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Abstract Stem cells play critical roles both in the development of cancer and therapy resis-
tance. Although mesenchymal stem cells (MSCs) can actively migrate to tumor sites, their impact on 
chimeric antigen receptor modified T cell (CAR-T) immunotherapy has been little addressed. Using 
an in vitro cell co-culture model including lymphoma cells and macrophages, here we report that 
CAR-T cell-mediated cytotoxicity was significantly inhibited in the presence of MSCs. MSCs caused 
an increase of CD4+ T cells and Treg cells but a decrease of CD8+ T cells. In addition, MSCs stimu-
lated the expression of indoleamine 2,3-dioxygenase and programmed cell death-ligand 1 which 
contributes to the immune-suppressive function of tumors. Moreover, MSCs suppressed key compo-
nents of the NLRP3 inflammasome by modulating mitochondrial reactive oxygen species release. 
Interestingly, all these suppressive events hindering CAR-T efficacy could be abrogated if the stan-
niocalcin-1 (STC1) gene, which encodes the glycoprotein hormone STC-1, was knockdown in MSC. 
Using xenograft mice, we confirmed that CAR-T function could also be inhibited by MSC in vivo, and 
STC1 played a critical role. These data revealed a novel function of MSC and STC-1 in suppressing 
CAR-T efficacy, which should be considered in cancer therapy and may also have potential applica-
tions in controlling the toxicity arising from the excessive immune response.

Editor's evaluation
This study uncovers the contributions of MSC on modulating CAR T-cell behaviour. Based on the 
importance in basic biology and its immediate impact on translational potential, all reviewers are 
satisfied on the advances in this study.

Introduction
Advances in chimeric antigen receptor modified T cell therapy (CAR-T) in recent years have shown 
enormous promise in cancer immunotherapy, which has produced unprecedented clinical outcomes, 
most notably for patients with hematologic malignancies (Singh et  al., 2016; Park et  al., 2018). 
Despite the striking achievements, CAR-T therapy is also facing many challenges such as the treatment-
related severe toxicity and side effects, including cytokine release syndrome (CRS) and neurotoxicity 
(Hong et al., 2020; Freyer and Porter, 2020). CRS is the most common acute toxicity associated 
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with an excessive immune response that causes fever, hypotension, and respiratory insufficiency. The 
neurotoxicity induced by CAR-T therapy exhibits a diverse array of neurologic symptoms such as 
tremors, expressive aphasia, and impaired attention. The precise mechanism that causes these life-
threatening side effects remains unclear (Freyer and Porter, 2020; Jiang et al., 2019). On the other 
hand, the success of CAR-T therapy in treating solid tumors is still very limited (Martinez and Moon, 
2019). Identifying hurdles and potential mechanisms that impede the function of CAR-T cells is of vital 
importance to expanding its use. The immunosuppressive tumor microenvironment (TME) is one of 
the obstacles that diminishes the efficacy of CAR-T therapy, especially for solid tumors.

Among the many factors that can modulate TME and immune response, the impact of mesen-
chymal stem cell (MSC) on CAR-T therapy has been little studied. MSC is a type of adult stem cell 
with high proliferative activity and multidirectional differentiation capacity. However, MSCs have addi-
tional paracrine effects that are believed to underlie their therapeutic functions (Jiang and Xu, 2020). 
By secreting a variety of cytokines into the tissue microenvironment, it has been known that MSCs 
can modulate extracellular matrix, promote angiogenesis, and suppress inflammation and apoptosis 
(Keating, 2012; Wang et al., 2014; Regmi et  al., 2019). Some MSC-secreted cytokines, such as 
stromal cell-derived factor 1 and stem cell factor, play important roles in hematopoietic and immune 
regulation (Kawaguchi et al., 2019; Markov et al., 2007). In addition, studies suggest that MSCs 
can modulate the function of monocytic lineages cells, especially macrophages (Németh et  al., 
2009; YlÖstalo et al., 2012; Choi et al., 2011). Some reports also showed that MSCs could directly 
affect the functionality and cellular responses of T cells, Tregs, and memory T cells (Cen et al., 2019; 
Tumangelova-Yuzeir et al., 2019; Luque-Campos et al., 2019).

It was reported that human mesenchymal stem cells (hMSCs) could be activated by lipopolysac-
charide (LPS)-stimulated macrophages to increase the expression and secretion of stanniocalcin-1 
(STC1) (Oh et  al., 2014). STC1 was a mitochondria-related glycoprotein originally identified as a 
calcium/phosphate regulating hormone in bony fishes, and later on, it was found to be a pleio-
tropic factor involved in various degenerative diseases such as ocular and renal disease, as well as 

eLife digest Immunotherapy is a type of cancer treatment that helps the immune system fight 
cancer. For example, chimeric antigen receptor T cell (CAR-T) therapy is used to target several types 
of blood cancer. It works by reprogramming patients’ immune cells to target specific tumor cells. In 
blood cancers, CAR-T therapy works very well, but it can cause extreme responses from the patient’s 
immune system, which can be life threatening. In solid tumors, CAR-T therapy is much less successful 
because the tumors secrete molecules into the space surrounding them, which weaken the immune 
processes that attack cancerous cells.

Stem cells are the master cells of the body. Originating in the bone marrow, they can repair and 
regenerate the body’s cells. Cancer stem cells play a role in resistance to CAR-T therapy, due – in part 
– to their ability to renew themselves, but the role of another type of stem cell, called mesenchymal 
stem cells, was less clear. Mesenchymal stem cells develop into tissues that line organs and blood 
vessels. Although it is known that mesenchymal stem cells are present in most cancers and play a role 
in shaping and influencing the space around tumors, their impact on CAR-T therapy has not been 
studied in depth.

To find out more, Zhang et al. looked at the influence of a protein, called staniocalcin-1 (STC1), 
on CAR-T therapy, by studying cells grown in the laboratory and human tumor cells that had been 
implanted in mice.

Zhang et al. found that mesenchymal stem cells reduce the ability of CAR-T therapy to destroy 
cancer cells and that they needed STC1 to do this successfully. They also increased the expression of 
molecules that dampen the immune system, and suppressed molecules called inflammasomes, which 
are an important part of the way the immune system detects disease. Moreover, reducing the amount 
of STC1 that mesenchymal stem cells expressed restored the effectivity of CAR-T therapy.

This study increases our understanding of the way that mesenchymal stem cells affect CAR-T 
therapy. It has the potential to open up a new way of improving the efficiency of this treatment and of 
reducing the harmful side effects that it can cause.

https://doi.org/10.7554/eLife.82934
https://www.sciencedirect.com/topics/immunology-and-microbiology/stem-cell-factor
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idiopathic pulmonary fibrosis (Yeung et al., 2012; Ohkouchi et al., 2015). STC1 could improve the 
cell survival and regeneration of MSCs in a paracrine fashion (Ono et  al., 2015). There was also 
evidence suggesting that STC1 played an oncogenic role in various types of tumors (Du et al., 2011; 
Liu et al., 2010). Based on a retrospective study of ~1500 clinical samples, it was concluded that high 
STC1 expression is associated with the poor clinical outcome of breast cancer (Chang et al., 2015). 
It was proved that STC1 is involved in several oxidative and cancer-related signaling pathways, such 
as NF-κB, extracellular-signal-regulated kinase (ERK), and c-Jun NH(2)-terminal kinase (JNK) pathways 
(Nguyen et al., 2009; Chan et al., 2017). The expression and secretion of STC1 in cancer tissue can 
be stimulated by external stimuli, including external cytokines and oxidative stress (Nguyen et al., 
2009). Under hypoxia conditions, STC1 could be modulated by Hypoxia-inducible factor-1 (HIF-1) to 
facilitate the reprogramming of tumor metabolism from oxidative to glycolytic metabolism (Yeung 
et al., 2005). STC1 was also reported to participate in the process of epithelial-to-mesenchymal tran-
sition, which is associated with tumor invasion and the reshape of the tumor microenvironment, as well 
as increasing therapy resistance (Pastushenko and Blanpain, 2019).

Considering the pleiotropic role of STC1, especially its intercellular linkage between MSCs, cancer 
cells, and macrophage stimulation, it is interesting to know what role it plays in connection to the 
functions of MSC in TME. Therefore, we generated a stable STC1 knockdown MSC cell line. With a 
cell co-culture model containing CAR-T cells, hMSCs, macrophages, and Pfeiffer lymphoma cells to 
partially mimic the tumor microenvironment together with a xenograft mice model, here we studied 
the impacts of MSC on CAR-T efficacy and the potential immune response change in the presence 
and absence of STC1.

Results
Stable knockdown of STC1 in hMSC-inhibited cell migration, slightly 
suppressed cell proliferation, but no increase in apoptosis
To study the function of STC1, we first generated a stable knockdown cell line by lentivirus-based 
shRNA for the STC1 gene, and the expression of STC1 protein was evaluated by Western blot 
(Figure 1A). STC1 stable knockdown in hMSCs exhibited a minor effect in cell survival (Figure 1B) 
and slightly reduced proliferation rate based on the small increase in the proportion of cells in G0/
G1 phases versus that in the S phase (Figure 1C) as determined by MTT (3-[4,5-dimethylthiazol-2
-yl]-2,5 diphenyl tetrazolium bromide) and Fluorescence-activated Cell Sorting (FACS) analysis. To 
investigate whether knockdown of STC1 affects cell migration, wound healing and transwell chamber 
assays were performed. After creating a ‘scratch’ in a monolayer of hMSCs, the closure of the gap 
was determined after 24 hr. As shown in Figure 1D, compared to control hMSCs, the gap was less 
filled in hMSCshSTC1. The inhibitory effect on cell migration was further confirmed by a transwell assay. 
As shown in Figure 1E, there were significant migration and invasion observed in hMSCsshCtrl, whereas 
there was a >30% reduction in migration across the transwell chamber membrane in hMSCsshSTC1. To 
further determine whether knockdown of STC1 may have any lethal effect, apoptosis was determined 
by two different assays. To measure the early apoptosis, cells were stained with the Alexa Fluor 488 
annexin V and the propidium iodide (PI) followed by flow cytometry to detect apoptosis-associated 
phosphatidylserine (PS) expression and membrane permeability (Figure 1F). Parallelly, no DNA frag-
mentation was detected as determined with the TUNEL assay (Figure 1G, the green dots were from 
the background due to overexposure). Both studies showed that knockdown of STC1 did not cause 
apoptosis of hMSCs.

The presence of hMSCs inhibited CAR-T cell killing activity, but 
knockdown of STC1 completely abrogated this inhibition
To investigate the impact of hMSCs on CAR-T treatment, we used an in vitro cell co-culture model 
modified according to previous studies to mimic a simplified situation of tumor environment (Singh 
et al., 2017; Liu et al., 2021). The co-culture contained CD19 CAR-T cells, Pfeiffer cells that were 
from human diffuse large cell lymphoma, and M2 macrophages (derived from THP-1 cells by phorbol-
12-myristate-13-acetate [PMA] polarization for 24 hr) at a cell number ratio of 1:3:1. The cell-killing 
activity of CAR-T cells toward Pfeiffer cells was determined by lactate dehydrogenase (LDH) cytotox-
icity assay on total cell co-culture. As shown in Figure 2A, 67% of Pfeiffer cells were killed after being 

https://doi.org/10.7554/eLife.82934
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exposed to CAR-T cells for 24 hr, and 93% were killed at 48 hr as compared to mock-treated control. 
After adding hMSCs into the co-culture, the cell-killing activity of CAR-T was significantly inhibited 
(Figure 2A). The number of hMSC added was the same as the CAR-T cell. Interestingly, the inhibitory 
effect of hMSCs on CAR-T cytotoxicity could be completely abrogated if knockdown STC1 gene in 
hMSCs. These results for the first time revealed that CAR-T efficacy could be affected by the presence 
of MSCs, and the gene STC1 played a critical role.

Co-culturing with hMSCs caused an increase of CD4+ T cells and Treg 
cells but a decrease of CD8+ T cells
Previous studies have demonstrated that the composition of CD4+ and CD8+ T cell subsets was crucial 
for CAR-T cell efficacy (Sommermeyer et al., 2016; Turtle et al., 2016). To investigate the mechanism 
of how hMSC inhibited the cytotoxicity of CAR-T, the amount of CD4+ and CD8+ T cells were analyzed 

Figure 1. The impact of stanniocalcin-1 (STC1) knockdown on cell proliferation, migration, and apoptosis of 
hMSCs. (A) Western blot analysis of STC1 protein expression in hMSCs. (B) Cell viability determined by MTT, 
measurements are shown as the mean ± SD from three independent experiments. (C) FACS analysis of cell cycle 
progression on hMSCs w/o STC1 knockdown. (D, E) Knockdown of STC1 suppressed cell migration as determined 
by wound healing and transwell chamber assays. (F) Apoptosis determination by the Alexa Fluor 488 annexin V 
and PI detection. (G) DNA fragmentation determination by transferase-mediated dUTP nick-end labeling (TUNEL) 
assay.

The online version of this article includes the following source data for figure 1:

Source data 1. Labeled original blots of Figure 1A.

Source data 2. Unlabeled original blots of Figure 1A.

Source data 3. Figure 1B in Excel file.

https://doi.org/10.7554/eLife.82934
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by flow cytometry 24  hr after co-culture. As shown in Figure  2B and C, the ratio between CD4+ 
and CD8+ was about 1:4 when there were no hMSCs in co-culture (Figure 2C). However, the addition 
of hMSC caused a significant increase of CD4+ and a decrease of CD8+ T cells (Figure 2B), resulting 
in a ratio change to 2:1. Similar to the change of CD4+ T cells, the percentage of regulatory T cells 
(Treg) was also significantly increased from ~3 to 12% when co-culture with hMSC (Figure 2D and E). 
When using hMSCshSTC1, all the changes were completely reversed back to the level similar to that of 
co-culture without hMSCs. This explains the reduced CAR-T cytotoxicity since CD8+ T cells are directly 
responsible for specific lytic activity against lymphoma (Sommermeyer et al., 2016). Tregs, which 

Figure 2. Analysis of cytotoxicity, T cell composition, and immune-suppressive markers. The cell co-culture 
contained chimeric antigen receptor modified T cell (CAR-T) cells, Pfeiffer cells, M2 macrophages, and control 
or stanniocalcin-1 (STC1) knockdown hMSCs in a ratio of 1:3:1:1. After 24 hr (or 48 hr for cytotoxicity) incubation, 
the following analysis was conducted: (A) The impact of hMSC (w/o STC1) on the cytotoxicity of CAR-T toward 
Pfeiffer cells; (B) FACS analysis of CD4+ and CD8+ composition. (C) Quantitation of the FACS data on CD4+ and 
CD8+; (D) FACS analysis of Treg+ cells (CD4+CD127+CD25+); (E) Quantitation of Treg+ cells. (F) Western blot analysis 
of indoleamine 2,3-dioxygenase (IDO) and programmed cell death-ligand 1 (PD-L1) expression in the cell co-
culture. Data in bar graphs are presented as the mean ± SD from three independent experiments (p values are as 
indicated, n=3).

The online version of this article includes the following source data for figure 2:

Source data 1. Figure 2A in Excel file.

Source data 2. Figure 2C in Excel file.

Source data 3. Figure 2E in Excel file.

Source data 4. Labeled original blots of Figure 2F.

Source data 5. Unlabeled original blots of Figure 2F.

https://doi.org/10.7554/eLife.82934
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account for 5–10% of the total number of CD4+ T cells, are known to play a role in suppressing the 
function of T cells and other immune cells (Zhang et al., 2018). Therefore, the above results indicate 
that hMSCs’ inhibitory effect on CAR-T cytotoxicity was due to both suppression of CD8+ cells and 
the induction of Treg cells, and the presence of STC1 was indispensable for these impacts of hMSC.

The presence of hMSC enhanced immune suppression and STC1 played 
a key role
The immune-suppressive TME is the main cause of CAR-T cell exhaustion which attenuates its effi-
cacy. To further investigate the function of STC1 and the molecular mechanism of hMSC on CAR-T 
resistance, some key regulators of TME were determined. As shown in Figure 2F, the addition of 
hMSC to the cell co-culture stimulated the expression of indoleamine 2,3-dioxygenase (IDO) and 
programmed cell death-ligand 1 (PD-L1). IDO and PD-L1 are two of the most important immunosup-
pressive proteins. IDO is an intracellular enzyme that converts tryptophan into inhibitory metabolites 
for T-cell activity (Ninomiya et al., 2015). PD-L1 is expressed in tumor cells and immune cells contrib-
uting to the immune-suppressive TME (Ribas and Hu-Lieskovan, 2016). When using hMSCshSTC1, the 
expression level of IDO and PD-L1 was both significantly reduced by more than 50%, though still 
higher than that without hMSC. These results indicated that the presence of hMSC can enhance the 
expression of immune suppressive proteins in Pfeiffer cells and macrophages, and the presence of 
STC1 is important for hMSC to exert these effects.

hMSCs suppressed key components of the NLRP3 inflammasome by 
modulating mitochondrial ROS release
In the co-culture model, M2 macrophages were included since a previous study showed that macro-
phages could activate hMSCs to secrete STC1 (Cen et al., 2019). In addition, the macrophage is 
a critical part of immune response and an important regulator of immunotherapy (DeNardo and 
Ruffell, 2019). To further identify the mechanisms mediating the inhibitory effects of hMSCs, the acti-
vation of the NLRP3 inflammasome was determined. The NLRP3 inflammasome is a critical compo-
nent of the innate immune system mediating caspase-1 activation and proinflammatory cytokines 
secretion in response to harmful stimuli such as infection and endogenous stress (Menu and Vince, 
2011). As shown in Figure 3A, the release of cleaved caspase-1 p20 in cell lysates, which is the indi-
cator of caspase-1 activation, was detected after the PMA polarization of THP-1 cells to form the 
M1 macrophages (M-THP1). Following co-culture with CD19 CAR-T, the level of cleaved caspase-1 
was significantly upregulated. The increase of active caspase-1 was abrogated when hMSCs were 
added into the co-culture. knock-down of STC1 led to another reverse and completely blocked the 
inhibitory function of hMSCs (Figure 3A). Concomitant with the reduction in active caspase-1, the 
cleaved IL-1β mature form and absent-in-melanoma 2 (AIM2), two key components of the inflam-
masome (Kelley et al., 2019), were both increasingly expressed following M-THP1 polarization and 
further incubation with CAR-T (Figure 3A). Compared to the partial inhibition of the active caspase-1 
formation, the addition of hMSC in the cell co-culture showed a stronger inhibition of these two 
proteins, and their expression level was returned to the base level of Pfeiffer plus CAR-T (Figure 3A). 
This result suggests that the immune-suppressive effect of hMSC was through its impact on macro-
phages, not CAR-T or Pfeiffer cells. Knockdown of STC1 abrogated the inhibition of hMSC on IL-1β 
and AIM2 (Figure 3A). The levels of IL-1β in the supernatants measured by ELISA showed similar 
results as cell lysate (Figure 3B).

Mitochondrial dysfunction is one of the major stimuli that activates the NLRP3 inflammasome, 
and it was reported that exogenous STC1 is internalized by macrophages within 10 min and localizes 
to mitochondria to suppress superoxide generation (Wang et al., 2009). Therefore, we determined 
the impact of hMSC on the intracellular level of reactive oxygen species (ROS) and mitochondria 
mass in macrophages by fluorescent dye CellROX and MitoTracker Green, respectively. As shown in 
Figure 3C and D, the presence of hMSCsshCtrl markedly suppressed both the cellular and mitochon-
drial ROS induced by the co-culture of CAR-T cells, tumor cells, and macrophages. Knockdown of 
STC1 eliminated the function of hMSC in suppressing ROS. This result correlates well with the expres-
sion of caspase-1, IL-1β, and AIM, suggesting that hMSCs inhibited NLRP3 inflammasome activation 
in macrophages was most likely by inhibiting the oxidative burst.

https://doi.org/10.7554/eLife.82934
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hMSCs showed strong inhibition on CD19 CAR-T therapy in xenograft 
mice, which was abrogated by STC1 knockdown
The immune-suppressive impact of hMSC on CAR-T therapy and the function of STC1 were further 
evaluated in a xenograft model. Upon injection of Pfeiffer cells and confirmation of engraftment, we 
injected hMSC into the tumor area while applying CAR-T treatment by tail vein injection. As shown in 
Figure 4A, CD19 CAR-T treatment combined with the injection of hMSCshSTC1 achieved a significant 
curative effect, and the tumors nearly disappeared at day 38. However, the hMSCshCtrl group showed 
a continued increase in tumor size and spreading of tumor.

Based on the immunohistochemical analysis of IL-1β in tumor tissue on day 10, the number of 
positive cells (brownish-yellow staining) ranged from 76 to 100% in the hMSCshSTC1 group, while it 
ranged from 5 to 20% in the hMSCshCtrl group, indicating that hMSC could suppress TME and STC1 

Figure 3. The impact of mesenchymal stem cells (MSCs) on the expression of key components involved in the 
formation of NLRP3 inflammasome and mitochondrial reactive oxygen species (ROS). (A) The protein expression 
of IL-1β, caspase-1, and AIM2 in cell lysates was analyzed by Western blot. (B) Quantitation of IL-1β secretion in 
the supernatants by ELISA. (C) FACS analysis of ROS level and mitochondria mass with fluorescent dye CellROX 
Deep Red and MitoTracker Green. (D) Quantitation of mitochondria-specific ROS level based on the percentage 
of cells that were both positive for CellROX and MitoTracker. All samples were collected 24 hr post the co-culture 
of different cells. For the measurements of IL-β, results are shown as the mean ± SD from three independent 
experiments (p values are as indicated, n=3).

The online version of this article includes the following source data for figure 3:

Source data 1. Labeled original blots of Figure 3A.

Source data 2. Unlabeled original blots of Figure 3A.

Source data 3. Figure 3B in Excel file.

Source data 4. Figure 3D in Excel file.

https://doi.org/10.7554/eLife.82934
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knockdown significantly diminished this impact (Figure  4B). Consistent with the results in vitro, a 
large amount of CD4+ T cells were detected in the hMSCshCtrl group but much less in the hMSCshSTC1 
group. On the contrary, the amount of CD8+ T cells was significantly increased in the hMSCshSTC1 group 
compared to that of the hMSCshCtrl group (Figure 4B). Based on the staining of FOXP3 (forkhead box 
P3), a master regulator involved in the development of Treg cells, the amount of Treg cells was also 
evidently increased in the hMSCshCtrl group compared to that of the hMSCshSTC1 group (Figure 4B). 
These results further confirmed that knockdown of STC1 abrogated the immune-suppressive capa-
bility of MSC.

The changes in the average radiance were consistent with the changes in the tumor size (Figure 4C 
and D). The survival time of mice demonstrated that mice in CAR-T combined with the hMSCshSTC1 
group had the longest survival with no death by day 38 (Figure 4D). Compared to the control group 
with no CAR-T treatment, tumor spreading in the hMSCshCtrl group was slower, and all survived for 
6 days more. These results confirmed the inhibitory effects of hMSC on CAR-T therapy under in vivo 
situations and demonstrated that STC1 is an important factor affecting therapy efficacy.

Discussion
Stem cells are believed to play critical roles in resistance to cancer therapy, which is a major contrib-
utor to poor treatment responses and tumor relapse. Previous studies have been mainly focused on 
the role of cancer stem cells. In the current study, we presented evidences that the presence of MSCs 
in TME may also be an important source of cancer treatment resistance. By modulating TME, MSCs 
showed a strong suppressive function on CAR-T efficacy toward lymphoma cells, and interestingly, the 
presence of the STC1 gene played a critical role.

The role of STC1 in cancer is paradoxical. Some reports showed that it exerts an oncogenic role, 
whereas other studies suggested the opposite (Chen et al., 2019). The aberrant expression of STC1 
has been reported to impact various types of cancer, such as triggering tumor angiogenesis by upreg-
ulating the expression of VEGF in gastric cancer cells (He et al., 2011), causing tumorigenesis and 
poor clinical outcomes in ovarian, colorectal, and lung cancers (Yeung et al., 2012; Chen et al., 2019). 
To date, the potential roles of STC1 in immunotherapy are still largely unknown. Here, we demon-
strated that the presence of STC1 is critical for MSC to exert its immunosuppressive role by inhibiting 
cytotoxic T cell subsets, activating some key immune suppressive/escape mechanisms, and crosstalk 
with other immune cells.

First, a significant downregulation of CD8+ T Cells together with the upregulation of CD4+ T helper 
cell subsets and Tregs indicated that the suppressed CAR-T efficacy was at least partially associated 
with MSC’s function in modulating the proliferation of different T-cell subsets. Since the suppression 
of CD8+ T cells was completely abrogated if knockdown STC1 in MSCs, it is clear that STC1 played a 
key role here. Moreover, considering that STC1 is secreted into the extracellular matrix in a paracrine 
manner, MSCs’ modulation of the T cell subsets is most likely indirectly via altered cytokine expression 
or other secondary molecules activated by STC1. In line with our study, it was recently reported that 
STC-1 negatively correlates with immunotherapy efficacy and T cell activation by trapping calreticulin, 
which abrogates membrane calreticulin-directed antigen presentation function and phagocytosis (Lin 
et al., 2021).

The presence of MSCs also stimulated the expression of IDO and PD-L1, two important immune-
suppressive molecules. Upregulation of IDO is an endogenous feedback mechanism controlling exces-
sive immune responses, which can be produced both by tumor cells and macrophages (Uyttenhove 
et  al., 2003). IDO-mediated formation of immunosuppressive metabolites can inhibit T-cell prolif-
eration and induce T-cell death through the dioxin receptor (Opitz et al., 2011; Frumento et al., 
2002). PD-L1 is a well-characterized molecule of the major escape mechanism of immunotherapy 
by inhibiting PD-1-mediated effector T cell function and downregulating antigen tolerance (Ribas 
and Hu-Lieskovan, 2016). There have been numerous studies reporting the bidirectional interactions 
between MSCs and cancer cells, resulting in regulating the expression of PD-L1 on the surface of 
various cancer cells or TME (Aboulkheyr and Bigdeli, 2022; Krueger et al., 2019; O’Malley et al., 
2018; Sun et al., 2018). Importantly, here we demonstrated that the upregulated expression of both 
IDO and PD-L1 by MSCs was much reduced if the STC1 gene was knockdown.

The paracrine activity of MSCs is now widely recognized as an important cellular mechanism to 
communicate with immune cells and various other cell types in TME (Teixeira et al., 2013). Consistent 

https://doi.org/10.7554/eLife.82934
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Figure 4. The inhibition of hMSC on chimeric antigen receptor modified T cell (CAR-T) therapy in xenograft mice 
relied on stanniocalcin-1. (A) The formation and progression of tumor in three groups of mice monitored with 
bioluminescence imaging: the control group without any treatment, CAR-T/M-THP1/hMSCsshSTC1 group, and CAR--
T/M-THP1/hMSCsshCtrl group. Day 0 was set when the engraftment was confirmed after injecting the Pfeiffer cells. 
(B) Immunohistochemical analysis of IL-1β, CD4+, CD8+, and Treg cells (using FOXP3 as the biomarker) in tumor 
tissue at day 10, positive cells display brown or brownish-yellow staining color. (C) The tumor size change with time. 
(D) The counted average radiance, presented as the mean ± SD (p values are as indicated, n=3).

The online version of this article includes the following source data for figure 4:

Source data 1. Figure 4C in Excel file.

Source data 2. Figure 4D in Excel file.

https://doi.org/10.7554/eLife.82934
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with previous studies, we found that the addition of hMSCs to the co-culture cell model suppressed 
the formation of NLRP3 inflammasome in macrophages as determined by the downregulation of some 
key proteins including IL-1β, the activated caspase-1, and AIM. It was reported that CD4+ T cells could 
inhibit inflammasome-mediated caspase-1 activation and IL-1β release through TNF ligands or by 
interferon signaling (Guarda et al., 2009). Therefore, the modulation of T-cell subsets and activation 
of the NLRP3 inflammasome by hMSC appear to be closely connected. Since NLRP3 inflammasome is 
a key factor in the neuroinflammation onset in CNS injuries (Menu and Vince, 2011), the suppression 
of NLRP3 inflammasome by hMSC may be potentially beneficial in reducing the exacerbated immune 
responses associated with CAR-T therapy.

The formation of the NLRP3 inflammasome was reported to be through NF-κB-dependent tran-
scription of IL-1β, IL-18, and NLRP3, whereas its activation is triggered by extracellular stimuli such 
as lysosomal permeability, potassium efflux, and oxidative stress (Kelley et al., 2019). It has been 
proved that the expression and secretion of STC1 in multiple cell lines can be stimulated by external 
stimuli, including cytokines and oxidative stress (Nguyen et al., 2009). Considering that exogenous 
STC1 could be internalized by macrophages within 10 min and localizes to mitochondria and played a 
suppressing role in ROS generation (Wang et al., 2009), we speculated that the inhibition of NLRP3 
inflammasome formation might be a feedback mechanism that occurred between macrophages and 
hMSC. It was reported that LPS-stimulated macrophages do stimulate the expression and secretion of 
STC1 in hMSCs (Oh et al., 2014). Our data further demonstrated that knockdown of STC1 deprived 
the function of hMSC in suppressing all the three markers used in the current study in determining 
NLRP3 inflammasome formation, as well as the suppression of mitochondria ROS production. These 
data support the idea that a feedback regulation mechanism exists between hMSC and macrophages 
during CAR-T therapy.

Using the Xenograft mice model, we confirmed that the tumor-killing efficacy of CAR-T could 
also be inhibited by hMSCs in vivo, whereas knockdown of STC1 effectively abolished the inhibition. 
Immunohistochemical data indicated that the downregulation of CD8+ T cells, upregulation of CD4+ 
T helper cell subsets, and Tregs were all dependent on the function of STC1. Need to note that the 
amount of the injected hMSCs was much higher than that of the in vivo situation. Nevertheless, the 
results give a clear indication that STC1 is critical for the immune-suppressive function of hMSC.

In summary, the present study revealed a significant impact of hMSC in suppressing CAR-T effi-
cacy and provided evidence that the STC1 gene played a critical role in the regulation of various 
immune-suppressive mechanisms. A speculative schema of the signaling and interactions among 
hMSC, macrophage, CAR-T, and tumor cells based on our current data is shown in Figure 5. In this 
model, activated macrophages or stress signals during CAR-T therapy may prompt MSCs to secret 
STC-1 into the extracellular matrix of TME, serving as a pleiotropic factor to negatively impact the 
function of T cells and stimulate the expression of molecules that inactivate immune responses, ulti-
mately providing an immunosuppressive effect of MSC. While further studies are needed to under-
stand the detailed molecular interactions underlying, the findings we presented here are no doubt 
that would have potential clinical applications toward improving the efficiency of CAR-T therapy as 
well as reducing the excessive toxicity by modulating the level of STC1 in TME.

Materials and methods
Cell culture and isolation of primary cells
HEK-293T, Peiffer, and THP-1 cells were obtained from the American Type Culture Collection 
(Manassas, VA, USA). The cell lines were tested mycoplasma negative using a Mycoplasma Stain 
Assay Kit. HEK-293T was grown in Dulbecco's Modified Eagle Medium (DMEM, Gibco) supplemented 
with 10% Fetal calf serum (FCS, Gibco). Peiffer cells were grown in RPMI 1640 medium supplemented 
with 10% FCS. Human umbilical cord blood-derived MSCs were established from consenting mothers 
and processed within the optimal period of 6 hr as described (Qiao et al., 2008), isolated cells were 
confirmed by surface antigen markers with flow cytometry. Peripheral blood samples were obtained 
from healthy donors (n=3). The scFv targeting CD19 plasmid was originated from the FMC63 clone. 
The CAR vectors containing scFv, human 4-1BB, and CD3z signaling domains were subcloned into 
the pCDHMND-MCS-T2A-Puro lentiviral plasmid. The CAR sequence was preceded by the RQR8 
tag separated by a short T2A peptide for detection purposes (Philip et al., 2014). Ethical approval 

https://doi.org/10.7554/eLife.82934
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and informed consent were obtained in Tianjin First Central Hospital Medical Ethics Committee 
(Tianjin, China) for all human samples used in the current study, which was approved under clinical 
trial #ChiCTR-ONN-16009862.

Lentivirus production
Preparation of the lentivirus was performed according to the manufacturer’s instructions (GeneCo-
poeia). Briefly, HEK-293T lentiviral packaging cells in DMEM supplemented with 10% heat-inactivated 
fetal bovine serum (FBS) followed by transfection when cells are 70–80% confluent. Dilute 2.5 µg of 
lentiviral expression plasmid and 2.5 µg of Lenti-Pac HIV mix into 200 µl of Opti-MEM I (Invitrogen). 
In a separate tube dilute 15 µl of EndoFectin Lenti into 200 µl of Opti-MEM I, then drop-wise add to 
the plasmid mix and incubate for 10–25 min at room temperature. Collect the pseudovirus-containing 
culture medium 48 hr post-transfection followed by ultracentrifugation, and the pellets were resus-
pended in complete X-Vivo15 media and stored at –80°C until use.

Production and detection of CAR-T cells
CD3+ T cells from healthy donors were separated from PBMCs using CD3 immunomagnetic beads 
(#130-097-043, Miltenyi Biotec, Germany), then amplified using CD3/CD28 stimulation beads 
(#11131D, Thermo Fisher Scientific) and IL-2 (100 IU/mL; Miltenyi Biotec) in X-VIVO 15 medium (Lonza). 
Cells were activated and expanded for 48 hr followed by transduction 2 hr later with lentivirus. T cells 

Figure 5. Proposed signaling and interactions among hMSC, macrophage, chimeric antigen receptor modified 
T cell (CAR-T), and tumor cells. When cancer cells were destroyed by CAR-T cells, the release of fragmented 
DNA and other stimulating factors activated the release of mitochondria reactive oxygen species (ROS) and the 
formation of NLPR3 inflammasome. Signals from activated macrophages and other extracellular molecules as well 
as oxidative stress may stimulate mesenchymal stem cell (MSC) to express and secrete stanniocalcin-1 (STC1). 
Then STC1 serves as a pleiotropic factor to suppress CAR-T cytotoxicity and other immune responses via direct or 
indirect pathways.

https://doi.org/10.7554/eLife.82934
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were generally engineered for 9–12 days to express a CD19-specific CAR and stained with Alexa-Fluor 
647-labeled polyclonal goat anti-mouse IgG (H+L) antibodies (Affinity) to detect CAR-T cells. All cells 
were further confirmed by staining with fluorescein isothiocyanate (FITC)-labeled anti-CD3 antibodies 
(Abcam).

Cell co-culture model
THP-1 cells (5×105/well) were seeded into six-well plates and polarized into M2 macrophages by first 
treating with 320 nM PMA (Sigma) for 24 hr, then added 20 ng/mL IL-4 (PeproTech) and 20 ng/mL 
IL-13 (PeproTech) in the presence of PMA for another 24 hr to obtain M2 phenotype. The formation of 
M2 macrophages was validated by flow-cytometry based on the surface markers (CD11b+CD163+). 
After washing to remove all PMA and cytokines, 2×105  M2 macrophages were co-cultured with 
2×105 CAR-T cells, 6×105 Pfeiffer cells, and 2×105 hMSCs in X-VIVO15 medium (Lonza) containing 
IL-2(100 IU/mL, MiltenyiBiotec) for 24 or 48 hr.

Generation of STC1 knockdown cells
Lentiviral particles PLKO.1 and PLKO.1-shSTC1 were provided by the Beijing Institute of Radiation 
Medicine. Viruses were packaged by co-transfection with PLKO.1 and PLKO.1-shSTC1 into 293T cells. 
The supernatants containing viruses were collected 48 hr after transfection, then the centrifuged and 
resuspended lentivirus were used for further transduction of hMSCs in Opti-MEM. The stable STC1 
knockdown hMSCs were obtained after 7–10 days of puromycin selection in 96-well plates. Transduc-
tion efficiency was determined by fluorescent microscopy.

MTT assay
Cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)–2,5-diphenyltetrazolium (MTT) assay 
(Sigma). The absorbance was measured using a Synergy 4 plate reader (Bioteck) with a test wave-
length at 490 nm and a reference wavelength at 630 nm.

Cell migration determination by wound healing and transwell chamber 
assay
hMSCsshCtrl and hMSCsshSTC1 were grown on six-well plates and wounded using a sterile pipette tip. The 
progress of migration was recorded immediately following injury, and photo-micrographs were taken 
at zero and 48 hr.

For transwell assay, hMSCsshCtrl and hMSCsshSTC1 were seeded into the upper chamber of a transwell 
cell culture insert with 1.0×104 cells in 200 µL of a 1% FBS-containing medium. The lower chamber 
was filled with 600 µL of medium containing 10% FBS. Twenty-four hours later, cells that had migrated 
to the lower side of the membrane were fixed in 4% paraformaldehyde and stained with DAPI. The 
migrated cells were counted and photographed in five fields of view and were done in three indepen-
dent experiments.

Apoptosis detection with annexin V-FITC and PI and TUNEL assay
An increase in the plasma membrane PS externalization occurs early in apoptosis and can be detected 
by annexin V staining. hMSCsshCtrl and hMSCsshSTC1 were isolated and stained with annexin V-FITC and 
PI (Invitrogen), then apoptosis-positive cells were analyzed using FACS (Millipore Muse).

The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was 
used to monitor the extent of DNA fragmentation as a measure of apoptosis (Latha et al., 2005). After 
hMSCsshCtrl and hMSCsshSTC1 were fixed by formaldehyde, immunohistochemical detection of apoptotic 
cells was carried out using DeadEnd Fluorometric TUNEL System (Promega). The cells were washed 
with PBS and blocked with 10% goat serum, then used DAPI to stain nuclei. The samples were photo-
graphed with a confocal laser microscope (Olympus), and TUNEL-positive cells were quantitated.

Quantitative real-time PCR
Total RNA was extracted using TRIzol reagent (Invitrogen), serving as a template for real-time PCR 
using random primers and M-MLV reverse transcriptase. The primers used were as follows: human 
TSP1: forward: 5’-T​TGTT​AAGA​GGTT​TGAG​ TAG​GAGA​G-3​’ and reverse: 5’-​C​​CCAC​​CTTA​​CTTA​​CCTA​​
AAAT​​CACA​-3’.

https://doi.org/10.7554/eLife.82934
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Western blotting and cytokine release analysis
Western immunoblotting was performed as previously described (Zhang et al., 2016). After SDS-
PAGE and blotting, proteins were detected using the following antibodies: rabbit anti- IL-1β (Abcam, 
ab9722), anti-Caspase-1 p20 (Bioss, bs-10442R), AIM2 (Abcam, ab93015), IDO (Bioss, bs-15493R), 
PD-L1 (Bioss, bsm-54472R), and mouse anti-GAPDH (Santa Cruz) primary antibodies. The secondary 
antibodies were IRDye-800-conjugated anti-mouse and anti-rabbit immunoglobulin G (Li-COR Biosci-
ences) (1:200). Immunofluorescence was detected using Odyssey Infrared Imaging System (Gene 
Company Ltd.). GAPDH expression was used as an internal control. The relative quantification of 
protein expression was analyzed using ImageJ software. The level of IL-1β in the serum was detected 
using ELISA by electrochemiluminescence (R&D Systems, France).

Flow cytometry
The expression of CD4, CD8, CD127, and CD25 in CAR-T cells was analyzed using flow cytometry with 
the following fluorochrome-conjugated monoclonal/polyclonal antibodies (all from Caprico Biotech-
nologies): anti-human CD4 (CD004210403), anti-human CD8 (CD008210301), anti-human CD127 
(CD127210501), and anti-human CD25 (CD025210301).

In vitro analysis of CAR-T cytotoxicity toward Pfeiffer cells
Seeding CD19 CAR-T cells (4×105 cells/group) in a co-culture with Pfeiffer cells and macrophages 
polarized from M-THP1 at a 1:3:1 ratio and incubate for 48 hr. The cell killing of CAR-T toward Pfeiffer 
cells was determined using a LDH cytotoxicity test kit (Dojindo Molecular Technologies, Inc) and 
measured at 0, 24, and 48 hr after cell co-culture.

Cellular and mitochondrial ROS detection
ROS was measured using CellROX Deep Red Reagent (Invitrogen) and MitoTracker Green FM Dye 
(Invitrogen) (Lagadinou et  al., 2013; Minai et  al., 2013). Briefly, cells were co-cultured for 24  hr 
followed by loading with CellROX dye (5  mM) and MitoTracker Green dye (100  nM) at 37°C for 
30 min, then analyzed by flow cytometry. The data were analyzed using Flowjo software (Tree Star Inc, 
Ashland, OR).

Xenograft tumor model
Female 6–8-week-old NOD/Shi-scid IL-2Rγ(null) (NOG) mice weighing 20±1.6  g (n=36, Vitonlihua 
Experimental Animal Technology Co., Ltd, Beijing, China) were injected with 5×106 Pfeiffer cells 
expressing luciferase by subcutaneous injection on each side. Established tumors were monitored 
by bioluminescence imaging (BLI). Upon confirmation of engraftment after 25 days, the mice were 
randomized into three groups and treated by tail vein injection of 5×106  CD19 CAR-T cells and 
2.5×106 M-THP1. At the same time, 5×106 cells/mice of hMSCsshSTC1 or hMSCsshCtrl were injected into 
multi-points of the tumor area. Tumor progression was photographed with BLI following intraper-
itoneal injection with D-luciferin (Goldbio, 150  mg/kg) at 14, 28, and 38  days. All the mice were 
sacrificed when either experimental or humane endpoints were reached. All animal experiments and 
procedures were approved by the Ethics Committee of Tianjin First Central Hospital (Tianjin, China. 
#2021-SYDWLL-000301).

Immunohistochemical analysis of IL-1β, CD4+, CD8+, and Treg cells in 
vivo
Mice were sacrificed on day 10 after CAR-T/M-THP1 and hMSC injection, and tumor samples were 
fixed with formalin and embedded in paraffin. Tumor tissues were examined by immunohistochem-
istry staining as previously described (Jiang et al., 2018). Briefly, the sections were exposed to 3% 
H2O2 in methanol after deparaffinization and rehydration and then blocked with 1% BSA for 30 min 
at room temperature. After blocking, the sections were incubated with primary antibodies (all from 
Servicebio Technology Co., China) for IL-1β (GB11113), CD4+ (GB13064-1), CD8+ (GB13068), and 
FOXP3 (GB11093) overnight at 4°C, followed by incubation with peroxidase-conjugated secondary 
antibodies. IL-1β+ cells were quantified by measuring the number of stained cells.

https://doi.org/10.7554/eLife.82934
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