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Abstract Inactive conformations of protein kinase catalytic domains where the DFG motif has 
a “DFG- out” orientation and the activation loop is folded present a druggable binding pocket 
that is targeted by FDA- approved ‘type- II inhibitors’ in the treatment of cancers. Tyrosine kinases 
(TKs) typically show strong binding affinity with a wide spectrum of type- II inhibitors while serine/
threonine kinases (STKs) usually bind more weakly which we suggest here is due to differences in 
the folded to extended conformational equilibrium of the activation loop between TKs vs. STKs. 
To investigate this, we use sequence covariation analysis with a Potts Hamiltonian statistical energy 
model to guide absolute binding free- energy molecular dynamics simulations of 74 protein- ligand 
complexes. Using the calculated binding free energies together with experimental values, we esti-
mated free- energy costs for the large- scale (~17–20 Å) conformational change of the activation loop 
by an indirect approach, circumventing the very challenging problem of simulating the conforma-
tional change directly. We also used the Potts statistical potential to thread large sequence ensem-
bles over active and inactive kinase states. The structure- based and sequence- based analyses are 
consistent; together they suggest TKs evolved to have free- energy penalties for the classical ‘folded 
activation loop’ DFG- out conformation relative to the active conformation, that is, on average, 4–6 
kcal/mol smaller than the corresponding values for STKs. Potts statistical energy analysis suggests a 
molecular basis for this observation, wherein the activation loops of TKs are more weakly ‘anchored’ 
against the catalytic loop motif in the active conformation and form more stable substrate- mimicking 
interactions in the inactive conformation. These results provide insights into the molecular basis for 
the divergent functional properties of TKs and STKs, and have pharmacological implications for the 
target selectivity of type- II inhibitors.

Editor's evaluation
This important paper provides a convincing mechanism for the relative binding specificity of Type II 
inhibitors to kinases. The combination of a sequence- derived Potts model with experimental disso-
ciation constants and calculated free energies of binding to the DFG- out state is highly compelling 
and goes beyond the current state- of- the- art. Given the importance of kinases in pathophysiolog-
ical processes, the results will be of interest to a broad audience and, in addition, the combination 
of computational methods can be applicable to a wide variety of other biophysical processes that 
involve conformational rearrangements.
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Introduction
The human genome contains approximately 500 eukaryotic protein kinases which coordinate signaling 
networks in cells by catalyzing the transfer of a phosphate group from ATP to serine, threonine, or 
tyrosine residues (Manning, 1995; Modi and Dunbrack, 2019a). The GO (gene ontology) database 
identifies 351 (~70%) of these enzymes as serine/threonine kinases (STKs) and 90 (~18%) as tyrosine 
kinases (TKs). STKs are an ancient class of protein kinases that predate the divergence of the three 
domains of life (bacteria, archaea, eukaryote) (Stancik et al., 2018), whereas TKs are a more recent 
evolutionary innovation, having diverged from STKs about 600 million years ago during early meta-
zoan evolution (Miller, 2012; Sebé-Pedrós et al., 2016). Kinases are important therapeutic targets in 
a large number of human pathologies and cancers. Both TKs and STKs share a striking degree of struc-
tural similarity in their catalytic domains, owing to evolutionary selective pressures that preserve their 
catalytic function; in particular, the location and structure of the ATP binding site are highly conserved 
which raises significant challenges for the design of small- molecule ATP- competitive inhibitors that are 
both potent for their intended target(s) and have low off- target activity for unintended kinase targets. 
The latter is referred to as the ‘selectivity’ of an inhibitor, a property which is difficult to predict and 
control but is nonetheless very important for developing drugs with minimal harmful side effects.

A particular class of ATP- competitive kinase inhibitors which were proposed to have a high poten-
tial for selectivity are called ‘type- II inhibitors’ which only bind when the kinase adopts an inactive 
‘DFG- out’ conformation. ‘DFG’ (Asp- Phe- Gly) refers to a conserved catalytic motif located at the 
N- terminus of an ~20 residue- long ‘activation loop’ that is highly flexible and controls the activation 
state of the kinase and the structure of the substrate binding surface. The precise arrangement of 
catalytic residues and the structural organization of large regulatory elements, such as the activa-
tion loop and nearby ‘αC- helix’, are strongly coupled to the conformation of the DFG motif and the 
DFG- 1 residue preceding it, which is well described by regions on the Ramachandran map occupied 
by the Asp, Phe, and DFG- 1 residues (beta- turn, right- handed alpha- helix, left- handed alpha- helix) 
and the χ1 rotamer state of the DFG- Phe sidechain (trans, gauche- minus, gauche- plus). Recently, 
Dunbrack and co- workers identified eight major conformational states in the Protein Data Bank (PDB) 
based on these metrics (Modi and Dunbrack, 2019b). The most common state, which is evolution-
arily conserved in all kinases, corresponds to the active ‘DFG- in’ conformation. In this conformation 
all structural requirements for catalysis are typically met, e.g., a complete hydrophobic spine, a salt 
bridge between the conserved β3- Lys and αC- Glu residues, and an extended activation loop which 
forms the substrate binding surface. Inactive kinases in the PDB are most frequently seen in an ‘Src- 
like inactive’ conformation where the DFG is ‘in’, but the αC- helix is swung outward, breaking the 
β3- Lys → αC- Glu salt bridge and disassembling the hydrophobic spine. Disassembly of the hydro-
phobic spine caused by αC- helix rotation increases the cavity volume around the DFG- Phe residue, 
allowing it to pass through the Src- like inactive conformation and completely ‘flip’ from DFG- in to 
DFG- out (Levinson et al., 2006; Shan et al., 2013). The classical DFG- out conformation, targeted by 
type- II inhibitors, displays a highly reorganized activation loop that is folded away from the αC- helix, 
projecting toward solvent or forming stable secondary structure and substrate- mimicking interactions. 
We refer to these states of the activation loop collectively as ‘folded’, to describe its ~17 Å reorgani-
zation relative to the active ‘extended’ conformation, wherein the substrate binding surface has been 
‘folded up’ toward the kinase N- terminal lobe and away from the αC- helix.

In both TKs and STKs, the activation loop undergoes this large- scale conformational change when 
the DFG motif flips from the active ‘DFG- in’ conformation to the classical DFG- out conformation. The 
DFG flip swaps the positions of DFG- Phe and DFG- Asp, opening a hydrophobic ‘back pocket’ that is 
connected to the conserved ATP binding site through the ‘gatekeeper’ residue. Type- II inhibitors typi-
cally have a long chemical fragment that allows them to bind across the gatekeeper and form inter-
actions with residues in the back pocket. In contrast, type- I inhibitors (the majority of kinase drugs) 
occupy the ATP pocket but not the back pocket and can bind to either DFG- in or DFG- out. For these 
reasons, it has been proposed that type- II inhibition holds greater potential for the design of highly 
selective drugs (Vijayan et al., 2015; Davis et al., 2011; Anastassiadis et al., 2011); it has been 
shown that different kinase sequences have different propensities to adopt DFG- out in the absence of 
inhibitor (Haldane et al., 2016; Hari et al., 2013), and the DFG- out back pocket has been suggested 
to have a lesser degree of sequence and structural homology between kinases (Liu and Gray, 2006). 
However, the notion that type- II inhibitors developed to- date are more selective than type- I inhibitors 
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has been brought into question (Zhao et al., 2014; Klaeger et al., 2017), suggesting that further 
consideration of the energetic contributions described above is required.

In order to fully exploit the target- selective potential of type- II inhibitors it is necessary to under-
stand the underlying sequence- dependent principles that control the conformational preferences of 
their kinase targets, and the extent to which this has been diversified by evolution. This can, in prin-
ciple, be directly approached using free- energy simulations to estimate the reorganization free- energy 
required for different kinases to adopt DFG- out, although this is computationally very expensive and 
of uncertain reliability for conformational changes involving large- scale loop reorganizations, such as 
the ~17 Å ‘folding’ of the activation loop that accompanies the transition from active DFG- in to the 
inactive, classical DFG- out state. To accommodate this limitation, we employ modern sequence- based 
computational methods to characterize the conformational selection process over the entire kinome 
and combine the sequence- based results with structure- based free energy simulations with the goal 
of identifying evolutionarily divergent features of the energy landscape that control the preference of 
individual kinases for the active (DFG- in) vs inactive (DFG- out ‘folded activation loop’) states. To this 
end, we report evidence that TK catalytic domains have a molecular evolutionary bias that shifts their 
conformational equilibrium toward the inactive ‘folded activation loop’ DFG- out state in the absence 
of activation signals. In contrast, STKs as a class have a more stable active conformation which is 
favored over the DFG- out state due to sequence constraints in the absence of other signals.

As described below, our analysis of a previously published kinome- wide assay suggests that TKs 
have properties which privilege the binding of type- II inhibitors in comparison to STKs, which leads us 
to hypothesize an evolutionary divergence in their conformational energy landscapes. To investigate 
this, we used a Potts Hamiltonian statistical energy model derived from residue- residue covariation 
in a multiple sequence alignment (MSA) of protein kinase sequences to probe the active DFG- in ↔ 
classical DFG- out conformational equilibrium as previously described (Haldane et al., 2016). Using 
an approach that involves ‘threading’ a large number of kinase sequences onto ensembles of active 
DFG- in and classical DFG- out structures from the PDB and scoring them using the Potts Hamilto-
nian, we are able to view the evolutionary divergence in TK and STK conformational landscapes. This 
calculation only probes the free- energy difference between the active DFG- in and classical DFG- out 
conformations, and by construction does not consider alternative conformations (e.g. ‘Src- like inac-
tive’) that might be important for analyzing the type- II binding pathway. As discussed below, the Potts 
calculations from this two- state model correlate well with the free- energy cost to adopt the classical 
DFG- out conformation.

To validate our results, we used the Potts statistical energy threading calculations to guide target 
selection for a set of more computationally intensive free- energy simulations. These simulations use 
type- II inhibitors as tools to probe kinase targets that have already reorganized to DFG- out, allowing 
us to estimate the free- energy of reorganization ( ∆Greorg ) as the excess between the absolute binding 
free- energy (ABFE) calculated from simulations and the standard binding free- energy measured 
experimentally in vitro, which already includes the cost to reorganize. Although our methods avoid 
sampling the conformational change directly, we show how important structural determinants of 
the conformational change can be identified by analyzing residue- pair contributions to the Potts 
threading calculations, enabling us to reason about the molecular evolutionary basis for the differ-
ences in conformational behavior observed for TKs and STKs.

Results
Insights into the sequence-dependent conformational free-energy 
landscape
The binding of type- II inhibitors is achieved once a protein kinase has reorganized to the DFG- out 
with activation loop folded conformation (classical DFG- out). We sought initial insight into the confor-
mational equilibrium from type- II binding data available publicly in the form of literature- reported 
dissociation constants (Kd). From the binding assay reported by Davis et al., 2011, we report a ‘hit’ 
where an inhibitor binds to a kinase with Kd ≤10 μM. Using this criterion, a type- II inhibitor hit rate was 
calculated for each kinase. Analysis of the type- II hit rate distributions for STKs and TKs from the Davis 
assay (Figure 1A) indicates that STKs, on average, have an unfavorable contribution to the binding of 
type- II inhibitors relative to TKs.

https://doi.org/10.7554/eLife.83368
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Figure 1. Viewing the conformational landscape of the human kinome. (A) Hit rate distributions from kinome- wide experimental binding assays 
with type- II inhibitors for human serine/threonine kinases (STKs; blue, top) and tyrosine kinases (TKs; orange, bottom) with small gatekeepers (solid 
bars; sidechain volume <110 Å3) and large gatekeepers (hatched bars; sidechain volume >110 Å3). (B) PyMol (pymol, 2015) visualization of two 
conformational ensembles populated by Abl kinase from recent solution NMR (Nuclear Magnetic Resonance) experiments (Xie et al., 2020). The active 
DFG- in conformation where the activation loop is ‘extended’ (red, the Protein Data Bank [PDB]: 6XR6) and the inactive classical DFG- out conformation 
where the activation loop is ‘folded’ (blue, PDB: 6XRG) both exist in the absence of ligands, but there is a free- energy cost to transition between them 
(Xie et al., 2020). Type- II inhibitors preferentially bind to this folded DFG- out state. (C) Correlation between Potts DFG- out penalty (ΔE Potts) and hit 
rates for kinases with small gatekeepers only, to control for gatekeeper effects (Pearson correlation of –0.59, p<0.001). (D) Potts DFG- out penalties 
calculated for the human kinome and plotted using CORAL (Metz et al., 2018); the TK branch appears to have lower penalties relative to the rest of 
the kinome, which represent STKs. See Figure 1—source data 1 for values of the calculated type- II hit rates and Potts threaded- energy scores over the 
human kinome.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Conformational landscape of the activation loop derived from the Protein Data Bank (PDB).

Figure supplement 2. Contact frequency differences between the active DFG- in (BLAminus) and classical DFG- out (BBAminus) conformations.

Figure supplement 3. Gatekeeper analysis.

Figure 1 continued on next page
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The size of the gatekeeper residue is important for type- II binding as it controls access to a hydro-
phobic pocket adjacent to the ATP binding site that is traversed by type- II inhibitors (Zuccotto et al., 
2010; Bosc et al., 2015; Liu et al., 1998; Ghose et al., 2008; van Linden et al., 2014), and the size 
of the gatekeeper residue is thought to negatively affect type- II binding (Zuccotto et al., 2010; Azam 
et al., 2008; Lovera et al., 2015; Yun et al., 2008). Because TKs tend to have small gatekeepers 
in comparison to STKs (Zuccotto et al., 2010; Taylor and Kornev, 2011), we considered this as a 
possible explanation behind the bias for TKs to have larger type- II hit rates. By plotting the hit rate 
distributions for STKs and TKs where the gatekeeper is either small or large (Figure 1A) we confirm 
that gatekeeper size has an important influence on type- II binding for both STKs and TKs (Azam 
et al., 2008). However, the hit rate distribution for TKs appears more sensitive to gatekeeper size than 
STKs. Even with small gatekeepers, there is a significant fraction of STKs that have hit rates of zero 
compared with TKs, suggesting the difference in hit rates between TKs and STKs cannot be accounted 
for primarily by the size of the gatekeeper residue.

Recent solution NMR experiments with Abl kinase revealed two DFG- out conformational states 
(Xie et al., 2020) one where the DFG motif has flipped ‘DFG- in to DFG- out’ but the activation loop 
remains in a ‘minimally perturbed’ active- like conformation, and the other state is a classical ‘folded’ 
DFG- out conformation where the activation loop has moved ~17 Å away from the active conforma-
tion (Figure 1B), and the DFG motif is in a ‘classical DFG- out’ (Vijayan et al., 2015) or ‘BBAminus’ 
(Modi and Dunbrack, 2019b) state. Type- II inhibitors were shown to preferentially bind to this folded 
DFG- out state, confirming observations that Abl is almost always co- crystallized with type- II inhibi-
tors in this conformation. This binding behavior is also exhibited by other kinases, suggested by the 
large number of activation loop folded DFG- out states seen in type- II bound co- crystal structures 
(Figure 1—figure supplement 1). Hence, the importance of large- scale activation loop conforma-
tional changes in type- II binding and the large number of residue- residue contact changes involved in 
this transition (Figure 1—figure supplement 2) suggests the sequence variation of the activation loop 
and the catalytic loop with which it interacts, might contour the conformational landscape differently 
for TKs compared with STKs. To investigate this, we used a Potts statistical energy model of sequence 
covariation to estimate the energetic cost of the active DFG- in (activation loop extended) → inactive 
DFG- out (activation loop folded) transition for human TKs and STKs (see Methods).

Patterns of coevolution of amino acids at different positions in an MSA are thought to largely reflect 
fitness constraints for fold stability and function between residues close in 3D space (Lapedes et al., 
2012; Hopf et al., 2015; Hopf et al., 2017; Morcos et al., 2014), and these coevolutionary inter-
actions can be successfully modeled by a Potts Hamiltonian (Weigt et al., 2009; Lunt et al., 2010) 
which we inferred using Mi3- GPU, an algorithm designed to solve ‘Inverse Ising’ problems for protein 
sequences with high accuracy (Haldane and Levy, 2021). The pairwise interactions from the Potts 
model can be used as a simple threaded energy function to estimate energetic differences between 
two conformations, based on changes in residue- residue contacts in the PDB (Haldane et al., 2016). 
We have calculated the threading penalty for all kinases in the human kinome. Our calculations show 
the Potts predicted DFG- out penalty ( ∆EPotts ), which is dominated by large- scale reorganization of 
the activation loop to the folded DFG- out state, is correlated with type- II hit rates (Figure 1C) when 
controlling for gatekeeper size. From this, we determine that sequence variation of the activation loop 
and the contacts broken/formed by its large- scale conformational change (Figure 1—figure supple-
ment 2) makes an important contribution to the binding affinity of type- II inhibitors.

Notably, our calculations over the entire human kinome show that the large majority of kinases 
with large  ∆EPotts  (unfavorable conformational penalties) are STKs, and the large majority of low- 
penalty kinases are TKs (Figure 1D). To validate this finding, we next perform an independent and 
more computationally intensive prediction of the conformational reorganization energy of TKs and 
STKs for select kinase targets, chosen based on the kinome calculations of  ∆EPotts  and type- II hit rates 
shown in Figure 1, in which we use type- II inhibitors as probes in ABFE simulations as described in the 
following section. By comparing the conformational penalties predicted from these structure- based 
molecular dynamics (MD) free- energy simulations with the Potts conformational penalty scores, we 

Source data 1. Type- II inhibitor hit rates and Potts threaded- energy penalties for DFG- out calculated for tyrosine kinases and serine/threonine kinases 
from the human kinome.

Figure 1 continued

https://doi.org/10.7554/eLife.83368
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also identify the scale of  ∆EPotts  in physical free- energy units. This allows us to predict physical confor-
mational free energies based on Potts calculations which can be carried out at scale on large numbers 
of sequences, to evaluate the evolutionary divergence of the conformational penalty between STKs 
and TKs generally.

Structure-based free-energy simulations guided by the sequence-based 
Potts model
Relative binding free- energy simulations are now widely employed to screen potent inhibitors in 
large- scale drug discovery studies (Wang et al., 2015). These methods are used to determine the 
relative free energy of binding between ligands that differ by small substitutions, which permit one 
to simulate along an alchemical pathway that mutates one ligand to another. By leaving the common 
core scaffold unperturbed, the cost and difficulty of sampling the transition between unbound (apo) 
and bound (holo) states of the system are avoided (Wang et al., 2015; Hayes et al., 2022; Guest 
et  al., 2022). Alternatively, alchemical methods to determine ABFEs, such as the ‘double decou-
pling’ method employed in this work, sample the apo → holo transition along a pathway that decou-
ples the entire ligand from its environment. While more computationally expensive, the advantage 
of ABFE is that the computed  ∆Gbind  can be directly compared with experimental binding affinities, 
and successful convergence does not rely on the structural similarity of compounds being simulated 
(Cournia et al., 2020; Li et al., 2020; Heinzelmann and Gilson, 2021; Lee et al., 2020; Gilson et al., 
1997; Qian et al., 2019; Sun et al., 2022).

Our alchemical ABFE simulations of type- II inhibitors binding to TKs and STKs simulate the apo 
and holo states of the kinase domains in the classical DFG- out conformation with the activation loop 
folded, starting from the experimentally determined co- crystal structure of the holo state. The apo 
state remains DFG- out with the activation loop folded throughout the simulations, and therefore 
the calculated ABFE ( ∆GABFE

bind  ) excludes the cost to reorganize from DFG- in ( ∆Greorg ). On the other 
hand, standard binding free- energies ( ∆Go

exp ) determined experimentally from inhibition or dissoci-
ation constants (Equation 1) implicitly include the free- energy cost to reorganize. Therefore given 
the experimentally determined total binding free energy,  ∆Go

exp  , ABFE simulations can be used to 
separate the free energy of ligand- receptor association in the inactive state ( ∆GABFE

bind  ) from the cost to 
reorganize from the active to inactive state,  ∆Greorg  (Equation 3; Deng et al., 2011; Lin et al., 2014; 
Lin et al., 2013).

We calculated  ∆Go
exp  (Equation 1) from literature reported IC50 or  Kd  values, where the standard 

concentration  C0  is set to 1  M  

 ∆Go
exp = kbT ln

(
Kd/C0

)
  (1)

 ∆Go
exp  can be expressed as the sum of the free- energy change to reorganize from the active to 

inactive state,  ∆Greorg  plus the free energy to bind to the inactive state  ∆GABFE
bind   (Equation 2).  ∆Greorg  

is therefore the excess free- energy difference between  ∆Go
exp  and  ∆GABFE

bind   (Equation 3).

 ∆Go
exp = ∆Greorg + ∆GABFE

bind   (2)

 ∆Greorg = ∆Go
exp − ∆GABFE

bind   (3)

Type- II inhibitors generally bind when the activation loop is in a folded DFG- out conformation 
(Figure 1B), which presents major challenges for direct simulations to determine the free energy cost 
of the conformational change in contrast to the method employed here (Equation 3).

Because the type- II inhibitor imatinib is co- crystallized in a type- II binding mode with MAPK14 
(p38α), an STK, and several other TKs (e.g. ABL1, DDR1, LCK, CSF1R, KIT, and PDGFRA), we chose 
this inhibitor as an initial probe of our hypothesis that TKs evolved to have lower  ∆Greorg  than STKs 
(Figure  2). In this example we note that TKs bind strongly to imatinib (‘STI’ in Figure  2) with an 
average  ∆Go

exp  of –9.3 kcal/mol, in contrast to the STK MAPK14 which binds this drug very weakly 
( ∆Go

exp = −6.1  kcal/mol). At face value this appears consistent with our analysis from Figure 1D, where 
we calculated a large Potts DFG- out penalty for MAPK14 ( ∆EPotts = 5.2 ) and low penalties for TKs, 
suggesting that the weak binding of imatinib to MAPK14 is due at least partially to large  ∆Greorg  . To 
confirm this, we used ABFE simulations with the imatinib: MAPK14 complex to evaluate Equation 3, 

https://doi.org/10.7554/eLife.83368
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confirming that MAPK14 incurs a large penalty to adopt the DFG- out conformation with the activation 
loop folded ( ∆Greorg = 5  kcal/mol) (Figure 2).

Despite the large  ∆Greorg  predicted for MAPK14 by both the Potts model and the simulations 
with imatinib described above, highly potent type- II inhibitors have been successfully developed for 
this kinase. For example, BIRB- 796 (Pargellis et al., 2002) binds to MAPK14 about 7 kcal/mol more 
strongly than imatinib. This stronger binding of BIRB- 796 is captured by  ∆GABFE

bind   from our simulations 
(Figure 2), and the calculated value of  ∆Greorg  for this complex ( ∆Greorg ≈ 4  kcal/mol) is very close to 
the corresponding estimate of  ∆Greorg  based on simulations with imatinib (Figure 2). Importantly, this 
result suggests that STKs can be potently inhibited by type- II inhibitors despite their large  ∆Greorg . 
To support this, we performed additional ABFE simulations with BIRB- 796 and calculated  ∆Greorg  for 
two additional STKs predicted to have large reorganization penalties (MAPK9 and BRAF,  ∆EPotts ≥ 4 ). 
We calculated  ∆Greorg > 8  kcal/mol for MAPK9 and BRAF, which is consistent with predictions from 
the Potts model, and comparison of  ∆Go

exp  and  ∆GABFE
bind   in Figure 2 confirms that BIRB- 796 is able to 

overcome the large  ∆Greorg  of certain kinases to attain high experimental potencies (e.g. MAPK14 
and MAPK9). To further validate this result, we calculated  ∆Greorg  via ABFE simulations of BIRB- 796 
binding to a TK predicted by the Potts model to have a low penalty (PTK2B,  ∆EPotts < 1 ), which again 
shows consistency with our Potts prediction of the conformational landscape (Figure 2). The relatively 
weak value of  ∆GABFE

bind   for this kinase compared with MAPK14 is also consistent with observations 
of the BIRB- 796: PTK2B co- crystal structure (PDB: 3FZS), where the binding mode in PTK2B is more 
weakly associated with the ATP pocket in comparison with MAPK14 (Han et al., 2009).

The analysis above provides initial support for our hypothesis about the evolutionarily divergent 
STK and TK conformational landscapes. To further develop this approach, we identified five STKs 
and five TKs which are predicted by the Potts threading calculations to have large and small  ∆Greorg , 
respectively, and for which there are sufficient experimental structural and inhibitory data (co- crystal 

Figure 2. Overview of the conformational landscapes between serine/threonine kinases (STKs) and tyrosine kinases (TKs) from absolute binding 
free- energy simulations, where we compare ΔGbind (hatched bars) from binding free- energy simulations with ΔGexp (solid bars) for the type- II inhibitors 
imatinib (the Protein Data Bank [PDB] code: STI) and BIRB- 976 (PDB code: B96) vs several TKs (orange) and STKs (blue).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Absolute binding free- energy (ABFE) benchmarking results.

Source data 1. Absolute binding free- energy results for kinases bound to imatinib and BIRB- 796.

https://doi.org/10.7554/eLife.83368
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structures and binding constants) to calculate an average  ∆Greorg  via Equation 3 for each target using 
multiple type- II inhibitor probes. For each of the TK and STK targets, these sets of calculations can be 
visualized as a linear regression of  ∆Go

exp  vs  ∆GABFE
bind   where the slope is constrained to one, consistent 

with Equation 2 (see Methods for details). We employed this workflow for the set of five TK and five 
STK targets by simulating 22 and 23 type- II inhibitor complexes, respectively.

The result of this workflow for the set of five TKs and their type- II complexes revealed a low average 

 ∆Greorg  of <1 kcal/mol (Figure 3B), consistent with our initial predictions from Potts  ∆Es  and type- II 
hit rates (Table 1). On the other hand, the binding free- energy simulations for the set of five STKs and 
their type- II complexes show an average of ~6 kcal/mol of  ∆Greorg  is required for these kinases to 
adopt DFG- out conformation, which is also consistent with our initial predictions from the Potts model 

Figure 3. Using type- II inhibitors as tools to probe the conformational landscape of TKs and STKs. (A) The average ΔGreorg calculated via absolute 
binding free- energy (ABFE) simulations with 23 type- I (stars) and 23 type- II inhibitors (circles) complexes in the active DFG- in and inactive DFG- out state, 
respectively, computed from five serine/threonine kinase (STK) targets (Table 1) and (B) computed with 22 type- II inhibitors vs five tyrosine kinase (TK) 
targets in the DFG- out state (Table 1). (C) Kinome plot created with CORAL (Metz et al., 2018) illustrating the selection of five TKs and five STKs which 
are detailed in Table 1.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Absolute binding free- energy results for five tyrosine kinases and five serine/threonine kinases bound to type- II and type- I inhibitors.

Figure supplement 1. Experimental binding free- energy vs calculated absolute binding free- energy for type- I inhibitors vs serine/threonine kinases 
(STKs; column A), type- II inhibitors vs STKs (column B), and type- II inhibitors vs tyrosine kinases (TKs; column C).

https://doi.org/10.7554/eLife.83368
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(Table 1). To verify that the large  ∆Greorg  identified for STKs is a property of conformational selection 
for DFG- out rather than systematic overestimation of  ∆GABFE

bind   for these kinases, we performed ABFE 
simulations of type- I inhibitors binding to the same set of STKs (an additional 23 complexes). For the 
binding of type- I inhibitors, we expect there to be no reorganization penalty due to the lack of DFG- 
out conformational selection in their binding mechanism. As anticipated, the calculated values of 

 ∆GABFE
bind   for type- I inhibitors are very close to their experimental binding affinities ( ∆Go

exp ) (Figure 3A).
We find that the set of type- II inhibitors complexed with STKs in this dataset tends to have more 

favorable binding free energies to the reorganized receptor ( ∆GABFE
bind  ) than type- II inhibitors complexed 

with TKs, as shown by their distribution along the horizontal axes in Figure 3. The reason for this can 
be understood as a consequence of selection bias. Our selection of STK complexes for this study 
usually involved lead compounds from the literature, which were designed for high on- target experi-
mental potency and published for their pharmaceutical potential, similar to BIRB- 796: MAPK14 which 
is a tightly bound complex with high experimental affinity despite the large  ∆Greorg  incurred by this 
kinase (Figure 2). This tight binding is reflected by the favorability of the  ∆GABFE

bind   term which must be 
implicitly tuned by medicinal chemists to overcome the large  ∆Greorg  found in STKs. Meanwhile, the 
chemical space of type- II inhibitors studied against TKs appears to be privileged by their low  ∆Greorg  
, judging by the comparably weak  ∆GABFE

bind   for these complexes. This ultimately gives rise to similar 
experimental potencies for the binding of type II inhibitors to TKs and STKs plotted in Figure 3.

The results of the MD binding free- energy simulations when combined with experimental binding 
affinities, reveal significant differences in the conformational free- energy landscapes between STKs 
and TKs. The DFG- in (activation loop extended) to DFG- out (activation loop folded) reorgani-
zation penalties are strongly correlated with corresponding  ∆Es  calculated from the Potts model 
( R2 = 0.75, P ≈ 10−3 ) emphasizing the connection between coevolutionary statistical energies in 
sequence space and physical free- energies in protein conformational space (Figure  4). From this 
relationship, we can approximate a scale for the Potts  ∆E  scores in physical free- energy units which 
describe the conformational landscapes of folded proteins in a similar manner to that of an earlier 

Table 1. Calculation of reorganization free- energy for five TKs and five STKs.
Type- II hit rates from Davis et al. and Potts threaded energy penalties from Figure 1 were used to 
guide the selection of five serine/threonine kinase (STK) and five tyrosine kinase (TK) targets for 
absolute binding free- energy simulations. For some kinases, the hit rate binary classifier captures 
a set of relatively weak hits with average binding which, in context with large Potts penalty (see 
Figure 1D), might be explained by a large ΔGreorg incurred for the folded DFG- out state (Figure 1B). 
See Figure 3—source data 1 for detailed data and references for experimental binding affinities.

Kinase Class Hit rate* (Kd <10 µM) Potts penalty† (ΔEPotts) Calculated ΔGreorg
‡

MELK STK 3 5.9 5.6±0.2

MAPK9 STK 5 4.7 6.9±0.3

CDK2 STK 2 5.3 7.7±0.2

IRAK4 STK 0 2.5 5.4±0.2

BRAF STK 7 4.0 6.5±0.1

ABL1 TK 10 –1.0 1.3±0.3

LCK TK 11 0.5 1.0±0.3

TIE2 TK 6 1.1 –0.3±0.2

NTRK2 TK 6 –1.0 1.7±0.1 §

DDR1 TK 11 0.4 0.3±0.3

*Type- II inhibitors only, data from Davis et al., 2011.
†Calculations from Figure 1d.
‡ΔGreorg was calculated from Equation 3. Reported standard deviations were calculated by propagating error from 
the simulations used in the calculation of average ΔGreorg in units of kcal/mol (see Figure 3—source data 1 for 
statistics from individual simulations).
§Average and standard deviation calculated from two simulated complexes.

https://doi.org/10.7554/eLife.83368
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study of protein folding landscapes (Morcos et al., 2014); we find that a Potts statistical energy differ-
ence ΔE of one unit corresponds approximately to 1.3 kcal/mol of  ∆Greorg  .

Structural and evolutionary basis for the divergent TK and STK 
conformational landscapes
The consistency of the predictions between  ∆Greorg  and  ∆EPotts  identified from Potts- guided free- 
energy simulations (Figure  4) led us to investigate whether the observed difference in the free 
energy to reorganize from the active to inactive state is a more general feature that distinguishes TKs 
from STKs. To this end, we extracted ~200,000 STKs and ~10,000 TKs from the large MSA of Pfam 
sequences used in the construction of our Potts model, based on patterns of sequence conserva-
tion that clearly distinguish the two classes (see Methods). For each sequence, we calculated  ∆EPotts  
threaded over the structural database (a total of 4268 active DFG- in and 510 classical DFG- out PDB 
structures) and plotted the distributions for TKs and STKs, revealing a bias for STKs toward larger Potts 
conformational penalties (Figure 5). The average difference between these distributions,  ∆∆E = 3.2,  
is extremely unlikely to be observed by chance (p≤10−15, see Methods) and supports the hypothesis 
that TKs are evolutionarily biased toward a lower free- energy cost to adopt the classical ‘folded acti-
vation loop’ DFG- out conformation ( ∆Greorg ) compared to STKs. We estimate that  ∆∆E = 3.2  corre-
sponds to ~4.3 kcal/mol based on the analysis summarized in Figure 4.

To gain insight into the molecular basis for this effect which distinguishes the conformational land-
scape of TKs from STKs, we examined the residue- residue interactions that make the most signifi-
cant contributions to the observed  ∆∆E . The difference between average Potts threaded- energy 
penalties,  ∆∆E = ⟨∆E⟩STKs − ⟨∆E⟩TKs  , can also be written as a sum over pairs of alignment positions 

 i  and  j  along length  L  of the aligned kinase domains, 
 

L∑
∣∣i−j

∣∣>4
∆∆Eij

 
 (see Methods for details). We 

find that ~75% of the total contribution to  ∆∆E  (approximately 3 kcal/mol) can be traced back to a 
small number (10) of residue- residue interactions involving the activation loop, suggesting that muta-
tions within the activation loop are largely responsible for the evolutionary divergence between the 
conformational free- energy landscapes of TKs and STKs. These interactions occur between important 
structural motifs responsible for controlling the stability of the active ‘extended’ conformation of the 
activation loop (Figure 6A), especially the activation loop N- terminal and C- terminal ‘anchors’ (Nolen 

Figure 4. Correlation between ΔEPotts and averaged calculations of ΔGreorg for five tyrosine kinases (TKs) and five 
serine/threonine kinases (STKs; Table 1).

https://doi.org/10.7554/eLife.83368
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et al., 2004), and the regulatory ‘RD- pocket’ formed by the HRD motif of the catalytic loop which 
functions to stabilize or destabilize this conformation depending on the activation loop’s phosphor-
ylation state (Nolen et al., 2004; Johnson et al., 1996). The remaining top  ∆∆Eij  correspond to 
contacts that stabilize the DFG- out ‘folded’ conformation of the activation loop for TKs, wherein the 
kinase’s substrate binding site recognizes its own activation loop tyrosine (Figure 6C, right; Hubbard 
et al., 1994). We describe these interactions below, focusing on the strongest effects involving these 
structural motifs that lead to differences in the conformational free- energy landscapes of TKs and 
STKs. The residue nomenclature we use in our descriptions follows the format  MSACDK6

ABL1   , which is the 
unique residue numbering in our MSA followed by Abl1 (TK) numbering in the subscript (active PDB: 
2GQG, inactive PDB: 1IEP) and CDK6 (STK) numbering in the superscript (active PDB: 1XO2, inactive 
PDB: 1G3N), corresponding to the original PDB files used to generate Figure 6B and Figure 6C.

The ‘RD- pocket’ (Nolen et al., 2004) is a conserved basic pocket formed by the Arg and Asp resi-
dues of the HRD motif (Johnson et al., 1996) ( R123144

361  and  D124145
362 ) and a positively charged Lys or 

Arg that is often present in the N- terminal anchor of the activation loop ( 147168
386 ).  R123144

361  in the HRD 
motif and Lys/Arg  147168

386  in the N- terminal anchor form an unfavorable like- charge interaction when 
the activation loop is in the active, extended conformation (Nolen et al., 2004). Kinase activation is 
typically a complex process involving many layers of regulation from other protein domains, cofactors, 
and phosphorylation events (Endicott et al., 2012) however, a general activation mechanism that 
applies to the majority of kinases involves quenching the net- charge of the RD- pocket by addition of 
a negatively charged phosphate group to a nearby residue in the activation loop, stabilizing the active 
conformation. The conservation of this regulatory mechanism in most protein kinases, particularly 
those bearing the HRD- Arg residue (termed ‘RD- kinases’ Johnson et al., 1996), explains why Lys or 
Arg is frequently observed at position  147168

386  of the N- terminal anchor of the activation loop. However, 
RD- TKs prefer Arg at this position (78%) which the Potts model suggests has a greater destabilizing 
effect on the active conformation than Lys (9%) due to interactions with HRD- Arg. The activation loop 
Arg also forms part of an electrostatic interaction network that stabilizes the ‘Src- like inactive’ confor-
mation in TKs (Ozkirimli and Post, 2006; Wu et al., 2020), a conformation with a ‘partially’ folded 
activation loop (Figure 1—figure supplement 1) that is suggested to be an intermediate state along 
the transition to DFG- out (Levinson et al., 2006; Shan et al., 2013). On the other hand, RD- STKs 

Figure 5. The distributions of Potts conformational penalties for (orange) 10,345 tyrosine kinases (TKs) from 471 
different species and (blue) 210,862 serine/threonine kinases (STKs) from 2713 different species, showing that TKs 
tend to have smaller energetic penalties on average. The difference in averages between these distributions is 
shown ( ∆∆E = 3.2 ), which we estimate to be ≈4.3 kcal/mol based on the analysis in Figure 4. The probability 
density was plotted after down- weighting each sequence by the number of times another sequence in the same 
class (e.g. TKs) is observed within 40% identity (see Methods for details). The effective number of TKs (Neff =1,096) 
and STKs (Neff =22,893) s the sum totals of their down- weights, which is an unbiased measure of the sequence 
diversity in each probability distribution.

https://doi.org/10.7554/eLife.83368
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Figure 6. Molecular basis for the evolutionary divergence between tyrosine kinases (TKs) and serine/threonine kinases (STKs). Visualizing the top 
interaction pairs that contribute to the result in Figure 5, which is discussed in the main text. (A) Diagrams depicting general features of the active 
‘extended’ conformation of the activation loop (left) and the primary structure of these motifs in our multiple sequence alignment (MSA; right) with the 
HRD (pink), DFG (red), and APE (teal) motifs color- coded for reference. (B–C) Structural examples of a representative STK (CDK6) and TK (Abl) in the 
active DFG- in conformation (left) and the folded DFG- out conformation (right). Residues are labeled according to their position in our MSA, and colored 
according to A. The inset (center) displays the ΔEPotts of the reference kinase derived from Figure 5 as well as a cartoon depicting their location in the 
distributions. The diagrams of CDK6 in the active DFG- in conformation (PDB: 1XO2, chain B), CDK6 in the folded DFG- out conformation (PDB: 1G3N, 
chain A), Abl in the active DFG- in conformation (PDB: 2G2I, chain A), and Abl in the folded DFG- out conformation (PDB: 1IEP, chain A) were generated 
with PyMol (pymol, 2015). All ligands and some backbone atoms were hidden for clarity.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Interactions belonging to the top five contributions to ΔΔE.

Figure supplement 2. Cumulative sum of position pair contributions to ΔΔE.

https://doi.org/10.7554/eLife.83368
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display  K147  more frequently (26%), which the Potts model suggests interacts more favorably with 
the HRD- Arg independently of activation loop phosphorylation, thus contributing to greater stabili-
zation of the active DFG- in conformation for RD- STKs in comparison with TKs. Additionally, the Potts 
statistical energy analysis suggests that packing interactions between HRD- Arg and  V160180

400  located 
near the activation loop C- terminal also contributes to phosphorylation- independent stabilization of 
the active conformation in RD- STKs (Figure 6B left), appearing in 28% of RD- STKs and only 2% of 
RD- TKs. In RD- TKs, the residue at this position is usually Arg or Lys which appears to be repelled from 
the RD- pocket (Figure 6C left) and is suggested by the Potts model to result in a less stable active 
conformation.

The largest  ∆∆Eij  term, which contributes 16% of the total difference in average Potts confor-
mational penalties between STKs and TKs, comes from an interaction pair in the C- terminal of the 
activation loop ( 162182

402 ) and the C- terminal of the catalytic loop ( 126147
364 ). These residues form part of 

the ‘C- terminal anchor’ (Nolen et al., 2004) which is important for creating a suitable binding site for 
the substrate peptide. The C- terminal anchor residue  162182

402  is Pro in TKs and typically Ser or Thr in 
STKs (Taylor et al., 1995). In STKs, the sidechain hydroxyl of this residue forms a hydrogen bond with 

 K126147
364  in the catalytic loop, creating a stable binding site for substrate phosphoacceptor residues 

and stabilizing the C- terminal anchor (Taylor et al., 1995).  K126  is also directly involved in catalysis 
by interacting with and stabilizing the gamma phosphate of ATP (Zheng et al., 1993); hence, it is 
often referred to as the ‘catalytic lysine’. The hydrogen bond between  K126  and  S  or  T162  is almost 
always formed in the active DFG- in conformation, and we observe breakage of this hydrogen bond in 
many STKs crystallized in the DFG- out/activation loop folded conformation (e.g. CDK6, Figure 6B), 
suggesting that deformation of the C- terminal anchor contributes an energetic penalty for the active 
→ inactive conformational change. In TKs, however, the catalytic lysine is almost always replaced with 
Ala, with the exception of a few TKs (e.g. c- Src) which have instead adopted Arg at this position. The 
C- terminal anchor of TKs containing  A126  and  P162  is less stable in comparison to STKs containing 
( K126, T162 ) or ( K126, S162 ) for which the Potts coupling is very favorable, consistent with the struc-
tural observation that ( A126, P162 ) forms weak interactions (Figure 6C). Our analysis suggests the 
interaction pair ( A126, P162 ) weakens the C- terminal anchor, leading to a less stable active conforma-
tion in TKs as compared with STKs. Another significant contribution to the stabilization of the C- ter-
minal anchor in the active DFG- in conformation for STKs comes from interactions between the residue 
pair ( 161181

401 ,  166186
406 ) which are both located within the activation loop. We observe ( G161, M166 ) at this 

position pair in 33% of STKs, but never in TKs (Figure 6—figure supplement 1D). The Potts coupling 
between these residues is highly favorable. In contrast, we observe ( L161, M166 ) in 40% of TKs but 
never in STKs (Figure 6—figure supplement 1H), which have weaker coupling. The bulky sidechains 
of ( L161, M166 ) observed in TKs cause the activation loop to ‘bulge’ in this C- terminal region which 
has been previously identified as a feature of TKs that helps shape the substrate binding site to 
accommodate Tyr residues (Nolen et al., 2004). In addition to this paradigm, our analysis suggests 
that the C- terminal bulge results in weaker structural constraints on the active conformation relative 
to STKs.

In summary, TKs are suggested by the Potts statistical energy model which is based on sequence 
covariation, to have on average, weaker N- terminal anchor, RD- pocket, and C- terminal anchor inter-
actions than STKs. This mechanism of shifting the TK conformational equilibrium away from the 
active DFG- in/extended activation loop conformation can explain 7 of the top 10  ∆∆Eij  , accounting 
for ~80% of these contributions to the divergence between the STK and TK conformational land-
scapes. The remaining ~20% of the top contributions can be attributed to residue- residue interac-
tions that occur within the folded DFG- out conformation wherein the activation loop of TKs binds to 
the kinase’s own active site as though it was engaging a peptide substrate in trans (Figure 6C right) 
(Nolen et al., 2004). STKs, however, rarely adopt a folded DFG- out conformation with this property, 
and instead the activation loop is typically found to be unresolved and/or projecting outward toward 
solvent (Figure 6B right). The Potts model suggests that this substrate mimicry of the folded DFG- out 
activation loop observed in TKs is highly dependent on the presence of a Tyr phosphorylation site at 
position in the activation loop (Figure 6C). In the active conformation, the anionic  pY154  stabilizes 
the active conformation by binding to the basic RD- pocket (Figure 6C left, phosphate not shown). 
However, in the (unphosphorylated) folded DFG- out conformation, this  Y154  mimics a substrate by 
stacking against the TK- conserved  P162182

402  residue (Figure 6C right) (Nolen et al., 2004). The substrate 

https://doi.org/10.7554/eLife.83368
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mimicking nature of this binding mode is demonstrated by the autophosphorylation dimer structure 
of TK FGFR3 (PDB: 6PNX) solved recently (Figure 6—figure supplement 1K; Chen et al., 2020).

The striking connection between the ability of TKs to phosphorylate tyrosine substrates and their 
enhanced access to the DFG- out conformation via substrate- competitive contacts from their own 
activation loop described above suggests an evolutionary model for the TK conformational behavior 
characterized in this work. In this model, the coevolution of residues that form substrate- competitive 
contacts in folded DFG- out appears to be a byproduct of the evolutionary pressure for TKs to phos-
phorylate other TKs on their activation loop tyrosine residues. STKs, on the other hand, have opti-
mized the binding of Ser and Thr substrates via a different binding mode (Endicott et al., 2012) which 
does not have the same energetic feedback with the stability of the folded DFG- out conformation. 
Additionally, the catalytic domains of TKs appear to have a less energetically stable ‘extended’ acti-
vation loop conformation than STKs, which may have encouraged the evolution of more complex 
mechanisms of allosteric regulation and autophosphorylation which are highly important regulatory 
mechanisms in TKs (Chen et al., 2020; Beenstock et al., 2016; Lemmon and Schlessinger, 2010). 
The combined effect of these two TK phenotypes, the former favoring the stabilization of folded DFG- 
out and the latter favoring destabilization of active DFG- in, may explain their low free- energy cost for 
the DFG- in → DFG- out conformational change compared with STKs.

Discussion
In this work, we have combined sequence and structure- based approaches to analyze the conforma-
tional free energy difference between active DFG- in and inactive DFG- out kinase states. Using a Potts 
statistical energy model derived from residue- residue covariation in a kinase family multiple sequence 
alignment, we first threaded all human STKs and TKs onto large ensembles of active DFG- in and clas-
sical DFG- out structures from the PDB. We found distinctly different distributions of threading scores 
for STKs compared with TKs, with STKs having a significant conformational reorganization penalty 
compared with TKs. The molecular basis for the evolutionary divergence in the conformational land-
scapes was analyzed; a substantial contribution to the difference is associated with sequence position 
pairs that couple the N and C terminal anchor residues of the activation loop to N and C terminal 
residues in the catalytic loop, according to the Potts statistical energy analysis. We then used the Potts 
statistical energy model to guide the selection for structure- based MD binding free energy simulations 
of 74 protein- ligand complexes; using the calculated binding free- energy estimates together with 
experimental values, we were able to estimate free- energy costs for the large- scale (~17–20 Å) confor-
mational change of the activation loop by an indirect approach. The structure- based estimates of the 
reorganization free- energy penalties are consistent with the sequence- based estimates. Additionally, 
the strong correlation between  ∆Greorg  and  ∆EPotts  identified in this study reveals that the conforma-
tional landscape has a strong sequence dependence with STKs having an ~4 kcal/mol conformational 
free energy bias favoring the active state over the inactive state relative to TKs (Figure 4). We note 
that the most potent type- II inhibitors from the literature which target STKs bind with nanomolar Kds, 
similar to that for TKs, despite the substantial additional reorganization penalty that STKs must over-
come. This suggests that medicinal chemists have implicitly been able to exploit particularly favorable 
characteristics of the type- II binding pocket to design inhibitors with extremely strong affinities to 
the DFG- out (activation loop folded) receptor conformations of STKs, and that further analysis of the 
molecular basis for this tight binding could provide a basis for designing more selective inhibitors.

Materials and methods
Multiple sequence alignment (MSA) and classification of serine/
threonine vs tyrosine kinases
An MSA of 236,572 protein kinase catalytic domains with 259 columns was constructed as previously 
described (McGee et al., 2021). STKs and TKs were classified based on patterns of sequence conser-
vation previously identified by Taylor and co- workers (Taylor et al., 1995); characteristic sequence 
features of TKs and STKs which form their respective phosphoacceptor binding pockets are found 
at the HRD +2 (Ala or Arg in TKs, Lys in STKs) and HRD +4 (Arg in TKs, variable in STKs) in the cata-
lytic loop, as well as the APE- 2 residue (Trp in TKs, variable in STKs) in the activation loop. These 

https://doi.org/10.7554/eLife.83368
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residues correspond to positions 126, 128, and 165 in our MSA, respectively. Kinases which satisfy the 
conditions for TKs at all three positions were classified as TKs (10,345 raw sequences, 1069 effective 
sequences), and those that satisfy the condition for STKs at position 126 and are non- overlapping 
with the TK condition at position 128 were classified as STKs (210,862 raw sequences, 22,893 effec-
tive sequences). The effective number of sequences in each class was calculated by summing over 
sequence weights, where each sequence was assigned a weight defined as the fraction of the number 
of sequences in the same class that are within 40% identity. In this way, we correct for the effects of 
phylogenetics in the calculation of sample size as well as other quantities (see below).

Human kinome dataset
497 human kinase catalytic domain sequences were acquired from Modi and Dunbrack, 2019b 
(excluding atypical kinases). These sequences were aligned using a Hidden Markov Model (HMM) that 
contains 259 columns (L=259), which was constructed from the same MSA used to derive our Potts 
model. 447 human kinases remained after filtering- out sequences with 32 or more gaps.

Classification of gatekeeper size
The designation of gatekeeper residues as ‘large’ or ‘small’ was based on sidechain van der Waals 
volumes (Miller et  al., 1987; Figure  1—figure supplement 3), where small gatekeepers have a 
volume of <110 Å3 (Gly, Ala, Ser, Pro, Thr, Cys, Val), and large gatekeepers have a volume of >110 Å3 
(Asn, His, Ile, Leu, Met, Lys, Phe, Glu, Tyr, Gln, Trp, Arg).

PDB dataset and conformational states
X- ray crystal structures of tyrosine, serine/threonine, and dual- specificity eukaryotic protein kinases in 
the PDB were collected from http://rcsb.org on July 30, 2020. The protein sequences of 7919 chains 
were extracted from 6805 PDB files by parsing the SEQRES record and aligned to the MSA used to 
construct our Potts model, using an HMM.

Contact frequency differences between ensembles of active/DFG- in and inactive/DFG- out (clas-
sical DFG- out) PDB structures (Figure 1—figure supplement 2) are incorporated into the calculation 
of Potts threaded energies, which are central to this work. Our classification of the active DFG- in and 
classical DFG- out conformational states is based on ref 6, which we describe in further detail here:

Active DFG-in (BLAminus)
The BLAminus state of the DFG motif (active DFG- in) is the only active conformation of the activation 
loop, in contrast to several other inactive DFG- in states (ABAminus, BLAplus, BLBplus, BLBminus, 
BLBtrans). In the active conformation, all structural requirements for catalytic activity are typically 
met, e.g., a complete hydrophobic spine, a salt bridge between β3- Lys → αC- Glu, and an extended 
activation loop that ensures unobstructed substrate- binding, all of which have high correspondence 
with the BLAminus state (Modi and Dunbrack, 2019b). Our analysis using the software provided in 
Modi and Dunbrack, 2019b identifies 3643 structures in this conformation belonging to STKs and 
625 structures belonging to TKs (4268 structures in total).

Classical DFG-out (BBAminus)
The DFG- out state is characterized by a ‘flip’ of the conserved Phe to occupy the ATP binding pocket 
which is otherwise occupied by the conserved Asp in the active conformation. The classical DFG- out 
conformation is associated with the binding of type- II inhibitors which occupy the back pocket region 
opened up by the DFG- flip (Vijayan et al., 2015). This conformation corresponds to the BBAminus 
rotamer state of these residues, and it is the dominant DFG- out conformation associated with the 
binding mode of type- II inhibitors. This classical DFG- out or BBAminus conformation is correlated 
with a larger- scale conformational change of the activation loop that involves an ~17 Å ‘folding’ tran-
sition with respect to the active conformation. This conformational change is usually accompanied by 
the formation of secondary structure that obstructs the typical substrate binding surface (e.g. PDB 
ID: 2HIW, Figure 1—figure supplement 1B). Our conformational analysis via Modi and Dunbrack, 
2019b identifies 224 structures in this conformational state belonging to STKs and 286 structures 
belonging to TKs (510 structures in total).

https://doi.org/10.7554/eLife.83368
http://rcsb.org
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Contact frequency differences
Each of the clustered PDB structures were converted to an adjacency matrix of binary contacts (1 
for ‘in- contact’, 0 otherwise). A contact between residues  i  and  j  in structure  n  was assigned when 
their nearest sidechain atoms (excluding hydrogen) were detected within a distance  rij

(
n
)

< 6 Å  . 
The contact frequency  c

A
ij  in cluster  A  (e.g. active DFG- in) was calculated for each residue pair ( i, j ) by 

taking a weighted average over all instances of a contact in that cluster –

 

cA
ij = 1

NA∑
n

wAB
n

NA∑
n

wAB
n δij

(
n
)

  
(4)

 

δij
(
n
)

=




1, rij
(
n
)

< 6 Å

0, rij
(
n
)
≥ 6 Å  

(5)

Where  NA  is the number of PDB chains in cluster  A , and weights were calculated with 
 
wAB

n = 1
uAB

n  
 

, where  uAB
n   is the number of times the UniProt ID of structure  n  is found within either cluster  A  (i.e. 

active) or cluster  B  (i.e. DFG- out). In this way, we have down- weighted contributions to the contact 
differences  ∆cij

AB = cij
A − cij

B  that are due to overrepresentation of specific kinases in the PDB clusters, 
with the goal of using contact differences to represent conserved features of the conformational 
transition across many different kinases. Alignment gaps and unresolved residues were accounted for 
by excluding these counts in the summations. Only  

∣∣i − j
∣∣ > 4  were included in the calculation. The 

PDB clusters used to calculate these contact differences are described above. The contact frequency 
differences for both STKs and TKs were plotted on a contact map for visualization (Figure 1—figure 
supplement 2).

Potts model and threaded-energy calculation
Our Potts Hamiltonian was constructed from an MSA of protein kinase catalytic domains as previously 
described (McGee et al., 2021). The Potts Hamiltonian  H

(
S
)
  takes the form –

 
H
(
S
)

=
L∑

i<j
Jij

SiSj
+

L∑
i

hi
Si

  
(6)

where  L  is the number of columns in the MSA ( L = 259 ),  h  is a matrix of self- interactions or ‘fields’, 
and  J   is the coupling matrix which has the interpretation of co- evolutionary interactions between 
residues.

The Potts threaded- energy penalty  ∆E
(
S
)
  for sequence  S  to undergo the conformational transition 

 A → B  is calculated using contact frequency differences between the two conformational ensembles 
(Haldane et al., 2016) –

 
∆E

(
S ∈ X

)
= −

L∑
i<j

Jij
SiSj

∆cij
AB

(
X
)

,
  

(7)

where  X   represents a class or family of sequences for which sequence  S  has membership, and 

 ∆cij
AB

(
X
)
  represents the contact frequency difference between conformations  A  and  B  observed only 

for other sequences belonging to class  X   (e.g.  X ≡ TKs  or  X ≡ STKs ; upper and lower triangle of 
Figure 1—figure supplement 2, respectively). As described previously (Haldane et al., 2016) the 
couplings ( J

ij
SiSj ) and fields ( h

i
Si ) were transformed to the ‘zero- gauge’ prior to calculating  ∆E

(
S
)
 .

Contributions to average shift in  ∆EPotts  between STKs and TKs ( ∆∆E ). Where  ∆E
(
S
)
  is the Potts 

conformational penalty for sequence S to undergo the conformational change  A → B , we define  ∆∆E  
as the difference in average  ∆E  between two groups of sequences  X   and  Y  

 ∆∆E = ⟨∆E⟩X − ⟨∆E⟩Y .  (8)

To help interpret  ∆∆E  in a structural and coevolutionary context, we can write  ∆∆E  as a sum over 
position pairs  

(
i, j
)
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∆∆E =

L∑
i<j

∆∆Eij .
  

(9)

To evaluate this, we note that average  ∆E  can be expressed as a sum over position pairs

 
⟨∆E⟩X =

L∑
i<j

⟨
∆Eij

⟩
X  

(10)

where 
 

⟨
∆Eij

⟩
 
 is calculated as follows

 

⟨
∆Eij

⟩
X

= −
∑
α

∑
β

fijαβ
(
X
)

Jij
αβ∆cij

AB
(
X
)

.
  

(11)

 f
ij
αβ

(
X
)
  is the frequency (bivariate marginal) of residues  α  and  β  at positions  i  and  j  for sequences 

in the MSA which belong to group  X  , which we calculate after applying the MSA- derived phyloge-
netic weights described above. Finally, by substituting Equation 10 back into Equation 8, we show 
how  ∆∆E  can be decomposed into contributions from individual residue pairs

 
∆∆Eij = −

∑
α

∑
β

Jij
αβ

(
fijαβ

(
X
)
∆cij

AB
(
X
)
− fijαβ

(
Y
)
∆cij

AB
(
Y
))

.
  

(12)

By viewing the largest (most positive)  ∆∆Eij  terms, where  X ≡ STKs  and  Y ≡ TKs  in Equation 
12, we are identifying position pairs that cause STKs to have higher penalties than TK in our Potts 
threading calculations for the active DFG- in to DFG- out conformational change (Figure 6—figure 
supplement 2).

Calculation of p-value for  ∆∆E 
The quantity  ∆∆E  is a difference between two averages,  ⟨∆E⟩STK − ⟨∆E⟩TK   . Hypothesis testing 
to determine the statistical significance of this quantity was performed with respect to a null model 
where the populations of  ∆Es  for STKs and TKs, from which our samples were drawn, are indistin-
guishable. To this end, a p- value was calculated for a t- statistic derived from Welch’s t- test (Welch, 
1947), where  s  is the standard error of average  ∆E  –

 

∼
t = ⟨∆E⟩STK−⟨∆E⟩TK√

s2
STK+s2

TK    
(13)

where the averages and standard errors are calculated after down- weighting each sequence as 
described above. This was done to lessen the effects of phylogenetic sampling bias from our MSA 
and ensure that  ∆∆E  captures general differences between TKs and STKs, rather than specific TK or 
STK families.

The one- tailed p- value was calculated using the cumulative t- distribution function generated in 
python using the SciPy package (Virtanen et al., 2020),

 
p = 1 − tcdf

(∼
t , ν

)
  (14)

where the degrees of freedom for the t- distribution describing the combined population,  ν , was 
estimated via the Welch- Satterthwaite equation (Welch, 1947) from the degrees of freedom of the 
two samples  νSTK   and  νTK  

 
ν =

(
s2

STKN−1
STK+s2

TKN−1
TK

)2

s4
STKN−2

STKν
−1
STK+s4

TKN−2
TK νTK

.
  

(15)

where  N   represents the effective number of STKs or TKs, which is an unbiased count of sequences 
in each dataset that can be obtained by summing the sample weights ( NSTK = 22, 893 ,  NTK = 1069 ). 
From the calculation of  ∆∆E = ⟨∆E⟩STK − ⟨∆E⟩TK = 3.2 , we determine the corresponding p- value to 
be less than  10−15  , meaning it is highly unlikely for this large of a difference to be observed if the  ∆Es  
for TKs and STKs were randomly drawn from the same distribution rather than distinct distributions.

https://doi.org/10.7554/eLife.83368
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Enumeration of absolute binding free-energy simulations
In this work, we have performed all- atom MD simulations in explicit solvent for a total of 94 different 
kinase- inhibitor complexes to calculate ABFEs via the alchemical DDM. 74 of these free- energy calcu-
lations were guided by insights from the Potts model, specifically the patterns of Potts conformational 
penalties plotted in Figure 1D. 68 of these complexes correspond to the ABFEs plotted in Figure 3, 
of which 23 type- II inhibitors and 23 type- I inhibitors ABFEs are plotted for STKs in Figure 3A, and 
22 type- II inhibitors ABFEs for TKs are plotted in Figure 3B. Six additional Potts- guided ABFEs corre-
sponding to CSF1R, KIT, PDGFRA, MAPK14, and PTK2B are included in Figure 2. An additional 20 
type- I and type- I ½ ABFEs were calculated as part of our benchmarking procedure described in the 
Methods section.

Double decoupling method setup
The double decoupling method (DDM), also known as an ‘alchemical’ method, was applied to 
compute ABFE ( ∆Go

bind ), as shown in Equation 16 (Deng et  al., 2018; Sakae et  al., 2020). This 
method computes the free energies of decoupling the inhibitor from the bulk solvent in the pres-
ence and absence of a receptor via a nonphysical thermodynamic cycle where the two end states 
are connected via the alchemical pathway. The starting holo- structures for ABFE calculations were 
taken from the available crystal structure. The absence of crystal structure prompted us to model the 
structure of the ligand into the active site of the kinase by superimposing over the binding pose of the 
available holo crystal structure.

 ∆Go
bind = −∆Gbound

restrain − ∆Gbound
decouple + ∆Ggas

restrain + ∆Gbulk
decouple  (16)

Decoupling of the ligand was achieved by first turning off the coulombic intermolecular interac-
tions followed by Lennard- Jones intermolecular interactions from both the legs. This allows DDM to 
estimate the free energy, i.e., in the presence of protein ( ∆Gbound

decouple ) and absence of protein, i.e., in the 
bulk solvent, ( ∆Gbulk

decouple ) as shown in Equations 17; 18.

 ∆Gbound
decouple = ∆Gbound

decouple−Coulomb + ∆Gbound
decouple−LJ   (17)

 ∆Gbulk
decouple = ∆Gbulk

decouple−Coulomb + ∆Gbulk
decouple−LJ   (18)

Substituting Equations 17; 18 into Equation 19 yields the estimated ( ∆Go
bind ) from DDM

 ∆Go
bind = −∆Gbound

restrain + ∆∆GCoulomb + ∆∆GLJ + ∆Ggas
restrain  (19)

where  ∆∆GCoulomb  is the electrostatic energy contribution toward the total ABFE, and  ∆∆GLJ   is 
the non- polar energy contribution.

In this study, depending on the system’s convergence, either 20 or 31 total λs were used for decou-
pling the ligand from bulk solvent. For instance, either 5 λs with Δλ=0.5 or 11 λs with Δλ=0.1 were 
used for coulombic decoupling and 15 λs with Δλ=0.1 or 20 λs with Δλ=0.05 were used for decoupling 
Lennard- Jones interactions in the bulk solvent.

Similarly, depending on the convergence, either 30 or 42 total λs were used for decoupling ligand 
bound to protein. For instance, 11 or 12 non- uniformly distributed λs were used to restrain the ligand. 
Decoupling the coulombic interactions between ligand and protein was achieved by either using 
4 λs with Δλ=0.25  or 10 λs with Δλ=0.1, whereas a large number of λs were used for decoupling 
Lennard- Jones interactions, i.e., 15 λs with Δλ=0.1 or 20 λs with Δλ=0.05 were used. The correction 
term developed by Rocklin and coworkers for treating charged ligands during DDM simulations was 
adopted (Rocklin et al., 2013). In this regard, it is well documented that the use of a finite- sized peri-
odic solvent box during DDM simulations can lead to non- negligible electrostatic energy contribution 
toward the calculated total ABFE. Thus, calculated ( ∆Go

bind ) for charged ligand after addition of elec-
trostatic correction term can be expressed as:

 ∆Go
bind = −∆Gbound

restrain + ∆∆GCoulomb + ∆∆GLJ + ∆Gfinite_size
electrostatic_correction + ∆Ggas

restrain  (20)
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For a proper convergence during DDM simulations, the application of restrains is crucial. Herein, 
we have used six relative orthogonal restrains with harmonic potentials that include one distance, two 
angles, and three dihedral angles restrain between the ligand and the protein with a force constant 
of 10 kcal mol−1 Å−2 [deg−2]. At each λ, 10–30 ns of decoupling simulation via replica- exchange (Affen-
tranger et al., 2006) were obtained to compute the  ∆Go

bind  over a well- converged trajectory.

Molecular dynamics setup
In this study, MD simulations were applied to compute the binding free- energy simulations via DDM. 
GROMACS- 2018.8 (Abraham et al., 2015) was used as an MD engine for all simulations. The tleap 
module of AMBER16 was used to add the missing hydrogen atoms to the kinase enzymes. The system 
was solvated explicitly using TIP3P water boxes (Jorgensen et al., 1983) that extended at least 10 Å 
from the center of the system in each direction. The topology file for the kinase enzyme was created 
using the amber forcefield ff14SB (Maier et al., 2015). The AM1- BCC charge model (Jakalian et al., 
2002) and general amber force field 2 (GAFF2) (Wang et al., 2004) were employed to parametrize 
different inhibitors used in this study. The overall charge of the system was maintained by adding 
a suitable number of counterions in each system. During the simulations, electrostatic interactions 
were computed using the particle mesh Ewald method (Essmann et  al., 1995) with a cutoff and 
grid spacing of 10.0 and 1.0 Å, respectively. The NPT (constant Number of particles, Pressure, and 
Temperature) ensembles with a time step of 2 fs was used in the simulations.

Benchmarking calculations for absolute binding free-energy simulations
Accurate prediction of the ABFE difference between the Apo and Holo state of a protein is extremely 
important to achieve from force field- based MD simulations (Lin et al., 2013; Lovera et al., 2012). In 
this study, we used type- II inhibitors as probes to estimate ΔGreorg via ABFE simulations, which is the 
excess free- energy between experimentally determined binding affinity and ΔGbind calculated from 
ABFE. Target kinases, i.e., MAPK14, CDK2, and JNK1 bound with type- I and I 1/2 inhibitors in the 
active conformation states (where ΔGreorg is expected to be close to zero) have been regularly used 
by the computational community as benchmark systems for absolute or relative binding free energy 
calculations (Wang et al., 2015; Lee et al., 2020; Goel et al., 2021; Kuhn et al., 2020; Gapsys et al., 
2019; Khalak et al., 2021). Benchmarking calculations over multiple protein- ligand complexes show 
close agreement between calculated (ΔGbind) and experimental (ΔGexp) terms (Table 2, Figure 2—
figure supplement 1). In the later part of benchmarking studies, we have included ABL1 bound to 
type- II inhibitors in the DFG- out/folded activation loop state. NMR studies have shown experimentally 
that ABL1 has a ΔGreorg of 1.2 kcal/mol (Xie et al., 2020), which is consistent with our range of esti-
mates of ΔGreorg for this kinase (Table 2).

Potts-guided target selection for absolute binding free-energy 
simulations
Our Potts threaded- energy calculations were used alongside experimental type- II binding data from 
the large- scale assay by Davis et al., 2011 to identify kinase targets that are likely to have very large 
or very small ΔGreorg. As described in the main text, all- atom MD simulations to calculate ABFEs of 
type- II inhibitors can be used alongside experimental binding affinities to calculate the free- energy 

Table 2. Summary of benchmarking results.
All reported values are in units of kcal/mol. The root mean square error (RMSE) and mean unsigned 
error (MUE) were calculated with respect to the linear model  ∆GABFE

bind + ∆Greorg  , where  ∆Greorg  is 
calculated as 

 

⟨
∆Gexp −∆GABFE

bind

⟩
 
. The average difference between  ∆Gexp  and  ∆GABFE

bind   is shown in 
the last column.

Kinase # Compounds MUE RMSE  
��⟨∆Gexp −∆GABFE

bind
⟩��

 

CDK2 6 (type- I) 0.71 1.03 1.89

JNK1 5 (type- I) 0.37 0.44 1.29

MAPK14 9 (type- 11/2) 0.47 0.64 0.2

ABL1 6 (type- II) 1.47 1.57 1.26

https://doi.org/10.7554/eLife.83368
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cost for a kinase to reorganize to the DFG- out/folded activation loop conformation. This relation, 
ΔGreorg = ΔGexp − ΔGbind(ABFE), gives the free- energy cost to reorganize in physical energy units (kcal/
mol) and can be used to approximate a scale for the Potts statistical energy differences provided one 
sample a sufficient range of ΔGreorg and ΔEPotts. However, ABFE simulations are much more computa-
tionally demanding than the Potts threading calculation, which we sought to mitigate by choosing 
kinase simulation targets which are likely to provide a strong signal, guided by the Potts model. We 
direct the reader to Table 1, which contains the Potts penalties and type- II hit rates for the targets 
of interest. For comparison, Figure 1A and Figure 5 provide the overall distributions of hit rates and 
Potts penalties for TKs and STKs.

A significant challenge for our target selection was the limited availability of type- II inhibitors 
co- crystallized against STKs which have (a) Potts penalties and type- II hit rates that predict very high 
ΔGreorg, (b) experimental binding affinities available in the literature in the form of IC50, Ki, or Kd, 
(c) availability of protein- ligand co- crystallized structure(s), and (d) type- II inhibitor complex systems 
where the activation loop appears to have undergone a large- scale ‘folding’ conformational change 
relative to the active ‘extended’ conformation. STK complexes that satisfy all four criteria appear to 
be sparse, which is consistent with the notion that kinases with large reorganization penalties are more 
difficult to crystallize in the classical DFG- out conformation (Haldane et al., 2016). However, for some 
STKs with very high Potts threaded- energy penalties (e.g., MELK) there has been significant medic-
inal chemistry efforts to design potent type- II inhibitors and structurally characterize their complexes 
using x- ray crystallography. Using type- II co- crystal structures that cover five different STKs with high 
Potts penalties (Table 1) and five different TKs with low Potts penalties, we were able to sample a 
wide range of ΔGreorg from a total of 45 ABFE simulations covering 45 type- II inhibitor complexes and 
10 different kinase targets. These simulations and subsequent calculations of ΔGreorg for each kinase 
resulted in a strong correlation with the Potts threaded energy scores (Figure 5), allowing us to estab-
lish a scale for the Potts energies in kcal/mol. We have provided detailed results from the ABFE simu-
lations of these 10 kinase targets in the form of supplementary figures (Figure 3—figure supplement 
1) where the average ΔGreorg for each kinase is visualized as the y- intercept of a linear regression with 
the slope constrained to one.

Data availability
Values of  ∆GABFE

bind   from all ABFE simulations described in this work, including benchmarking calcula-
tions (94 simulations in total), are provided in the form of supplementary tables (Figure 2—source 
data 1 and Figure 3—source data 1). Potts  ∆Es , type- II hit rates computed from Shan et al., 2013, 
the identity of gatekeeper residues and corresponding van der Waals volumes in Å (Stancik et al., 
2018), and the classification of human kinases as TKs or STKs were provided in a separate supplemen-
tary table (Figure 1—source data 1).
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