory motor activity over 
central electrodes reached a larger decision threshold for RARE versus FREQUENT response periods 
(Figure 7b; p=0.041, cluster- based permutation test). We found similar effects in beta- band desyn-
chronisation prior, averaged over the same electrodes; beta desynchronisation was greater in RARE 
than FREQUENT response periods. As discussed in the computational modelling section above, this is 
consistent with the changes in integration kernels between these conditions as it may reflect a change 
in decision threshold. It is also consistent with the lower detection rates and slower reaction times 
when response periods are RARE (Figure 2b and c), which also imply a higher response threshold. By 
contrast, we found no statistically significant difference for either of these regressors between SHORT 
versus LONG response periods (Figure 7—figure supplements 1 and 2). We also found qualitatively 
similar results for false alarm responses.

https://doi.org/10.7554/eLife.82823
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Figure 7. Adaptations of electroencephalographic (EEG) responses to sensory environments where response periods are RARE versus FREQUENT. 
(a) Centroparietal electrodes (see triangles in scalp topography) showed a significantly greater response to Δevidence during ‘jump events’ in the noise 
stream when response periods were RARE than when they were FREQUENT. (b) Central and centroparietal electrodes showed a significantly greater 
negative- going potential immediately prior to a buttonpress during response periods. Lines and error bars show mean ± s.e.m. across 24 participants. 

Figure 7 continued on next page
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Responses to |Δevidence| reflect decision-relevant, not decision-
irrelevant, statistics of stimulus
Given the potential role of |Δevidence| in surprise detection, we next asked whether the centropari-
etal response to |Δevidence| reflected low- level sensory properties of changes in the motion stimulus, 
or higher- level signals relevant to decision- making. To test this, we collected an additional control 
dataset where the stimulus contained both horizontal motion (decision- relevant) that subjects had 
to integrate, as in the main experiment, but also vertical motion (decision- irrelevant) that had the 
same low- level sensory statistics. As in the main experiment, we found that centroparietal responses 
reflected both ‘jump events’ and their associated |Δevidence| for decision- relevant motion, but these 
were substantially reduced for regressors that reflected changes in decision- irrelevant evidence 
(Figure 8). This implies that low- level sensory surprise alone does not account for the centroparietal 
responses to |Δevidence| in our continuous paradigm. Instead, the neural response is better described 
as reporting change detection that is relevant to signal detection and discrimination. It is possible that 
such change detection would be useful to indicate when a response period is more likely to arise in 
the task (Shinn et al., 2022).

* (solid black line at top of figure) denotes significant difference between FREQUENT and RARE (p<0.05, cluster corrected for multiple comparisons 
across time). Details of the permutation testing used for multiple- comparisons correction are provided in ‘Methods’.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. No significant differences in electroencephalographic (EEG) responses between conditions where response periods were SHORT 
versus LONG.

Figure supplement 2. Individual subject electroencephalographic (EEG) effects for the Δevidence regressor over centroparietal electrodes from 200 to 
400 ms after the change in evidence.

Figure 7 continued
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Figure 8. Control experiment demonstrates that response to |Δevidence| is primarily found to decision- relevant horizontal motion, but not decision- 
irrelevant vertical motion (with identical generative statistics). Lines show mean +/- s.e.m. across 6 participants. * denotes timepoints where the response 
to |Δevidence| is significantly greater for decision- relevant motion than decision- irrelevant motion, while controlling for multiple- comparisons across 
time (see ‘Methods’).
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Behavioural‐neural correlation between evidence integration kernels 
and TRFs to continuous sensory evidence
Finally, given the consistency and between- subject variability in integration time constants shown in 
Figure 3c and Figure 3—figure supplement 1, we explored whether any components relating to 
processing of sensory evidence might reflect cross- subject variation in evidence integration. We there-
fore performed a behavioural- neural correlation between participants’ integration time constants  τ   
and their TRFs to sensory noise fluctuations. (Note that the integration time constants were fit using 
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Figure 9. Behavioural- neural correlation (across subjects) of integration decay time constant and response to absolute sensory evidence in stimulus (see 
Figure 6c). Top panel shows Spearman’s rank correlation between the time- varying electroencephalographic (EEG) beta for absolute sensory evidence 
and individual subjects’  τ   parameter, separately for each of the four conditions. The negative- going correlation found in all four conditions from ~420 
ms onwards coincides with the third, negative- going limb of the triphasic response to absolute sensory evidence shown in Figure 6c. Bottom panels 
show the correlation plotted separately for each of the four conditions. We plot the average EEG effect size against log( τ  ) to allow for a straight- line 
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the equation described above, fit [using the approach described in ‘Methods’] separately to the 
empirical integration kernels from each of the four conditions.)

We found such a correlation for the triphasic potential elicited by the continuous ‘absoluted sensory 
evidence’ regressor (see Figure 6c). From approximately 420 ms onwards, the amplitude of the final, 
negative component of this component showed a negative correlation with  τ   across participants 
(Figure 9). In other words, this negative- going component was larger in amplitude (i.e. more negative) 
in participants who would integrate sensory evidence over longer durations (i.e. had a higher value 
of  τ  ). We suggest that this may be consistent with variation in the encoding strength of previously 
studied correlates of continuous decision evidence. For example, Wyart et al. found a positive centro-
parietal potential 500 ms after decision information that positively encoded the current sample, but 
negatively encoded adjacent samples (Wyart et al., 2012); our finding extends this work to explore 
variation in the response across participants.

Although this across- subject correlation was discovered via exploratory analyses, it replicated 
across all four independent conditions, substantially increasing the likelihood of it being a true posi-
tive result (response periods FREQUENT and SHORT: Spearman’s ρ = –0.45, p=0.027; FREQUENT 
and LONG: ρ = –0.52, p=0.0099; RARE and SHORT: ρ = –0.53, p=0.0080; RARE and LONG: ρ = 
–0.46, p=0.025). By contrast, we found no evidence for an across- subject correlation between fitted 
integration decay time constants and EEG regressors encoding evidence updates at jump events 
(Δevidence), nor between fitted amplitude parameters (A) and any EEG regressors.

Discussion
Real- world decisions typically demand continuous integration of incoming evidence in dynamic envi-
ronments, without external cues as to when evidence integration should be initiated or responses 
made. This contrasts with a long- standing tradition in decision- making and psychophysics research 
to confine decisions to discrete trials, which are typically externally cued to the participant. In this 
article, we developed an approach to measure how participants weighed their recent history of 
sensory evidence when performing a continuous perceptual decision task. We found that participants' 
behaviour was well described by an exponentially decaying integration kernel, and that participants 
adapted the properties of this process to the overall statistics of the sensory environment (Ossmy 
et al., 2013) across four different experimental conditions. We also found that there was substantive 
inter- individual variability in leaky evidence integration, with some participants rapidly discounting 
past evidence and others integrating over several seconds. We then demonstrated that both sources 
of variability (between- condition and between- subject) were reflected by changes in centroparietal 
EEG responses to time- varying fluctuations in sensory evidence.

Understanding the neural mechanisms supporting simple perceptual decision- making remains a 
key goal for the neurosciences, and the scalp topographies and signals that we have identified in 
this study match well with known findings in the literature on changepoint detection and sensory 
evidence accumulation. In particular, the well- known P300 component has long been argued to be 
associated with detection of statistical surprise (Donchin, 1981; Duncan- Johnson and Donchin, 
1977; Mars et al., 2008; Squires et al., 1976) or, more recently, a correlate of a continuous time- 
evolving decision variable (Twomey et al., 2015) that is equivalent to the CPP (Kelly and O’Connell, 
2013; O’Connell et al., 2012). Our centroparietal responses to |Δevidence| (Figure 6b) are consistent 
with a changepoint detection account of continuous decision- making (Booras et al., 2021), in which 
decision- relevant input (Figure 8) is evaluated for a change in latent state from a baseline period 
to a response period (Nassar et al., 2019). This account would also explain why these signals are 
enhanced when response periods are rarer as a large |Δevidence| is more statistically surprising when 
response periods are rare than when they are common. Such changepoint detection may be useful 
to transiently suppress neuronal activity and attend to salient incoming sensory evidence to guide 
choices (Shinn et al., 2022). Alongside this, we also identify a triphasic potential that is similar in 
timecourse and scalp topography to previous studies of evidence accumulation (Wyart et al., 2012), 
sensitive to the continuous incoming sensory evidence (Figure 6c). Although we did not find vari-
ation in this potential across conditions, we did find that its amplitude reliably predicted the time 
constant of leaky evidence accumulation across participants (Figure 9). This suggests a key role for 
this component in translating incoming sensory evidence into a continuous representation of the deci-
sion variable across time, but further work is needed to understand how this variable then supports 
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the sensorimotor transformation into a final commitment to making a choice (Steinemann et  al., 
2018). Relatedly, it is unclear what precise functional role of the pre- response central potential and 
centralised beta- band signals may play. One possibility is that they may reflect a change in decision 
threshold between RARE and FREQUENT conditions (Figure 7b). Yet we were unable to detect any 
equivalent change in lateralised beta power (i.e. a signal related to the formation of a specific choice 
Hunt et al., 2013; Kirschner et al., 2023). One alternative possibility is that the central ERP is a read-
iness potential (Schurger et al., 2021).

Our work sits within a broader trend in recent research of moving away from trial- based designs 
towards continuous decision paradigms (Huk et al., 2018). In addition to being more naturalistic, a 
key advantage of such paradigms is that it is possible to relate time- varying properties of the contin-
uous input to continuous output variables. In ‘tracking’ paradigms, for example, not only is the sensory 
input continuous and time- varying but also the behavioural responses made by participants. This 
approach has been used to dramatically reduce the length of time needed from individual partici-
pants, meaning that experiments that previously required many thousands of trials over several hours 
to recover psychophysical functions can now be completed in a matter of minutes (Bonnen et al., 
2015; Knöll et al., 2018; Straub and Rothkopf, 2021). In our paradigm, the behavioural responses 
remained discrete and sparse (as participants were completing a signal detection/discrimination 
task, rather than a tracking task), but the EEG data is continuous and time- varying, and our analysis 
approach similarly benefits from being able to relate continuous variations in sensory input to this 
continuous neural signal. This has been shown in previous work to yield considerable improvements 
in signal- to- noise ratio compared to traditional trial- based event- related potentials (Dimigen and 
Ehinger, 2021; Gonçalves et al., 2014; Lalor et al., 2006), meaning that our approach should allow 
us to characterise the neural response to sensory evidence integration in less recording time than in 
previous work. Indeed, when we examined neural responses from individual participants in this study, 
we found a high degree of individual- subject reliability. This efficiency is due to the high density of 
events in the continuous task design (>1000 jump events in each 5 min block), limiting the amount of 
‘dead time’ present in the experimental design (Henson, 2007). In sum, this leads to a more efficient 
experimental design than in conventional trial- based experiments and may potentially allow for more 
rapid and reliable estimation of single- subject responses.

An intriguing finding in this work is the substantive variability in integration decay time constants 
across individuals. Indeed, such inter- individual variability exceeded the between- condition variability 
that was observed due to our experimental manipulations. We consider two possible explanations 
of this inter- individual variability. The first is that it is a stable, trait- like feature of sensory evidence 
integration that is not unique to our task, but instead reflects true variability in perceptual evidence 
integration across individuals. Such a hypothesis would imply that it would predict variability in inte-
gration time constants in other domains (e.g., auditory evidence integration [Brunton et al., 2013; 
Keung et al., 2019; McWalter and McDermott, 2018] or more broadly cognitive tasks that involve 
continuous maintenance and manipulation of information across time in working memory). If so, it 
may also be possible to relate variability in behavioural time constants to underlying neurobiological 
causes by measuring the resting autocorrelation structure of neural activity, for example, in MEG or 
fMRI data (Cavanagh et al., 2020; Manea et al., 2022; Raut et al., 2020).

An alternative hypothesis is that the individual variability we observe may be a consequence of 
the prior expectations that our participants have about the overall task structure, combined with 
learning over the course of training. One result in support of this hypothesis comes from the model-
ling shown in Figure 4. Not only does the result in Figure 4a show that behaviour should be adapted 
across different conditions, but it also shows that different individuals might potentially achieve similar 
performance by ending up at very different locations in this parameter space. This could in turn explain 
why between- subject variability in these kernels exceeded between- condition variability (Figure 3c, 
Figure 3—figure supplement 1). During training, different participants could have optimised their 
parameters to maximise points gained, but in doing so ended up at different locations on the ‘ridge’ 
of parameters shown in Figure 4a. To adapt behaviour between conditions, they may have then made 
a small adjustment in these parameters to optimise performance for each environment.

Further work will be needed to distinguish these explanations of between- subject variability in inte-
gration kernels and test competing models of participant behaviour. Although the Ornstein–Uhlen-
beck process that we use is an appropriate and widely used model of the task, alternative models 
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might also consider a dynamically changing threshold as a function of progress through the inter- trial 
interval (Geuzebroek et al., 2022); or consider tracking the mean and variance of the stimulus over 
time, rather than just the mean (Bill et al., 2022). In this work, we also did not directly fit parameters 
of the Ornstein–Uhlenbeck process to participant behaviour. Although progress has recently been 
made in model fitting for decision- making in continuous decision- making paradigms (Geuzebroek 
et al., 2022), a key feature of our paradigm is that many responses result from the structured noise 
that we inject into the sensory evidence stream, which complicates the use of aggregate measures 
such as reaction time quantiles for model fitting. Model estimation could potentially be improved by 
having continuous behavioural output, as recently demonstrated in tracking paradigms (Huk et al., 
2018; Straub and Rothkopf, 2021).

Our findings of behavioural adaptations according to the overall statistics of the sensory environ-
ment are consistent with findings from previous research that have examined the same question in 
the absence of neural measures (Ossmy et al., 2013; Piet et al., 2018). Ossmy et al., 2013 used a 
trial- based paradigm with similarities to ours, involving unpredictable signal detection in the context 
of time- varying background noise in combination with a manipulation of signal- period duration. They 
used this to show that participants adapted the time constants of evidence integration in different 
environments. In our paradigm, we benefitted from being able to directly recover empirical integra-
tion kernels as opposed to estimating them in a model, and we also found behavioural differences 
that resulted from varying response period duration. However, we surprisingly found little effect on 
integration kernels from this manipulation; we instead found that our manipulation of response period 
frequency had a greater effect on the weighting of past sensory evidence. We hypothesise that this 
difference between our results and those of Ossmy et al. may simply result from our manipulation of 
response period duration not being sufficiently large (3 s versus 5 s) to require a substantial change 
in evidence weighting to optimise rewards. This is also consistent with our neural results, where the 
between- condition variation in responses to time- varying evidence was primarily found as a function 
of response period frequency, rather than duration.

In conclusion, our work demonstrates that it is possible to accurately measure the timecourse and 
neural correlates of sensory evidence integration in continuous tasks, and how this adapts to the 
overall properties of the environment. This work provides a framework for future work to investigate 
how evidence integration is adapted to other features of decision tasks, and how this may vary across 
individual participants. Our approach will also be useful for future work to investigate how the prop-
erties of evidence integration change in clinical populations and how they are affected by various 
interventions (e.g. pharmacological, electrical/magnetic stimulation, cognitive training).

Methods
Task design
In the continuous task, participants observed a stream of randomly moving dots in a circular aperture 
(Figure 1). A fraction of these dots move coherently to the left or to the right; the motion coherence 
is the proportion of dots moving in the same direction, whereas the other dots move randomly. In this 
study, the coherence varied between –1 (all dots move to the left) and 1 (all dots move to the right). 
At 0 coherence, all dots move randomly.

Unlike in trial- based versions of the task, and even previous RDM tasks where motion is continuous 
(e.g. Kelly and O’Connell, 2013), during the present task the coherence changed constantly. During 
‘baseline’ periods, the average of these constantly changing values remains 0. Within this stream of 
constantly changing coherence, there were response periods in which the average coherence was 
either to the left or to the right (see Figures 1b and 2a). The aim of the subject performing this task 
was to detect these stable periods of predominantly leftward or rightward motion (response periods). 
For participants, this means that they should not respond as soon as they think they know in which 
direction the dots are moving coherently, as is the case for a discrete trial version of the RDM task. 
Instead, participants must weigh the recent history of motion directions to detect periods where the 
average motion direction of the dots was consistently leftwards or rightwards.

Participants indicated their decision about the average motion direction by pressing keyboard 
button ‘L’ to report a response period with average rightward motion and ‘A’ to report a response 
period with average leftward motion. Every time a button was pressed, a change in colour of the 
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central fixation point provided feedback: correct responses were indicated by a green fixation point, 
a red fixation point followed an incorrect response during the response period, and false alarms 
(i.e. buttonpresses during baseline periods) were indicated by a yellow fixation point. Whenever a 
response period was missed (no response made), the fixation point turned blue after 500 ms (note that 
a buttonpress within these 500 ms was still counted as a correct response, to account for non- decision 
time and allow participants to integrate over the entire length of the response period). Following 
correct or incorrect responses made during a ‘response period’, the response period was terminated 
immediately, and the stimulus returned to baseline.

Participants were rewarded for correct responses but lost points for any other response. They 
received 3 points for correct responses, punished with –3 points for incorrect responses, and missed 
response periods or false alarms were both punished with –1.5 points. A reward bar was shown at the 
end of each 5 min block to indicate how many points participants have won in total (the reward bar 
was shown continuously onscreen during training, but not during task performance to avoid distrac-
tion). As participants won more points, their reward increased to the right until they hit the right 
border of the reward bar (equivalent to a net gain of 15 points), the bar was reset to the middle of the 
screen and they received £0.50 bonus to take at the end of the experiment. In rare cases where partic-
ipants were performing poorly and losing points on average, they hit the left border of the reward bar 
(–15 points) and had £0.50 deducted from their take- home bonus.

Structure of the noise
An essential feature of this task paradigm was the noise structure, which leads to continuously varying 
coherence levels. Notably, the noise was placed under experimental control rather than randomly 
generated, meaning that we could examine how fluctuations in the noise impact participants’ 
behavioural and neural data. More generally, the noise can be described as a series of short intervals 
that vary in duration and coherence (Figure 1b). The interval duration was sampled from an exponen-
tial distribution with a mean duration of 270 ms. This distribution was then truncated, with a minimum 
duration of 10 ms and a maximum duration of 1000 ms for each step. The level of motion coherence 
at each step was sampled randomly from a normal distribution. The mean of this normal distribution 
depends on whether the step occurred during baseline or a response period. During a baseline period, 
the mean of the normal distribution was 0. That means it was equally likely that negative or positive 
coherences were drawn. During response periods, the mean of the normal distribution was sampled 
uniformly from the set [-0.5, –0.4, –0.3, 0.3, 0.4, 0.5]. Any samples that exceeded 100% motion were 
set to be [+1, –1]. To limit the number of times this occurred, we set the standard deviation of the 
distribution to 0.3 for response periods and 0.5 for baseline periods. (We note that this could allow 
a strategy of tracking changes in the variance in the stimulus as well as the mean, something that we 
address in the supplementary note.).

Design of the random dot motion stimulus
The task was coded in Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) and param-
eters were chosen similar to Shadlen and Newsome, 2001. Participants were seated 87 cm in front 
of the screen. Moving dots were displayed in a circular aperture subtending with a radius of 5 visual 
degrees on a Dell monitor with a refresh rate of 100 Hz. Dots had a size of 0.1 visual degrees and were 
displayed with a density of 2.5 dots per squared visual degree. The fixation point in the centre of the 
screen had a size of 0.3 visual degrees. All dots were black and displayed on a mid- grey background 
(rgb: 0.5, 0.5, 0.5).

Dots were equally divided into three sets. These sets were shown sequentially, meaning only 
one set per frame was shown. Each time a set reappeared on the screen the coherence on that 
frame dictated, the likelihood of that dot either being displaced randomly or in the direction of 
the coherence. Randomly displayed dots moved like Brownian motion particles, with no particular 
speed. Dots that moved coherently were displaced according to a speed of 7° per second (Shadlen 
and Newsome, 2001). This approach means that subjects were forced to integrate across the entire 
field of moving dots to establish the motion direction; tracking a single dot is not reliable because 
it only reappears on every third frame and does not necessarily move coherently for more than two 
frames.
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Conditions
To understand whether participants can flexibly adapt their integration kernel, we tested the contin-
uous evidence integration task under different conditions following a within- subject 2 × 2 design. 
In different 5 min blocks, participants were told that they would either have long (5 s) or short (3 s) 
response periods, and either frequent (baseline period range 3–8 s) or rare (baseline period range 
5–40 s) response periods. Subjects received extensive training (see below) so that these environ-
mental statistics were well learnt prior to the experimental session. During the experiment, they were 
cued as to which condition they were currently in, by (i) displaying in text at the beginning of each 
block (e.g. ‘response periods are LONG and FREQUENT’); and (ii) having a different shape of fixation 
point (triangle, square, circle, star) for each of the four blocks. This meant that there was no inference 
nor memory required from the subjects to know which condition they were currently in.

Training
Our training protocol was designed to overtrain participants to reach a high level of performance on 
the task and to minimise learning effects during the main testing session. Our training taught partic-
ipants about the structure of the long/short and rare/frequent trial periods, how to discriminate such 
trial periods from background noise fluctuations, and crucially incentivised participants to maximise 
their overall reward rate.

Training consisted of a sequence of different tasks that incrementally trained participants on the 
random dot motion stimulus and the continuous nature of the task. First, participants were introduced 
to the conventional RDM task based on discrete trials (Shadlen and Newsome, 2001), initially with 
very strong motion coherences (–0.9, 0.9), and then progressively with motion coherences resembling 
those found in the main experiment [-0.5,–0.4, –0.3, 0.3, 0.4, 0.5].

Next, participants completed intermediate task versions that still consisted of discrete trials, but 
had features of the continuous task: in particular, noise fluctuations was superimposed on the mean 
motion coherence, as in the final continuous task version coherences would fluctuate throughout 
the trial. This meant that participants had to estimate the average motion direction across the entire 
trial, but respond before the trial ended. Trial lengths were 5 s (length of long response periods) or 
3 s (length of short response periods) and the fixation point shrank over the course of the trial so that 
participants would have an idea of how much time they had to respond. Trials with a mean coherence 
of 0% were also included, to simulate baseline periods of the continuous task that participants had to 
contrast to the other trials; participants had to suppress a response in these trials.

Then, participants moved on to the continuous version of the task, but they were first trained on a 
paradigm with higher mean coherences during response periods; in addition, the fixation dot would 
change its colour to white to indicate the onset of response periods. Gradually, all conditions of the 
experiment and the final mean coherence levels of signal periods were introduced, and a change of 
the fixation dot colour to white was disabled. At this point, when the paradigm was the same as in 
the full task, they had an extended period of practice on the task across all four conditions. Note that 
during this time the colours of the fixation dot feedback were the same as in the main experiment, and 
participants were instructed about the meaning of these dots.

We progressed participants through the different versions of training by checking psychometric 
functions to establish that they had fully learnt each stage before progressing onto the next stage 
of the task. Participants had to perform at 80% correct or higher on discrete trials to move on to the 
continuous tasks, and performance in the continuous task was checked qualitatively by plotting the 
stimulus stream and responses after each block. Verbal feedback was given to participants based 
on their performance, which also helped participants to improve their behaviour during training. If, 
in the latter parts of training, participants still missed more than half of the response periods, they 
were excluded from the subsequent EEG session. Participants (n = 3) who failed to progress from the 
training session were paid for that session and did not progress on to the EEG session.

After participants completed training successfully, they participated in the EEG testing session not 
more than 1 wk later. In this session, participants first performed a ‘reminder’ where they practised 
one run of the full task for 20 min (all four conditions, presented for 5 min each, in randomised order); 
this was performed while the experimenter put on the EEG cap. Then, while EEG data was collected, 
they completed 5–6 task ‘runs’, each lasting 20  min. Each run consisted of all four conditions in 
randomised order.
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Data collection
We tested 33 participants (13 male). Of those, three were unable to learn the continuous task and 
did not progress beyond training. One participant was excluded for falling asleep during the EEG 
session. Another five were excluded from the analysis due to technical issues matching the continuous 
EEG with the stimulus stream and/or issues with EEG data quality after pre- processing. This means 
24 subjects were included in the analysis. Each subject completed six runs, except for one subject who 
completed only five runs. For the control experiment with superimposed vertical motion (Figure 8), 
a further six participants were tested (four males). All participants were aged 18–40, had normal or 
corrected- to- normal vision, and gave written consent prior to taking part in the study. The study was 
approved by the University of Oxford local ethics committee (CUREC R60298).

Behavioural analysis
Detection rate/reaction times
We calculated correct detection rate (Figure  2b) as the proportion of response periods in which 
correct responses were made. We calculated this separately for each run within each level of motion 
coherence (collapsing across leftward/rightward correct responses), and then averaged across the six 
runs, to obtain three values (0.3, 0.4, and 0.5 motion coherence) for each of the four conditions per 
subject. We performed a similar analysis on reaction times for these correct responses (Figure 2c), but 
here we excluded responses in LONG conditions that exceeded 3.5 s, such that the average response 
time could be directly compared between LONG and SHORT conditions. (We note that due to noise 
and the associated uncertainty concerning response period onset, participants are incentivised to 
respond as quickly as possible whenever they thought they were in a response period, as delaying 
responses would lead to ‘missed trials’.) We analysed the effects of coherence, response period length 
and response period frequency on detection rate and reaction time across the 24 participants using a 
three- way repeated- measures ANOVA.

Integration kernels
We calculated integration kernels by averaging the presented motion coherence for 5 s preceding 
every buttonpress (having first multiplied this by –1 for leftward buttonpresses, so that left and right 
responses can be averaged together). We did this separately for false alarms (Figure 3b) and for 
correct responses (Figure 2d). We excluded correct responses in LONG conditions that exceeded 
3.5 s for similar reasons as outlined above. We also note that the integration kernel in this period 
includes a mixture of ‘signal’ (shift in mean coherence) plus noise, whereas the integration kernel from 
false alarms is driven by noise alone. This explains why the segment of the integration kernel that 
reflects non- decision time (i.e. immediately prior to buttonpress) returns close to 0 in Figure 3b but 
is closer to 0.5 in Figure 2c, and also why the false alarm integration kernel is more clearly an expo-
nential decay function.

We fit an exponential decay model to the empirical integration kernel from false alarm responses:

 k
(
t
)

= Ae
−t
τ   

where k(t) is the height of the integration kernel t seconds before its peak; A is the peak amplitude of 
the integration kernel (in units that denote the fraction of dots moving towards the chosen response 
direction), and  τ   is the decay time constant (in units of seconds). To fit the exponential decay func-
tion, we first found the peak of the empirical integration function (using max in MATLAB), and set this 
timepoint to t = 0 in the equation above. We then fit A and  τ   to the empirical integration kernel for all 
timepoints up to and including t = 0 using fminsearch in MATLAB using a least- squares cost function 
between the fitted model and data with an L2 regularisation term that penalised large values of either 
A or  τ   (λ = 0.01). To calculate the quality of the model fit, we calculated R2 for this function:

 
R2 = 1 − RSS

TSS   

with RSS being the residual sum of squares after model fitting and TSS being the total sum of squares.

https://doi.org/10.7554/eLife.82823


 Research article      Neuroscience

Ruesseler, Weber et al. eLife 2023;12:e82823. DOI: https://doi.org/10.7554/eLife.82823  22 of 28

False alarm rates
To calculate false alarm rates (Figure 3), we counted the total number of responses made during base-
line periods and divided this by the total amount of time where subjects could possibly have made a 
false alarm (i.e. total time spent in baseline periods). We repeated this separately for each of the four 
conditions within each participant.

EEG acquisition
EEG data was collected at a sampling rate of 1000 Hz with Synamps amplifiers and Neuroscan data 
acquisition software (Compumedics) and 61 scalp electrodes following the 10–20 layout. Addition-
ally, bipolar electrodes were placed below and above the right eye and on the temples to measure 
eyeblinks as well as horizontal and vertical eye movements (HEOG and VEOG channels). A ground 
electrode was attached to the left elbow bone. The EEG signal was referenced to the left mastoid 
but later re- referenced to the average of left and right mastoids. Impedances of electrodes were kept 
below 15 kΩ.

EEG pre-processing
Data were pre- processed using spm12 (http://www.fil.ion.ucl.ac.uk/spm/; Litvak et  al., 2011), the 
FieldTrip toolbox for EEG/MEG- analysis (http://fieldtriptoolbox.org; Oostenveld et al., 2011), and 
MATLAB (Version R2018b, The MathWorks, Inc, Natick, MA). Each session for each participant was 
pre- processed as continuous data. First, each session was downsampled to 100 Hz. Then, the data 
was rereferenced to the average of left and right mastoid electrodes and bandpass filtered the data 
between 0.1 Hz and 30 Hz using the function spm_eeg_filter with default settings (fifth- order Butter-
worth filter, passed in both directions). In a next step, we used signal space projection methods in SPM 
to perform eyeblink correction. The bipolarised VEOG channel was used to build a spatial confound 
topography of eye blinks to delineate ocular source components, Segments of 1000 ms around eye 
blink events in the VEOG channel were generated and averaged. Principal component analysis was 
then used to define the noise subspace of eyeblinks across all channels, and the first principal compo-
nent was regressed out of the continuous EEG data (Berg and Scherg, 1994; Hunt et al., 2012). For 
each participant and session, the spatial confound map of the first component was visually checked 
to ensure it showed a typical eye blink topography before the regression was applied. The EEG data 
was further thresholded to remove artefacts that were ≥100 µV in a single channel by labelling a 500 
ms window around the peak of the artefact, and removing these time windows when estimating the 
deconvolutional GLM.

Deconvolutional GLM analysis
We used triggers sent to each jump in the noise stream to align the continuous EEG data with the 
continuous stream of sensory evidence (and other experimental events, such as buttonpresses). As 
the downsampled EEG was at the same sampling rate as the refresh rate as the display (100 Hz), we 
simply used the continuous stream of evidence presented on each frame of the experiment from then 
onwards. In addition to the five participants excluded due to technical issues with trigger recording 
and alignment (see ‘Data collection’ above), there was one further participant in our main EEG sample 
(n = 24) who had 3 out of 24 blocks missing due to technical issues; this participant was nevertheless 
taken forward into the main analysis with the remaining 21 recorded blocks.

We then constructed a design matrix X for the continuous EEG data, with 11 regressors in total:

 

EEG ∼ jumpevent + jumplevel + jump��∆evidence
�� + continuous��evidence

�� + continuousevidence
(

signed
) +

response period onsetevent+response period onsetcoherence+buttonpresscorrect+buttonpressfalse alarm+(left−

right buttonpress)correct + (left − right buttonpress)false alarm   

The ‘buttonpress’ regressors and the regressors with subscript ‘event’ are ‘stick functions’ (1 at the 
timepoint that they occurred, and 0 at all other timepoints). Other regressors are parametric modu-
lators of these, except for the two continuous regressors which were valued at all timepoints of the 
experiment (reflecting the current motion onscreen, either absoluted [reported in the main text] or 
signed [not discussed]). In this article, we focus on responses to  jumpevent  (Figure 6a),  

jump∣∣∆evidence
∣∣  

(Figures 6b and 7a, Figure 7—figure supplement 1a, Figure 8),  
continuous∣∣evidence

∣∣  (Figures 6c and 
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9), and  buttonpresscorrect  (Figure 7b, Figure 7—figure supplement 1b). For all of these except for the 

 buttonpresscorrect  , we only estimate the EEG response during the baseline periods, when participants 
are still integrating evidence (as shown empirically in Figure  3), but the statistics of the stimulus 
stream across all four experimental conditions are matched. We calculated the correlation between 
the key regressors of interest (Table 1) to ensure that they were sufficiently decorrelated from one 
another to reliably obtain parameter estimates in the GLM.

To obtain the deconvolved response to each of these regressors, we time- expanded the design 
matrix into a large design matrix Xdc (see Ehinger and Dimigen, 2019 for a recent review; Table 2). 
We used simple ‘staircasing’ of the regressors to create this design matrix (as illustrated in Figure 6), 
rather than a time- Fourier basis set (Litvak et al., 2013) or time- Spline basis set (Ehinger and Dimigen, 
2019); any of these approaches might be suitable for future studies. The number of timepoints for 
each of the regressors varied slightly between different regressors (e.g. we were primarily interested 
in activity after stimulus changes but before buttonpresses; the number of pre- and post- event lags 
reflected this). We then estimated parameter estimates for the deconvolved regressor at each sensor 

Table 1. (Average) explained variance between regressors of the convolutional general linear model 
(GLM) for baseline periods.
Columns and rows are the different regressors used to investigate baseline periods. Between each 
pair of regressors for the key continuous variables, the explained variance (squared correlation 
coefficient) was calculated to ensure that these regressors were not correlated with each other prior 
to estimating the GLM.

R2 Jump Jump level Jump |Δevidence| Continuous |evidence|

Jump 1 0 0.01 0

Jump level 0 1 0.18 0.03

Jump |Δevidence| 0.01 0.18 1 0.01

Continuous |evidence| 0 0.03 0.01 1

Table 2. Design matrix.
This table describes the size of the design matrix assuming a sampling frequency of the 
electroencephalographic (EEG) signals of 100 Hz. For each regressor the number of lags pre- and 
post event and the total number of rows this regressor covers in the design matrix are described. 
The same number of lags was applied to vertical motion regressors for the control study.

Regressor

Pre- event time in 
time- expanded design 
matrix (ms)

Post- event time 
in time- expanded 
design matrix (ms)

Total rows in the 
time- expanded 
design matrix

Jump event (stick function) 1000 1500 251

Jump level (|evidence| at each jump event) 1000 1500 251

Jump |Δevidence| (at each jump event) 1500 1500 301

Continuous |evidence| 1500 1500 301

Continuous (signed) evidence 1500 1500 301

Correct buttonpresses (stick function) 5000 3500 851

Correct buttonpresses (+1 for right, –1 for 
left) 5000 3500 851

False alarm buttonpresses (stick function) 5000 3500 851

False alarm buttonpresses (+1 for right, –1 
for left) 5000 3500 851

Onset of response period (stick function) 500 8000 851

Response period |coherence| of response 
period (stick function) 500 8000 851
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for each subject with ordinary least squares (using the method of Courrieu, 2008 to facilitate fast 
computation of the pseudoinverse of the design matrix).

Permutation test for convolutional GLM analysis
To test for significant differences between deconvolved EEG responses for LONG versus SHORT 
response periods, and for RARE versus FREQUENT response periods, we performed a non- parametric 
paired t- test controlling for multiple comparisons across time, using the FieldTrip function ft_timelock-
statistics (Maris and Oostenveld, 2007). We first selected electrodes and time windows of interest 
based upon the average response to the key regressors across all four conditions (see Figure 6); we 
note that because this selection vector is orthogonal to the difference between conditions (and the 
number of observations are matched between conditions), then it provides an unbiased method for 
selecting a window of interest (Kriegeskorte et al., 2009). In practice, this meant that the cluster- 
based permutation test was performed on an average of three centroparietal electrodes (CP1, CP2, 
CPz) and a time window from 0 to 800 ms post- event for jump- locked events (Figure 7a, Figure 7—
figure supplement 1a, Figure 8), and an average of six centroparietal and central electrodes (C1, 
C2, Cz, CP1, CP2, CPz) and a time window from 2000 ms to 0 ms pre- event for buttonpress events 
(Figure 7b, Figure 7—figure supplement 1b). In total, 1000 permutations were generated with the 
Monte Carlo method, and clusters were selected based on a T- statistic threshold of 2.07 for initial 
cluster formation (except for |  

jump∣∣Devidence
∣∣ , where a slightly lower threshold of T > 1.80 was used), 

and an alpha of 0.05 (two- tailed) was then used for significance detection of clusters, corrected for 
multiple comparisons across time.

For the behavioural- neural correlations in Figure 9, we first temporally smoothed single subject 
betas with a Gaussian kernel with 75 ms FWHM (to further improve single subject SNR), and then 
calculated the Spearman’s correlation at each timepoint between the estimated betas for the 

 
continuous∣∣evidence

∣∣  regressor and the  τ   parameters fit to the empirical evidence integration kernels 
for false alarms. We did this separately for the four conditions, providing four separate tests of the 
same behavioural- neural correlation (we note that these tests are independent in the sense that they 
consist of separate data for each correlation, but not in the sense that different participants were used 
to generate the data). In Figure 9b, we report the behavioural- neural correlation for the time window 
420–750 ms after the evidence.
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