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Abstract
Background: Smoking-associated DNA methylation levels identified through epigenome-wide asso-
ciation studies (EWASs) are generally ascribed to smoking-reactive mechanisms, but the contribution 
of a shared genetic predisposition to smoking and DNA methylation levels is typically not accounted 
for.
Methods: We exploited a strong within-family design, that is, the discordant monozygotic twin 
design, to study reactiveness of DNA methylation in blood cells to smoking and reversibility of 
methylation patterns upon quitting smoking. Illumina HumanMethylation450 BeadChip data were 
available for 769 monozygotic twin pairs (mean age = 36 years, range = 18–78, 70% female), 
including pairs discordant or concordant for current or former smoking.
Results: In pairs discordant for current smoking, 13 differentially methylated CpGs were found 
between current smoking twins and their genetically identical co-twin who never smoked. Top sites 
include multiple CpGs in CACNA1D and GNG12, which encode subunits of a calcium voltage-gated 
channel and G protein, respectively. These proteins interact with the nicotinic acetylcholine receptor, 
suggesting that methylation levels at these CpGs might be reactive to nicotine exposure. All 13 
CpGs have been previously associated with smoking in unrelated individuals and data from monozy-
gotic pairs discordant for former smoking indicated that methylation patterns are to a large extent 
reversible upon smoking cessation. We further showed that differences in smoking level exposure 
for monozygotic twins who are both current smokers but differ in the number of cigarettes they 
smoke are reflected in their DNA methylation profiles.
Conclusions: In conclusion, by analysing data from monozygotic twins, we robustly demonstrate that 
DNA methylation level in human blood cells is reactive to cigarette smoking.
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Editor's evaluation
This study presents valuable findings regarding how smoking can leave a lasting imprint on the 
human genome. The twin pairs study design is unique, and the methods applied by the authors are 
solid, providing an excellent starting point for large translational studies with rigorous laboratory 
approaches. This work will be of interest to geneticists and genetic epidemiologists.

Introduction
Epigenome-wide association studies (EWASs) have identified robust differences in DNA methylation 
between smokers and non-smokers (Gao et al., 2015; Heikkinen et al., 2022). In a meta-analysis of 
blood-based DNA methylation studies (N = 15,907 individuals; the largest EWAS of smoking to date), 
2623 CpG sites passed the Bonferroni threshold for genome-wide significance in a comparison of 
current and never smokers (Joehanes et al., 2016). Based on comparison with loci identified in large 
genome-wide association studies (GWASs), differentially methylated sites were significantly enriched 
in genes implicated in well-established smoking-associated diseases, such as cancer, cardiovascular 
disease, inflammatory disease, and lung disease, as well as in genes associated with schizophrenia 
and educational attainment (Joehanes et al., 2016). It has been hypothesized that smoking-induced 
methylation changes might also contribute to the addictive effect of smoking (Zillich et al., 2022).

Importantly, smoking-associated DNA methylation levels, as established in human EWA studies, 
may reflect different mechanisms. They may reflect causal effects of smoking on methylation, causal 
effects of methylation on smoking behaviour, methylation differences associated with epiphenomena 
of other exposures that correlate with smoking e.g. alcohol use (Liu et al., 2018) , or they may reflect 
a shared genetic predisposition to smoking and methylation level. To distinguish these different mech-
anisms require incisive study designs (Vink et al., 2017). Establishing whether methylation levels in 
smokers revert to levels of never smokers upon smoking cessation is a first step. A previous study 
of 2648 former smokers with cross-sectional methylation data from the Framingham Heart Study 
suggested that methylation levels at most CpGs return to the level of never smokers within 5 years 
after quitting smoking, but 36 CpGs were still differentially methylated in former smokers, who had 
quit smoking for 30 years (Joehanes et  al., 2016). In the large EWAS meta-analysis of smoking 
(Joehanes et al., 2016), 185 CpGs were differentially methylated between former and never smokers 
(compared to 2623 between current and never smokers). In addition, differences between former 
and never smokers were smaller than between current and never smokers. Reversible DNA methyla-
tion patterns may suggest that DNA methylation is reactive to smoking. However, it is also possible 
that the different methylation level in current smokers reflects a higher genetic liability to smoking 
behaviour (that makes them more likely to initiate and keep smoking). Similarly, differences between 
former smokers and never smokers could reflect that smoking has caused a persistent methylation 
change but can also be driven by genetic factors.

In population-based studies, smoking cases and non-smoking individuals may differ on many 
aspects, including their genetic predisposition to smoking. On the other hand, monozygotic twins are 
genetically identical (except for de novo mutations, but these are rare [Jonsson et al., 2021; Ouwens 
et al., 2018]), share a womb, and are matched on sex, age, and childhood environment. They have 
been exposed to similar prenatal conditions, which may include second hand smoke from smoking 
mothers and others. Differences in prenatal environment of monozygotic twins due to for instance 
unequal vascular supply are also recognized (Hall, 1996; Martin et al., 1997), although it remains to 
be investigated to what extent the impact of prenatal smoke exposure might differ between monozy-
gotic twins. Smoking discordant monozygotic twin pairs offer a unique opportunity to assess smoking-
reactive DNA methylation patterns (Leeuwen et  al., 2007; Vink et  al., 2017). Despite the large 
number of previous population-based smoking EWASs, only one previous study compared genome-
wide DNA methylation in smoking discordant monozygotic twin pairs (Allione et al., 2015). This study 
analysed whole-blood Illumina 450k array methylation data from 20 discordant pairs, and reported 22 
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top loci, many of which had been previously associated with cigarette smoking in previous studies. 
However, following the correction for multiple testing, none of the differentially methylated loci were 
statistically significant, and this previous twin study did not examine reversibility of smoking effects, 
that is, where methylation status changes again following smoking cessation.

Here, we analyse unique data from a large cohort of monozygotic twin pairs. This cohort is suffi-
ciently large to include current smoking discordant and concordant pairs, as well as pairs discordant 
for former smoking (Figure 1). These groups allow identification of loci that are reactive to smoking, 
and examination of the extent to which effects are reversible upon quitting smoking. Monozygotic 
pairs in which both twins are current smokers, but who differ in quantity smoked, enable examination 
of the effects of smoking intensity. Finally, concordant pairs who never smoked allow assessment of 
the amount of DNA methylation variation at smoking-reactive loci that is due to non-genetic sources 
of variation other than smoking. In secondary enrichment analyses, we examined whether smoking-
reactive methylation patterns are enriched (1) at loci detected in previous EWASs of other traits and 
exposures, (2) at loci detected in a previous large GWAS meta-analysis of smoking initiation (Liu et al., 
2019) – these loci are presumed to have a causal effect on smoking behaviour, and (3) within Gene 
Ontology and Kegg pathways. Finally, we examined the relationship between DNA methylation and 
RNA transcript levels in blood for smoking-reactive loci.

Methods
Participants
In the Netherlands Twin Register (NTR), DNA methylation data are available for 3089 whole-blood 
samples from 3057 individuals in twin families, as described in detail previously (van Dongen et al., 
2016). The samples were obtained from twins and family members, who participated in NTR longitu-
dinal survey studies (Ligthart et al., 2019) and the NTR biobank project (Willemsen et al., 2010). In 
the current study, methylation data from monozygotic twin pairs were analysed. Among 768 monozy-
gotic twin pairs with genome-wide methylation data and information on smoking and covariates, we 
identified the following discordant pairs: 53 discordant pairs, in which one twin was a current smoker 
at blood draw and the other never smoked, 72 discordant pairs, in which one twin was a former 
smoker at blood draw and the other never smoked, 66 discordant pairs of which one twin was a 
former smoker and the other a current smoker at blood draw. In addition, we identified the following 
concordant pairs: 83 twin pairs concordant for current smoking, 88 twin pairs concordant for former 
smoking, and 406 concordant twin pairs who never smoked. A flowchart is provided in Figure 2. 
Informed consent was obtained from all participants. The twin pairs were primarily of Dutch-European 
ancestry. For 753 of the 768 MZ pairs who are included in the current study, ancestry could be derived 

eLife digest The genetic information of people who smoke present distinctive characteristics. 
In particular, previous research has revealed differences in patterns of DNA methylation, a type of 
chemical modification that helps cells switch certain genes on or off. However, most of these studies 
could not establish for sure whether these changes were caused by smoking, predisposed individuals 
to smoke, or were driven by underlying genetic variation in the DNA sequence itself.

To investigate this question, van Dongen et al. examined DNA methylation data from the blood 
cells of over 700 pairs of identical twins. These individuals share the exact same genetic information, 
making it possible to better evaluate the impact of lifestyle on DNA modifications.

The analyses identified differences in methylation at 13 DNA locations in pairs of twins where one 
was a current smoker and their sibling had never smoked. Two of the genes code for proteins involved 
in the response to nicotine, the primary addictive chemical in cigarette smoke. The differences were 
smaller if one of the twins had stopped smoking, suggesting that quitting can help to reverse some 
of these changes.

These findings confirm that DNA methylation in blood cells is influenced by cigarette smoke, which 
could help to better understand smoking-associated diseases. They also demonstrate how useful 
identical twins studies can be to identify methylation changes that are markers of lifestyle.

https://doi.org/10.7554/eLife.83286
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from principal components (PCs) calculated from genome-wide Single Nucleotide Polymorphism 
(SNP) array data that were available for the twins (750 pairs) or for both of their parents (3 pairs). 
According to the genotype data PCs, 4.5% of the pairs classify as ancestry outliers.The study was 
approved by the Central Ethics Committee on Research Involving Human Subjects of the VU Univer-
sity Medical Centre, Amsterdam, an Institutional Review Board certified by the U.S. Office of Human 
Research Protections (IRB number IRB00002991 under Federal-wide Assurance – FWA00017598; IRB/
institute code, NTR 03-180).

Figure 1. DNA methylation analysis in smoking discordant and smoking concordant monozygotic twin pairs. Blood DNA methylation profiles (Illumina 
450k array) from six groups of monozygotic twin pairs were analysed.

Figure 2. Study flowchart.

https://doi.org/10.7554/eLife.83286
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Peripheral blood DNA methylation and cell counts
Genome-wide DNA methylation in whole blood was measured by the Human Genomics facility 
(HugeF) of ErasmusMC, the Netherlands (http://www.glimdna.org/). DNA methylation was assessed 
with the Infinium HumanMethylation450 BeadChip Kit (Illumina, San Diego, CA, USA). Genomic 
DNA (500 ng) from whole blood was bisulfite treated using the Zymo EZ DNA Methylation kit (Zymo 
Research Corp, Irvine, CA, USA), and 4 μl of bisulfite-converted DNA was measured on the Illumina 
450k array (Bibikova et  al., 2011) following the manufacturer’s protocol. A custom pipeline for 
quality control and normalization of the methylation data was developed by the BIOS consortium. 
First, sample quality control was performed using MethylAid (van Iterson et al., 2014). Next, probe 
filtering was applied with DNAmArray (Sinke et al., 2019) to remove: ambiguously mapped probes 
(Chen et al., 2013), probes with a detection p-value >0.01, or bead number <3, or raw signal intensity 
of zero. After these probe filtering steps, probes and samples with a success rate <95% were removed. 
Next, the DNA methylation data were normalized using functional normalization (Fortin et al., 2014), 
as implemented in DNAmArray (Sinke et al., 2019) using the cohort-specific optimum number of 
control probe-based PCs. Probes containing an SNP, identified in a DNA sequencing project in the 
Dutch population (The Genome of the Netherlands Consortium, 2014), within the CpG site (at the C 
or G position) were excluded irrespective of minor allele frequency, and only autosomal probes were 
analysed, leading to a total number of 411,169 methylation sites. The following subtypes of white 
blood cells were counted in blood samples: neutrophils, lymphocytes, monocytes, eosinophils, and 
basophils (Willemsen et al., 2010).

Smoking and other phenotypes
Information on smoking behaviour was obtained by interview during the home visit for blood collec-
tion as part of the NTR biobank project (2004–2008 and 2010–2011). The questions are included in 
Supplementary file 1. Participants were asked: ‘Did you ever smoke?’, with answer categories: (1) no, 
I never smoked, (2) I’m a former smoker, and (3) yes. Current smokers were asked how many years they 
smoked and how many cigarettes per day they smoked at present, while ex-smokers were asked how 
many years ago they quit, for how many years they smoked and how many cigarettes per day they 
smoked (note that the question on cigarettes per day to former smoker did not specify a particular 
time period, which may introduce variation in responses). Data were checked for consistencies and 
missing data were completed by linking this information to data from surveys filled out close to the 
time of biobanking within the longitudinal survey study of the NTR. More details on these checks are 
described in Supplementary file 1. Packyears were calculated as the (number of cigarettes smoked 
per day/20) × number of years smoked. Plasma cotinine level measurements have been described 
previously (Bot et al., 2013). Body mass index (BMI) was obtained at blood draw. Educational attain-
ment was obtained in multiple longitudinal surveys and was defined as the highest completed level 
of education at the age of 25 or higher. It was classified on a 7-point scale: 1 = primary school only, 
2 = lower vocational schooling, 3 = lower secondary schooling (general), 4 = intermediate vocational 
schooling, 5 = intermediate/higher secondary schooling (general), 6 = higher vocational schooling, 
7 = university.

Statistical analyses
Overview and hypotheses
All analyses were performed in R (R Development Core Team, 2013). Analyses were performed in 
six groups of monozygotic twin pairs (Figure 1). To identify DNA methylation differences in smoking-
discordant monozygotic twin pairs, we first compared the twin pairs, in which one twin had never 
smoked, and the other was a current smoker at the time of blood sampling. Second, to identify 
which of these DNA methylation differences might be reversible, we analysed data from (1) mono-
zygotic pairs in which one twin had never smoked, and the other was a former smoker at the time of 
blood sampling, (2) from monozygotic pairs in which one twin was a current smoker, and the other 
was a former smoker at the time of blood sampling, and (3) from monozygotic pairs who were both 
former smokers. Third, to quantify within-pair methylation differences that occur by chance alone, we 
compared the within-pair differences monozygotic twins concordant for never having smoked. Forth, 
data from monozygotic twins concordant for current smoking were analysed to examine the effects of 
smoking intensity. Our hypotheses were as follows: (1) if DNA methylation level is reactive to cigarette 

https://doi.org/10.7554/eLife.83286
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smoking, methylation differences will be present between smokers and non-smokers after ruling out 
genetic differences, that is in smoking-discordant monozygotic twin pairs, and these differences will 
be larger than in monozygotic pairs concordant for never smoking, (2) if DNA methylation patterns 
are reversible upon quitting smoking, methylation differences (∆M) in monozygotic pairs will show the 
following pattern: ∆M discordant current-never > ∆M discordant current-former and ∆M discordant 
former-never > ∆M concordant never, (3) a correlation between time since quitting smoking and ∆M 
in pairs discordant for former smoking is consistent with a gradual reversibility of methylation levels 
upon quitting smoking, and (4) a correlation between ∆M and the difference in number of cigarettes 
smoked per day in smoking concordant pairs is consistent with smoking-reactive methylation patterns 
that show a dose–response relationship with amount of cigarettes smoked.

Epigenome-wide association study
In the entire dataset of 3089 blood samples, we used linear regression analysis to correct the DNA 
methylation levels (β-values) for commonly used covariates (van Rooij et al., 2019), including HM450k 
array row, bisulphite plate (dummy-coding) and white blood cell percentages (% neutrophils, % 
monocytes, and % eosinophils). White blood cell percentages were included to account for varia-
tion in cellular composition between whole-blood samples. Lymphocyte percentage was not included 
in models because it was strongly correlated with neutrophil percentage (r = −0.93), and basophil 
percentage was not included because it showed little variation between subjects, with a large number 
of subjects having 0% of basophils. We did not adjust for sex and age, because monozygotic twins 
have the same sex and age. The residuals from this regression analysis were used in the within-pair 
EWAS analyses. Specifically, the residuals were used as input for paired t-tests to compare the meth-
ylation of the smoking twins with that of their non-smoking co-twins. Similarly, paired t-tests were 
applied to data from smoking concordant pairs. Statistical significance was assessed following strin-
gent Bonferroni correction for the number of methylation sites tested (α = 0.05/411,169 = 1.2 × 10−7). 
For each EWAS analysis, the R package Bacon was used to compute the Bayesian inflation factor (van 
Iterson et al., 2017). A previous power analysis for DNA methylation studies in discordant monozy-
gotic twins indicated that with 50 discordant pairs, there is 80% power to detect methylation differ-
ences of 15% (at epigenome-wide significance; that is following multiple testing correction) (Tsai and 
Bell, 2015). Power quickly drops for smaller effect sizes; for example, with 50 discordant pairs, the 
power to detect a 10% methylation difference is 10% and the power to detect a methylation differ-
ence of 5% approaches alpha (Tsai and Bell, 2015). We tested for within-pair differences in demo-
graphics (e.g. BMI, educational attainment) and smoking characteristics (e.g. amount of cigarettes per 
day) with paired t-tests (continuous data) and Wilcoxon Signed Ranks tests (ordinal data) in R.

Dose–response relationships
For significant CpGs from the EWAS of discordant monozygotic twin pairs, we examined dose–
response relationships in smoking concordant pairs (both twins were current smokers) by correlating 
within-pair differences in DNA methylation with within-pair differences in smoking packyears and 
cigarettes per day. All correlations reported in this paper are Pearson correlations. Secondly, in twin 
pairs discordant for former smoking (one twin never smoked and the other one is a former smoker), 
we correlated and plotted within-pair differences in DNA methylation with the time since quitting 
smoking to assess the relationship between time since quitting smoking and reversal of methylation 
differences within monozygotic twin pairs.

Enrichment analyses
We used the EWAS Toolkit from the EWAS atlas (Li et al., 2019) to perform enrichment analyses of 
Gene Ontology Terms, Kegg pathways, and previously associated traits among top sites from the 
EWAS in discordant monozygotic twin pairs (current versus never). With the trait enrichment tool of 
the EWAS analysis, we tested for enrichment of all traits (680) that were present in the atlas on 26 
April 2022. Because the software requires a minimum of 20 input CpGs, we selected the top 20 CpGs 
from the EWAS in discordant monozygotic pairs for the enrichment analyses using the EWAS toolkit.

To study overlap of EWAS signal with genetic findings for smoking, we compared our EWAS results 
against GWAS results from the largest GWAS meta-analysis of smoking phenotypes. This is the meta-
analysis of smoking initiation by the GWAS and Sequencing Consortium of Alcohol and Nicotine use 

https://doi.org/10.7554/eLife.83286
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(GSCAN) (Liu et  al., 2019). We obtained leave-one out meta-analysis results with NTR excluded. 
From the GWAS, we selected all SNPs with a p-value <5.0 × 10−8 and determined the distance of 
each Illumina 450k methylation site to each SNP. We then tested whether methylation sites within 
1 Mb of genome-wide significant SNPs from the GWAS showed a stronger signal in the within-pair 
EWAS of smoking discordant monozygotic pairs compared to other genome-wide methylation sites, 
by regressing the EWAS test statistics on a variable (GWAS locus) indicating if the CpG is located 
within a 1 Mb window from SNPs associated with smoking initiation (1 = yes, 0 = no):

	﻿‍
∣t∣ = Intercept + βGWASlocus ∗ GWASlocus‍�

where ‍
∣t∣‍ represents the absolute t-statistic from the paired t-test comparing within-pair methylation 

differences in smoking discordant pairs and ‍βGWASlocus‍ represents the estimate for ‍GWASlocus‍, that 
is the change in the t-test statistic associated with a one-unit change in the variable ‍GWASlocus‍ (e.g. 
being within 1 Mb of SNPs associated with smoking initiation). For each enrichment test, bootstrap 
standard erors were computed with 2000 bootstraps with the R-package ‘simpleboot’.

Gene expression
For significant CpGs from the EWAS of discordant monozygotic twin pairs (current versus never), we 
examined whether the DNA methylation was associated with gene expression levels in cis. To this end, 
we used an independent whole-blood RNA-sequencing dataset from the Biobank-based Integrative 
Omics Study (BIOS) consortium that did not include NTR, and tested associations between genome-
wide CpGs and transcripts in cis (<250 kb), as described in detail previously (the BIOS Consortium 
et al., 2017). In short, methylation and expression levels in whole-blood samples (n = 2101) were 
quantified with Illumina Infinium HumanMethylation450 BeadChip arrays and with RNA-seq (2 × 50 bp 
paired-end, Hiseq2000, >15 M read pairs per sample). For each target CpG (epigenome-wide signif-
icant differentially methylated positions [DMPs]), we identified transcripts in cis (<250 kb), for which 
methylation levels were significantly associated with gene expression levels at the experiment-wide 
threshold applied by this study (False Discovery Rate (FDR) <5.0%), after regressing out methyla-
tion Quantitative Trait Locus (mQTL) and expression Quantitative Trait Locus (eQTL) effects. We also 
examined whether significant CpGs from the EWAS of discordant monozygotic twin pairs mapped 
to genes that were previously reported to be differentially expressed in monozygotic pairs of which 
one twin never smoked, and the other was a current smoker at the time of blood sampling (based on 
Affymetrix U219 array data; n = 56 pairs; note: the 53 discordant pairs included in the current study 
of DNA methylation are a subset of the 56 discordant pairs included in the study of gene expression) 
(Vink et al., 2017).

Results
Descriptives of the smoking-discordant and concordant monozygotic twin pairs are given in Table 1. 
In twin pairs discordant for current smoking status (i.e. one twin a current smoker at the time of 
blood sampling and the other never initiated regular smoking, N = 53 pairs, mean age = 33 years), 
the smoking twin on average smoked 8.9 cigarettes per day at the time of blood sampling, and had 
an average smoking history equivalent to 6.8 packyears. The EWAS analysis in pairs discordant for 
current smoking status identified 13 epigenome-wide significant (p < 1.20 × 10−7) DMPs (Figure 3a). 
Genome-wide test statistics were not inflated (Supplementary file 2). Absolute differences in meth-
ylation ranged from 2.5% to 13% (0.025–0.13 on the methylation β-value scale), with a mean of 5.4% 
(Table  2). Eight of the 13 CpGs (61.5%) showed lower methylation in the current smoking twins 
compared to their non-smoking twins. Pair-level methylation β-values are shown in Figure 3—figure 
supplement 1 and illustrate large consistency in the direction of effect. For example, at top CpG site 
cg05575921, for 51 out of the 53 pairs, the smoking twin had a lower methylation level than the non-
smoking twin. At 11 of the 13 CpGs, the methylation difference in smoking discordant monozygotic 
twin pairs was smaller (on average 19.0%, range = 2.2–37.5%) compared to the methylation difference 
reported previously in an EWAS meta-analysis of smoking (Joehanes et al., 2016). At two CpGs, the 
methylation difference in smoking discordant monozygotic twins was larger (on average 24.6%).

In twin pairs discordant for former smoking (N = 72 pairs, mean age = 41 years), the twins, 
who used to smoke, had quit smoking on average 14 years ago (standard deviation [SD] = 11.4, 

https://doi.org/10.7554/eLife.83286
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range = 0.04–50 years), while the other twins had never initiated regular smoking. In this group, no 
epigenome-wide significant DMPs were identified, and within-pair differences at the 13 significant 
DMPs identified in the previous analysis were diminished (average reduction: 81%, range = 61–96%; 
Figure 3b, Table 2). By contrast, in twin pairs of which one twin was a current smoker at blood draw 
and the co-twin had quit smoking (on average 9 years, ago, SD = 10.2, range = 0.02–40 years, N = 

Figure 3. Top differentially methylated loci identified in monozygotic twin pairs discordant for current smoking. (a) Manhattan plot of the epigenome-
wide association study (EWAS) in 53 smoking discordant monozygotic twin pairs (current versus never). The red horizontal line denotes the epigenome-
wide significance threshold (Bonferroni correction) and 13 CpGs with significant differences are highlighted. (b) Mean within-pair differences in 
monozygotic twin pairs at the 13 CpGs that were epigenome-wide significant in smoking discordant monozygotic pairs. Mean within-pair differences of 
the residuals obtained after correction of methylation β-values for covariates are shown for 53 monozygotic pairs discordant for current/never smoking, 
66 monozygotic pairs discordant for current/former smoking, 72 monozygotic pairs discordant for former/never smoking, 83 concordant current smoking 
monozygotic pairs, 88 concordant former smoking monozygotic pairs, and 406 concordant never smoking monozygotic pairs. (c) QQ-plot showing p-
values from the EWAS in 53 smoking discordant monozygotic twin pairs (current versus never). P-values for CpGs located nearby significant SNPs from 
the genome-wide association study (GWAS) of smoking initiation are plotted in blue and all other genome-wide CpGs are plotted in orange.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. DNA methylation levels in current/never smoking discordant monozygotic twin pairs.

https://doi.org/10.7554/eLife.83286
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66 pairs), the reduction of within-pair differences at the 13 top CpGs was much smaller (on average, 
31%, range 15–52%; Figure 3b, Supplementary file 3), and 5 of the 13 DMPs identified by comparing 
current and never smoking twins were also epigenome-wide significant in this group. Furthermore, 
five additional epigenome-wide CpGs were identified in current/former smoking discordant pairs 
(Supplementary file 4). Figure 3b illustrates the pattern of within-pair differences at the 13 top DMPs 
identified in current/never discordant monozygotic pairs: largest differences in current/never smoking 
discordant pairs, smaller differences in former/never discordant pair, and current/former discordant 
pairs are intermediate. Differences are smallest within smoking concordant pairs. This pattern is in line 
with smoking-associated methylation patterns in blood cells being to a large extent reversible upon 
quitting smoking.

Distributions of within-pair differences in smoking discordant and concordant pairs for the top 1000 
CpGs of the EWAS in discordant pairs are shown in Figure 4a. The distributions illustrate that differ-
ences are largest, as expected, within monozygotic twin pairs discordant for current smoking (current/
never smoking pairs), followed by discordant current/former smoking discordant pairs, followed by 
former/never smoking discordant monozygotic twin pairs. Monozygotic pairs concordant for current 
smoking also show notable within-pair differences at these CpGs that are substantially larger compared 
to monozygotic pairs concordant for never smoking (Figure 4a). This could be explained by within-
pair differences in the number of cigarettes smoked by monozygotic twins who were concordant for 
current smoking. The twin correlations in current smoking monozygotic twin pairs were r = 0.50, p = 
2.2 × 10−6 for cigarettes per day (Figure 4b), r = 0.43, p = 3.2 × 10−4 for packyears, and r = 0.58, p 
= 1.6 × 10−8, for plasma cotinine levels, respectively. Within-pair differences in DNA methylation at 
the 13 top CpGs correlated with within-pair differences in the number of cigarettes smoked per day 
(mean absolute r = 0.38, range [for different CpGs]: –0.56 to 0.41; Table 3, Figure 4c),with within-pair 
differences in packyears (mean absolute r = 0.46, range: −0.65 to 0.42; Table 3), but did not correlate 
strongly with within-pair differences in plasma cotinine level (mean absolute r = 0.14, range: −0.23 to 
0.28, Table 3). In twin pairs discordant for former smoking, within-pair differences in DNA methylation 
at the 13 top CpGs were weakly correlated with time since quitting smoking (mean r = −0.11, range = 
−0.28 to 0.05, Supplementary file 5). Based on scatterplots of the within-pair methylation differences 
against time since quitting smoking (Figure 4d), we hypothesized that the lack of a strong correlation 
with time since quitting smoking might be explained by most of the reversal taking place within the 
first years after quitting smoking. We therefore repeated the analysis restricting to those pairs of which 
the smoking twin had quit smoking less than 5 years ago (N = 15 pairs). In this group, within-pair 
differences in DNA methylation at the 13 top CpGs were on average more strongly correlated with 
time since quitting smoking (mean r = −0.16, range = −0.48 to 0.23) but the sample size was greatly 
reduced and correlations were non-significant.

All 13 differentially methylated CpGs identified in current smoking discordant pairs and all 10 CpGs 
identified in former smoking discordant pairs have been previously associated with smoking. To study 
the overlap of methylation differences in smoking discordant twin pairs with loci that have a causal 
effect on smoking, we considered the largest GWAS meta-analysis of smoking phenotypes, the meta-
analysis of smoking initiation by the GWAS and Sequencing Consortium of Alcohol and Nicotine use 
(GSCAN) (Liu et al., 2019). Three of the 13 epigenome-wide significant DMPs detected in smoking 
discordant monozygotic pairs (cg13411554, cg00336149, and cg21188533 in CACNA1D) are located 
within 1 Mb of a GWAS locus associated with smoking initiation. The methylation sites within 1 Mb of 
genome-wide significant SNPs from the GWAS overall did not show a stronger signal in the within-pair 
EWAS of smoking discordant monozygotic pairs compared to other genome-wide methylation sites (β 
= −0.002, se = 0.004, p = 0.56, Figure 3c).

We tested for enrichment of methylation sites previously associated with 680 traits reported in 
the EWAS atlas (Li et al., 2019), among the top differentially methylated loci in smoking discordant 
pairs, which showed strong enrichment of smoking-related traits (Supplementary file 6). Enrichment 
analysis based on Kegg pathways showed one significantly enriched pathway; Dopaminergic Synapse 
(hsa04728; Supplementary file 7), with three of the top differentially methylated loci in smoking 
discordant monozygotic pairs mapping to this pathway: CACNA1D, GNG12, and ARRB1. No signif-
icant enrichment was seen in GO pathways after multiple testing correction (Supplementary file 8).

To examine potential functional consequences of top DMPs, we used previously published data on 
whole-blood DNA methylation and RNA-sequencing (n = 2101 samples). At 4 of the 13 CpGs, DNA 

https://doi.org/10.7554/eLife.83286
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Figure 4. DNA methylation differences in smoking discordant and smoking concordant pairs. (a) Distributions of the mean absolute within-pair 
differences in discordant and concordant pairs at the top 1000 CpGs with the lowest p-value from the epigenome-wide association study (EWAS) 
in discordant monozygotic pairs (current versus never smokers). (b) Scatterplot of cigarettes smoked per day in 80 concordant current smoking 
monozygotic pairs with complete data. (c) Scatterplot of within-pair differences in cigarettes smoked per day versus DNA methylation at cg05575921 

Figure 4 continued on next page
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methylation level in blood was associated with the expression level of nearby genes (Table 4). At three 
CpGs, a higher methylation level correlated with lower expression level. None of the 13 CpGs over-
lapped with six genes that were differentially expressed in monozygotic pairs discordant for current 
smoking (Vink et al., 2017).

Discussion
Previous EWASs have identified robust differences in DNA methylation between smokers and non-
smokers at a number of loci. These differences may reflect true smoking-reactive DNA methylation 
patterns, but can also be driven by (genetic) confounding or reverse causation. We exploited a strong 
within-family design, that is, the discordant monozygotic twin design (Bell and Spector, 2012), to 
identify smoking-reactive loci. By analysing whole-blood genome-wide DNA methylation patterns in 
53 monozygotic pairs discordant for current smoking, we found 13 CpGs with a difference in meth-
ylation level between the current smoking twin and the twin who never smoked. All 13 CpGs have 
been previously associated with smoking in unrelated individuals and in line with previous studies that 
compared unrelated smokers and controls (Joehanes et al., 2016), our data from monozygotic pairs 
discordant for former smoking also indicate that methylation patterns are to a large extent reversible 
upon smoking cessation. We further showed that differences in smoking level exposure for mono-
zygotic twins who are both current smokers but differ in the number of cigarettes they smoke are 
reflected in their DNA methylation profiles.

The strongest smoking-associated loci typically detected in human blood EWAS are genes involved 
in detoxification pathways of aromatic hydrocarbons, such as AHRR and CYP1A1 (Gao et al., 2015), of 
which AHRR was also present among the top differentially methylated loci in our analysis of discordant 
twin pairs. Mainstream tobacco smoke is a mixture of thousands of chemicals (Rodgman and Perfetti, 
2008). Although the effects of many of the compounds present in cigarette smoke are unknown, 
several mechanisms have been described through which cigarette smoking may affect global or gene-
specific DNA methylation levels. These include DNA damage induced by certain compounds such as 
arsenic, chromium, formaldehyde, polycyclic aromatic hydrocarbons, and nitrosamines that all cause 
double-stranded breaks (Smith and Hansch, 2000) (which causes increased methylation near repaired 
DNA) (Mortusewicz et al., 2005; Cuozzo et al., 2007), hypoxia induced by carbon monoxide (Olson, 
1984) (causing global CpG island demethylation by disrupting methyl donor availability), and modu-
lation of the expression level or activity of DNA-binding proteins, such as transcription factors (Lee 
and Pausova, 2013). Nicotine, presumed to be the major addictive compound in cigarette smoke 
(although other putative addictive compounds have also been described [Talhout et al., 2011]), has 
gene regulatory effects. Binding of nicotine to nicotinic acetylcholine receptors causes downstream 
activation of cAMP response element-binding protein, which is a key transcription factor for many 
genes (Shen and Yakel, 2009). In mouse brain, nicotine downregulates the DNA methyl transferase 
gene Dnmt (Satta et al., 2008). Previous EWAS studies based on blood cotinine levels, as a biomarker 
for nicotine exposure, and based on a polygenic scores for nicotine metabolism, reported differen-
tially methylated CpGs that largely overlap with CpGs found in EWAS of smoking status (Gupta et al., 
2019; Lee et al., 2016). Furthermore, E-cigarette-based nicotine exposure of mice has been shown 
to cause DNA methylation changes in white blood cells (Peng et al., 2022).

Importantly, effects of smoking on DNA methylation in brain cells have been hypothesized to 
contribute to addiction (Zillich et  al., 2022), but it is largely unknown to what extent addiction-
related DNA methylation dynamics are captured in other tissues such as blood. Nicotinic receptors 
are especially abundant in the central and peripheral nervous system, but are also present in other 
tissues. In peripheral blood, nicotinic receptors are present on lymphocytes and polymorphonu-
clear cells (Benhammou et al., 2000), suggesting that EWA studies performed on blood cells might 
capture nicotine-reactive methylation patterns. Interesting in this regard is our finding that among 
the top differentially methylated CpGs in smoking discordant pairs are multiple CpGs in CACNA1D 
and GNG12, which encode subunits of a calcium voltage-gated channel and G protein, respectively; 

(AHRR) in 80 concordant current smoking monozygotic pairs with complete data. (d) Scatterplot of within-pair differences in DNA methylation at 
cg05575921 (AHRR) versus time since quitting smoking (years) in 63 pairs discordant for former smoking.

Figure 4 continued
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proteins that interact with the nicotinic acetylcholine receptor, and the related enrichment of Kegg 
pathway dopaminergic neuron. Methylation levels at these CpGs might be reactive to nicotine expo-
sure. Furthermore, the CpGs in CACNA1D are in proximity of a GWAS locus for smoking initiation, 
suggesting that this might be a locus that is not only reactive to smoking exposure, but may also 
contribute to smoking behaviour. Although it remains to be established if the epigenetic and genetic 
variation at this locus are functionally connected (i.e. have the same downstream consequences on 
gene expression), these results suggest that these CpGs can be interesting candidates for further 
studies into peripheral biomarkers of smoking addiction. Since we applied a discordant monozy-
gotic twin design, the methylation differences identified at this locus in our study cannot be driven 
by mQTL effects of the SNPs associated with smoking. The data from monozygotic pairs discordant 
for former smoking indicate that methylation patterns are to a large extent reversible upon smoking 
cessation, which is in line with DNA methylation patterns being reactive to smoking. Nevertheless, our 
findings do not rule out that the possibility that reverse causation (DNA methylation driving smoking 
behaviour) might also contribute to the (maintenance of) smoking discordance in smoking discordant 
monozygotic twin pairs. Future analyses combining DNA methylation and genetic data from monozy-
gotic and dizygotic twins may be applied to examine bidirectional causal associations between DNA 
methylation and smoking (Minică et al., 2018).

The main strength of our study is the use of the discordant monozygotic twin design to examine 
the effects of smoking, because it rules out genetic confounding, as well as many other confounding 
factors. The value of studying smoking effects against an identical genetic background is clear if 
one considers that one of the most strongly associated genetic variants for nicotine dependence is 
located in the DNA methyltransferase gene DNMT3B (Hancock et al., 2018). This strongly implies a 
role for DNA methylation in nicotine addiction, but it also suggests that horizontal genetic pleiotropy 
might contribute to associations between DNA methylation and smoking in ordinary case–control 
EWASs, where differences in DNA methylation between unrelated smokers and non-smokers may 
reflect differences in genotype. Our analysis had adequate power to detect large effects (i.e., the top 
hits identified in typical smoking EWAS) (Tsai and Bell, 2015). These reflect only a small proportion, 
however, of all smoking-associated sites. In our analysis of 53 monozygotic twin pairs discordant for 
current versus never smoking, we detected 13 CpGs at genome-wide significance, which represent 
0.5% of the total number of CpGs (2623) detected in the smoking meta-analysis of unrelated individ-
uals (2433 current verus 6956 never smokers) (Joehanes et al., 2016). The within-pair difference in 
smoking discordant monozygotic pairs was smaller compared to the effect size reported previously 
based on the comparison of unrelated smokers and non-smokers. Larger sample sizes are required 
to achieve adequate power to detect smaller effects. While the pattern of within-pair differences in 
current/never, current/former and former/never discordant monozygotic twin pairs was clearly in line 
with reversal of methylation patterns following smoking cessation, we did not find a strong correla-
tion between within-pair differences in DNA methylation and time since quitting smoking in former 
smoking discordant pairs. If most reversal takes place gradually in the first view years after smoking 
cessation, it might require larger sample sizes of twin pairs discordant for recently quitting smoking 
to detect such a correlation. Larger samples sizes may be achieved by combining data from multiple 
twin cohorts in a meta-analysis.

Common limitations that apply to many EWA studies including ours are that we only analysed DNA 
methylation data from blood and that the technique used to measure DNA methylation only covers 
a small subset of all CpG sites in the genome. Another limitation is that information on smoking was 
obtained through self-report. We previously described smoking misclassification in this cohort based 

Table 4. Significantly associated transcripts in cis for CpGs that are differentially methylated in 
smoking discordant monozygotic twin pairs.

CpG Gene Z score p-value FDR

cg25648203 EXOC3 −7.34 2.11e−13 0

cg19089201 RP4-647J21.1 5.55 2.84e−8 0

cg05575921 EXOC3 −4.86 0.00000119 0.00039

cg21161138 EXOC3 −3.82 0.000133 0.0254
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on blood levels of cotinine (van Dongen et al., 2018), a biomarker for nicotine exposure, that has 
been measured in a subset of the cohort (Bot et al., 2013), which indicated a low misclassification 
rate. Plasma cotinine levels were available for 591 individuals classified as never smokers by self-
report. Five of these individuals (0.8%) had cotinine levels ≥15 ng/ml, which is indicative of smoking, 
and thus indicates a misclassification of smoking status. In the current paper, we further showed that 
the correlation between cotinine levels in concordant current smoking pairs was similar to the correla-
tion between self-reported number of cigarettes per day.

Conclusion
In conclusion, we studied reactiveness of DNA methylation in blood cells to smoking and reversibility of 
methylation patterns upon quitting smoking in monozygotic twins. Analyses in special groups such as 
monozygotic twins are valuable to validate results from large population-based EWAS meta-analyses, 
or to train more accurate methylation scores for environmental exposures that are not confounded by 
genetic effects. Our results illustrate the potential to utilize DNA methylation profiles of monozygotic 
twins as a read out of discordant exposures at present and in the past.
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