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Abstract Classic models consider working memory (WM) and long-term memory as distinct 
mental faculties that are supported by different neural mechanisms. Yet, there are significant 
parallels in the computation that both types of memory require. For instance, the representation 
of precise item-specific memory requires the separation of overlapping neural representations of 
similar information. This computation has been referred to as pattern separation, which can be 
mediated by the entorhinal-DG/CA3 pathway of the medial temporal lobe (MTL) in service of long-
term episodic memory. However, although recent evidence has suggested that the MTL is involved 
in WM, the extent to which the entorhinal-DG/CA3 pathway supports precise item-specific WM has 
remained elusive. Here, we combine an established orientation WM task with high-resolution fMRI 
to test the hypothesis that the entorhinal-DG/CA3 pathway retains visual WM of a simple surface 
feature. Participants were retrospectively cued to retain one of the two studied orientation gratings 
during a brief delay period and then tried to reproduce the cued orientation as precisely as possible. 
By modeling the delay-period activity to reconstruct the retained WM content, we found that the 
anterior-lateral entorhinal cortex (aLEC) and the hippocampal DG/CA3 subfield both contain item-
specific WM information that is associated with subsequent recall fidelity. Together, these results 
highlight the contribution of MTL circuitry to item-specific WM representation.

Editor's evaluation
This useful study highlights the contribution of the medial temporal lobe (MTL), and the DG/CA3 
hippocampal pathway in particular, to neural activity during the working memory delay period. The 
evidence supporting this is compelling, using diverse state-of-the-art approaches to neural data 
analysis and relating it to behavioural data. The work will be of significant interest to neuroscientists 
specialising in the research area of human working memory.

Introduction
Working memory (WM) or short-term memory actively retains a small amount of information to 
support ongoing mental processes (Baddeley, 2012). This core mental faculty relies upon distributed 
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brain regions (Christophel et  al., 2017; Eriksson et  al., 2015), ranging from lower-level sensory 
areas (Harrison and Tong, 2009; but see Bettencourt and Xu, 2016) to higher-level frontoparietal 
networks (Bettencourt and Xu, 2016; Ester et al., 2015; Todd and Marois, 2004; Xu and Chun, 
2006). This distributed neocortical network, however, often does not involve the medial temporal 
lobe (MTL), which is traditionally attributed to long-term episodic memory (Eichenbaum et al., 2007; 
Squire and Zola-Morgan, 1991). This distinction is grounded in the separation between WM and 
long-term memory in classic models (Atkinson and Shiffrin, 1968; Norris, 2017) and in early MTL 
lesion case studies (Milner et al., 1968; Scoville and Milner, 1957). Yet, this classic view is not free 
of controversy. A growing body of research has suggested that the MTL is involved in tasks that rely 
on information maintained in WM (Boran et al., 2022; Boran et al., 2019; Hannula and Ranganath, 
2008; Johnson et al., 2018; Kamiński et al., 2017; Kornblith et al., 2017; Libby et al., 2014; Liu 
et al., 2020; Rissman et al., 2008; Xie et al., 2023a; Xie and Zaghloul, 2021). Furthermore, MTL 
lesions can disrupt WM task performance (Goodrich et al., 2019; Koen et al., 2017; Olson et al., 
2006; Warren et al., 2014; Xie et al., 2023a). Despite these recent findings, however, major theories 
have not considered the MTL as a mechanism underlying WM (Jeneson and Squire, 2012; Sreeni-
vasan and D’Esposito, 2019). First, it is unclear what computational process of the MTL is involved 
in WM (Sreenivasan and D’Esposito, 2019). Furthermore, the MTL tends to engage more in a WM 
task when long-term memory becomes relevant, for example when task loads are higher (Boran et al., 
2022; Boran et al., 2019; Rissman et al., 2008) or when task stimuli are complex (Barense et al., 
2007; Borders et al., 2022; Kamiński et al., 2017; Kornblith et al., 2017; Libby et al., 2014; Liu 
et al., 2020). As a result, contributions of the MTL to WM are often deemed secondary (Jeneson and 
Squire, 2012; Sreenivasan and D’Esposito, 2019).

Clarifying this issue requires specifying how the MTL contributes to WM representation and the 
extent to which this contribution holds even when WM task demand is minimized. Although WM and 
long-term memory are traditionally considered separate mental faculties, the functional parallels in 
both types of memory suggest potential shared neural mechanisms (Beukers et al., 2021; Cowan, 
2001; Nee and Jonides, 2008; Ruchkin et  al., 2003). For example, the ability to retain precise 
item-specific memory would require the computation to distinguish neural representations of similar 
information – a process known as pattern separation (Marr, 1971). This aspect of long-term memory is 
widely thought to emerge from various properties of the MTL’s entorhinal-DG/CA3 pathway (Aimone 
et al., 2011; Bakker et al., 2008; Cappiello et al., 2016; Ekstrom and Yonelinas, 2020; Korkki 
et al., 2021; Leal and Yassa, 2018; Marr, 1971; Reagh and Yassa, 2014; Yassa and Stark, 2011), 
such as abundant granule cells and strong inhibitory interneurons in the hippocampal DG, as well as 
powerful mossy fiber synapses between the DG and CA3 subfields (Aimone et al., 2011; Sahay et al., 
2011). These properties make it possible to enable sparse coding to ensure a sufficient representa-
tional distance among similar information (Rolls, 2016; Rolls, 2013). As these hippocampal substruc-
tures communicate with other neocortical areas via the entorhinal cortex (Aimone et al., 2011; Leal 
and Yassa, 2018), there is a proposed gradian of pattern separation along the entorhinal-DG/CA3 
pathway to support item-specific long-term episodic memory (Reagh and Yassa, 2014). These ideas 
are supported by evidence based on animal and human behaviors (Burke et al., 2011; Hunsaker 
et  al., 2008; Ryan et  al., 2012), electrophysiological recordings (Leutgeb et  al., 2007; Lohnas 
et al., 2018; Sakon and Suzuki, 2019), and human fMRI (Bakker et al., 2008; Leal and Yassa, 2018; 
Montchal et al., 2019; Reagh and Yassa, 2014). However, the extent to which the entorhinal-DG/
CA3 pathway is involved in WM, especially in humans other than animal models (Gilbert and Kesner, 
2006), has remained unknown.

Several challenges faced in past research may add to this uncertainty. For example, it is difficult to 
infer signals from MTL substructures, especially those within the hippocampus, based on human fMRI 
using a standard spatial resolution (Bettencourt and Xu, 2016; Ester et al., 2015) or intracranial 
direct recording with limited electrode coverage (Boran et al., 2019; Johnson et al., 2018; Kamiński 
et al., 2017; Kornblith et al., 2017). Furthermore, the use of complex task designs with multiple 
memory items (Borders et al., 2022) might also be suboptimal to reveal item-specific WM informa-
tion in MTL subregions without being too taxing on the WM storage limit. To investigate these issues, 
here, we leverage an established retro-cue orientation WM task (Bettencourt and Xu, 2016; Ester 
et al., 2015; Harrison and Tong, 2009) and a high-resolution fMRI protocol to test the key predic-
tion that the MTL’s entorhinal-DG/CA3 pathway retains item-specific WM information of a simple 
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surface feature. In this task, participants are directed to retain the orientation information of a cued 
stimulus from two sequentially presented orientation gratings (separated by >20°; Figure 1A). After 
a short delay (5 TRs; 1TR = 1.75 s), they try to reproduce the cued orientation grating as precisely 
as possible using the method of adjustment. As participants are retrospectively cued to retain only 
one item during the delay, they are expected to encode both items but then only keep one in mind 
during the delay period. This design imposes a task demand on the observer to correctly remember 
the cued orientation while resisting the interference from the internal representations of other similar 
orientation gratings. The retention of information selected after encoding over a short delay has been 
considered a hallmark of WM (Lorenc et al., 2021; Panichello and Buschman, 2021), regardless of 
the presence or absence of sustained neural activation (Lundqvist et al., 2018; Rose et al., 2016). If 
the MTL’s entorhinal-DG/CA3 pathway indeed supports this function, it is expected that the recorded 
delay-period activity should contain more information about the cued item, as compared with the 
uncued item, even though both items are initially remembered with an equal likelihood (Bettencourt 
and Xu, 2016; Ester et al., 2015; Harrison and Tong, 2009). If, however, information about the cued 
and uncued items is equally present during the delay period, the MTL may play a limited role in the 
representation of task-relevant information in WM but more during the initial encoding.

Results
Participants’ memory performance is quantified as recall error – the angular difference between the 
reported and the actual orientations of the cued item (Zhang and Luck, 2008). As the effective 
memory set size is low at one memory item, participants’ performance is high with an average abso-
lute recall error of 12.01°±0.61° (mean ± s.e.m.). Furthermore, the recall error distribution is centered 
around 0° with most absolute recall errors smaller than 45° (~97% trials; Figure 1B). These behavioral 
data suggest that participants in general have remembered high-fidelity orientation information of the 
cued item during the delay period.

Fine discrimination of remembered WM content in the MTL
Of primary interest, we examined whether precise orientation information of the cued item is retained 
during WM retention in anatomically defined MTL regions of interest (ROIs; Figure 2A), including 
the entorhinal cortex (anterior-lateral, aLEC and posterior-medial, pMEC), the perirhinal cortex, 
para-hippocampus, and hippocampal DG/CA3, CA1, subiculum, as defined in the previous studies 
(Montchal et  al., 2019; Reagh et  al., 2017). Additionally, we chose the amygdala as a theoreti-
cally irrelevant but adjacent control region, because the involvement of the amygdala for emotionally 
neutral orientation information is expected to be minimal (Iwai et al., 1990). This allows us to gauge 
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Figure 1. Visual WM task and participants’ task performance. (A) During fMRI scanning, participants were directed to retain the orientation of a 
cued grating stimulus from two sequentially presented grating stimuli (item 1 vs 2). After a short retention interval, they tried to reproduce the cued 
orientation grating as precisely as possible. (B) Participants’ task performance was high and mostly driven by the fidelity of the retained visual WM 
content. Each gray trace represents a participant’s recall probability in the feature space (−90 to 90 degrees). The red trace represents across-subject 
average. TR = MR repetition time; ITI = inter-trial interval. The shaded area in (A) highlights the middle 3 TRs of the delay period. See Figure 1—figure 
supplement 1 for additional details.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Behavioral task design and data in the current study across participants.
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the observations in MTL ROIs while controlling for the signal-to-noise ratio in fMRI blood-oxygenation-
level-dependent (BOLD) signals in deep brain structures.

As recent neural theories of WM have proposed that information retained in WM may not rely on 
sustained neural activation (Ester et al., 2015; Kamiński and Rutishauser, 2020; Rose et al., 2016), 
we inspected how the multivoxel activity pattern in each subject-specific ROI is correlated with the 
retained WM content predicted by the cued orientation gating (Figure 2B). We found that certain 
voxels in an ROI could respond more strongly to a particular cued orientation, even when the average 
BOLD activity across voxels does not show preferred coding for a certain orientation (see an example 
in Figure 2—figure supplement 1). We then assessed the consistency of these stimulus-related multi-
voxel activity patterns in the MTL and the amygdala control region based on stimulus-based repre-
sentational similarity analysis. In this analysis, we correlated the angular similarity of every pair of cued 
orientation gratings with the similarity of the evoked BOLD patterns in these trials. The rationale 
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Figure 2. The MTL retains item-specific WM information revealed by stimulus-based representational similarity analysis. (A) MTL ROIs are parcellated 
based on previous research (Montchal et al., 2019; Reagh et al., 2017). The amygdala is chosen as an adjacent control region. (B) For each ROI, 
we examined the extent to which the evoked multi-voxel pattern during the mid-delay period could keep track of the feature values among different 
WM items. Specifically, we correlated the similarity in evoked neural patterns during the WM delay period separately with the feature similarity of 
every two cued items and with that of every two uncued items. The rationale is that if a brain region contains item-specific information to allow fine 
discrimination of different items, the evoked neural patterns should keep track of the feature similarity of these items (Kriegeskorte and Wei, 2021). 
(C). Across ROIs, we find that this prediction is supported by data from the aLEC and DG/CA3, which show a larger effect size in the association between 
neural and stimulus similarity patterns based on the cued item as compared with the uncued item. Error bars represent the standard error of the 
mean (s.e.m.) across participants. *p<0.05 and **p<0.01 for the comparison of the results based on cued versus uncued items; aLEC = anterior-lateral 
entorhinal cortex; pMEC = posterior-medial entorhinal cortex; parahipp. = parahippocampus. Results from detailed statistical tests are summarized in 
Supplementary file 1a.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Voxel responses in an example ROI (aLEC) for different remembered stimuli from one example subject.

Figure supplement 2. Across-region neural similarity analysis using the combined aLEC-DG/CA3 as an MTL seed region, the superior parietal lobule 
(SPL) ROI as a benchmark region, and the amygdala as a control region.

https://doi.org/10.7554/eLife.83365
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is that if orientation information is retained within an ROI, the recorded neural data should track 
the relative angular distance between any two cued orientation gratings (hence fine discrimination 
Kriegeskorte and Wei, 2021). Informed by the previous research (Ester et al., 2015; Harrison and 
Tong, 2009), we performed this analysis using the raw fMRI BOLD signals from the middle 3TRs out 
of the 5-TR retention interval to minimize the contribution of sensory process or anticipated retrieval, 
hence maximizing the inclusion of neural correlates of WM retention (Postle et al., 2000).

In line with our prediction, we found that stimulus similarity for the cued item was significantly 
correlated with neural similarity across trials as compared with the null in both the aLEC (t(15) = 4.29, 
p=6.48e-04, pBonferroni = 0.0052, Cohen’s d=1.11, pboostrap <0.001) and the hippocampal DG/CA3 (t(15) 
= 3.64, p=0.0024, pBonferroni = 0.019, Cohen’s d=0.94, pboostrap <0.001; Figure 2C). In contrast, stimulus 
similarity for the uncued item across trials could not predict these neural similarity patterns in these 
regions as compared with the null (aLEC: t(15) = –0.20, p=0.85, Cohen’s d=–0.05; DG/CA3: t(15) = 
0.06, p=0.95, Cohen’s d=0.02; pboostrap’s>0.50). Furthermore, the evoked neural similarity patterns in 
these regions were significantly more correlated with the cued item as compared with the uncued 
item (aLEC: t(15) = 2.66, p=0.018, Cohen’s d=0.69, pboostrap = 0.015; DG/CA3: t(15) = 3.64, p=0.0024, 
Cohen’s d=0.94, pboostrap = 0.0016). While the rest of the MTL showed similar patterns, we did not 
obtain significant evidence in other MTL ROIs following the correction of multiple comparisons (see 
Supplementary file 1a for full statistics). Furthermore, neural evidence related to the cued item in 
the aLEC and DG/CA3 was significantly stronger than that in the amygdala control ROI. This was 
supported by a significant cue (cued vs. uncued) by region (combined aLEC-DG/CA3 vs. amygdala) 
interaction effect on the correlation between stimulus and neural similarity patterns (F(1, 15)=4.97, 
p=0.042, pboostrap = 0.036). Together, these results suggest that delay-period activity patterns in the 
entorhinal-DG/CA3 pathway are associated with retrospectively selected task-relevant information, 
implying the presence of item-specific WM representation in these subregions.

Reconstruction of item-specific WM information based on inverted 
encoding modeling
To directly reveal the item-specific WM content, we next modeled the multivoxel patterns in subject-
specific ROIs using an established inverted encoding modeling (IEM) method (Ester et al., 2015). This 
method assumes that the multivoxel pattern in each ROI can be considered as a weighted summation 
of a set of orientation information channels (Figure 3A). By using partial data to train the weights of 
the orientation information channels and applying these weights to an independent hold-out test set, 
one can reconstruct the assumed orientation information channels to infer item-specific information for 
the remembered item – operationalized as the resultant vector length of the reconstructed orientation 
information channel normalized at 0° reconstruction error (Figure 3—figure supplement 1). As this 
approach verifies the assumed information content based on observed neural data, its results can be 
efficiently computed and interpreted within the assumed model even when the underlying neuronal 
tuning properties are unknown (Ester et al., 2015; Sprague et al., 2018). This approach, therefore, 
complements the model-free similarity analysis by linking representational geometry embedded in the 
neural data with item-specific information under a model-based framework (Kriegeskorte and Wei, 
2021; Xie et al., 2023b). On the basis of this method, previous research has revealed item-specific 
WM information in distributed neocortical areas, including the parietal, frontal, and occipital-temporal 
areas (Bettencourt and Xu, 2016; Ester et al., 2015; Rademaker et al., 2019; Sprague et al., 2016), 
which are similar to those revealed by other multivariate classification methods (e.g. support vector 
machine, SVM, Ester et al., 2015). We have also replicated these IEM effects in the current dataset 
(Figure 3—figure supplement 2).

Moving beyond these well-established observations in distributed neocortical structures, we found 
that the amount of reconstructed item-specific information for the cued item during WM retention 
was also significantly greater than chance level in two anatomically defined MTL subregions, aLEC 
(t(15) = 4.41, p=5.07e-04, pbonferroni = 0.0041, Cohen’s d=1.14, pboostrap <0.001) and the hippocampal 
DG/CA3 (t(15) = 4.73, p=2.68e-04, pbonferroni = 0.0021, Cohen’s d=1.22, pboostrap <0.001; Figure 3B). 
These effects were specific to the maintenance of the cued item, as information related to the uncued 
item was not statistically different from chance (aLEC: t(15) = –0.35, p=0.74, Cohen’s d=–0.09; DG/
CA3: t(15) = 0.66, p=0.52, Cohen’s d=0.17; pboostrap’s>0.50) and was significantly less than that for 
the cued item (aLEC: t(15) = 2.75, p=0.015, Cohen’s d=0.71, pboostrap = 0.018; DG/CA3: t(15) = 3.83, 

https://doi.org/10.7554/eLife.83365
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p=0.0016, Cohen’s d=0.99, pboostrap = 0.0023). Critically, the amount of information specific to the cued 
item in the aLEC and DG/CA3 was significantly greater than that in the amygdala control ROI, which 
is supported by a significant cue (cued vs. uncued) by region (combined aLEC-DG/CA3 vs. amygdala) 
interaction effect on IEM reconstruction outcomes (F(1, 15)=7.16, p=0.016, pboostrap = 0.010).

Collectively, results from complementary analytical procedures suggest that the MTL’s entorhi-
nal-DG/CA3 pathway retains precise item-specific WM content for a simple surface feature (e.g. orien-
tation) to allow fine discrimination of different items in the feature space. As such, the stimulus-based 
prediction of neural similarity is highly correlated with the amount of reconstructed information based 
on IEM, even though these two analyses are based on different analytical assumptions (e.g. correlation 
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Figure 3. The MTL retains item-specific WM information revealed by Inverted Encoding Modeling (IEM). (A) The IEM method assumes that each 
voxel response in the multi-voxel pattern reflects a weighted summation of different ideal stimulus information channels (C). The weights (W) of these 
information channels are learned from training data and then applied to independent hold-out test data to reconstruct information channels (C’). After 
shifting these reconstructed information channels to a common center, the resultant vector length of this normalized channel response reflects the 
amount of retained information on average (also see Figure 3—figure supplement 1). (B) We find that the BOLD signals from both the aLEC and DG/
CA3 contain a significant amount of item-specific information for the cued item, relative to the uncued item. Shaded areas represent the standard error 
of the mean (s.e.m.) across participants. To retain consistency, we sorted the x-axis (ROIs) based on Figure 2C. *p<0.05 and **p<0.01 for the comparison 
of the results based on cued versus uncued items; a.u.=arbitrary unit; aLEC = anterior-lateral entorhinal cortex; pMEC = posterior-medial entorhinal 
cortex; parahipp. = parahippocampus. Results from detailed statistical tests are summarized in Supplementary file 1b.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Example channel responses before and after shifting to the cued orientation for aLEC (A) and the amygdala (B).

Figure supplement 2. Distributed brain regions retain information about the cued item during WM.

Figure supplement 3. Stimulus-based representational similarity analysis (RSA) and inverted encoding model (IEM) reveal shared item-related variance 
in the observed neural data.

Figure supplement 4. Analyses based on the whole hippocampus, as compared with a benchmark sphere ROI in the posterior parietal cortex (e.g., 
superior parietal lobule, SPL) and the hippocampal DG/CA3 subfield.

Figure supplement 5. Time-varying IEM analysis shows that mid-delay period activity in aLEC-DG/CA3 contains item-specific information that could 
not be attributed to perceptual processing alone.

Figure supplement 6. Modeling results of the hippocampal subfields based on FreeSurfer labels.

https://doi.org/10.7554/eLife.83365
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between IEM and representational similarity analysis for the cued item, aLEC: r=0.87, p=0.000012, 
pboostrap <0.001; DG/CA3: r=0.78, p=0.00037, pboostrap <0.001; Figure 3—figure supplement 3).

Reconstruction of WM Item Information in the MTL is associated with 
recall fidelity
Next, we examined the extent to which WM information retained in the MTL’s aLEC-DG/CA3 circuitry 
is related to an observer’s subsequent recall behavior. As the angular resolution of the reconstructed 
orientation information is 20° in the current study, our data therefore suggest that the MTL can distin-
guish similar orientation information in WM that is at least 20° apart. This neural separation should be 
consequential for later recall performance, in that trials with greater item-specific information recon-
structed from the MTL should be associated with higher WM recall fidelity. To test this prediction, we 
grouped the trials from each participant into two categories. The first category contained small recall 
error trials, where participants made an effective recall response within one similar item away from the 
cued item (absolute recall error <20°; 149±3 trials [mean ± s.e.m.]). Another category contained larger 
recall error trials (27±3 trials) with absolute recall errors that were greater than 20° but smaller than the 
3 standard deviations (SD) of the aggregated recall error distribution (Figure 4A). These trials would 
capture participants’ imprecise recall responses for the cued item, instead of those with an extra-large 
recall error that could be attributed to other factors such as attentional lapses (deBettencourt et al., 
2019). The two identified categories of trials together account for about 98% of the total trials (i.e. 
176 out of 180 trials).

We then performed the leave-one-block-out analysis to obtain trial-by-trial IEM reconstructions 
based on delay-period BOLD signals aggregated from the aLEC and DG/CA3. We averaged the IEM 
reconstructions from the small- and larger-error trials separately. Because trial counts between cate-
gories were not balanced, we resampled the data from the small-error trials based on the number 
of larger-error trials for 5000 times. We took the average of IEM reconstruction across iterations to 
obtain robust subject-level trial-average estimates with a balanced trial count across different behav-
ioral trial types (Xie et al., 2020a; Yaffe et al., 2014). By contrasting these estimates at the subject 
level, we found that the small-error trials yielded significant IEM reconstructions for the cued item 
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Figure 4. The quality of WM information retained in the aLEC-DG/CA3 pathway is associated with later recall fidelity. (A) Participants’ performance in 
the visual WM task is high with most of absolute recall errors falling within the 3 SD of the aggregated recall error distribution. As the angular resolution 
of the presented orientation grating is at least 20° between any two cued items, for most of the trials, participants’ recall responses are as precise as 
within one similar item away from the cued item (i.e. absolute recall error <20°). (B) By inspecting the IEM reconstructions for trials with small errors 
(absolute recall error <20°) and trials with larger errors (absolute recall error: 20° to 3 SD of recall errors), we find that the quality of IEM reconstructions 
in the combined aLEC-DG/CA3 ROI varies as a function of participants’ recall fidelity. Precise recall trials have yielded better IEM reconstruction quality, 
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represent the standard error of the mean (s.e.m.) across participants.
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(t(15) = 4.50, p=4.21e-04, Cohen’s d=1.16, pboostrap <0.001), whereas the larger-error trials did not 
(t(15) = 0.03, p=0.98, Cohen’s d=0.007, pboostrap = 0.90; Figure 4B). Furthermore, the reconstructed 
WM information in the combined aLEC-DG/CA3 showed better quality in the small-error trials, as 
compared with that in the larger-error trials (t(15) = 2.45, p=0.027, Cohen’s d=0.61, pboostrap = 0.032).

In addition to using an empirical criterion to separate in-memory trials from those extra-large error 
trials susceptible to occasional attentional lapses (deBettencourt et al., 2019), we have also tried 
another thresholding heuristic. As shown in Figure 1A, most trials from each participant fall within this 
45° of absolute recall error (i.e. half of the 90° range), and the trials larger than this number are rare 
(~5 out of 180 trials). We, therefore, used 45° of absolute recall error as a cut-off to identify the impre-
cise recall trials that were greater than 20° but smaller than 45° of absolute recall error. We performed 
the same analysis to obtain trial-by-trial IEM reconstructions based on delay-period BOLD signals 
aggregated from the aLEC and DG/CA3 as outlined above, and then resampled the same number of 
trials to estimate the IEM reconstructions for the small-error and larger-error trials (<20° vs. 20° - 45° of 
absolute recall error). Consistent with the 3-SD heuristic, we found that the small-error trials identified 
by the 45° cut-off heuristic also yielded significant IEM reconstructions for the cued item (t(15) = 4.34, 
p=5.74e-04, Cohen’s d=1.12, pboostrap <0.001), whereas the larger-error trials did not (t(15) = –0.69, 
p=0.50, Cohen’s d=–0.18, pboostrap = 0.67). We then contrasted the difference in IEM reconstructions 
between these small- and large-error trials across participants. We found that IEM reconstruction for 
the cued item from the combined aLEC-DG/CA3 showed better quality in the small-error trials, as 
compared with that in the larger-error trials (t(15) = 3.41, p=0.004, Cohen’s d=0.88, pboostrap = 0.008). 
Collectively, these results suggest that higher-quality WM representation in the entorhinal-DG/CA3 
pathway during the delay period is associated with better subsequent recall fidelity and that this asso-
ciation is robust to the selection of cut-off scores for extra-large recall errors.

Discussion
Based on high-resolution fMRI, this current study uncovers an often-neglected role of the MTL’s the 
entorhinal-DG/CA3 pathway in item-specific WM representation at a minimal task load. Our data 
suggest that the entorhinal-DG/CA3 circuitry retains item-specific information to allow fine discrim-
ination of similar WM items across trials. The quality of item-specific WM information in the ento-
rhinal-DG/CA3 pathway is associated with an observer’s subsequent recall fidelity. Together, these 
findings fill a missing link in the growing literature regarding the contribution of the MTL to item-level 
WM representation with a lower information load (Johnson et  al., 2018; Sreenivasan and D’Es-
posito, 2019).

Theoretically, our findings are consistent with recent neural theories that highlight the involvement 
of distributed brain areas for WM (Christophel et  al., 2017; Eriksson et  al., 2015; Sreenivasan 
and D’Esposito, 2019), including mechanisms in the MTL that are traditionally deemed irrelevant 
for human WM (Beukers et al., 2021; Borders et al., 2022; Goodrich et al., 2019; Goodrich and 
Yonelinas, 2016). Our findings are built upon the established literature on the entorhinal-DG/CA3 
circuitry and the formation of high-fidelity long-term episodic memory (Aimone et al., 2011; Bakker 
et al., 2008; Ekstrom and Yonelinas, 2020; Korkki et al., 2021; Leal and Yassa, 2018; Marr, 1971; 
Reagh and Yassa, 2014; Yassa and Stark, 2011). This function has been linked with various neuronal 
properties along the entorhinal-DG/CA3 pathway – such as abundant granule cells, strong inhibitory 
interneurons, and powerful mossy fiber synapses – which could enable sparse coding of information to 
minimize mnemonic interference (Aimone et al., 2011; Rolls, 2016; Rolls, 2013; Sahay et al., 2011). 
As such, similar information can be retained with a sufficient representational distance to support 
behavioral discrimination (Bakker et al., 2008; Burke et al., 2011; Hunsaker et al., 2008; Leal and 
Yassa, 2018; Leutgeb et al., 2007; Lohnas et al., 2018; Montchal et al., 2019; Reagh and Yassa, 
2014; Ryan et al., 2012; Sakon and Suzuki, 2019). Our data suggest that the same MTL mechanism 
can also be used to support the quality of WM representation (Xie et  al., 2020b). Conceptually, 
potential interference between items either across or within trials would place a demand on pattern 
separation even over a short delay (Oberauer and Lin, 2017). As such, the MTL circuitry involved in 
the resolution of mnemonic interference (Aimone et al., 2011) would play a key role in reducing infer-
ence between WM content and other similar information in the feature space. Our data suggest that 
this process would result in more similar and stable representations for the same remembered item 
across trials, as detected by multivariate correlational and decoding analyses. However, under certain 
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task conditions (e.g. learning spatial routes in a naturalistic task over many repetitions), the MTL may 
maximally orthogonalize overlapping information to opposite representational patterns (hence ‘repul-
sion’) to minimize mnemonic interference (Chanales et al., 2017). It remains to be determined how 
these learning-related mechanisms in a more complex setting are related to MTL’s contributions to 
WM representation of simple stimulus features.

Empirically, our results have resolved an issue concerning the decodability of item-specific WM 
content in the MTL for simple stimulus features. Previously, MTL activity has been shown to scale 
with WM set size of letters and color squares without decodable item-specific WM content (Boran 
et al., 2022; Boran et al., 2019). When item information is shown, it often involves complex stimuli 
with rich information content (e.g. Kamiński et al., 2017). These observations raise the conceptual 
question concerning the extent to which the MTL responds to task difficulty or retains WM content. 
In other words, is the MTL not sensitive to simple stimuli or lower task demands at all? Here, with 
improved spatial resolution of MTL recordings and using a simple stimulus feature, our data suggest 
that the MTL retains item-level WM information even when the effective WM set size is one. The lack 
of significant observations in some previous studies using the same paradigm may be due to the lack 
of granularity in MTL recordings (e.g. Ester et al., 2015). To test this, we aggregated data from all 
the voxels in the hippocampus to examine whether blurred MTL signals would be sufficient to reveal 
item-specific WM content using the current IEM procedure. As CA1 and subiculum voxels contain less 
robust WM information (Figure 3B), we predicted that this aggregation procedure would attenuate 
the evidence for WM information due to the reduction in signal-to-noise ratio. Our data are in line with 
this prediction (Figure 3—figure supplement 4). These results, therefore, highlight the importance of 
fine-grained MTL signals in revealing item-specific WM content.

Alongside these theoretical and empirical contributions, our data also provide additional insights 
into the conditions under which the MTL is relevant for WM. First, our findings suggest that the 
MTL’s contribution to WM does not depend on whether task demands exceed a limited WM capacity 
(Jeneson and Squire, 2012), although this account has been proposed when interpreting some recent 
findings for WM tasks using complex stimuli or a higher memory set size (Boran et al., 2019; Jeneson 
and Squire, 2012; Kamiński et al., 2017; Kornblith et al., 2017; Libby et al., 2014). Second, our 
analysis has focused on the mid-delay activity (Postle et al., 2000) and hence our findings could not 
be explained by the MTL’s contribution to WM retrieval (Shrager et al., 2008). Furthermore, while our 
findings do not preclude the potential involvement of the MTL during perceptual encoding (Bonnen 
et  al., 2021), perceptual involvement could not account for the results based on the comparison 
between the cued and uncued items (Bettencourt and Xu, 2016; Ester et al., 2015; Harrison and 
Tong, 2009). If the MTL primarily contributes to perceptual encoding instead of WM retention, we 
should have observed a comparable amount of information for both study items in the MTL, as they 
are presented in the same data acquisition TR before cue onset. Since participants do not know the 
cued item ahead of time, they need to initially remember both items. In line with this interpretation, a 
time-varying IEM analysis shows that aLEC-DG/CA3 indeed contains a comparable amount of informa-
tion related to both the cued and uncued items at an earlier time point in the task (Figure 3—figure 
supplement 5). Yet, during the mid-delay period, aLEC-DG/CA3 contains significant information for 
the cued relative to the uncued item in a similar way as shown in the previous research (Ester et al., 
2015; Harrison and Tong, 2009). Although it is well acknowledged that the current recording method 
has its inferential limitations in the time domain, these data unambiguously suggest that the entorhi-
nal-DG/CA3 pathway supports the representation of a retrospectively selected memory item during a 
short delay – a hallmark of WM (Lorenc et al., 2021; Panichello and Buschman, 2021).

Several open questions remain to be addressed by future research. First, more data are needed to 
reveal how WM representation in the MTL is compared with and/or related to that retained in distrib-
uted neocortical areas (Christophel et al., 2017; Eriksson et al., 2015; Sreenivasan and D’Esposito, 
2019). Although the IEM approach allows the reconstruction of information in neural signals, it is not 
well-suited to directly compare information reconstruction across brain regions. Such a comparison 
would be complicated by several issues, including the difference in the number of voxels involved and 
the lack of interpretability of null results when both brain regions contain some WM information. To 
improve interpretability, we have used the results based on the uncued item as a within-ROI control 
and contrasted how information specific to the cued item (cued vs. uncued) differs between MTL ROIs 
and a theoretically irrelevant control region (i.e. the amygdala). One additional potential approach 
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is to examine how the representations of remembered items are correlated across brain regions 
(Figure 2—figure supplement 2A). The rationale is that delay-period neural patterns across trials 
should be correlated for two brain regions containing the same information (Pillet et al., 2019), as 
compared with brain regions that do not hold consistent information (Figure 2—figure supplement 
2B). We tested this conjecture by examining the neural similarity across trials between the aLEC-DG/
CA3 and a benchmark ROI in the superior temporal lobule (SPL) – a region that is consistently linked 
with item-specific information during visual WM retention both in the current data (Figure 3—figure 
supplement 4) and in the previous research (Bettencourt and Xu, 2016; Ester et al., 2015; Xu and 
Chun, 2006). Supporting this prediction, we found that the similarity of neural patterns between the 
aLEC-DG/CA3 and the SPL has increased from the pre-stimulus baseline to the WM retention period 
(Figure 2—figure supplement 2C), which contrasts with the lack of changes in the correlation of 
across-trial neural patterns between aLEC-DG/CA3 and the amygdala control ROI (Figure 2—figure 
supplement 2D). These data suggest that WM information in the entorhinal-DG/CA3 is similiar to that 
in a well-recognized neocortical WM-related area (Bettencourt and Xu, 2016; Ester et al., 2015; Xu 
and Chun, 2006). However, considering the limitation in temporal resolution of the current recording 
method, it remains unknown how the MTL contributes to the dynamic coding schemes underlying 
WM maintenance (Stokes, 2015). Future research with direct recordings from multiple brain areas 
would be more suitable to investigate the fine-scale temporal dynamic underlying these similar neural 
patterns across brain regions during WM.

Second, it remains unknown how the MTL circuitry is tuned to specific stimulus features such as 
orientations, although one of the analytical tools we used was inspired by findings based on neuronal 
tuning properties from the visual cortex (Brouwer and Heeger, 2009; Sprague et al., 2018). This is 
because the assumed orientation channels in IEM do not reflect the underlying neuronal tuning prop-
erties and are interpretable only within the assumed model (Liu et al., 2018; Sprague et al., 2018). 
Previous research using this method has therefore primarily focused on inferences related to the pres-
ence or absence of information content in the neural data (Bettencourt and Xu, 2016; Brouwer and 
Heeger, 2009; Ester et al., 2015; Rademaker et al., 2019; Sprague et al., 2016), instead of prop-
erties of neural tuning. In the current study, these IEM results are supported by the less assumption-
laden results from stimulus-based representational similarity analysis (Kriegeskorte and Wei, 2021). 
These two approaches are therefore complementary to each other. Nevertheless, these analyses are 
correlational in nature. Hence, although fine-grained neural representations revealed by these anal-
yses are associated with participants’ behavioral outcomes (Figure 4), it remains to be determined 
whether the entorhinal-DG/CA3 pathway contributes to the fidelity of WM representation or also to 
the process of information selection. Strategies for resolving this issue can involve generalizing the 
current findings to other WM tasks without an explicit requirement of retrospective information selec-
tion (Xie et al., 2023a) and/or further exploring how the frontal-parietal mechanisms related to visual 
selection and attention interact with the MTL system (Panichello and Buschman, 2021).

Third, the often-neglected role of the MTL in visual processing needs to be further explored. Our 
findings suggest that the entorhinal-DG/CA3 pathway in the MTL may play a role in retaining of task-
relevant item-specific visual WM content, which could not be attributed to perceptual processing 
alone. These data adds to a growing body of literature that considers the MTL as an important part 
of the visual system, serving functions ranging from retinotopic coding (Knapen, 2021) to predictive 
coding (Hindy et al., 2016). Although retinotopic coding as a form of perceptual processing could 
underlie WM representation for orientation information, our data highlight that the MTL is sensitive to 
the retrospectively selected information – a hallmark of WM (Lorenc et al., 2021). Furthermore, while 
we have used orientation as a simple stimulus feature to minimize long-term memory influences, our 
results do not preclude the role of this MTL circuitry in remembering other stimulus features, such as 
colors (Xie et al., 2023a). To more precisely reveal the MTL mechanisms that are shared across WM 
and long-term memory, future research should examine the extent to which MTL voxels evoked by a 
long-term memory task (e.g., mnemonic similarity task, Bakker et al., 2008) can be directly used to 
directly decode mnemonic content in visual WM tasks using different simple stimulus features.

Conclusion
In sum, our data demonstrate that the MTL’s entorhinal-DG/CA3 pathway retains item-specific WM 
information, similar to that present in other distributed neocortical areas (Bettencourt and Xu, 2016; 
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Ester et al., 2015). These results suggest that neural mechanisms underlying the fidelity of long-term 
episodic memory (Aimone et al., 2011; Bakker et al., 2008; Cappiello et al., 2016; Ekstrom and 
Yonelinas, 2020; Korkki et al., 2021; Marr, 1971; Reagh and Yassa, 2014; Yassa and Stark, 2011) 
are involved in representing precise item-specific WM content. Our data, therefore, provide broader 
insights into the fundamental constraints that govern the quality of our memory across timescales (Xie 
et al., 2023a; Xie et al., 2020b; Xie and Zhang, 2017a; Xie and Zhang, 2016).

Materials and methods
Participants
Sixteen right-handed participants (mean ± s.e.m.: 21.32 ± 0.73 years old, 8 females) were recruited 
for the study with monetary compensation ($20/hour). This sample size was designed to be no smaller 
than that involved in the prior studies using similar experimental paradigms and analytical procedures 
(Bettencourt and Xu, 2016; Ester et al., 2015; Harrison and Tong, 2009). All participants reported 
normal or corrected-to-normal visual acuity and no history of neurological/psychiatric disorders or 
prior psychostimulant use. They provided written informed consent before the study, following the 
protocol approved by the Internal Review Broad of the University of California, Riverside (reference 
number: HS-17-035).

Visual WM task
Participants performed an orientation visual working memory task adapted from previous studies 
(Ester et al., 2015; Harrison and Tong, 2009) inside an MRI scanner (Figure 1A). Briefly, on each 
trial, we sequentially presented two sine-wave gratings (~4.5° of visual angles in radius, contrast at 
80%, spatial frequency at ~1 cycle per visual degree, randomized phase) at the center of the screen. 
Each grating appeared for 200ms, with a 400 ms blank screen in between. The two gratings had 
different orientations randomly drawn from nine predefined orientations (0–160° in 20° increments) 
and were >20° away from one another (see Figure 1—figure supplement 1). They were presented 
with a small random angular jitter (±1° to 5°). Following the offset of the second grating of each pair 
by 400ms, we presented a cue (‘1’ or ‘2’, corresponding to the first or second grating, respectively) 
for 550ms to indicate which grating orientation the participant should remember and maintain over 
an 8750 ms delay period. We instructed participants to remember only the cued grating and to ignore 
the uncued one. After the delay period, we presented a test grating initially aligned to a random orien-
tation. Participants then pressed the response box buttons to continuously adjust the test grating until 
it matched the orientation of the cued grating based on their memory. We asked the participants to 
make a response within 3500ms following the onset of the test grating (averaged median response 
time across participants: 2929±156ms). After the response, we provided feedback to the participants 
by presenting a line marking the correct orientation, which was followed by an inter-trial interval of 
3500 or 5250ms. Participants completed 10 blocks of 18 trials, yielding a total of 180 trials inside the 
scanner. Before scanning, they completed 2 blocks of 18 trials outside the scanner for practice. The 
cue position and the orientations of presented gratings were randomly intermixed within each block.

Under an effective set size of one item, participants’ recall performance was high (Figure 1B), with 
most recall errors centered around ±45° of the cued orientation (~97% of the trials) within the ±90° 
range. Hence, we retained all trials when investigating the amount of WM information in the recorded 
neural data during the delay period for multivariate analyses. We used the absolute recall error as 
a trial-level estimate of recall fidelity (Panichello and Buschman, 2021), assuming that large recall 
errors were driven by imprecise WM instead of other factors, such as occasional attentional lapses 
(deBettencourt et al., 2019; Xie and Zhang, 2017b). To minimize the contamination of these factors 
in linking the neural data with the behavioral data, we would focus on the trials where participants 
have recalled within the 3 SD of the aggregated recall error distribution (Figure 4A; see details in a 
subsequent section).

MRI data acquisition and pre-processing
We acquired neuroimaging data using a 32-channel sensitivity encoding (SENSE) coil in a Siemens 
Prisma 3.0-Tesla scanner. We first acquired a high-resolution 3D magnetization-prepared rapid 
gradient echo (MP-RAGE) structural scan (0.80 mm isotropic voxels) and then functional MRI scans 
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consisted of a T2*-weighted echo-planar imaging (EPI) sequence: TR = 1750ms, TE = 32ms, flip angle 
= 74°, 69 slices, 189 dynamics per run, 1.5×1.5 mm2 in-plane resolution with 2 mm slice thickness, FOV 
read = 222 mm, FOV phase = 86.5%. This sequence was optimized for high-resolution functional MRI 
with whole-brain coverage for the scanner. Each functional run lasted 5 min and 30.75 s. At the end of 
the experiment, we acquired two additional scans with opposite phases to correct for EPI distortions 
(Irfanoglu et al., 2015).

We preprocessed neuroimaging data using the Analysis of Functional NeuroImages (AFNI) software 
(Cox, 1996). Briefly, functional data were de-spiked (3dDespiked), slice timing corrected (3dtshift), 
reverse-blip registered (blip), aligned to structural scan (​align_​epi_​anat.​py), motion-corrected 
(3dvolreg), and masked to exclude voxels outside the brain (3dautomask). To avoid introducing arti-
ficial autocorrelations in later analyses, functional data were not smoothed. For the same reason, we 
extracted the raw BOLD signals from the middle 3 TRs of the 5-TR retention interval for later analyses 
without fitting the data to the hemodynamic model (Ester et al., 2015). These raw BOLD signals 
were z-scored within each block/run, before extracting the TRs of interest. In particular, we convolved 
the data from the 5 TR delay period with a set of weights (i.e. 0, 1, 2, 1, 0) that resembled the TENT 
function in AFNI to maximize the inclusion of mid-delay activity for later analysis (Postle et al., 2000). 
This approach factors in 5–6 s of hemodynamic adjustment (Lewis-Peacock and Postle, 2008) and 
has been considered fundamentally conservative in estimating delay-period activity (Feredoes and 
Postle, 2007). This approach also provides a reasonable estimate for the BOLD response around a 
given TR with an improved signal-to-noise ratio without assuming the shape of the underlying hemo-
dynamic response (Chen et al., 2015). We also performed the time-varying version of this analysis 
by shifting the peak of the TENT function over time (see Figure 3—figure supplement 5 for details).

To retain the consistency with the prior research, we defined participant-specific MTL ROIs (bilat-
eral hippocampal DG/CA3, CA1, and subiculum, entorhinal/perirhinal cortex, and parahippocampus, 
see Figure 2A) based on the T1 image using the same segmentation algorithm from the previous 
studies (Montchal et al., 2019; Reagh et al., 2017). In brief, using the Advanced Normalization Tools 
(Avants et al., 2008), this algorithm aligned an in-house segmented template to each participant’s 
T1 image. This template contains manually labeled ROIs for hippocampal subfields (DG, CA3, CA1, 
subiculum) and other verified MTL subregions (aLEC, pMEC, perirhinal, and parahippocampus). The 
efforts to select and verify these MTL ROIs have been detailed in previous studies (Montchal et al., 
2019; Reagh et al., 2018). In brief, in addition to the commonly identified perirhinal and parahippo-
campus ROIs, hippocampal subfields were manually identified and aggregated from a set of T1 and 
T2 atlas images based on prior harmonized efforts (Yushkevich et al., 2015). Entorhinal ROIs (aLEC 
and pMEC) were added to the template from a previous study (Maass et al., 2015). For functional 
analysis, we combined DG and CA3 subfields as a single label given the uncertainty in separating 
signals from them in fMRI data (Reagh et al., 2017). In addition, we also verified our findings in hippo-
campal subfields based on a different segmentation protocol via FreeSurfer (Iglesias et al., 2015), 
which yielded consistent findings (Figure 3—figure supplement 6). Therefore, our current observa-
tions are unlikely to be limited to a specific parcellation procedure of hippocampal subfields.

Furthermore, we identified subject-specific segmented amygdala as a control ROI based on 
participant-specific Freesurfer parcellation (Saygin et al., 2017). The amygdala is a part of the limbic 
system traditionally considered a central brain region processing emotion-laden information. Because 
the task stimuli (orientation gratings) and testing procedure (no reward manipulation) in the current 
study are emotionally neutral, the amygdala is therefore theoretically irrelevant for the current study 
(Iwai et al., 1990; Xie et al., 2022; Xie and Zhang, 2016). Furthermore, as its signal-to-noise ratio 
is similar to adjacent structures, the amygdala can serve as a control site for the observation in other 
MTL ROIs.

Stimulus-based representational similarity analysis
To examine whether MTL delay-period activity can distinguish different cued orientation gratings, 
we performed a stimulus-based representational similarity analysis (Kriegeskorte and Diedrichsen, 
2019). The rationale is that if the recorded neural data contain information to allow fine discrimination 
of the cue item, the neural data should track the feature distance between any pair of cued items 
across trials to allow fine discrimination of these items (Kriegeskorte and Wei, 2021). Hence, we first 
calculated the stimulus similarity pattern across trials using 180 minus the absolute angular distance 
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between the orientation labels of every two trials (Figure 2B, top panel). Next, we calculated the 
cosine similarity of the delay-period neural signals B across n voxels from the middle 3 TRs in every 
pair of trials (Figure 2B, bottom panel). This yields a trial-by-trial matrix in which the similarity between 
voxel response vectors ‍Bi‍ and ‍Bj‍ can be calculated as,

	﻿‍
S
(
Bi, Bj

)
=

Bi · Bj
||Bi|| ||Bj||‍�

Finally, we correlated the neural similarity pattern and stimulus similarity pattern across trials (rank-
order and Fisher’s transformed, Xie et al., 2018) to gauge how the recorded neural signals track the 
stimulus features across trials.

Inverted encoding modeling (IEM)
To decode item-level information from the raw BOLD signals (Ester et al., 2015), we first constructed 
a linear encoding model to represent orientation-selective responses in multi-voxels of activity from a 
given brain region. We did not impose any additional feature selection procedures other than using 
the anatomically defined ROIs to identify relevant multi-voxel features in this analysis (see Supplemen-
tary file 1c for the number of voxels/features included for each subject in each ROI). We assumed 
that the response of each voxel is a linear summation of 9 idealized information channels (Figure 2B), 
estimated by a set of half-wave rectified sinusoids centered at different orientations based on the 
tuning profile of orientation-sensitive neural populations. Hence, we formalized the observed raw 
BOLD signals B (m voxels ×n trials) as a weighted summation of channel responses C (k channels ×n 
trials), based on the weight matrix, W (m voxels ×k channels), plus residual noise (N),

	﻿‍ B = WC + N ‍�

Given B1 and C1 from a set of training data, the weight matrix can be calculated as,

	﻿‍
W = B1CT

1

(
C1CT

1

)−1

‍�

The training weight matrix W was used to calculate a set of optimal orientation filters V, to capture 
the underlying channel responses while accounting for correlated variability between voxels (i.e. the 
noise covariance), as follows,

	﻿‍
Vi =

∑−1
i Wi

WT
i
∑−1

i Wi ‍�

where ‍Σ
−1
i ‍ is the regularized noise covariance matrix for channel i (1–9), estimated as,

	﻿‍
Σ−1

i = 1
n1 − 1

εiε
T
i
‍�

	﻿‍ εi = B1 − WiC1, i‍�

Here, n1 is the number of training trials, and ‍εi‍ is a matrix residual based on the training set B1 and 
is obtained by regularization-based shrinkage using an analytically determined shrinkage parameter. 
Next, for the independent hold-out test dataset B2, trial-by-trial channel responses C2 are calculated 
as follows,

	﻿‍ C2 = VTB2‍�

We used a leave-one-block-out cross-validation routine to obtain reliable estimate channel 
responses for all trials. For each participant, in every iteration, we treated all but one block as B1 and 
the remaining block as B2 for the estimation of C2. This analysis yielded estimated channel responses 
C2 for each trial, which were interpolated to 180° and circularly shifted to a common center (0°, 
by convention). We reconstructed these normalized channel responses separately using orientation 
labels of the cued item, the uncued item, and shuffled orientations. We then quantified the amount 
of item-related information (R) by converting the average channel response (z) to polar form given ‍ψ‍ 
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as the vector of angles at which the channels peak (‍z = Ce2iψ‍). We then projected them onto a vector 
with an angle of 0°,

	﻿‍ R = �z� cos
(
arg(z)

)
‍�

With whole-brain coverage, we performed an additional searchlight procedure in combination with 
the IEM analysis to replicate the previous findings (Ester et al., 2015). First, we normalized partici-
pants’ brain data to an MNI template using the Advanced Normalization Tools. Second, we defined a 
spherical ‘neighborhood’ (radius 8.0 mm) centered on voxels in a cortical mask containing only gray 
matter voxels. We discarded neighborhoods with fewer than 100 voxels. Last, we estimated item-
related information (R) about the to-be-remember item based on the IEM analysis outlined above to 
assess WM information within each searchlight sphere. We obtained consistent findings as compared 
with the previous findings (Figure 3—figure supplement 2), suggesting the reliability of the current 
data.

Linking IEM reconstruction with behavioral recall performance
To examine how the IEM reconstruction of the cued item in the aLEC-DG/CA3 pathway is associated 
with recall fidelity, we performed the IEM analysis based on data combined from the aLEC and DG/
CA3 ROIs. Similar to the analytical framework outlined above, we split each participant’s data into 
random blocks of 18 trials and then perform a leave-one-block-out analysis to obtain IEM reconstruc-
tions for all trials in each block based on the weights trained from other blocks. As this analysis is 
agnostic to participants’ recall performance at this stage, if IEM reconstruction is not associated with 
participants’ recall fidelity, the reconstructed information channels should be comparable regardless 
of recall errors. To test against this prediction, we split participants’ data into small- and larger-error 
trials. First, as the angular resolution was at least 20° for any two items in the current design, we 
defined small-recall error trials as those in which participants had reported within one similar item 
away (absolute recall error <20°; 149±3 trials). Next, to separate larger-recall errors based on less 
precise WM representation from those attributable to attention lapses (deBettencourt et al., 2019), 
we adopted a widely-used thresholding heuristic to find potentially different categories of data points 
based on the empirical SD of a distribution. Specifically, in our current data, we first calculated the 
empirical SD (17.33°) of the aggregated raw recall error distribution from all subjects across 2880 trials 
(ranging from –90° to 90°), which captures the overall variability in participants’ recall performance 
without a priori model assumption. We then retained the larger-recall error trials within 20° to 3 SD 
of the recall error distribution (27±3 trials; Figure 4A). These larger-error trials presumably contain 
mostly imprecise recall responses, instead of infrequent extra-large errors that could be attributed to 
other factors like attentional lapses (deBettencourt et al., 2019). Considering that most of the trials 
have a recall error of ±45° out of the ±90° range in every subject by visual inspection (97% of the trials, 
Figure 1B), we have also used 45° of absolute recall error as a cut-off for extra-large error trials and 
obtained similar findings in subsequent analyses.

To balance the trial counts between these two categories of trials, we resampled the same number 
of trials based on the number of larger-error trials from the small-error trials for 5000 times. This 
resampling procedure has ensured that the average IEM reconstruction from the small-error trials was 
estimated based on the same number of trials as compared with the larger-error trials – an approach 
often used to obtain less biased estimates of neural measures across different behavioral trial types 
(Xie et al., 2020a; Yaffe et al., 2014). We contrasted the difference in IEM reconstructions for the 
cued item in the aLEC-DG/CA3 between these two categories of trials across participants.

Statistical rocedures
We evaluated statistical significance based on conventional within-subject statistical procedures, such 
as paired-sample t-tests, with two-tailed p values. Similar results were obtained and verified based 
on non-parametric statistics (e.g. bootstrapped p values) that have few analytical assumptions (Good, 
2013). In particular, we resampled participants’ data with replacement over 1000 iterations and calcu-
lated the empirical two-tailed p values (note: these p values can slightly vary across different iterations 
of resampling and those smaller than 0.001 are marked as pbootstrap <0.001). We estimated the size of 
these effects based on Cohen’s d. Except for pre-defined contrast analysis (e.g. cued vs. uncued), 
we corrected for multiple comparisons by using Bonferroni correction with an alpha level set as 0.05 
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(Rosenthal and Rubin, 1983). For visualization of variability in mean estimates, we have used the 
standard error of the mean across participants (s.e.m.), namely the standard deviation of a measure 
divided by the square root of sample size, as error bars (or areas) in Figures 2–4.
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