Changes in seam number and location induce holes within microtubules assembled from porcine brain tubulin and in Xenopus egg cytoplasmic extracts

  1. Charlotte Guyomar
  2. Clément Bousquet
  3. Siou Ku
  4. John M Heumann
  5. Gabriel Guilloux
  6. Natacha Gaillard
  7. Claire Heichette
  8. Laurence Duchesne
  9. Michel O Steinmetz
  10. Romain Gibeaux
  11. Denis Chrétien  Is a corresponding author
  1. Université de Rennes 1, CNRS, France
  2. University of Colorado Boulder, United States
  3. Paul Scherrer Institute, Switzerland
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/83021/elife-83021-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charlotte Guyomar
  2. Clément Bousquet
  3. Siou Ku
  4. John M Heumann
  5. Gabriel Guilloux
  6. Natacha Gaillard
  7. Claire Heichette
  8. Laurence Duchesne
  9. Michel O Steinmetz
  10. Romain Gibeaux
  11. Denis Chrétien
(2022)
Changes in seam number and location induce holes within microtubules assembled from porcine brain tubulin and in Xenopus egg cytoplasmic extracts
eLife 11:e83021.
https://doi.org/10.7554/eLife.83021