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The rostral intralaminar nuclear complex
of the thalamus supports striatally

mediated action reinforcement
Kara K Cover, Abby G Lieberman, Morgan M Heckman, Brian N Mathur*

Department of Pharmacology, University of Maryland School of Medicine, Baltimore,
United States

Abstract The dorsal striatum (DS) mediates the selection of actions for reward acquisition neces-
sary for survival. Striatal pathology contributes to several neuropsychiatric conditions, including
aberrant selection of actions for specific rewards in addiction. A major source of glutamate driving
striatal activity is the rostral intralaminar nuclei (rILN) of the thalamus. Yet, the information that

is relayed to the striatum to support action selection is unknown. Here, we discovered that rILN
neurons projecting to the DS are innervated by a range of cortical and subcortical afferents and
that rILN—DS neurons stably signaled at two time points in mice performing an action sequence
task reinforced by sucrose reward: action initiation and reward acquisition. In vivo activation of this
pathway increased the number of successful trials, whereas inhibition decreased the number of
successful trials. These findings illuminate a role for the rostral intralaminar nuclear complex in rein-
forcing actions.

Editor's evaluation

Cover et al. examine the pathway from the intralaminar nucleus of the thalamus (rILN) to the dorsal
striatum (DS) in the reinforcement of behavior/actions. The rILN sends a large glutamatergic projec-
tion to the DS, but its role in action selection was unknown. The authors found that the rILN neurons
that project to the DS were activated at both action initiation and with the reward, and that activa-
tion and inhibition of this pathway increased the success or decreased the success of reward acquisi-
tion, respectively. The findings are an important advance in our understanding of the function of rILN
to DS projection in reward-based behavior, and the manuscript has provided convincing evidence
with the appropriate methodologies to support these claims.

Introduction
Classic models of basal ganglia function regard the dorsal striatum (DS) as an integrator of cortical
glutamatergic signaling that is modulated by reward signals arising from midbrain dopaminergic input
to support the reinforcement of actions directed toward the acquisition of rewards necessary for
survival (Albin et al., 1989; DeLong and Wichmann, 2009, Gerfen and Surmeier, 2011; Kreitzer
and Malenka, 2008). While several studies highlight the fact that thalamic nuclei directly project to
the striatum (Alloway et al., 2014; Ding et al., 2008; Parker et al., 2016; Smith et al., 2014), these
nuclei are far less represented in basal ganglia models. This reflects our relatively poor understanding
of the functional role of thalamostriatal signaling in action reinforcement.

The intralaminar nuclei are the primary source of thalamic excitatory input to the striatum (Elena
Erro et al., 2002; Parent et al., 1983). These nuclei are segregated into rostral and caudal subdivi-
sions. At the caudal end, the medullary lamina splits to create the parafascicular nucleus, and more
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laterally, the centér median nucleus in monkey and human brains. The boundary distinguishing these
two nuclei is undetectable in rodents and other smaller mammals; thus, the posterior intralaminar
nuclei are referred to solely as the parafascicular nucleus with the consideration that the lateral compo-
nent of this nucleus is homologous to the centér median nucleus (Jones, 2007). At the rostral end, the
so-called rostral intralaminar nuclei (rILN) include the poorly described and weakly demarcated central
lateral (CL), paracentral (PC), and central medial (CM) regions. Both the caudal intralaminar grouping
and the rILN receive input from a wide array of cortical and subcortical centers and output to both the
striatum and the cortex. As such, it is unclear which of the inputs to the intralaminar nuclei are routed
to the striatum to potentially influence action reinforcement (Groenewegen and Berendse, 1994).

Functionally, the caudal intralaminar nuclear group responds to salient sensory cues in monkey
(Minamimoto and Kimura, 2002) and, in rodents, detects changes in action-outcome contingencies
to facilitate behavioral flexibility (Bradfield et al., 2013; Bradfield and Balleine, 2017, Yamanaka
et al., 2018). Recent work implicates the rILN in facilitating the execution and switching of learned
actions (Kato et al., 2018) and driving behavioral reinforcement (Cover et al., 2019; Johnson et al.,
2020). Together, these data suggest that the rILN contribute to action reinforcement, but the informa-
tion that the rILN integrates and relays to the striatum to support this function is unknown. Examining
this in mice using in vivo neural circuit monitoring and manipulation methods, we discovered that the
rILN dynamically signal at both the initiation of an action and during reward acquisition to optimize
action performance. We also determined that striatal-projecting rILN neurons demonstrate homoge-
neous physiological properties across the three regions but differently integrate cortical, midbrain,
and hindbrain information that is then passed on to the striatum. These data support the notion that
the rILN are a central integrator contributing to basal ganglia-mediated action reinforcement.

Results

Striatal-projecting rILN neurons exhibit uniform properties

The rILN consist of a contiguous band of cells within the internal medullary lamina that is parcel-
lated into CL, PC, and CM nuclei (Berman et al., 1983). Although anatomical tracing suggests subtle
differences in afferent and efferent connectivity among these three subregions (Van der Werf et al.,
2002), it is unclear whether these nuclei represent functionally distinct cellular groups. To investigate
whether rILN—-DS neurons exhibited physiological differences across the three nuclear divisions, we
injected a retrograde traveling tdTomato-expressing virus in the central DS of mice and assessed
neurophysiological properties of rILN—DS neurons using whole-cell patch clamp electrophysiology
in acute slices (Figure 1A and B). We found that neurons across the three nuclei did not significantly
differ in membrane capacitance (Figure 1C; F[2,40]=1.242, p=0.30), membrane resistance (Figure 1D,
F[2,40]=1.212, p=0.31), input resistance (Figure 1E; F[2,40]=0.520, p=0.60), or resting membrane
potential (Figure 1F; F[2,40]=0.124, p=0.88).

To assess differences in intrinsic firing properties, we injected a current ramp to induce action
potential (AP) firing. We did not observe a significant difference in the AP threshold between the three
nuclei (Figure 1G; F[2,40]=2.684, p=0.08). Following a series of 0.5 s current steps, the maximum firing
rate, as calculated from the first six APs, did not differ between neurons from the three rILN nuclei
(Figure 1H; F[2,39]=1.411, p=0.26). AP accommodation was also not different between the nuclei
(Figure 1—figure supplement 1A; F[2,35]=1.671, p=0.20). We observed that hyperpolarizing current
steps induced post-hyperpolarization burst firing in all three nuclei (as shown in Figure 1C). We did
not find differences in either the post-hyperpolarization burst firing inter-spike interval (Figure 1—
figure supplement 1B; F[2,35]=1.003, p=0.38) or AP number (Figure 1—figure supplement 1C;
F{2,40]=2.837, p=0.07).

rILN—DS neurons signal at action initiation and reward acquisition

Establishing that rILN—DS neurons display homogeneous intrinsic electrophysiological properties, we
next endeavored to elucidate when this pathway is active during action learning and performance.
We fiber photometrically recorded activity-dependent calcium signaling selectively from rILN—-DS
neurons in mice learning a lever-pressing operant task (Figure 2A). To assess whether rILN-DS
neurons respond to sensory stimuli eliciting an action, action initiation, termination, kinematic proper-
ties, or reward, we trained mice to respond to the lever extension by pressing five times in a defined
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Figure 1. Dorsal striatum (DS)-projecting neurons of the rostral intralaminar nuclei (ILN—DS) thalamus exhibit uniform physiological properties.

(A) rlLN—=DS neurons project ipsilaterally. Coronal mouse brain section through the rlLN. Following AAVrg-tdTomato injection in the left DS left rILN-DS
neurons labeled with tdTomato. (B) Left: schematic of experimental strategy to label rILN—DS neurons. Right: a patched neuron (GFP, injected with
AlexaFluor[AF]-488) among tdTomato-labeled rILN neurons. (C) Representative traces showing central medial (CM), paracentral (PC), and central lateral

Figure 1 continued on next page
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(CL) neuronal responses to 500 ms current injection steps. (D) Top: neuronal membrane capacitance of rlLN neurons mapped across three rostral-
caudal coronal planes in light to dark color gradient spanning minimum to maximum capacitance values. Bottom: membrane capacitance did not
differ between CM (n=17), PC (n=12), and CL (n=13) nuclei. (E-I) Analysis of membrane resistance (E), input resistance (F), resting membrane potential
(G), action potential (AP) threshold (H), and maximum firing rate elicited by current steps (I, CM n=16), for which no significant differences existed
between the three rlLN nuclei. Scale bars: 500 pm (A), 100 pm (B), 20 mV and 200 ms (C). One-way ANOVA (D-I). n=number of cells. Filled and open
data points represent cells from male and female mice, respectively. Error bars = standard error of the mean (SEM).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source electrophysiological data for Figure 1.

Figure supplement 1. Additional rostral intralaminar nuclei (rILN) firing properties.

Figure supplement 1—source data 1. Source electrophysiological data for Figure 1—figure supplement 1.

period of time for a sucrose pellet reward (Figure 2B). In early training stages, mice must complete
one, three, or five fixed-ratio presses (FR1, FR3, and FR5, respectively) with no time limit (NTL) for
completion. Intermediate schedules consist of progressively shortened response periods to complete
the FR5, terminating at a 5 s time limit. We found transient increases in rILN—DS activity that accom-
panied the first press in the action sequence across all stages of training (Figure 2C). Comparing
the average rILN—DS activity z-score at 1.5 s before and at the time of the first press, we observed
significant differences from the first training protocol (fixed ratio 1; FR1), an intermediate schedule
(FR5-NTL), and the final training schedule (FR5-5s time limit; time relative to press: F[1,12]=26.73,
p=0.0002; schedule: F[2,24]=9.587, p=0.0009). We observed similar positive fluctuations in rILN—-DS
activity aligned to subsequent presses in early training protocols in which mice complete the FR lever-
pressing task over an extended period (Figure 2D-F). This activity was not observed for subsequent
presses in mice on the terminal training protocol, however (Figure 2D-F; schedule: F[1,12]=34.79,
p<0.0001; press: F[3,36]=2.146, p=0.11).

We next examined how rILN—-DS neurons activate relative to specific elements of the FR5 task. We
found that rILN—-DS activity peaked following the extension of the lever into the operant chamber on
completed trials in intermediate and terminal stages of training and that the magnitude of this signal
change increased with training (Figure 2G; time relative to lever: F[1,12]=17.27, p=0.0013; schedule:
F[3,36]=14.49, p<0.0001; interaction: F[3,36]=6.776, p=0.001). The average latency to initiate the
lever press for completed trials was 8.7 s for FR1 and decreased to 1.9 s (FR5-NTL) and 0.76 s (FR5-
5s; Figure 2H; F[1.218,14.61]=303.0, p<0.0001). Gross rILN—-DS activity at this time, as measured
by area under the photometric signal, was negatively correlated with initiation latency on completed
trials across all FR5 schedules (r=—0.161; -0.185 and -0.137 95% Cl, p<0.0001, n=6338 trials). Thus,
we examined whether this lever press-associated rILN—DS signal varied by task performance. We
found that a larger signal accompanied completed trials as compared to incomplete trials (in which
mice pressed one to four times; Figure 2I; time relative to first press: F[1,12]=14.73, p=0.0024; trial
type: F[1,12]=2.374, p=0.15).

To further explore this rILN-DS signal, we investigated whether rILN—-DS activity correlates with
general movement by recording mice freely moving in an open arena (Figure 2—figure supple-
ment 1A). We observed increases in rILN—DS signaling aligned to movement onset (Figure 2—figure
supplement 1B; t=2.817, p=0.037) and preceding the maximum velocity achieved during movement
epochs (Figure 2—figure supplement 1C; t=4.116, p=0.009). Significant changes in rILN-DS activity
did not accompany movement cessation (Figure 2—figure supplement 1D; t=0.341, p=0.75).

To discriminate between action initiation and the sensory cues (e.g. lever extension) that may
signal action initiation, we used a Pavlovian appetitive conditioning paradigm in which sucrose pellets
were administered at the termination of an auditory tone (Figure 3—figure supplement 1A-B). We
did neither find tone-related changes in rILN—-DS signaling nor did we observe learning-dependent
changes in either the tone-paired group (Figure 3—figure supplement 1C; time relative to tone:
F[1,5]=2.046, p=0.21; training stage: F[1,5]=2.466, p=0.18) or the tone non-paired control cohort
(Figure 3—figure supplement 1D; time relative to tone: F[1,5]=2.312, p=0.19; training stage:
F{1,5]=0.204, p=0.67).

Alternatively, our observation of training-dependent increases in action initiation-associated rILN
activity may reflect the learned expectation of a rewarded action. To test this, we recorded rILN-DS
activity after switching FR5 reinforcement to 0%. Mice extinguished FR5 lever pressing within several
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Figure 2. Rostral intralaminar nuclei (rlLN)—=dorsal striatum (DS) activity aligns to action initiation. (A) Top: experimental strategy for fiber photometric
recording of rILN—-DS neurons. Bottom: representative expression of cre recombinase (mCherry) and cre-dependent GCaMPés (GFP) in the DS (left) and
rILN (right) with fiber placement in the rILN (right). (B) Left: schematic of lever press trial design. Each trial starts with a 3 s inter-trial interval (ITl) followed
by lever extension. A sucrose pellet is delivered following the fifth press, with an 8 s consumption period before the next trial. Right: cartoon of operant

Figure 2 continued on next page
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Figure 2 continued

chamber with lever and sucrose pellet dispenser. (C) Left: average calcium-dependent activity of rlLN—DS neurons aligned to the first press for the
first training schedule (red; Fixed-rate 1 no time limit; FR1-NTL), an intermediate protocol (orange; FR5-NTL), and the terminal training schedule (blue;
FR5-5s time limit). Right: rILN—DS activity was significantly greater at the time of the first press compared to 1.5 s prior for all three operant schedules
(N=13). (D) Representative rILN-DS activity from a mouse completing the FR5 sequence on FR5-NTL (top) and FR5-5s (bottom left) schedules. Gray
lines indicate time of lever extension, and colored lines show individual lever presses. (E) Average rILN—DS activity for presses 2-5 from FR5-NTL (top)
and FR5-5s (bottom) schedules. (F) The change in z-score from -0.7 s to 0.4 s (relative to press) was positive for all presses on the FR5-NTL schedule
(orange) and negative for all presses on the FR5-5s schedule. (G) Left: photometrically recorded rILN—DS activity aligned to the extension of the lever
on completed FRS5 trials from FR1 (red), FR5-NTL (orange), and FR5-5s (blue) training schedules. Right: rILN—DS signaling increased following lever
extension on all schedules except for FR1. (H) The average latency to initiate pressing progressively decreased with training. () Left: first press-aligned
rILN—=DS activity from completed (blue) and incomplete (yellow) FR5 trials in trained mice. Right: the average rlLN—DS activity change from-1.5t0 0's
relative to first press differed by trial performance. Scale bars: 500 pm. Two-way repeated measures ANOVA (C, F, G, and I); one-way repeated measures
ANOVA (H). N=number of mice. Filled and open data points represent male and female mice, respectively. Error bars = SEM. * p<0.05, ** p<0.01, ***
p<0.001, and **** p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 2:
Source data 1. Source photometric and FR5 data for Figure 2.
Figure supplement 1. Rostral intralaminar nuclei (rILN)—dorsal striatum (DS) neuronal activity correlates with movement initiation.

Figure supplement 1—source data 1. Source movement and photometric data for Figure 2—figure supplement 1.

sessions (Figure 3—figure supplement 1F, t=11.69, p<0.0001), but the first press-aligned signal
on completed (but unreinforced) FR5 trials did not differ significantly from reinforced sessions
(Figure 3—figure supplement 1G; time relative to lever: F[1,11]=13.36, p=0.0069; reinforcement:
F[1,11]=0.1628, p=0.73). In an alternative paradigm, FR5-trained mice alternated between sessions
in which completed trials were reinforced at 100 or 50% probability. Lowering the probability of rein-
forcement did neither alter performance (Figure 3—figure supplement 1H; t=0.788, p=0.45) nor did
it produce significant differences in first press-aligned rILN activity (Figure 3—figure supplement 1I,
time relative to press: F[1,10]=5.571, p=0.04; reinforcement rate: F[1,10]=0.304, p=0.59).

Lastly, we observed that rILN—DS activity increases at reward acquisition. Sucrose pellet
retrieval was accompanied by increased rILN activity on all FR training protocols (Figure 3A-B;
time relative to retrieval: F[1,12]=57.24, p<0.0001; schedule: F[1,12]=10.42, p=0.007; interac-
tion: F[1,12]=5.311, p=0.040). Additionally, this signal negatively correlated with reward retrieval
latency across all FR5 schedules (Figure 3C; r=-0.123, -0.147, and -0.097, 95% Cl, p<0.0001).
Reward delivery was necessary for this activity, as unreinforced FR5 trials did not elicit changes in
rILN-DS activity (Figure 3D; time relative to head entry: F[1,12]=21.01, p=0.006; reinforcement:
F[1,12]=5.610, p=0.035; interaction: F[1,12]=89.14, p<0.0001). On intermediate training schedules,
mice frequently check the pellet receptacle in between individual presses. We examined rILN—-DS
activity during these ‘premature’ receptacle head entries on trials that were ultimately completed
and observed that these events were accompanied by possible negative fluctuations in rILN activity
(Figure 3E; time relative to head entry: F[1,12]=3.536, p=0.085; schedule: F[2,24]=0.502, p=0.61;
interaction: F[2,24]=0.019).

We next assessed the generalizability of this reward-related signal in non-operant paradigms.
We recorded rILN activity from mice freely moving in an arena with strawberry milk located in two
corners. rlLN—DS activity increased when mice approached the strawberry milk-baited corners but
not the opposing non-baited arena corners (Figure 3F; time relative to approach: F[1,5]=12.13,
p=0.018; corner: F[1,5]=12.54, p=0.017; interaction: F[1,5]=7.965, p=0.037). To directly examine
rILN—DS activity relative to reward consumption, we recorded from mice drinking sucrose water from
bottles connected to a lickometer. rILN—-DS activity significantly increased relative to lick bout onset
(Figure 3G; t=3.210; p=0.005).

We next tested whether reward devaluation may influence rILN—DS activity. Mice were given
free access to sucrose pellets prior to 30 min test sessions in which pellets were pseudo-randomly
delivered. Devaluation reduced both latency (Figure 3H; t=3.953, P=0.002) and frequency of pellet
receptacle head entries (Figure 3I; t=5.068, p=0.0004) but did not significantly alter rILN—=DS activity
aligned to reward retrieval (Figure 3J; time relative to head entry: F[1,11]=12.23, p=0.003; reward
value: F[1,11]=0.642, p=0.44).
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Figure 3. Rostral intralaminar nuclei (rlLN)—dorsal striatum (DS) neurons activate with reward acquisition. (A) Cartoon of operant chamber. (B) Left:
rILN—DS activity relative to sucrose pellet retrieval on FR1 (red) and FR5-5s (blue) sessions. Right: rILN—DS activity significantly increased following
reward acquisition (N=13). (C) Across all FR5 training schedules, reward retrieval-associated rILN—DS activity negatively correlated with retrieval latency
(n=6338). (D) Left: rILN—-DS activity aligned to reward receptacle head entry following completed FR5 trials on reinforced (blue) and unreinforced (gray)

Figure 3 continued on next page
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Figure 3 continued

FR5-5s sessions. Right: rlLN—DS activity increased on reinforced sessions only. (E) Left: rILN—DS activity aligned to premature reward receptacle head
entries on completed FR1 trials (red), FR5-NTL (orange), and FR5-10s (gray) schedules. Right: rILN—DS activity significantly decreased on FR5-NTL and
-10 s protocols. (F) Movement speed (top left) and corresponding rILN—DS activity (bottom) from mice approaching strawberry milk-containing (purple)
and empty (gray) corners of a two-chambered arena (top right; N=6). rILN-DS activity increased following entry to strawberry milk-baited corners (top
right). (G) rILN—DS activity relative to sucrose water consumption. Top left: sample trace of rILN—-DS activity (blue) and corresponding licks (gray).

Top right: cartoon of drinking chamber. Bottom: average rlLN—DS activity aligned to onset of lick bouts (left) which significantly increased following
bout onset (right; N=19). (H-J) rILN—DS activity was recorded from food-restricted mice over multiple sessions in which sucrose pellets were pseudo-
randomly dispensed (valued condition; red). Mice were then recorded for multiple sessions that were preceded by 30 min free feeding of sucrose
pellets in their home cages (devalued condition; gray; N=12). (H) Mice retrieved dispensed sucrose pellets at a slower latency in the devalued state.

(I) Mice entered the food receptacle fewer times during devalued sessions. (J) rILN—-DS activity aligned to sucrose pellet retrieval was not significantly
different between valued and devalued states. Scale bars: 0.3 z-score (E); 1 s and 0.2 z-score (G). Two-way repeated measures ANOVA (B, D-F, and

J); linear correlation (C); paired t-test (G, H, and I). N=number of mice; n=number of trials. Filled and open data points represent male and female mice,
respectively. Error bars = SEM. * p<0.05, ** p<0.01, *** p<0.001, and **** p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:
Source data 1. Source behavioral and photometric data for Figure 3.

Figure supplement 1. Rostral intralaminar nuclei (rILN)—dorsal striatum (DS) activity does not correlate with reward-predicting Pavlovian cues or
changes in operant task reward probability.

Figure supplement 1—source data 1. Source behavioral and photometric data for Figure 3—figure supplement 1.

rILN—DS neuronal activity is necessary and sufficient for optimal action
performance

To causally test the role of rILN-DS activity, we optogenetically inhibited dorsal striatal projecting
rILN neurons in well-trained mice performing the FR5 task (Figure 4A). Delivering blue light during
an epoch encompassing the action initiation and reward retrieval events (White et al., 2018; White
et al., 2020) pseudo-randomly on 33% of the trials (Figure 4B) to halorhodopsin-eYFP (NpHR-
eYFP) or control eYFP-expressing mice, we found that rILN—DS neuronal inhibition resulted in fewer
completed FR5 trials (Figure 4C; light delivery: F[1,26]=21.90, p<0.0001; virus: F[1,26]=0.390, p=0.54)
and more omissions (Figure 4D; light: F[1,26]=13.99, p=0.0009; virus: F[1,26]=0.127, p=0.72; interac-
tion: F[1,26]=13.10, p=0.0013; Figure 4—figure supplement 1). We also observed a small but signif-
icant effect of light delivery on the percentage of incomplete trials (Figure 4E; light: F[1,26]=4.834,
p=0.037; virus: F[1,26]=2.306, p=0.141).

We previously demonstrated that optogenetic activation of rILN—-DS terminals reinforces actions
in an intracranial self-stimulation paradigm (Cover et al., 2019). However, it is unknown whether acti-
vation of this pathway at action initiation also supports the execution of rewarded action sequences.
To test this, we virally expressed channelrhodopsin (ChR2-eYFP) or a control fluorophore (eYFP) in
rILN—DS neurons (Figure 4F). Blue light was delivered on 33% of trials for 2 s starting 1 s prior to lever
extension (to promote the lever press action) in trained mice (Figure 4G). ChR2-eYFP mice completed
more FR5s on light-paired trials (Figure 4H; light: F[1,25]=24.39, p<0.0001; virus: F[1,25]=0.002,
p=0.97; interaction: F[1,25]=13.21, p=0.0013) and, correspondingly, had fewer omitted trials
(Figure 4I; light: F[1,25]=29.46, p<0.0001; virus: F[1,25]=0.656, p=0.43; interaction: F[1,25]=18.85,
p=0.0002), compared to both non-light delivered trials and eYFP controls (Figure 4—figure supple-
ment 1). We did not find significant differences in the number of incomplete FR5 trials (Figure 4J,
light: F[1,25]=0.358, p=0.55; virus: F[1,25]=1.441, p=0.24).

rILN—DS neurons receive subcortical and cortical inputs

Although an extensive number of inputs to the rILN are identified (Van der Werf et al., 2002), it is
largely unknown which of these afferents may relay to the striatum to possibly contribute to func-
tion. Thus, we sought to qualitatively identify afferents impinging specifically onto rILN—DS neurons.
To do this, we applied a viral strategy involving injection of nuclei that are upstream of rILN with
an anterograde trans-synaptic AAV1 viral construct (AAV1-hSyn-Cre-WPRE-hGH; Zingg et al., 2017)
that delivers cre recombinase to rILN neurons. In addition, we injected a retrogradely traveling cre-
dependent tdTomato-expressing virus (AAVrg-CAG-FLEX-tdTomato-WPRE) in the DS. This viral
approach produces tdTomato labeling in all rILN—DS neurons post-synaptic to the neurons at the site
of AAV1-cre injection (Figure 5—figure supplement 1). We used this method to interrogate known
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Figure 4. Modulating rostral intralaminar nuclei (rlLN)—dorsal striatum (DS) neuronal activity bidirectionally alters FR5 performance. (A) Top: strategy
for optical inhibition of rILN—DS neurons in FR5-trained mice. Bottom: representative cre recombinase (mCherry) and halorhodopsin (eNpHR-eYFP;
GFP) expression in DS (left) and rILN (right) with optical fibers implanted in the rILN. (B) Schematic of 470 nm light delivery during the FR5 trial starting
0.5 s prior to lever extension and terminating either 2 s following FR5 completion or at time of lever retraction (for incomplete and omitted FR5 trials).
Light was delivered pseudo-randomly on 33% of the trials. (C) NpHR-eYFP-expressing (N=15) but not eYFP control (N=13) mice completed fewer FR5s
on light-delivered trials (yellow) than non-light-delivered trials (black). (D) NoHR-eYFP but not eYFP-expressing mice had a greater omission rate on
light-delivered trials. (E) Light delivery did not alter the proportion of incomplete FR5 trials for either group. (F) Top: strategy for optogenetic activation
of rILN—-DS neurons. Bottom: representative mCherry-cre (mCherry) and channelrhodopsin (ChR2-eYFP; GFP) expression in DS (left) and rILN (right)
with optic fibers implanted in the rILN. (G) 2 s 470 nm blue light was delivered 1 s prior to lever extension on 33% of trials. (H) ChR2-eYFP mice (N=16)
completed more FR5s on light-delivered trials (blue) compared to non-light-delivered trials (black) and eYFP control mice (N=11). (I) ChR2-eYFP mice
had fewer omissions on light-delivered trials than non-light-delivered trials and eYFP controls. (J) There were no significant differences in the rate

of incomplete FR5 trials. Scale bars: 500 pm. Two-way repeated measures ANOVA (C-E and H-J). N=number of mice. Filled and open data points
represent male and female mice, respectively. Error bars = SEM. *** p<0.001 and **** p<0.0001. See Figure 4—figure supplement 1 for summary
statistics.

The online version of this article includes the following source data and figure supplement(s) for figure 4:
Source data 1. Source behavioral data for Figure 4.

Figure supplement 1. Rostral intralaminar nuclei (rILN)—dorsal striatum (DS) manipulation alters FR5 task performance.
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excitatory inputs to the rILN. We found that both the anterior cingulate cortex (ACC; Figure 5A) and
orbitofrontal cortex (OFC; Figure 5B) synapse on ipsilateral rILN—DS neurons and lesser so on contra-
lateral rILN—DS neurons. We also found that projections arising from the glutamatergic/GABAergic
hypothalamic supramammillary and lateral (S/L) nuclei (Hashimotodani et al., 2018; Stuber and
Wise, 2016) innervate the rILN—DS neurons residing in CM and contralateral CL (Figure 5C). Previous
tracing studies indicate that the rILN receive input from the basal ganglia output projection, the
substantia nigra (SN) pars reticulata (Kaufman and Rosenquist, 1985), as well as from other targets
of nigral output including the superior colliculus (SC; Yamasaki et al., 1986), reticular formation (RF;
Krout et al., 2002), and pedunculopontine nucleus (PPN; Hallanger et al., 1987, Huerta-Ocampo
et al., 2020). We observed that projections from all four of these regions synapse on rILN—DS neurons
(Figure 5D-G). These neuronal tract tracing results are quantified (Figure 5—figure supplement 2).

Discussion

Our results demonstrate that rILN—DS neurons stably activate at action initiation and reward acquisi-
tion and that manipulations of this circuit significantly impact action execution. We found that rILN—-DS
pathway activation biased mice to initiate more rewarded lever presses, whereas inhibitory manipula-
tions resulted in fewer completed press sequences. These results complement our previous findings of
rILN suppression reducing overall movement (Cover et al., 2019). Together, these findings implicate
the rILN—DS pathway as a critical contributor to action reinforcement and, therefore, performance.
We also observed that rILN—DS projection neurons exhibit homogeneous physiological properties
across the three rILN, which display relative differences in the afferents impinging upon them. How
these differences culminate in unique functional features across these nuclei requires further study.

Corticostriatal circuits guide action learning and habit formation (Kupferschmidt et al., 2017,
Smith and Graybiel, 2013; Yin and Knowlton, 2006) by coordinating the activity of striatal output
neurons (Tecuapetla et al., 2016; Yin et al., 2009). Thalamic inputs are suggested to influence action
expression through modulation of these corticostriatal circuits (Ding et al., 2010). However, rILN
signaling also directly drives striatal medium spiny neuron (MSN) activity (Chen et al., 2014; Ellender
et al., 2013) and cholinergic interneuron firing (Cover et al., 2019). Our observation of rILN-DS
neuronal activity occurring at action initiation and correlating to initiation latency suggests that this
excitatory input may directly drive striatal signaling for action execution. The absence of discrete
signal changes for presses two through five in mice that are well-trained on the FR5 task may reflect
the concatenation of the individual movements into a fluid sequence (Jin et al., 2014). Alternatively,
press-related rILN—DS neuronal activity may be obscured due to the temporal limits of the calcium
sensor and photometric system. Regardless, these results support previous observations of rILN
activity mediating motor control (Chen et al., 2014; Giber et al., 2015; Luma et al., 2022) and action
switching (Kato et al., 2018).

Our finding that rILN—-DS neurons activate at reward acquisition presents, to our knowledge, a
unique addition to known reward-related circuitry. Midbrain dopamine neuron firing shifts during
reinforcement learning from reward presentation to associated cues and unexpected reward presen-
tation or omission to provide teachable reward prediction errors (Schultz, 1998). In contrast, we
found that the rILN stably and persistently signals at reward acquisition across all stages of training
and in multiple contexts. Similar reward-related activity is observed in the rILN of primates performing
an oculomotor task (Wyder et al., 2003). This signal may serve as a mechanism to provide ongoing
reinforcement of appropriately selected actions. Such a mechanism would be advantageous for both
the learning of rewarded action sequences but also provides a salient omission when action outcomes
change. The sudden absence of this consistent signal may provide a simple cue to drive the search
for a new action plan that results in reward. Indeed, we observed a modest negative signal fluctuation
when mice prematurely check for sucrose pellets mid-FR5 sequence suggesting that a potential bidi-
rectional signal may provide an instructive cue for action reinforcement. Inhibition of rILN—DS activity
significantly reduced the execution of FR5 pressing, which may be due to degradation of this putative
reinforcement signal. Regardless, the fiber photometry findings should be considered cautiously given
that this approach may not sensitively detect the activity of minority neuronal populations.

Dopamine release ramps with proximity to rewards and scales to reward magnitude (Hamid et al.,
2016; Howe et al., 2013; Mohebi et al., 2019), in addition to dopamine terminal signaling coinciding
with reward presentation (Howe and Dombeck, 2016). Through a cholinergic intermediary, the rILN
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Figure 5. Afferent innervation of rostral intralaminar nuclei (rILN)—dorsal striatum (DS) neurons. (A) Left: injection sites of AAV1-cre and fluorogold (FG)

in the anterior cingulate cortex (ACC). Middle left: injection site for retrograde cre-dependent tdTomato expressing virus in the central DS. Middle
right: representative tdTomato labeling of DS-projecting rlLN neurons post-synaptic to ACC projections. Right: summary of ACC connectivity to rlLN
nuclei, with the blue filled nuclei indicating the injected hemisphere. (B-G) Same as A but for orbitofrontal cortex (OFC; B), supramammillary and lateral

Figure 5 continued on next page
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hypothalamus (S/L; C), substantia nigra (SN; D), superior colliculus (SC; E), reticular formation (RF; F), and pedunculopontine nucleus (PPN; G). Summary

diagrams are based on two to four cases per region. Line thickness indicates a difference of 240% of labeled neurons between the compared rILN nuclei

and (if applicable) contralateral versus ipsilateral direct projections to the striatum. Gray lines indicate circuits contralateral to the injected hemisphere.
See Figure 5—figure supplement 2 for circuit quantification. Scale bars: 500 pym.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Trans-synaptic neuronal tract tracing to identify specific afferents to the rostral intralaminar nuclei (rlLN)—dorsal striatum (DS)

circuit.

Figure supplement 2. Differences in afferent connectivity to rostral intralaminar nuclei (rILN)—dorsal striatum (DS) projection neurons across the three

rILN nuclei.

are capable of locally inducing striatal dopamine release in a behaviorally significant manner (Cover
et al., 2019). Our finding of rILN signaling at reward acquisition may suggest that this local dopamine
release mechanism is evoked at such events, which may supplement somatically driven dopamine
signaling (Cohen et al., 2012). The rILN may also relay reward-related information directly to MSNs
as these cells are shown to encode reward value and action outcome (Hori et al., 2009; Lauwereyns
et al., 2002; Nonomura et al., 2018). The present study photometrically recorded rILN somatoden-
dritic activity and may not fully reflect signaling at the level of the axon terminal (Legaria et al., 2022),
including calcium-dependent presynaptic plastic changes occurring at these terminals in the striatum.
Future work investigating rILN axonal signals in the striatum may reveal further complexity in thalamic
activity supporting action learning and motivated behavior.

One question that emerges from these results is the origin of the rILN—-DS action initiation
and reward-related signals. Our neuronal tract tracing experiments identified a range of afferents
impinging on rILN—-DS neurons. The ACC and OFC, which themselves receive input from the rILN
(Hunnicutt et al., 2014, Murphy and Deutch, 2018; Van der Werf et al., 2002), provide two sources
of excitatory input. These cortical regions are broadly associated with decision making. The OFC
encodes outcome value (Gremel and Costa, 2013; Malvaez et al., 2019; Stolyarova and Izqui-
erdo, 2017, Zhou et al., 2019), whereas the ACC encodes decision predictions, surprise signals, and
prediction errors, in addition to mediating cognitive control (Hayden et al., 2011; Shenhav et al.,
2013, Totah et al., 2009; Wallis and Kennerley, 2011). Although less studied, the S/L hypothalamus
are well connected with mesolimbic circuitry and linked to regulation of feeding behavior (Plaisier
et al., 2020; Stuber and Wise, 2016). Together, these afferents may impart value and motivation for
rILN—-DS guided action selection.

We also determined that rILN—DS neurons receive input from a basal ganglia output center,
the SN pars reticulata, as well as from nuclei that themselves receive input from the SN pars
reticulata: the SC, RF, and PPN. These results confirm the presence of both direct and indirect
basal ganglia subcortical loops relaying back to the DS (Alexander et al., 1986). Through inhi-
bition driven by the SN and selective disinhibition enabled by D1-MSN pathway signaling, these
loops are hypothesized to support the main functions of the basal ganglia: action selection and
reinforcement learning (McHaffie et al., 2005, Redgrave et al., 2011). The rILN are uniquely
positioned to provide feedback for these functions, and our observation of rILN activity corre-
sponding to action initiation and reward acquisition supports this notion. Taken together, rILN
pathology may contribute to disorders of action engagement: rILN hyperactivity may contribute to
drug seeking (Li et al., 2018; Wang et al., 2019) in a role similar to the adjacent paraventricular
thalamus (Hamlin et al., 2009; Matzeu et al., 2015), or to attention deficit hyperactivity disorder
(Jones et al., 2020), while hypoactivity may contribute to impaired goal-directed behavior in major
depression (Héflich et al., 2019).

The neuronal tract tracing experiments revealed specificity of some afferents targeting either the
CL or CM nuclei. Such differences in anatomical connectivity may confer individual rILN with selective
activity during reward-driven action sequences. As our approach to in vivo rILN recording and manip-
ulation prevented us from parsing the contributions of the individual nuclei, we could not determine
whether the action initiation and reward acquisition signals are uniformly represented across the three
rILN. Future studies targeting individual rILN circuits may identify specific contributions to motivated
behavior.
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Key resources table

Reagent type

Neuroscience

(species) or Source or
resource Designation reference Identifiers Additional information
Strain and strain
background (Mus C57BL/6J; Jackson
musculus) Wild-type Laboratory #000664 Male and female; 2-5 months old
Antibody Goat polyclonal anti-GFP  Abcam #ab6673 1:2000
Chicken polyclonal anti-
Antibody mCherry Novus Biologicals ~ #NBP2-25158 1:2000
Donkey polyclonal anti-
goat conjugated to Alexa  Jackson
Antibody Fluor 488 ImmunoResearch ~ #703-545-155 1:1500
Donkey polyclonal anti-
chicken conjugated to Jackson
Antibody Alexa Fluor 594 ImmunoResearch  #703-585-155 1:1500

Software and
algorithm

Clampex 10.4.1.4

Molecular Devices

Software and
algorithm

Clampfit 10.4.1.4

Molecular Devices

Software and

algorithm Med-PC Med Associates Inc.
Software and

algorithm Ethovision XT Noldus

Software and

algorithm Prism 6.01 Graphpad

Software and

algorithm Matlab R2019a The MathWorks Inc.
AAVrg-EF1a-mcherry-IRES-

Other (AAV) Cre Addgene #55632-AAVrg See Materials and methods: Surgical procedures

Other (AAV) AAV5-Syn-Flex-GCaMPés  Addgene #100845-AAV5 See Materials and methods: Surgical procedures
AAV5-EF1a-DIO-

Other (AAV) eNpHR3.0-eYFP-WPRE Addgene #26966-AAV5 See Materials and methods: Surgical procedures
AAVS5-EF1a-DIO-hSyn-

Other (AAV) ChR2-eYFP-WPRE Addgene #20298-AAV5 See Materials and methods: Surgical procedures
AAV5-EF1a-DIO-eYFP-

Other (AAV) WPRE Addgene #27056-AAVS See Materials and methods: Surgical procedures

Other (AAV) AAVrg-CAG-tdTomato Addgene #59462-AAVrg See Materials and methods: Surgical procedures
AAVrg-CAG-FLEX-

Other (AAV) tdTomato-WPRE Addgene #28306-AAVrg See Materials and methods: Surgical procedures

Other (AAV) AAV1-hSyn-Cre-WPRE-hGH Addgene #105553-AAV1 See Materials and methods: Surgical procedures

Other (motivator) Sucrose pellet, 14 mg BioServ #F05684 See Materials and methods: Behavioral testing

Subjects

Two- to five-month-old male and female C57BL/6J (wild-type; Jackson Laboratory, #000664) mice
were housed in a temperature and humidity controlled vivarium under a 12 hour light/dark cycle (lights
on at 0700 hours). Mice were housed with littermates (two to five) per cage, except for those singly
housed following fiber or cannula implantation. Mice performing operant tasks were weighed and fed
daily to maintain 90% of ad libitum weight; all others received ad libitum food and water. All experi-
ments were performed in accordance with the United States Public Health Service Guide for Care and
Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee
(AUP 0522009) at the University of Maryland, Baltimore. Sample sizes were determined based on
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publication standards. Studies were completed across multiple cohorts that produced homogeneous
experimental findings. Animals were randomly assigned to control and experimental groups. Group
assignment was also balanced to ensure equal numbers of males and females between experimental
and control cohorts. Blinding was not used in the present study as all subjects and data were treated
with identical equipment, analysis methods, and exclusion criteria.

Surgical procedures

Mice were anesthetized with isoflurane (5% induction, 1-2% maintenance) and head-fixed in a mouse
stereotaxic apparatus (Kopf Instruments, Tujunga, CA, USA). Bupivacaine hydrochloride (0.25%; s.c.)
was applied to the scalp prior to incision. Viruses were infused at a rate of 25 nl/min using a 25 G
syringe (Hamilton Company, Reno, NV, USA). All mice received carprofen (5 mg/kg; s.c.) and recov-
ered for a minimum of 7 days to prior to behavioral testing.

For fiber photometry experiments, AAVrg-EF1a-mcherry-IRES-Cre (Addgene #55632-AAVrg)
was unilaterally injected in the central DS (600 nl; distance from bregma in mm, [anterior-posterior,
AP] +0.65, [medial-lateral, ML] 1.70, and [dorsal-ventral, DV] -3.00), and two unilateral injections of
AAV5-Syn-Flex-GCaMPés (Addgene #100845-AAV5) were made in the rILN (300 nl/injection; [AP]
-1.25 and -1.95, [ML] 0.75, and [DV] -3.00). In a separate surgery 3-4 weeks after, a low numerical
aperture (NA; 0.22) fiber (200 um core, Thorlabs, Newton, NJ, USA) was implanted in the rILN ([AP]
-1.60, [ML] 0.76, and [DV] -3.00). For optogenetic manipulations, AAVrg-EF1a-mCherry-IRES-Cre was
bilaterally injected in the DS (as stated above), and either AAV5-EF1a-DIO-eNpHR3.0-eYFP-WPRE
(Addgene #26966-AAV5), AAV5-EF1a-DIO-hSyn-ChR2-eYFP-WPRE (Addgene #20298-AAVS5), or
AAV5-EF1a-DIO-eYFP-WPRE (Addgene #27056-AAV5) was injected in the rILN (350 nl/hemisphere;
[AP] -1.40, [ML] £0.75, and [DV] -3.50). Two optic fibers (NA 0.66, 200 pm core, Prizmatix, Givat-
Shmuel, Israel) were later implanted in the rILN: one at ([AP]-1.60, [ML]-0.75, and [DV]-2.70) and the
second at a 20° AP angle ([AP]-2.58, [ML] +0.75, and [DV]-3.03). All implants were secured with skull
screws (BASi, West Lafayette, IN, USA) and dental cement.

For electrophysiology experiments, retrograde AAVrg-CAG-tdTomato (Addgene #59462-AAVrg)
was injected in the DS (same coordinates and volume as previously listed) in wild-type mice to patch
tdTomato-labeled rILN neurons.

Trans-synaptic tract tracing was performed to identify inputs to rILN—-DS neurons. Mice were bilat-
erally injected with AAVrg-CAG-FLEX-tdTomato-WPRE in the DS (Addgene #28306-AAVrg; 600 nl/
hemisphere; [AP] +0.65, [ML] £1.70, and [DV] -3.00). Afferent regions of interest were unilaterally
injected with AAV1-hSyn-Cre-WPRE-hGH (Addgene #105553-AAV1) as well as Fluorogold (20 nl;
Fluorochrome LLC, Denver, CO, USA) to label the injection site. The unilateral injection hemisphere
was counterbalanced across animals for each input region. Stereotaxic coordinates and virus volumes
are as follows: OFC ([AP] +2.50, [ML] 1.00, and [DV] -2.20; 250 nl), ACC (AP] +1.00, [ML] 0.30, and
[DV] -1.10; 200 nl), S/L ([AP]-2.40, [ML] 0.50, and [DV] -5.65; 150 nl), SN ([AP] -3.20, [ML] 1.50, and
[DV] -4.80; 250 nl), SC ([AP] -3.50, [ML] 0.80, and [DV] -2.75; 240 nl), RF ([AP] -4.20, [ML] 0.75, and
[DV]-4.25; 310 nl), and PPN ([AP]-4.70, [ML] 1.20, and [DV] -3.00; 250 nl).

Immunohistochemistry was performed to confirm virus expression and fiber placement; animals
were excluded from experiments for poor virus expression at target regions or viral expression in non-
target regions (i.e. the caudal intralaminar parafascicular nucleus).

Immunohistochemistry

Mice were transcardially perfused with room-temperature 0.1 M PBS, pH 7.3, followed by ice cold
4% (wt/vol) paraformaldehyde in PBS. Brains were extracted and post-fixed with 4% paraformalde-
hyde in PBS at 4°C. 50 pm coronal sections were cut using a Leica VT100S vibrating microtome. Goat
anti-GFP (Abcam #ab6673, Waltham, MA, USA) and chicken anti-mCherry (Novus Biologicals #NBP2-
25158, Littleton, CO, USA) primary antibodies were used at a 1:2000 dilution to amplify GCaMPés
and cre expression, respectively. Chicken anti-mCherry was also used to amplify virally expressed
tdTomato. Donkey anti-goat conjugated to Alexa Fluor 488 (Jackson ImmunoResearch #703-545-155,
West Grove, PA, USA) and donkey anti-chicken conjugated to Alexa Fluor 594 (Jackson ImmunoRe-
search #703-585-155) secondary antibodies were used at a 1:1500 dilution. The Brain BLAQ protocol
(Kupferschmidt et al., 2015) was used for immunohistochemistry following electrophysiology.
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Slice electrophysiology

Mice were deeply anesthetized with isoflurane before rapid decapitation and brain removal. 250 pm
thick coronal slices were prepared in ice cold, 95% oxygen, 5% carbon dioxide (carbogen)-bubbled
modified artificial cerebrospinal fluid (aCSF) (In mM: 194 sucrose, 30 NaCl, 4.5 KCI, 1 MgCl2, 26
NaHCO3, 1.2 NaH2PO4, and 10 D-glucose) before incubating at 32°C for 30 min in aCSF (in mM: 124
NaCl, 4.5 KCI, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and 10 D-glucose). Slices were then
stored at room temperature until recording.

Thalamic brain slices were transferred to the recording chamber and perfused with carbogen-
bubbled aCSF (in mM; 124 NaCl, 4.5 KCI, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and 10
D-glucose) at 29-31°C. Whole-cell recordings were made with borosilicate glass pipettes (2-5 MQ).
aCSF was perfused on slices through a gravity perfusion system. DS projecting rILN neurons were
recorded with a potassium-based internal solution (in mM: 126 potassium gluconate, 4 KCI, 10 HEPES,
4 ATP-Mg, 0.3 GTP-Na, and 10 phosphocreatine; 290-295 mOsm; pH 7.3) containing a hydrazide dye
conjugated with Alexa Fluor 488 (40 mM) to allow for post-hoc identification of cell location within
the rILN. Membrane capacitance and resistance were collected at -60 mV voltage clamp configu-
ration, whereas the resting membrane potential was obtained in current-clamp with a MultiClamp
700B amplifier (Molecular Devices, San Jose, CA, USA); recordings were filtered and digitized at 2
and 10 kHz, respectively. Input resistance was calculated from the mV change induced by a 140 pA
hyperpolarizing current step. Data was acquired with Clampex 10.4.1.4 and analyzed with Clampfit
10.4.1.4 (Molecular Devices). Calculation of the accommodation index for rILN AP spiking was based
on the entire 0.5 s current injection step that elicited maximum firing as previously calculated (White
and Mathur, 2018). Cells that did not maintain sustained firing (i.e. resulted in a depolarization block)
were excluded from this analysis. Cells were determined to reside in CL, PC, and CM nuclei based on
the Franklin and Paxinos, 2008.

Behavioral testing

FRS lever press operant paradigm

Food-restricted mice were trained to lever press for pellets in an operant chamber (21.6 x 17.8 x
12.7 cm chamber, Med Associates Inc, Fairfax, VT, USA) containing a retractable lever and a trough
pellet receptacle equipped with an infrared beam that delivered 14 mg sucrose pellets (#F05684,
BioServ, Frenchtown, NJ, USA). On each trial, the lever extended into the chamber and retracted
once the mouse retrieved a rewarded sucrose pellet (for completed trials) or after the response time
limit passes. Mice received two 30 min training sessions per day with criterion to progress to the next
training schedule consisting of >30 completed fixed-ratio trials for two consecutive sessions. Training
started on FR1 and progressed to FR3 and FR5, all without time limit restrictions to complete the press
sequence. Mice were then trained to complete the FR5 sequence under increasing time constraints
(time from lever extension), progressing through 30's, 155, 10s, 7.5 s, and 5 s schedules. Some mice
were unable to successfully perform on FR5-5s and remained at FR5-7.5s for further testing. Opto-
genetic manipulations were administered once mice achieved consistent performance at or above
criterion on their terminal protocol (approximately 8-10 sessions).

A variation of the FR5 lever press task was conducted in which sessions alternated between sucrose
pellet reinforcement rates of 100 and (pseudo-randomly) 50% (Figure 3—figure supplement 1 H-I).
Fiber photometric data was analyzed for all completed FR5 trials following completion of five FR5s (for
100% reinforcement sessions) and five completed but unreinforced FR5s (50% reinforcement sessions)
per session.

In vivo optogenetics

For FR5 optogenetic experiments, 470 nm light was delivered bilaterally during experimental sessions
using an LED system (Plexon; Dallas, TX, USA). Our group previously demonstrated that 470 nm
light sufficiently activates eNpHR channels to inhibit neuronal activity (White et al., 2018, White
et al., 2020). For optical inhibition, light was delivered pseudo-randomly on 33% of the trials with
performance averaged across four consecutive sessions, comparing performance with non-light
delivered trials. For optical activation, light was delivered pseudo-randomly on 33% of the trials with
performance averaged across six consecutive sessions, comparing performance with non-light deliv-
ered trials. For both experiments, mice with the highest and lowest difference in performance were
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excluded from analysis (both experimental and control cohorts). Experimenters were not blinded to
animal group designation.

Pavlovian appetitive conditioning

To assess for rILN—DS neuronal activity related to reward-related cues, food-restricted behaviorally
naive mice expressing GCaMPé6s in rILN—DS neurons with a multimode fiber implanted in the rILN
underwent a Pavlovian conditioned reinforcement paradigm and were randomly assigned to one of
two cohorts. For one cohort (‘tone-paired’), a 2 s 10 kHz tone was presented pseudo-randomly during
30 s long trials and co-terminated with the dispensing of a sucrose pellet. A control cohort (‘tone-
unpaired’) received tone and pellet each pseudo-randomly. Mice received six 30 min sessions of these
respective paradigms. To test for the effect of reward devaluation on rILN—-DS neuronal activity, mice
received an additional three sessions of their respective protocols that were each preceded by 30 min
of free feeding of sucrose pellets in their home cage.

Movement and reward analysis

Mice expressing GCaMPés in rILN—DS neurons were assessed for movement-related rILN activity in a
two-chambered arena (70 x 30 x 25 c¢cm) using Ethovision XT video recording (Noldus, Wageningen,
the Netherlands). Following habituation and multiple 15 min recorded sessions, weigh boats filled
with strawberry milk (Nesquik) were placed in two corners of the arena, and empty weigh boats were
placed in the opposite two corners. rILN-DS photometric activity was aligned to when the center of
the mouse body passed within 5 cm of the weigh boats.

Sucrose consumption assay

To directly correlate rILN—DS photometric activity to reward consumption, mice were placed under
a reverse 12 hour light cycle (lights off at 0900) for 2 weeks before rILN photometry recordings were
collected while given access to 2 and 8% (wt/vol) sucrose water connected to a custom lickometer
(Patton et al., 2021). Licks were recorded using Axoscope software (Molecular Devices), and rILN-DS
photometry signal was aligned via custom MATLAB code to the start of lick bouts. Bouts were defined
as two or more licks with an inter-lick interval of less than 2 s.

Fiber photometry

Photometry data were collected using a customized in vivo fiber photometry system. Two single-
wavelength laser modules were used: a 473 nm laser for optimal GCaMPés excitation and a 405 nm
laser to excite GCaMPés at its isosbestic wavelength (Opto Engine, Midvale, UT, USA). Emission from
405 nm excitation was used to control for signal artifacts due to photometry cable motion, back-
ground fluorescence, and other sources of noise (Kim et al., 2016). The two lasers were multiplexed
at 10 or 15 Hz, resulting in a continuous 20 or 30 Hz pulse train. Both laser beams were bounced into
a dichroic filter cube designed for 473 and 405 nm excitation as well as for 510 nm emission (Chroma
Technology Corp., Bellow Falls, VT, USA). The two excitation wavelengths were focused through a
x4 fluorite objective (Olympus, Tokyo, Japan) onto a multimode fiber bundle (Thorlabs). One fiber
was connected to the mouse through a chronic unilateral multimode fiber implant, and another fiber
was placed inside a tube of Alexa Fluor 488 to control for variability in laser energy. Emissions from
GCaMPés and Alexa Fluor 488 were detected as an image of the fiber bundle using an ORCA-Flash4.0
LT high-resolution CMOS camera (Hamamatsu Photonics, Hamamatsu City, Japan). Laser multiplexing
and image acquisition were synchronized using an Arduino Leonardo microcontroller. Trial or time-
dependent recordings were initiated through MedPC or Ethovision systems. Camera image acquisi-
tion parameters were controlled through HClmage software for Hamamatsu cameras.

Quantification and statistical analysis
Electrophysiological data were analyzed using Clampex software. Statistical analyses were performed
in Prism (version 6.01; GraphPad Software, San Diego, CA, USA) or MATLAB (R2019a; The Math-
Works, Inc, Natick, MA, USA).

Photometry data were analyzed using a combination of custom MATLAB code (see Source code
1) and Prism. Pixel intensities imaged from the fiber implanted in the rILN and the fluorophore
control fiber were first averaged. The background signal in the absence of laser transmission was
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then subtracted from the averaged signals. Two separate regressions were performed to minimize
any noise sources. First, 473 and 405 nm photometry signals were regressed with the corresponding
control fluorophore signal, and the residuals of the regression were then used for further processing.
The 473 nm signal was then regressed with the 405 nm signal as a covariate, and the residuals of the
regression were extracted as the fully processed photometry signal (z-score) from the rILN (White
et al., 2020). The photometry signal was then statistically analyzed based on performance or operant
task event (i.e. movement-aligned activity or FR trial outcome). For each analysis comparing two or
more categories of rILN signal, the number of averaged events or trials were standardized across
each compared category for each animal. The average z-score for three consecutive time points was
statistically analyzed with the appropriate t-test or ANOVA. Signal AUC was computed in MATLAB.

To quantify relative strength of afferent innervation to rILN—-DS neurons identified in the di-syn-
aptic circuit tracing study, tdTomato-labeled cells were counted in CM, ipsilateral CL, and contralat-
eral CL. Separate ratios of cell counts for CM: ipsilateral CL and ipsilateral CL: contralateral CL were
derived, correcting for area, within each coronal slice and averaged across slices and cases for a given
assessed afferent. Ratios indicating a difference 240% of labeled neurons between the compared
rILN nuclei are denoted by line thickness in Figure 5 summary diagrams. This criterion was also used
to assess relative strength of ipsilateral and contralateral afferent—afferent—DS di-synaptic circuits,
when applicable.

All statistical analyses are reported in the Results. The specific statistical test as well as value and
description of n are listed in the figure legends. Averaged data is expressed as mean + SE. Correla-
tions are expressed as Pearson’s r and 95% Cls. All statistical tests were conducted two-sided, when
applicable. Significant post-hoc Holm-Sidak tests for ANOVAs are indicated in the figures. All asterisks
in figures indicate: * p<0.05, ** p<0.01, *** p<0.001, and **** p<0.0001.
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