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Abstract Accumulation of somatic mutations in the mitochondrial genome (mtDNA) has long 
been proposed as a possible mechanism of mitochondrial and tissue dysfunction that occurs during 
aging. A thorough characterization of age- associated mtDNA somatic mutations has been hampered 
by the limited ability to detect low- frequency mutations. Here, we used Duplex Sequencing on 
eight tissues of an aged mouse cohort to detect >89,000 independent somatic mtDNA mutations 
and show significant tissue- specific increases during aging across all tissues examined which did not 
correlate with mitochondrial content and tissue function. G→A/C→T substitutions, indicative of repli-
cation errors and/or cytidine deamination, were the predominant mutation type across all tissues 
and increased with age, whereas G→T/C→A substitutions, indicative of oxidative damage, were the 
second most common mutation type, but did not increase with age regardless of tissue. We also 
show that clonal expansions of mtDNA mutations with age is tissue- and mutation type- dependent. 
Unexpectedly, mutations associated with oxidative damage rarely formed clones in any tissue and 
were significantly reduced in the hearts and kidneys of aged mice treated at late age with elami-
pretide or nicotinamide mononucleotide. Thus, the lack of accumulation of oxidative damage- linked 
mutations with age suggests a life- long dynamic clearance of either the oxidative lesions or mtDNA 
genomes harboring oxidative damage.

Editor's evaluation
Using the most accurate deep sequencing technology, duplex sequencing, these authors have 
detected over 89,000 independent somatic mtDNA mutations representing the largest catalog of 
somatic mtDNA point mutations during aging in a single study. The analysis of these mutations 
provides compelling evidence to dismiss the idea that reactive oxygen species are a driver of 
mtDNA mutagenesis, but suggests that ROS may be tissue dependent. These results should provide 
a fundamental understanding of mitochondrial DNA mutagenesis in aging that should appeal to a 
broad audience. The novel discovery is the significant presence of transversion mutations (C>A/G>T 
and C>G/G>C), which previously were assumed almost nonexistent. Moreover, the study finds that, 
unlike conventional mtDNA mutations, these transversions are not involved in clonal expansion and 

RESEARCH ARTICLE

*For correspondence: 
sandu@uw.edu (MTS); 
scottrk@uw.edu (SRK)
†These authors contributed 
equally to this work

Competing interest: See page 
20

Funding: See page 20

Preprinted: 01 September 2022
Received: 11 September 2022
Accepted: 15 February 2023
Published: 17 February 2023

Reviewing Editor: William 
Copeland, National Institute of 
Environmental Health Sciences, 
United States

   Copyright Sanchez- Contreras, 
Sweetwyne et al. This article 
is distributed under the terms 
of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.83395
mailto:sandu@uw.edu
mailto:scottrk@uw.edu
https://doi.org/10.1101/2022.08.30.505884
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article      Genetics and Genomics

Sanchez- Contreras, Sweetwyne et al. eLife 2023;12:e83395. DOI: https://doi.org/10.7554/eLife.83395  2 of 26

do not accumulate with age; their relative presence varies very significantly between tissues and can 
be affected by drug interventions.

Introduction
Genetic instability is a hallmark of aging (López- Otín et  al., 2013). A mechanistic link between 
somatic mutations and age- related diseases such as cancer is clear, but their importance in other aging 
phenotypes, long hypothesized, is poorly understood (Zhang and Vijg, 2018). Recent surveys of non- 
diseased somatic tissues have shown that mutations are pervasive in the nuclear genome (nDNA), 
increase with age, and vary considerably between tissues (Abascal et al., 2021; Li et al., 2021). Addi-
tionally, these nDNA mutations commonly occur in cancer- associated genes, show evidence of selec-
tion and clonal expansion, and may play important roles in tissue regeneration and tumor suppression 
(Colom et al., 2020; Martincorena et al., 2018; Martincorena et al., 2017; Martincorena et al., 
2015; Zhu et al., 2019). Collectively, these studies indicate a growing realization that somatic muta-
genesis and clonal dynamics are likely an important determinant of human health during aging. While 
the accumulation of somatic mutations in the mitochondrial genome (mtDNA) with age has long been 
documented, the specific nature of their occurrence, and the consequences for aging, have remained 
unclear (reviewed in Sanchez- Contreras and Kennedy, 2022).

In vertebrates, mtDNA is a maternally inherited ~16–17 kb circular DNA molecule encoding 37 
genes: 13 essential polypeptides of the electron transport chain (ETC), two ribosomal RNA genes, 
and 22 tRNAs. Mitochondria are involved in a broad range of crucial processes, including ATP gener-
ation via oxidative phosphorylation (OXPHOS), calcium homeostasis, iron- sulfur cluster biogenesis, 
regulation of apoptosis, and the biosynthesis of a wide variety of small molecules (Kowaltowski, 
2000). These processes rely on mitochondria such that disruption of the genetic information encoded 
in mtDNA by mutation leads to dysfunction of these important processes and subsequently induces 
disease (Wallace, 1999). Unlike nDNA, mtDNA replication is largely independent of the cell cycle. The 
higher level of mtDNA replication, the absence of several cellular DNA repair pathways, and the lack 
of protection from histones results in mtDNA mutation rates ~100–1000× higher than that of nDNA 
(Khrapko et al., 1997; Marcelino and Thilly, 1999). Moreover, due to the coding density of mtDNA 
being higher than nDNA (~91% vs. ~1%), the probability that a mutation disrupts protein function is 
greater.

Observational studies have shown that the genetic instability of mtDNA in somatic cells is a funda-
mental phenotype of aging and may be involved in the pathogenesis of several diseases (reviewed in 
Larsson, 2010). Collectively, studies examining endogenous mtDNA mutations have shown low levels 
of G→T/C→A mutations and a preponderance of G→A/C→T and T→C/A→G transitions. This has been 
interpreted as being contrary to free radical theories of aging by suggesting that reactive oxygen 
species (ROS) are not the primary driver of mutagenesis in mtDNA (Arbeithuber et al., 2020; Ju 
et al., 2014; Kennedy et al., 2013; Williams et al., 2013; Zheng et al., 2006). Other notable patterns 
include an over- abundance of mutations in the mitochondrial Control Region (mCR), an unusual strand 
bias, a mutational gradient in transition mutations, and a unique trinucleotide mutational signature 
(Ju et al., 2014; Kennedy et al., 2013; Sanchez- Contreras et al., 2021; Wei et al., 2019). However, 
while the presence of somatic mtDNA mutations is well documented, a clear causative role in aging 
remains controversial (reviewed in Sanchez- Contreras and Kennedy, 2022).

One reason for this controversy stems from a poor understanding of when, where, and how somatic 
mtDNA mutations arise during the normal aging process. Most conclusions regarding the accumu-
lation of mtDNA mutations during aging are based on a limited number of experimental models 
and tissue types, with data largely focused on brain and muscle due to their perceived sensitivity to 
mitochondrial dysfunction. Only a small number of pan- tissue surveys have been performed (Li et al., 
2021; Ma et al., 2018; Samuels et al., 2013). Importantly, most of these prior studies made use of 
either ‘clone and sequence’ or conventional next- generation sequencing (NGS) to detect mutations. 
These approaches are technically limited in their ability to detect heteroplasmy below a variant allele 
fraction (VAF) of 1–2% (reviewed in Salk et al., 2018). The advent of ultrahigh- accuracy sequencing 
methods has shown that most heteroplasmies are present far below this analytical threshold (Arbe-
ithuber et al., 2020; Kennedy et al., 2013). As such, determining the burden of somatic mtDNA 
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mutations in the context of normal aging lags well behind the efforts focused on nDNA. This is espe-
cially pertinent given the heterogeneous nature of tissue decline during aging.

Like the nDNA, somatic mutations in mtDNA have been proposed to be under selection (Suen et al., 
2010). Cells have evolved several mitochondrial quality control pathways such as removal of damaged 
mitochondria by mitophagy and fusion/fission to maintain a healthy mitochondrial pool (Youle and 
Narendra, 2011). The formation and expression of deleterious mtDNA mutations is hypothesized 
to lead to a loss of mitochondrial membrane potential, mitochondrial dysfunction, and induction of 
mitophagy. This is a potential mechanism by which cells prevent mtDNA mutations from reaching a 
phenotypic threshold capable of altering cell homeostasis (Rossignol et al., 2003; Rossignol et al., 
1999). Evidence for involvement of quality control machinery in removing somatic mtDNA mutations 
has been contradictory, with some indicating a clear role for mitophagy and fission/fusion, while other 
evidence indicates no effect (Chen et al., 2010; Chen et al., 2015; Pickrell et al., 2015; Suen et al., 
2010). Thus, the role, if any, of the mitochondrial quality control pathways in targeting mtDNA muta-
tions for removal remains unclear.

We and others have previously identified a mitochondrially targeted synthetic peptide, elami-
pretide (Elam; previously referred to as SS- 31 and Bendavia), and the NADH precursor nicotinamide 
mononucleotide (NMN) as interventions that restore mitochondrial function and tissue homeostasis 
late in life (reviewed in Yoshino et al., 2018, and Obi et al., 2022). The specific mechanism(s) by which 
these two compounds ameliorate age- related mitochondrial dysfunction differ. Elam interacts directly 
with the inner mitochondrial membrane and membrane- associated proteins, stabilizing the mitochon-
drial ultrastructure and influencing cardiolipin- dependent protein interactions to improve ETC func-
tion leading to reduced oxidant production, preservation of membrane potential, and enhanced ATP 
production (Campbell et al., 2019; Mitchell et al., 2020; Zhang et al., 2020). In contrast, NMN is 
an NAD+ precursor molecule and acts by elevating NAD+ levels and providing additional substrate 
for mitochondrial ATP generation (Guan et al., 2017; Martin et al., 2017; Yoshino et al., 2011). 
Neither intervention is expected to directly alter mtDNA repair mechanisms. Therefore, we sought to 
test whether these interventions would reduce the prevalence of mtDNA mutations in aged tissues 
because of their demonstrated ability to improve mitochondrial structure and/or function.

We first addressed the relative dearth of high- accuracy data regarding age- related accumulation of 
mtDNA in mice across multiple tissue types. To that end, we used ultraaccurate Duplex Sequencing 
(Duplex- Seq) to identify organ- specific mtDNA mutation burden in heart, skeletal muscle, eye, kidney, 
liver, and brain in naturally aged mice (Kennedy et  al., 2014; Schmitt et  al., 2012). Intra- animal 
comparison allowed us to determine whether mtDNA mutation rates differ between organs while 
still accounting for inter- animal variation. Our findings point to the accumulation of somatic mtDNA 
mutations being a dynamic and highly tissue- specific process that can be modulated by one or more 
cellular pathways amenable to small molecule intervention.

Results
To study the effects of aging on the accumulation of somatic mtDNA mutations across tissues, we 
used Duplex- Seq to obtain high- accuracy variant information across the entire mtDNA. We examined 
six different organ systems (heart, kidney, liver, skeletal muscle, brain, and eye) at two different ages 
(young = 4.5 months; N=5 and old = 26 months; N=6). These two age groups were chosen for their 
representation of the two extremes of the adult mouse lifespan while mitigating potential confounders 
related to development, sexual maturation, and survival selection at more advanced ages. These 
tissues vary on their dependence of mitochondria function and OXPHOS (Fernández- Vizarra et al., 
2011). To minimize variation of cell type substructure within tissues between animals, care was taken 
to isolate similar regions of each organ, as described in the Materials and methods section. In total, 
we sequenced over 27.9 billion high- accuracy bases, corresponding to a grand mean post- consensus 
depth of 10,125× for all samples with reasonably uniform coverage among experimental groups and 
mice, with the exception of the OriL (5160–5191) and several masked regions with high G/C content 
and/or repetitive sequences (Figure 1—figure supplement 1 and Figure 1—figure supplement 2, 
Figure 1—figure supplement 2; Supplementary file 1—Table 5). We observed a combined total of 
77,017 single- nucleotide variants (SNVs) and 12,031 small insertion/deletions (In/Dels) (≲15 bp in size) 
across all tissue, age, and intervention groups. Collectively, these data represent the largest collection 
of somatic mtDNA point mutations obtained in a single study to date and is second only to Lujan et 
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al. in terms of overall In/Del counts (Lujan et al., 2012). A summary of the data for each sample is 
reported in Supplementary file 1—Table 2 and Supplementary file 2.

Frequency of somatic mtDNA mutations increase with age and is 
tissue-specific
To better understand the effects of aging on somatic mtDNA mutations across tissues, we determined 
the frequency of both SNVs and small In/Dels (≲15 bp) in aged mice. To minimize the contribution of 
mtDNA mutations that could be either maternally inherited or early clonal expansions established in 
development, we limited our analysis to mutations occurring at or below a VAF of 1%. In young mice, 
an initial comparison of the frequency of mtDNA SNVs revealed a mutation frequency on the order 
of ~1 × 10–6, with low variability between tissues (Figure 1A). Kidney and liver were notable excep-
tions, exhibiting significantly higher SNV frequencies compared to the other tissues in the young 
cohort (Figure 1A and B). With age, we observed significant increases in SNV frequency in all tissues 
we surveyed (Figure 1A). Moreover, mutation frequencies varied considerably between tissues in the 
aged cohort, with kidney having the highest SNV frequency (6.60±0.56 × 10–6) and heart having the 
lowest (1.74±0.16 × 10–6) (Figure 1A and C). The observed changes in frequency with age or tissue 
type did not correlate with differences in mtDNA copy number, as the mtDNA:nDNA ratio did not 
change with age (Figure 1—figure supplement 3A, B; Supplementary file 1—Table 3). In/Dels were 
approximately 10- fold less prevalent than SNVs in young mice, with a mean frequency of ~1.5 × 10–7, 
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Figure 1. Frequency of somatic mitochondrial genome (mtDNA) mutations increase with age and is tissue- specific. (A) The frequency by which single- 
nucleotide variants (SNVs) were detected in all sequenced bases in either young (~5- months of age) or old (26- months of age) tissues arranged from 
highest to lowest SNV frequency in aged mice. (B) The frequency by which DNA insertions or deletions (In/Del) of any size are detected within all 
sequenced bases either young (~5- months of age) or old (26- months of age) tissues. For (A) and (B), significance between young and old within a tissue 
was determined by Welch’s t- test. *0.01 < p < 0.05, **0.001 < p < 0.01, ***0.0001 < p < 0.001, ****p<0.0001; error bars = standard deviation of individual 
data points shown. (C–D) Heatmaps of one- way ANOVA with Tukey’s HSD for significant differences of SNV frequencies between tissues, within either 
young (C) or old (D) age groups. (E–F) Heatmaps of one- way ANOVA with Tukey’s HSD for significant differences of In/Del frequencies between tissues, 
within either young (E) or old (F) age groups.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Mean post- consensus ‘duplex’ depth for young (4.5 months) tissues.

Figure supplement 2. Mean post- consensus ‘duplex’ depth for old (26 months) tissues.

Figure supplement 3. Mitochondrial genome (mtDNA) copy shows no correlation with age, intervention, or mutation frequency.

Figure supplement 4. Blood does not significantly contribute to the differences in mutation frequency observed across tissues.

https://doi.org/10.7554/eLife.83395
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and virtually no differences between tissues (Figure 1D and E). Like SNVs, In/Dels increased with age 
in most tissues we surveyed and did not correlate with copy number, but unlike SNVs, they did not 
significantly differ between tissue types, likely due to the high variability between samples (Figure 1D 
and F; Figure 1—figure supplement 3C).

Due to mutation burdens being tissue- specific, we considered whether these differences could be 
driven by variation in the contribution of mitochondrial mutations in leukocytes of circulating blood. 
To determine this, we analyzed Duplex- Seq in a small subset of tissues from aged mice perfused with 
PBS to remove the blood. Duplex- Seq of mtDNA from blood collected prior to the perfusion showed 
that in aged mice, the average frequency of SNV in blood was 3.05±0.15 × 10–6, comparable to the 
frequency detected in aged hippocampus. Comparisons of perfused (no/low blood) to non- perfused 
tissues from liver, kidney, skeletal muscle, hippocampus, and cerebellum (the retina, retinal pigmented 
epithelium [RPE]/choroid, and heart were not sequenced), showed no significant difference in the 
frequency of SNV mutations (Figure 1—figure supplement 4). Thus, our mutation profiles are likely 
driven primarily by organ- specific cell types.

Although little is known about the kinetics of somatic mtDNA mutation accumulation during aging, 
they have been reported to increase exponentially during aging in mice (Vermulst et al., 2007). Both 
this current study and a prior study by Arbeithuber et al. report only two time points each (4.5 months 
vs. 26 months and 20 days vs. 10 months, respectively), making it impossible to confirm exponen-
tial increase in either study (Arbeithuber et al., 2020). However, the combination of our data with 
the previously published data by Arebiethuber et al. indicates a linear increase in overall mutation 
frequencies across the lifespan in the three tissue types common to both studies (brain, muscle, and 
liver). This indicates a likely constant ‘clock- like’ accumulation analogous to what is seen in the nDNA 
(Abascal et al., 2021; Alexandrov et al., 2015; Arbeithuber et al., 2020; Figure 2). Together, these 
data demonstrate that mtDNA mutations accumulate at tissue- specific rates during aging and indi-
cate use of a single tissue source to draw broad organism level conclusions regarding the interaction 
between mtDNA mutations and aging is not scientifically supported.

Mutation spectra of somatic mtDNA mutations demonstrate tissue-
specific distribution of mutation types
Previous work by us and others indicates that somatic mtDNA mutations are strongly biased toward 
transitions (i.e. G→A/C→T and T→C/A→G), with low levels of transversions (Ameur et  al., 2011; 
Arbeithuber et al., 2020; Ju et al., 2014; Kennedy et al., 2013; Pickrell et al., 2015; Williams et al., 
2013). Moreover, due to their low prevalence, transversions associated with oxidative lesions (i.e. 
G→T/C→A and G→C/C→G) have been largely discounted as contributing to age- associated mtDNA 
mutagenesis (Arbeithuber et al., 2020; Hoekstra et al., 2016; Itsara et al., 2014; Kauppila et al., 
2018; Kennedy et al., 2013; Zheng et al., 2006). However, these findings are based on a limited 
number of tissue types, specifically muscle and brain. Given the wide range of SNV frequencies and 
known metabolic activities of the tissues we assayed, we examined the mutational spectra for each 
tissue. Our data show that the overall bias toward G→A/C→T transitions remains broadly true for most 
tissues, but the extent of this bias varies considerably, with kidney and heart being the notable extremes 
(Figure 3A). In agreement with prior studies, a single mutation class, G→A/C→T, is the most abundant 
mutation type and accounts for more than 50% all mutations in most young tissues (Figure 3—figure 
supplement 1). In contrast, ROS- linked G→T/C→A and G→C/C→G mutations exhibited substantial 
variation in the level of mutations between tissues. In the central nervous system (CNS) tissues (hippo-
campus, cerebellum, retina), G→T/C→A and G→C/C→G, combined, accounted for an average of 23% 
of the total mutation burden (retina = 18%, hippocampus 18%, cerebellum 33%) (Figure 3—figure 
supplement 1). These data are consistent with prior Duplex- Seq- based studies that focused on neural 
tissues (Arbeithuber et al., 2020; Hoekstra et al., 2016; Kennedy et al., 2013). In contrast, skeletal 
muscle and heart in young animals have a relatively high frequency of ROS- linked mutations, with 43% 
and 66% of all mutations, respectively, resulting from these two types of mutations. This suggests that 
ROS is a greater source of mtDNA mutagenesis earlier in life and is tissue- dependent.

In comparison to the young tissues, mutation loads became more weighted toward transitions 
across the aged tissues we surveyed (Figure  3B). Significant differences between tissues within 
mutation classes also became more pronounced (Figure 3B, heatmaps). The fold- increase in most 
mutation types were remarkably uniform despite significant differences in SNV frequency between 
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A

B

C

Figure 2. Somatic single- nucleotide variant (SNV) mutations increase linearly with age. Linear regression of total 
SNV mutation frequency vs. age in (A) skeletal muscle, (B) brain, and (C) liver. Black = data from Arbeithuber et al.; 
purple = data from this study; shaded area = 95% confidence interval of linear regression.

https://doi.org/10.7554/eLife.83395
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Figure 3. Mutation spectra of somatic mitochondrial genome (mtDNA) mutations demonstrate tissue- specific 
distribution of mutation types. (A) Single- nucleotide variant (SNV) frequency by mutation type for young 
(~5- months of age) tissues shows that replication/deamination- linked G→A/C→T mutations largely dictate overall 
SNV mutation burden and predominate in all young tissues except heart. Tissues of the central nervous system: 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.83395
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them (Figure 3C). Aging led to an average 3.2- fold increase of G→A/C→T and T→C/A→G tran-
sitions. Similarly, a significant 2.4- fold increase of T→A /A→T transversions was also observed 
(Figure 3C). A→C /T→G mutations were not evaluated due to their extreme paucity. In contrast to 
the other mutation types, G→T/C→A and G→C/C→G mutations did not significantly increase with 
age (Figure 3C).

The mtDNA has been documented to accumulate 8- oxo- dG in a tissue- specific manner (Hamilton 
et  al., 2001). In addition, manipulations and high temperatures during library construction can 
further increase DNA damage (Ahn and Lee, 2019). It has been noted that DNA damage can, if 
present at sufficiently high levels, give rise to apparent G→T/C→A mutations in Duplex- Seq data, 
resulting from shearing induced DNA damage (Abascal et al., 2021; Xiong et al., 2022). We typi-
cally control for this class of artifacts by clipping the post- consensus read. However, artifacts have 
been documented to occur up to 30 cycles into DNA that is highly degraded (Xiong et al., 2022). 
To investigate the potential for DNA damage to explain the presence of G→T/C→A and G→C/C→G 
mutations, we performed two analyses. First, we examined the single- strand consensus sequence 
(SSCS) data that comprise the final high- accuracy duplex consensus sequence (DCS). Apparent vari-
ants in SSCS have sequencer- based errors removed and are comprised of both real DNA mutations 
and PCR- derived errors. Most of the PCR- derived errors are the result of base misincorporation 
across from DNA damage events, such as 8- oxo- dG and cytidine deamination to uracil (Schmitt 
et al., 2012). Our data show tissues significantly vary in the frequencies of G→T/C→A and G→C/
C→G mutations. Therefore, if ROS- linked mutations were the result of fixation of DNA damage 
during PCR, then we would expect that the frequency of ROS- linked variants in the SSCS data 
should mirror the variability that is seen the final DCS data. Plotting the G→T and C→A SSCS 
frequency reveals that signal from ROS damage is uniform across all tissue types (Figure 3—figure 
supplement 2). Therefore, in order for false variants in the SSCS data to result in false DCS variants, 
the rate at which this occurred would need to be tissue- specific. Importantly, we randomized the 
library preparation and sequencing steps across tissues and ages to avoid batch effects, making 
it difficult to explain how tissue- level effects would occur. Second, we treated total DNA purified 
from aged skeletal muscle with formamidopyrimidine DNA glycosylase (Fpg) immediately after 
sonication. Fpg recognizes damaged purines, including 2,6- diamino- 4- hydroxy- 5- formamidopyrim
idine and 8- oxo- dG, to generate an apurinic (AP) site that it then cleaves via its AP lyase activity, 
leaving a one nucleotide DNA gap. This effectively prevents the damaged DNA strand from PCR 
amplifying during library construction, thus preventing fragmented DNA from being able to form 
a final duplex consensus. Encouragingly, we observed no significant difference in our Fpg- treated 
and non- treated skeletal muscle samples, indicating that shearing- induced artifacts are unlikely to 
account for our observations (Figure 3—figure supplement 3). Taken together, our data suggest 
that ROS damage to the mtDNA is unlikely to explain our observations of tissue- related variability 
in G→T/C→A and G→C/C→G mutations.

eye retina, brain hippocampus, and brain cerebellum have the lowest frequencies of G→T/C→A and G→C/
C→G transversions whereas they are highest in kidney and heart. Heatmaps show adjusted p- value from one- 
way ANOVA with Tukey’s HSD for significant differences of SNV frequencies between young tissues within each 
mutation class. (B) SNV frequency by mutation type for old (26- month- old) tissues shows age- specific changes to 
mutation spectra. Heatmaps show one- way ANOVA with Tukey’s HSD for significant differences of SNV frequencies 
between old tissues within each mutation class. (C) Fold- change of frequency from young to old age calculated for 
each tissue and spectra and shown with log2 scaling. Heatmap shows whether fold- change values of old relative to 
young mice are significantly different from fold- change 0 (no change). K=kidney; L=liver; RC = retinal pigmented 
epithelium (RPE)/choroid; R=retina; Hi = hippocampus; C=cerebellum; M=skeletal muscle; He = heart.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Relative proportion of different mutation types varies across tissues.

Figure supplement 2. The single- strand consensus G→T and C→A frequency does not vary across tissues in old 
mice. 

Figure supplement 3. Treatment with FPG does not affect the G→T/C→T mutation frequency.

Figure 3 continued

https://doi.org/10.7554/eLife.83395
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Clonal expansion of somatic mtDNA mutations is tissue-specific
Mutagenesis has been described as an irreversible process that results in increasing levels of muta-
tions in a population over time, termed ‘Muller’s ratchet’ (Felsenstein, 1974; Muller, 1964). Conse-
quently, absent any compensatory mechanisms, mutations should increase during life. In the case 
of mtDNA, this should appear as an increase in the burden of apparent heteroplasmies (or clones) 
within a tissue over time. Importantly, because mtDNA replicates independently of nDNA, apparent 
heteroplasmies can increase during aging even in the absence of substantial cell proliferation. More-
over, mitochondria are subject to surveillance by mitophagy, which may affect the age- dependent 
mutational dynamics in tissue- specific ways (Pickles et al., 2018). Expansion of mtDNA mutations 
sufficient to warrant the term ‘clonal’ has been documented in human tissues, but the prevalence of 
this phenomenon remains poorly documented in mice (Greaves et al., 2014; Greaves et al., 2010; 
Greaves et al., 2006; Nekhaeva et al., 2002). The set of tissues we examined comprise a range of 
varying proliferative and replicative potentials, with heart, brain, and retina being limited, while many 
kidney and liver cell types proliferate throughout life. Therefore, we sought to determine the tissue- 
specific burden and dynamics of age- related clonal expansion of mtDNA mutations.

We defined a ‘heteroplasmic clone’ as a variant supported by three or more error- corrected reads 
and then calculated both the frequency and percentage of total mutations corresponding to these 
clones. We observed considerable tissue- specific variation in the effects of age on the presence of 
heteroplasmic clones, with all tissues exhibiting a significant increase in the frequency of total hetero-
plasmic clones with age (Figure 4A and C). Clones in all tissues were distributed relatively uniformly 
across the mtDNA coding region, but with a striking clustering of variants in the mCR (Figure 4C, 
green region), consistent with prior reports (Arbeithuber et al., 2020; Kennedy et al., 2013; Sanchez- 
Contreras et al., 2021).

The mutation composition of the clones varied between tissues. In the RPE/choroid, brain, skeletal 
muscle, and heart, the relative percentage of SNVs found as heteroplasmic clones did not change with 
age (~2–3% of total SNV). In contrast, kidney, liver, and retina exhibited a disproportionate increase in 
the number of clonally expanded variants with age. In old kidney, the percentage of SNVs detected as 
heteroplasmic clones increased to 10.4%, while clones in liver increased from ~1% of SNVs in young 
to 5.6% in old (Figure 4B). In retina, the percentage of SNVs detected as clones increased from 3.6% 
in young to 5.6% in old mice. In kidney and liver, the expansion of mtDNA mutations was pervasive 
across the genome and suggestive of a relationship to the high proliferative and regenerative capacity 
of these tissues. Retina, however, is a post- mitotic tissue and displayed a very different pattern, with 
the age- associated increase in clonality being attributed almost entirely to variants clustered in the 
mCR (Figure 4C).

Importantly, several of the tissues we examined are highly vascular and the hematological compart-
ment has been documented to exhibit significant heteroplasmy and shifts in clonal expansions with 
age (Lareau et al., 2019). With the exception of kidney, which showed a modest effect, we observed 
no significant changes between the perfused and non- perfused samples, indicating that blood is 
unlikely a significant source of age- dependent changes across tissues (Figure 4—figure supplement 
1). Collectively, these data suggest that the importance of mtDNA heteroplasmic clones in aging 
phenotypes is tissue- dependent. Very few studies have examined somatic mtDNA heteroplasmic 
clones in any tissue, and this remains an area for future work.

Spectral analysis of clonal somatic mtDNA mutations suggests removal 
of ROS-linked mutations
Having established the tissue- specific profile of heteroplasmic clones, we reasoned that we could 
distinguish between mutations arising from a transient process earlier in life and an active clearance 
of mtDNA and/or whole mitochondria containing mutation types by examining which mutation types 
became more heteroplasmic with age. Specifically, an ongoing or early transient mutational process 
would be expected to result in expansion of a subset of variants across all mutation types. In contrast, 
evidence of active clearance would appear as either a lack of heteroplasmic clone expansion or a 
bias in the specific variants that underwent expansion. Because five of the eight tissues showed no 
significant change in the proportion of clonal SNV with aging, we expected that clones would be 
distributed across the spectra in a pattern similar to non- clonal mutations. Instead, we observed that 
the spectrum of heteroplasmic clones demonstrates a nearly complete suppression of heteroplasmic 

https://doi.org/10.7554/eLife.83395
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Figure 4. Clonal expansion of somatic mitochondrial genome (mtDNA) mutations is tissue- specific. (A) Frequency of mtDNA clones detected in each 
tissue shows an increase in detection of clones with age in all tissues. Note that y- axes are set for each tissue (N=5 for young; N=6 for old, error = 
± standard deviation). (B) Percentage of total mutations found in heteroplasmic clones for each tissues shows that only kidney, liver, and retina have 
significant increases in relative ‘clonality’ with age. For (A) and (B), significance between young and old within a tissue was determined by Welch’s t- test. 

Figure 4 continued on next page
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clones derived from G→T/C→A and G→C/C→G mutations in both young and old mice (Figure 5A 
and B). Remarkably, suppression of ROS- linked heteroplasmic clones was true even in the heart, 
which carried the highest combined G→T/C→A and G→C/C→G SNV mutation burden of any tissue, 
with 65% of total SNV in young and 34% of SNV in old mice (Figure  3—figure supplement 1). 
Thus, we asked whether this lack of G→T/C→A and G→C/C→G clones was a significant finding or 
merely a consequence of low sampling due to the relative paucity of heteroplasmic clones and the 
lower frequency of ROS- associated mutations. Under the assumption that heteroplasmic clones arise 
randomly, we tested whether our dataset of detected SNV clones differed from the expected number 
of clones based on the spectral distribution of non- clonal SNV mutations. To ensure that we had 
sufficient power, we combined SNV mutations and clones detected in all eight tissues of the six old 
mice for a total of 24,244 de novo SNVs and 1461 heteroplasmic clones. To account for differences 
in depth between samples, the spectral distribution of total SNV mutations was calculated for each 
tissue of each mouse. The expected contribution of clones in each tissue was then weighted based on 
the average percentage of ‘clonality’ measured in the aged dataset (Figure 5B). For example, more 
clones were expected to form in kidney and liver (10.4% and 6% clonality, respectively) than would 
be expected in brain or muscle tissues (~3% clonality). Using this method, our model predicted the 
detection of 1341 heteroplasmic clones in total for combined aged tissues, which is within 10% of the 
detected total of 1461.

We modeled the expected spectrum of these clones among the six mutation types using a Poisson 
process to model random sampling error due to the low abundance of clones. We compared the 
expected number to the observed spectrum and found that the clonal spectra differed significantly 
from the distribution of non- clonal SNVs (Figure 5C and D). G→T/C→A and C→G/G→C mutations 
were predicted to form ~146 and ~69 clones respectively, however, only eight G→T/C→A clones and 
two C→G/G→C clones were detected in the entire aged mouse dataset, corresponding to an 18- and 
34- fold under- representation, respectively. Conversely, G→A/C→T and T→C/A→G transitions only 
deviated from the expected values by less than twofold (Figure 5D). Although we used a combined 
aged tissue dataset to ensure that we were not under sampling, this under/over- representation by 
mutation spectra was detected in every tissue type as shown by their observed spectral distribution 
(Figure 5E). Taken together, these results suggest that expansions of heteroplasmic clones in mtDNA 
unlikely arises as a random consequence of somatic mutation formation. The uneven distribution of 
clones relative to non- clonal SNVs suggests that the lack of G→T/C→A and G→C/C→G mutation 
accumulation with age does not reflect differences in the formation of these mutations, but rather is 
consistent with a steady- state level of ROS- linked mutations that is susceptible to a constant genera-
tion and removal.

Late-life treatment with mitochondrially targeted interventions reduces 
ROS-linked mutations
Like in the germline, mtDNA mutations have been hypothesized to be selectively removed in somatic 
tissue through a mechanism involving a still poorly understood interaction between the unfolded 
protein response, mitophagy, and mitochondrial fission/fusion (Chen et al., 2010; Gitschlag et al., 
2016; Lin et al., 2016; Suen et al., 2010). Therefore, we hypothesized that compounds known to 
improve function and/or ultrastructure in aged mitochondria would impact the burden of aging mtDNA 
mutations by shifting the steady state of ROS damage toward removal of damaged/dysfunctional 
mitochondria and their accompanying mtDNA. To this end we sequenced tissues from mice treated 
systemically for 8 weeks with either Elam or NMN in old mice that had accumulated somatic mtDNA 
mutations throughout their lives. Functionally, both Elam and NMN improve mitochondrial energetics 
and the mitochondrial network in aged mice across multiple aged tissues within an 8- week time frame 

*0.01 < p < 0.05, **0.001 < p < 0.01, ***0.0001 < p < 0.001, ****p<0.0001; error bars = standard deviation of individual data points shown. (C) Lollipop 
plots show the mtDNA genomic location of clonal hetroplasmic mutations in young (top row, blue markers, n=5) and old (bottom row, orange markers, 
n=6) for each tissue type. Orange = rRNA; dark blue = tRNA; purple = protein coding; green = OriL or mitochondrial control region (mCR).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Mitochondrial genome (mtDNA) variant clones in blood are not a significant contributor to age- related to clonal expansions.

Figure 4 continued
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Figure 5. Spectral analysis of clonal somatic mitochondrial genome (mtDNA) mutations suggests removal of reactive oxygen species (ROS)- linked 
mutations. (A) Frequency of heteroplasmic clones in young mice shown as clone frequency for each mutation class and tissue. (B) Frequency of 
heteroplasmic clones in aged mice for each mutation class and tissue. Inset shows graph with adjusted axis to match young mice in (A) to better 
visualize lack of mutations in G→T/C→A and G→C/C→G mutation classes despite expansion of clonality with age. In both (A) and (B) the dotted line 
indicates frequency value of 0.005. (C) The combined distribution of mutation spectra for single- nucleotide variants (SNVs) for either unique mutations 
(detected two or less times) or clonal mutations (detected more than two times) for all aged tissues. (D) Table showing that, based on the mutation 
spectra of unique mutations, the observed number of SNV clones differs the number SNV clones expected if heteroplasmic clones arise randomly 
as a consequence of mutation burden. G→A/C→T and T→C/A→G clones are over- represented, while G→T/C→A and G→C/C→G clones are strongly 
under- represented based on Poisson sampling. ‘Fold Diff’ represents fold- change of observed clone values relative to expected. (E) Mutation spectra 
distributions for each aged tissue type mirrors the pattern of the combined aged samples with over/under representation of specific mutation types 
within observed clones. Mutation types are color coded as in (C).

The online version of this article includes the following source data for figure 5:

Source data 1. Speadsheet containing the calculation of expected vs observed clone counts for Figure 5C.
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(Campbell et al., 2019; Chiao et al., 2020; Sweetwyne et al., 2017; Whitson et al., 2020), albeit 
through different mechanisms. Specifically, Elam improves mitochondria structure and integrity of the 
inner mitochondrial membrane cristae (Birk et al., 2013; Machiraju et al., 2019), whereas NMN acts 
as a precursor molecule for NAD+/NADP production (Hong et al., 2020). This allowed us to examine 
mice within such a narrow window of time that it was more likely to detect changes in mutation turn-
over/removal, rather than significant prevention of mutation accumulation during aging.

All treated samples were sequenced to a similar mean ‘duplex’ depth and detected comparable 
numbers of mutations as the controls (Figure 1—figure supplement 2; Figure 6—figure supplement 
1 and Figure 1—figure supplement 2; Supplementary file 1—Table 2). We did not observe a signif-
icant change in the overall mutation frequencies between aged mice and treated mice, regardless 
of tissue, indicating that these interventions are unlikely to indiscriminately affect mtDNA mutations 
(Figure 6—figure supplement 3). In support of this observation, the non- synonymous to synonymous 
ratio (dN/dS), which is a measure of positive or negative selection, shows no significant deviation 
from the expected ratio of one for any age, tissue, or intervention (Figure 6—figure supplement 4). 
However, consistent with our hypothesis, mice treated with Elam or NMN showed a trend for reduction 
of ROS- associated G→T/C→A and G→C/C→G mutations in heart, kidney, liver, and skeletal muscle. 
In heart, this reached significance for reduction of G→T/C→A mutations (control: 9.7±3.0 × 10–7 vs. 
ELAM: 5.5±1.5 × 10–7, padj = 0.019; control: 9.7±3.0 × 10–7 vs. NMN: 4.7±0.9 × 10–7, padj = 0.017; 
one- way ANOVA within each mutation class with Dunnett’s test against saline control) (Figure 6A). 
In kidney, reduction of G→C/C→G mutations reached significance in NMN- treated animals (control: 
7.3±2.0 × 10–7 vs. NMN: 3.7±1.7 × 10–7, padj = 0.038; one- way ANOVA within each mutation class 
with Dunnett’s test against saline control) (Figure 6B). Both liver and skeletal muscle trended toward 
significance (Figure 6C and D). No effect was seen in the remaining tissues (Figure 6—figure supple-
ment 5). G→T/C→A and G→C/C→G mutations do not significantly increase between young and old 
age control animals, but are reduced in aged animals with these interventions, thus indicating that 
these changes are not simply due to the prevention of these mutation types during the treatment 
window. We interpret these findings to mean that ROS- linked mutations do occur throughout life, 
but that either mitochondria or the mtDNA harboring these mutations are more likely than other 
mutation classes to be eliminated via mechanisms of cellular organelle maintenance. Although we 
cannot discount that the lack of efficacy in some tissues may be due to tissue- specific differences in 
biodistribution of the two compounds tested, the efficacy of Elam and NMN to reduce ROS- linked 
mutations in these organs is consistent with other reports demonstrating functional improvements 
to aged tissues specifically in skeletal muscle, heart, and kidney for Elam (Chiao et al., 2020; Swee-
twyne et al., 2017; Whitson et al., 2020) and heart, liver, and skeletal muscle for NMN (Luo et al., 
2022; Mills et al., 2016; Whitson et al., 2020).

In contrast to the pattern seen in peripheral organs of treated mice, a reduction of ROS- linked 
mutations was not observed in tissues of the brain or eye (Figure 6—figure supplement 5). Both 
ELAM and NMN can cross the blood- brain barrier with ease and so are expected to be available to 
both brain and eye with systemic treatment. Our findings are consistent with the lower overall G→T/
C→A and G→C/C→G mutation burden in these latter tissues and may indicate that their mtDNA is 
more protected from ROS damage with age than is the case in peripheral organs. When considered 
in the context of the data presented in Figure 4, which demonstrates a lack of clone formation for 
G→T/C→A and G→C/C→G mutations, the selective reduction of these same mutations in tissues with 
high oxidative mutation burden further supports the hypothesis that ROS- linked mtDNA mutation 
accumulation is regulated through life- long and specific removal of ROS- damaged mtDNA genomes.

Discussion
The processes that drive and influence somatic mtDNA mutagenesis in aging and disease has proved 
to be nuanced and controversial (Kauppila and Stewart, 2015; Sanchez- Contreras and Kennedy, 
2022; Szczepanowska and Trifunovic, 2017). Enhancement of accuracy by NGS and newer methods, 
such as Duplex- Seq, have begun to shed light on these processes. In this report, we took advantage 
of our continued improvement in the Duplex- Seq protocol to perform a multi- tissue survey of somatic 
mtDNA mutations in a naturally aging mouse cohort. The very high depths we achieved (depth grand 
mean: 10,125×) allowed us to detect hundreds to thousands of mutations per sample (variant count 
mean: 453, total: 77,017 SNVs and 12,031 In/Dels) across all mutation types, representing an ~8.3- fold 
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increase in depth and a 38.5- fold increase in mean mutation count per sample compared to the 
next largest currently published Duplex- Seq dataset for mouse mtDNA (depth grand mean: 1231×; 
variant count mean: 12.7, total: 2488) (Arbeithuber et al., 2020). This substantially expanded dataset 
allowed us to examine the types and classes of de novo mtDNA mutations with unprecedented sensi-
tivity and, as a result, we observed unexpected patterns that would have been missed with a lower 
coverage of mutations.

The findings reported here broadly recapitulate those from smaller studies reporting that somatic 
mtDNA point mutations occur at a frequency on the order of 10–6, increase with age, and are biased 
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Figure 6. Late- life treatment with mitochondrially targeted interventions reduces somatic mitochondrial genome (mtDNA) mutation burden and 
is consistent with a mechanism of active reactive oxygen species (ROS)- linked mutation removal. Mutation spectra show that aged mice treated 
for 8 weeks with either elamipretide (Elam, diagonal striped bars) or nicotinamide mononucleotide (NMN, horizontal striped bars) have decreased 
frequency of mutations compared to no- treated (NT) controls specifically in mutation types linked to oxidative damage, G→T/C→A and G→C/C→G, 
specifically for (A) kidney and (B) heart and trending for (C) liver. (D) Muscle trends lower for Elam- treated mice in G→A/C→T mutations. Error bars = ± 
standard deviation. Statistics calculated by one- way ANOVA for each mutation class within a tissue and Dunnett’s multiple comparison test compared to 
the untreated aged control group, significance=padj <0.05 and trend=padj <0.15.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Mean post- consensus ‘duplex’ depth for aged (26 months) elamipretide- treated tissues.

Figure supplement 2. Mean post- consensus ‘duplex’ depth for aged (26 months) nicotinamide mononucleotide- treated tissues.

Figure supplement 3. Elamipretide (Elam) and nicotinamide mononucleotide (NMN) do not affect the overall mitochondrial genome (mtDNA) 
mutation frequency.

Figure supplement 4. Per gene dN/dS ratio shows no apparent selection across age, tissues, and interventions.

Figure supplement 5. Late- life treatment with mitochondrially targeted interventions does not reduce somatic mitochondrial genome (mtDNA) 
mutation burden in retinal pigmented epithelium (RPE)/choroid (pink), retina (cyan), hippocampus (purple), or cerebellum (brown).
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toward G→A/C→T transitions (Ameur et al., 2011; Andreazza et al., 2019; Arbeithuber et al., 2020; 
Hoekstra et al., 2016; Kennedy et al., 2013; Samstag et al., 2018; Williams et al., 2013). However, 
our expanded dataset found an unexpected level of variation between tissues in both overall muta-
tion frequency and spectrum, indicating tissue- specific effects of aging on mtDNA mutation burden. 
While in young mouse tissues, we observed minimal variation in mtDNA SNV frequency with only 
kidney, liver, and RPE/choroid showing significantly increased levels compared to other tissues, with 
advancing age were distinct differences between all tissues apparent. Our data indicate that the accu-
mulation of somatic mtDNA mutation is highly segmental in nature and therefore its impact on aging 
or disease risk may be tissue- dependent.

The relevance of ROS-linked mutations in mtDNA and aging
In contrast to mutations arising from DNA polymerase γ (Pol-γ) error, ROS- linked mutations are 
unlikely to be specifically generated by the process of DNA replication itself. The studies that have 
examined mtDNA mutagenesis have noted a distinct lack of G→T/C→A and G→C/C→G transversions, 
suggesting that oxidative damage is not a major contributor to aging mtDNA mutagenesis (Ameur 
et al., 2011; Andreazza et al., 2019; Arbeithuber et al., 2020; Hoekstra et al., 2016; Itsara et al., 
2014; Kennedy et al., 2013; Samstag et al., 2018; Zheng et al., 2006). While those studies have 
increased our understanding of mtDNA mutagenesis, these conclusions are largely based on a small 
number of tissue types. In this more extensive dataset, we observed a mean of 50 G→T/C→A muta-
tions per sample with no samples having zero instances. In contrast, Arbeithuber et al. reported a 
mean of three G→T/C→A mutations per sample with ~17% of samples failing to detect this mutation 
type at all (Arbeithuber et al., 2020). Such low numbers can lead to significant biases in determining 
mutation frequencies and make it difficult to detect meaningful differences between sample types.

The age- related spectrum of mutations between tissues revealed considerable variation of the 
canonical ROS- associated G→T/C→A and G→C/C→G transversions (Figure 2). It was unexpected to 
find that such a significant proportion of mutations in some young tissues were ROS- linked, including 
65% of all SNV mutations in the heart and 43% in skeletal muscle. Despite this, there was no increase 
of these mutations with age such that the proportion of ROS- linked mutation burden relative to all 
SNV mutations dropped to 30% and 25% heart and skeletal muscle, respectively. This finding suggests 
the possibility that different tissues experience varying levels of ROS injury in early life, but that these 
differences are kept in check during the aging process. Alternatively, it could mean that there is tissue 
specificity in how cells repair and/or destroy oxidatively damaged mitochondria and mtDNA, resulting 
in a steady state of ROS- linked mutations.

Interestingly, and consistent with prior reports, mouse tissues that are part of the CNS exhibited 
distinctly reduced levels of ROS- associated transversions compared to the other tissues we surveyed 
(Figure 2; Hoekstra et al., 2016; Kennedy et al., 2013; Pickrell et al., 2015; Williams et al., 2013). 
This suggests that studies focused only on brain tissue may under- represent the prevalence of ROS- 
linked somatic mtDNA mutations. Neural tissues are widely considered to be exquisitely sensitive to 
ETC dysfunction and therefore may have evolved a more robust ability to defend against it. More 
active repair or quality control mechanisms may help eliminate damaged mtDNA before inducing 
mutagenesis. Consistent with this idea, we observed that both heart and skeletal muscle have a high 
relative burden of G→T/C→A and G→C/C→G transversions, especially in young tissues, suggesting 
that their high metabolic activity may confer transversion mutations in these tissue types relative to 
transitions. These observations suggest that the previously broad conclusions of ROS being irrelevant 
in mtDNA mutagenesis may be biased for having relied on CNS tissues.

Our results with Elam and NMN intervention demonstrate that maintenance of mutations may 
be influenced by the origin of the mtDNA lesion. These pharmacological interventions are known 
to reverse age- related decline in mitochondrial function by improving the function of the mitochon-
drial pool in some aged tissues, albeit through very different mechanisms. Because neither drug has 
been shown to interact directly with mtDNA, the reduction of ROS- linked mtDNA mutation frequency 
within such a short treatment window suggests a loss of mtDNA harboring ROS- linked mutations, 
rather than a reduced rate of accumulation due to reduced excess ROS. We propose that rather than 
the incidence and impact of ROS damage on mtDNA being minimal, the direct or indirect recognition 
and removal of ROS- linked damage/mutations results in a steady state during aging. We expect that 
in tissues with exacerbated levels of ROS, the extent of damage could be sufficient to simultaneously 
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create multiple lesions along an individual genome. This could affect the formation of ROS- linked 
mutations if enough damage is accrued to a mitochondrion to target it for mitophagic removal, induce 
cellular apoptosis, or stall progression of the mtDNA replication fork. Any of these scenarios could 
effectively prevent ROS- induced mtDNA damage from being converted into a mutation or remove 
cells containing damaged mtDNA from the tissue, thereby shortening the detection window for 
mutations.

Heteroplasmy vs. clonal expansion in aging
mtDNA mutations can be present as a fraction of mtDNA molecules within a cell (i.e. heteroplasmy) to 
all or nearly all molecules (i.e. homoplasmy). Our data demonstrate significant variability in mutational 
burden, as shown by the apparent heteroplasmic VAF, with kidney and liver exhibiting the highest 
loads (~10% and ~5%, respectively) in the tissues we sampled. However, despite an ever- increasing 
association with aging, disease, and injury, as well as being tractable with intervention, a common 
argument against the impact of mtDNA mutations in aging is that the observed heteroplasmy is well 
below the estimated at ∼60–90% threshold has prevailed (Rossignol et al., 2003; Rossignol et al., 
1999). However, this estimation is based on bulk level analysis of tissues. At the center of this issue is 
the inability of sequencing methods to distinguish between a low level of heteroplasmy arising from a 
number of mutations broadly distributed across a large area versus a high level of heteroplasmy found 
concentrated in a smaller population of cells. In the first case, the effect on cellular and tissue homeo-
stasis would be minimal, but in the latter case, an effect on cellular function would be expected. For 
example, one could imagine a scenario where every cell contains a different homoplasmic pathogenic 
mutation which would negatively affect cellular function for every cell. In this case, mutations would 
be highly prevalent (100% of cells), yet individually rare. However, bulk sequencing would give the 
appearance that no mutation comes close to exceeding the phenotypic threshold. This issue is likely 
to be even more complicated in tissues that are highly heterogeneous in their cell- type composition, 
such as kidney and brain. Our data are silent as to the intra- cellular heteroplasmic level, cell distribu-
tion, and functional impact on tissues during aging. However, the broad variability in SNV mutation 
rates and detection of apparent heteroplasmic clones strongly suggests any impact is highly tissue- 
specific. Recent advances in single- cell sequencing will likely help tease out the tissue- specific impact 
of mtDNA mutations and are an important avenue to understand their role to the aging process (Guo 
et al., 2023; Lareau et al., 2021; Sanchez- Contreras and Kennedy, 2022).

The ‘clock-like’ accumulation of mutations as a possible biomarker of 
aging
While the relative mutation frequencies in our dataset differed widely between aged tissues, we 
observed a surprisingly consistent twofold increase from young to old mice, driven largely by the 
accumulation of G→A/C→T transitions. Moreover, by combining our Duplex- Seq data with those from 
Arbeitheruber et al. our data show a clear clock- like behavior of these mutations (Figure 2), reminis-
cent of the Horvath epigenetic clock (Horvath, 2013). Such a clock- like accumulation holds promise 
as a biomarker for either biological or chronological age, depending on its modifiability. A key to the 
utility as a biomarker likely depends on the mechanistic driver(s) of this age- dependent accumula-
tion. Specifically, mitochondrial G→A/C→T and, to a lesser extent, A→G/T→C transitions, are widely 
thought to arise either by deamination of cytidine or adenosine, respectively, or base misincorpora-
tions by Pol-γ (Ameur et al., 2011; Kennedy et al., 2013). We have previously used a subset of this 
dataset to demonstrate that a discontinuous strand- specific gradient of transitions exists across the 
mtDNA, consistent with deamination events arising from a long- lived single- stranded replication inter-
mediate (Sanchez- Contreras et al., 2021). The slope of this gradient increases with age, indicating 
that deamination is likely an active chemical process (Mikhailova et al., 2022; Sanchez- Contreras 
et al., 2021). However, the underlying chemical mechanism behind these likely deaminations remains 
poorly understood and would impact its utility as a biomarker. For example, if deaminations are due 
to spontaneous hydrolysis, then transitions and/or the gradient is expected to be largely resistant 
to aging interventions and could serve as an indicator of chronological age. Alternatively, ROS and 
temperature, both affected by mitochondrial function, are known to induce deamination (Chrétien 
et al., 2018; Frederico et al., 1990; Gates, 2009; Harman, 1972). Therefore, interventions that affect 
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mitochondrial function and/or ROS production may be reflected in the rate of age- dependent accu-
mulation of mtDNA transitions and thus act as an indicator of biological age.

In addition to the mechanism behind de novo mutations, cellular proliferation may play a role in 
the measured prevalence of age- dependent mutations. Our dataset indicates that of the tissues we 
examined, those with the highest proliferative index, namely kidney and liver, also exhibit the highest 
prevalence of mutations, as well as their higher percentage of clonal mtDNA heteroplasmy. This likely 
demonstrates the contribution of cellular proliferation to the presence of mtDNA mutation, regardless 
of their etiology. Specifically, as tissues proliferate, mutations that arise earlier will expand over time 
and have a higher chance of being detected. Therefore, interventions or environmental exposures 
that affect cellular proliferation would predict significant changes in age- dependent mutation preva-
lence. Clonal expansions of mtDNA mutations have been well documented in colonic tissues with age 
and are enhanced in dysplasia, indicating technical feasibility of using the clonal expansion of mtDNA 
mutations as a biomarker in at least some tissues (Baker et al., 2019; Greaves et al., 2014; Greaves 
et al., 2006).

Alternative explanations for the results
We note two potential confounders that could provide an explanation for our data: nuclear- encoded 
mtDNA sequences (NUMTS) and shearing- induced artifacts arising from library construction. Studies 
indicate that NUMTS are highly prevalent and polymorphic in humans and is likely to be true in 
mice (Calabrese et al., 2012; Richly and Leister, 2004). Unknown and variations of NUMTS would 
be a potentially strong confounder in a study of outbred populations, but the use of one isogenic 
inbred line for this study likely eliminates this confounder. Specifically, this strong population bottle-
neck during colony formation would result in NUMTS- derived sequences that are shared across all 
the samples, especially between tissues from the same animal. However, we did take precautions 
to remove reads likely derived from NUMTS. First, we used the mm10 reference genome which is 
based on the C57BL/6J strain, so any NUMTS- derived variants present in our mtDNA data should 
preferentially align against any NUMTS. Second, we perform a BLAST on all reads containing at least 
one variant against the mm10 reference genome. We then reassigned the read based to whatever 
genomic location had the lower e- score. Lastly, we marked and remove variants shared between all 
individual samples. The result was an average of a dozen reads were removed, demonstrating that 
NUMTS are not likely a major source of false mutations.

The lack of age- associated increase in ROS- linked mutations makes it tempting to conclude that 
these mutations are either sequencing artifacts or at least inconsequential to the biology of aging. 
Countering these assumptions are two aspects of this study. First, treatment with FPG (Figure 3—
figure supplement 3) and the analysis of SSCS variant (Figure 3—figure supplement 2) demonstrate 
that detected G→T/C→A and G→C/C→G mutation burdens are unlikely to be induced by damage 
to shearing- induced single- stranded regions (Abascal et  al., 2021; Xiong et  al., 2022). Second, 
the results demonstrate that ROS- linked mtDNA mutations can be decreased pharmacologically at 
late age and within a short treatment period in some tissues. Such an effect is difficult to reconcile 
with a signal resulting from manipulation of the DNA during library construction, which should affect 
all experimental groups approximately equally. We note there remains the possibility that if ROS- 
linked mutations were artifactual, but arose from preexisting biologically induced DNA damage, then 
changes in ROS production across different tissues or with interventions could result in apparent 
decline in ROS- linked mutations. Importantly, such a scenario would suggest biological relevancy 
of preventing damage to the mtDNA that ultimately keeps G→T/C→A and G→C/C→G mutations 
extremely low.

Concluding remarks
Our data indicate that the accumulation of somatic mtDNA mutation is highly segmental in nature and 
that its impact on aging and/or disease risk may be tissue- dependent. Moreover, several of the tissues 
we examined, such as kidney, are very heterogeneous in their cell- type composition. By examining 
two compartments of brain (hippocampus and cerebellum), two compartments of the eye (retina and 
RPE/choroid), and two types of striated muscle tissue (skeletal and heart), we observe that not only 
are aging- related mtDNA mutation patterns tissue- specific, but they are also region- and cell type- 
specific. The different mutation spectra that we detected must be underlain by cell- specific regulation 
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of mtDNA. Previous overarching assumptions of how mtDNA mutations do, or do not, contribute 
to aging may have been premature when based on limited information from few tissues and with 
previous technical hurdles of poor accuracy in detection of low- level mutation burdens. Left unex-
plored in this study is whether an earlier initiation, longer duration, or more optimal dose of interven-
tion would more robustly alter the mutation spectra, especially in other tissues that do not show an 
effect in this study. Additionally, we cannot discount that the lack of efficacy in some tissues may be 
due to tissue- specific differences in biodistribution of the two compounds tested. Finally, we did not 
have the opportunity or sufficient sample size in this study to explore potential correlation between 
the heterogeneity in mitochondrial function of tissues vs. the degree of change in the oxidative muta-
tions. To fully understand how somatic mutation of mtDNA contributes to common diseases of aging, 
future work must delve into cell- specific mechanisms of mitochondrial mutation accumulation and 
mtDNA regulation, combined with high- accuracy methods of mtDNA mutation detection.

Materials and methods
Animals and tissue collection
C57BL/6J male mice from the National Institute of Aging Rodent Resource were handled according to 
the guidelines of the Institutional Animal Care Committee at the University of Washington. Two age 
cohorts were used at 4.5 and 26 months of age, respectively. Tissues from the 26- month- old cohort, 
including aged mice treated with Elam or NMN, were obtained from the same previously reported 
study, as previously described (Whitson et  al., 2020). Briefly, 24- month- old mice were randomly 
assigned to control, Elam, or NMN treatment groups. Elam was provided by Stealth BioTherapeutics 
(Newton, MA, USA) and administered at a 3 mg/kg body weight/day dosage for 8 weeks through 
subcutaneously implanted osmotic minipumps (ALZET, Cupertino, CA, USA). Control mice were simul-
taneously housed in cages with Elam pump mice. NMN was obtained from the Imai Laboratory (Wash-
ington University in St Louis, MO, USA) and administered through ad libitum drinking water with a 
concentration based on each cage’s measured water consumption and mean mouse body weight to 
approximate a 300 mg/kg/day dose. This method of drug delivery necessitated that NMN- treated 
mice were housed independently from control animals, however, treatments were run concurrently. 
Because we sequenced just a subset of the animals from the Whitson et al. study (N=3–5 vs. N=11–
15 each group), we minimized study variation by excluding tissues from animals with clearly cancerous 
lesions by gross analysis (primarily seen in liver) and then sequenced a random cohort of age- matched 
groups from the three treatment cohorts (Whitson et al., 2020).

Mouse tissue was collected immediately following euthanasia. Representative portions of six 
different organ systems were flash- frozen: (1) apex of the heart; (2) 2 mm section from the inferior 
pole of the left lateral liver lobe; (3) eyes were enucleated and cleared of muscle and adipose tissue 
before dissecting the retina from the RPE- choroid complex (also referred to as ‘eye cup’ or ‘EC’ in 
our raw data files) with both regions preserved separately; (4) 3 mm slice of the lower pole of the 
decapsulated left kidney; (5) proximal 3 mm of left gastrocnemius; (6) brain was dissected in ice- cold 
1× PBS to obtain a 3- mm- thick coronal section from the most anterior/septal pole of the left hippo-
campus and a 3- mm- thick sagittal section from the medial side of the left cerebellar hemisphere. For 
every sample, dissecting tools were wiped in 70% ethanol, a new razor blades and cutting boards 
were used, and samples were rinsed in fresh 1× PBS to minimize the contribution of blood and avoid 
DNA cross- contamination. For perfused experiments, a separate cohort of NIA male mice matching 
the same age for the aged cohort above (26 months, N=3) was perfused transcardially with 1× PBS 
containing calcium and magnesium before tissue isolation.

DNA processing and Duplex-Seq
DNA was extracted using the Qiagen DNeasy Blood and Tissue kit (Qiagen, Valencia, CA, USA) and 
stored at –80°C. Duplex- Seq was performed as previously described (Kennedy et al., 2014), but with 
several modifications also previously described (Hoekstra et al., 2016; Sanchez- Contreras et al., 
2021). Duplex- Seq adapters with defined unique molecular identifiers (UMIs) were used and were 
constructed by separately annealing complementary oligonucleotides (IDT, Coralville, IA, USA), each 
containing 1 of 96 UMIs of defined sequence (Supplementary file 1—Table 1). The resulting adapters 
were diluted to 25 μM for ligation to sheared DNA. Targeted capture used the IDT xGen Lockdown 
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protocol and probes specific for mouse mtDNA (Integrated DNA Technologies, Coralville, IA, USA) 
following the manufacturer’s instructions (Supplementary file 1—Table 2). The resulting libraries 
were indexed and then sequenced using ~150- cycle paired- end reads (300 cycles total) on an Illu-
mina NovaSeq6000 with ~20 × 106 reads per sample. Per sample sequencing metrics are available in 
Supplementary file 1—Table 3.

mtDNA content
mtDNA copy number was determined by droplet- digital PCR (ddPCR) by the Genomic Sciences Core 
of the Oklahoma Nathan Shock Center. Briefly, 200 ng of total genomic DNA from the same isolated 
DNA sample used for Duplex- Seq was mixed with ddPCR assay components including fluorogenic 
‘TaqMan’ primer probe sets and the reactions were distributed across a chip with ~20,000 ~ 1 nL drop-
lets to dilute the DNA template to either zero or one copy per well, as described previously (Masser 
et al., 2016). Reactions were then cycled to end- point and fluorescence was read in each droplet. 
Based on the count of fluorescent positive and negative wells and using a Poisson distribution, the 
number of target copies was calculated per microliter. nDNA counting was performed in parallel and 
used as a surrogate for cell number which allows for normalization to cell number and results in an 
absolute quantitation of mtDNA. The data are available in Supplementary file 1—Table 4.

Data analysis and statistics
The raw sequencing data was processed using version 1.1.4 of our in- house bioinformatics pipe-
line (https://github.com/Kennedy-Lab-UW/Duplex-Seq-Pipeline) with the default consensus making 
parameters. A detailed description of the Duplex- Seq pipeline is described in Sanchez- Contreras 
et  al., 2021. Seven small polynucleotide repeats were masked to reduce errors associated with 
alignment artifacts (Supplementary file 1—Table 5). To reduce the potential impact of NUMTS, we 
subjected all reads containing non- homoplasmic variants to BLAST- based alignment against a data-
base containing potential common contaminants (dog: canFam3; bovine: bosTau9; nematode: ce11; 
mouse: mm10; human: hg38; rat: Rnor 6.0). The inclusion of the mm10 genome in this database also 
allows for the identification of pseudogenes due to BLAST’s high sensitivity. Reads where the align-
ment with the lowest e- score is the same as the original alignment are kept and the remaining reads 
and associated variants are removed from further analysis. In addition, we removed variants found 
across all samples within an individual mouse, which would indicate an inherited, and not a somatic, 
process.

To quantify the frequency of de novo events, we used a clonality cutoff of >1% or a depth of <100, 
which excluded any positions with variants occurring at a high heteroplasmy level and scores each 
type of mutation only once at each genome position. Called variants were annotated using the 
Ensembl Variant Effect Predictor v99 to obtain protein change. Mutation frequencies were calculated 
by dividing the number of reads for each allele by the total number of reads at the same mtDNA 
position. Correlation statistics were applied to determine intra- and inter- animal mutation frequency 
variation using GraphPad Prism, R, and Python software. Statistical significances between young and 
old mutation frequencies for SNVs and In/Dels were determined by Welch’s t- test for each mutation 
class between young vs. old. For comparisons within each age group and mutation type but between 
tissues (e.g. young kidney vs. young liver vs. young heart frequency, etc.), one- way repeated measures 
(i.e. each tissue) ANOVA were followed with Tukey’s HSD. For comparing more than one group to 
a control (e.g. frequency of mutation type for kidney in aged ELAM or aged NMN treated mice vs. 
untreated aged control) one- way ANOVA was followed by Dunnett’s multiple comparison test. The 
significance of the ratio of means between young and old mutation spectra was determined by t- test 
for the ratio of means of two independent samples from two Gaussian distributions with the 95% 
confidence interval estimated by Fieller’s theorem implemented in the mratios R- package (Fieller, 
1954). p- Values or adjusted p- values (padj) less than 0.05 were considered significant in all cases.

Somatic heteroplasmic clones were defined as variants called in >2 supporting reads. Expected 
clone events were calculated as the percentage of clonal mutations (>2 calls per sample) for each 
mutation type observed by age, either in total across all samples or by individual tissue types (as 
indicated). Significance between expected and observed clone events was calculated by Poisson 
distribution.
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dN/dS analysis was carried out using the dNdScv R package (Martincorena et  al., 2017). The 
package is designed to quantify selection in somatic evolution by implementing maximum- likelihood 
methods that accounts for trinucleotide context- dependent substitution models, which is highly 
biased in mtDNA. Each sample was processed independently using the dNdScv implementation with 
options max_muts_per_gene_per_sample set to Inf, numcode set to 2, and the mean depth per gene 
included as a covariate. ND6 was analyzed separately due to it residing on the opposite strand from 
the other protein coding genes and having different G/C- skew (Ju et al., 2014). The resulting dN/
dS values (wmis) for each gene were averaged and significant deviation from 1 determined by a one 
sample t- test with Bonferroni correction (significance set to p≤0.0167).

Data availability and reproducibility
The Duplex- Seq- Pipeline is written in Python and R, but has dependencies written in other languages. 
The DuplexSeq- Pipeline software has been tested to run on Linux, Windows WSL1, Windows WSL2, 
and Apple OSX. The software can be obtained at . Raw mouse sequencing data used in this study 
are available at SRA accession PRJNA727407. The data from Arbeithuber et al. are available at SRA 
accession PRJNA563921. The final post- processed data, including variant call files, depth information, 
data summaries, and mutation frequencies, as well as the scripts to perform reproducible production 
of statistics and figure generation (with the exception of Figure 5C–E) are available at https://github. 
com/Kennedy-Lab-UW/Sanchez_Contreras_etal_2023.
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sequencing data used in this study are available at SRA accession PRJNA727407. The data from Arbe-
ithuber et al. are available at SRA accession PRJNA563921. The final post- processed data, including 
variant call files, depth information, data summaries, and mutation frequencies, as well as the scripts 
to perform reproducible production of statistics and figure generation (with the exception of Figure 
5C- E) are available at https://github.com/Kennedy-Lab-UW/Sanchez_Contreras_etal_2022, (copy 
archived at swh:1:rev:ff5f6a2bf4b30f40fd80ad4136ceea58f1b2dd52).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Sanchez- Conteras 
M, Sweetwyne MT, 
Kennedy SR

2021 Mitochondrial DNA 
isolated from different 
tissues with two different 
ages (4- 5 months and 24- 26 
months) and two different 
aging interventions

https://www. ncbi. nlm. 
nih. gov/ bioproject/? 
term= PRJNA727407

NCBI BioProject, 
PRJNA727407

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Arbeithuber B, 
Makova KD

2019 Duplex sequencing of 
mtDNA from mouse 
somatic tissues (brain and 
skeletal muscle), single 
oocytes, and oocyte pools 
was performed to study the 
effect of aging on mtDNA 
substitution frequencies

https://www. ncbi. nlm. 
nih. gov/ bioproject/? 
term= PRJNA563921

NCBI BioProject, 
PRJNA563921
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