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Abstract
Background: In infertility treatment, blastocyst morphological grading is commonly used in clinical 
practice for blastocyst evaluation and selection, but has shown limited predictive power on live 
birth outcomes of blastocysts. To improve live birth prediction, a number of artificial intelligence (AI) 
models have been established. Most existing AI models for blastocyst evaluation only used images 
for live birth prediction, and the area under the receiver operating characteristic (ROC) curve (AUC) 
achieved by these models has plateaued at ~0.65.
Methods: This study proposed a multimodal blastocyst evaluation method using both blastocyst 
images and patient couple’s clinical features (e.g., maternal age, hormone profiles, endometrium 
thickness, and semen quality) to predict live birth outcomes of human blastocysts. To utilize the 
multimodal data, we developed a new AI model consisting of a convolutional neural network 
(CNN) to process blastocyst images and a multilayer perceptron to process patient couple’s clin-
ical features. The data set used in this study consists of 17,580 blastocysts with known live birth 
outcomes, blastocyst images, and patient couple’s clinical features.
Results: This study achieved an AUC of 0.77 for live birth prediction, which significantly outperforms 
related works in the literature. Sixteen out of 103 clinical features were identified to be predictors of 
live birth outcomes and helped improve live birth prediction. Among these features, maternal age, 
the day of blastocyst transfer, antral follicle count, retrieved oocyte number, and endometrium thick-
ness measured before transfer are the top five features contributing to live birth prediction. Heat-
maps showed that the CNN in the AI model mainly focuses on image regions of inner cell mass and 
trophectoderm (TE) for live birth prediction, and the contribution of TE-related features was greater 
in the CNN trained with the inclusion of patient couple's clinical features compared with the CNN 
trained with blastocyst images alone.
Conclusions: The results suggest that the inclusion of patient couple’s clinical features along with 
blastocyst images increases live birth prediction accuracy.
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Editor's evaluation
This article provides important findings that have practical implications for reproductive medicine 
and would be of interest to IVF specialists. Based on the compelling strength of evidence, the study 
demonstrates significant results in improving the predictive value of the live birth model based on 
blastocyst evaluation and clinical features.

Introduction
Infertility is a global health issue, affecting more than 50 million couples worldwide (Mascarenhas 
et al., 2012). Since the birth of the first in vitro fertilization (IVF) child in 1978, over 8 million children 
were born with IVF treatment (Adamson et al., 2018). Among the various factors contributing to IVF 
outcomes, the quality of the blastocyst (day 5 embryo) selected for transfer is critical for the success of 
IVF treatment. Manual grading of blastocyst development stage, inner cell mass (ICM), and trophecto-
derm (TE) remains the most common method for blastocyst evaluation. While the blastocyst morpho-
logical grading is widely used in clinical practice, morphological grades of the development stage, 
ICM, and TE have shown limited predictive power on clinical outcomes (Seli et al., 2011; Reignier 
et al., 2019; Bartolacci et al., 2021; Ueno et al., 2021; Xiong et al., 2022). It is desired to identify 
features for accurate prediction of clinical outcomes of blastocysts.

To achieve this goal, the convolutional neural network (CNN) is expected to play a critical role. 
CNN is able to automatically detect discriminative features from images and has been the state-of-
the-art method in various fields in medical imaging, such as lung cancer prediction (Ardila et  al., 
2019), breast cancer prediction (McKinney et al., 2020), and diabetic retinopathy screening (Bora 
et al., 2021). To apply CNN to predict the clinical outcome of a blastocyst, images of blastocysts with 
a known clinical outcome (e.g., pregnancy and live birth) are collected for the CNN model develop-
ment. The area under the receiver operating characteristic (ROC) curve (AUC) is the most commonly 
used metric to evaluate and compare machine learning models on predicting clinical outcomes of 
blastocysts (Kragh and Karstoft, 2021a). The AUCs reported in the literature using CNN to predict 
clinical outcomes from blastocyst images range from 0.64 to 0.71 for pregnancy prediction (VerMi-
lyea et al., 2020; Kragh et al., 2021b; Berntsen et al., 2022; Enatsu et al., 2022; Loewke et al., 
2022), and are around 0.65 for live birth prediction (Miyagi et al., 2019; Nagaya and Ukita, 2021).

Besides using blastocyst images, attempts have also been made to use time-lapse videos for live 
birth prediction. These videos contain the entire development process from days 0 to 5–7. However, 
results in the literature show that CNN using static images achieved similar or slightly better accu-
racies in predicting clinical outcomes than using time-lapse videos, for instance, AUC=0.68–0.71 
(VerMilyea et al., 2020; Enatsu et al., 2022; Loewke et al., 2022) versus 0.64–0.67 (Kragh et al., 
2021b; Berntsen et al., 2022) for pregnancy prediction, and 0.66 (Miyagi et al., 2019) versus 0.65 
(Nagaya and Ukita, 2021) for live birth prediction. A potential reason is that the redundant frames 
of images in time-lapse videos may work as noise causing the model to overfit and thus leading to a 
lower prediction accuracy (Zhu et al., 2018; Wu et al., 2021; Tao et al., 2022). Therefore, we opted 
to use static blastocyst images in this study.

Different from using blastocyst images alone to predict clinical outcomes, Miyagi et  al., 2020 
proposed to use blastocyst images together with maternal clinical features including maternal age, 
AMH, and BMI and reported an AUC of 0.74, the highest accuracy in literature (Miyagi et al., 2020). 
However, two questions remain elusive. First, the contribution of blastocyst images and the additional 
contribution of maternal clinical features to live birth prediction are unknown. Second, endometrium 
status-related features, such as endometrium thickness and pattern, are also critical factors impacting 
live birth outcomes (Ng et al., 2007; Bu et al., 2016; Mahutte et al., 2022), but were not considered.

In this study, we quantified the effect of blastocyst images and the combined effect of both blas-
tocyst images and patient couple’s clinical features on live birth prediction. The live birth prediction 
model using only blastocyst images achieved an AUC of 0.67, which was significantly outperformed 
by the AUC of 0.77 achieved by the model using both blastocyst images and patient couple’s clinical 
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features (p value<0.0001). Additionally, when endometrium status-related features (e.g., endome-
trium thickness and pattern) were excluded, the AUC of the model using both blastocyst images and 
patient couple’s clinical features significantly decreased to 0.74 (p value<0.0001), indicating that the 
inclusion of endometrium status-related clinical features helps improve live birth prediction accuracy. 
Sixteen patient couple’s clinical features were identified to be most related to live birth outcomes 
of blastocysts, among which maternal age, the day of blastocyst transfer, antral follicle count (AFC), 
retrieved oocyte number, and endometrium thickness measured before transfer are the top five 
features contributing to live birth prediction. Additionally, the CNN heatmaps showed that the CNN 
mainly focused on ICM and TE for live birth prediction, and the contribution of TE-related features 
was greater in the CNN trained with the inclusion of patient couple’s clinical features compared with 
the CNN trained with blastocyst images alone.

Methods
Data set collection
We used retrospectively collected data to develop the live birth prediction model. Transferred blasto-
cysts with known live birth outcomes for patients who underwent frozen embryo transfer cycles from 
2016 to 2020, at the Reproductive and Genetic Hospital of CITIC-Xiangya, were reviewed for inclusion 
in the data set. Informed consent was not necessary because this study used retrospective and fully 
de-identified data, no medical intervention was performed on the subject, and no biological samples 
from the patient were collected. This study was approved by the Ethics Committee of the Reproduc-
tive and Genetic Hospital of CITIC-Xiangya (approval number: LL-SC-2021-008).

Blastocyst images were captured before transfer using a standard optical light microscope 
mounted with a camera. Two grayscale images were captured for each blastocyst, one focusing on 
ICM and the other focusing on TE. Blastocysts were cropped from the original images which have a 
resolution of 1024×768 and were consistently padded to 500×500 to facilitate model training. Patient 

eLife digest More than 50 million couples worldwide experience infertility. The most common 
treatment is in vitro fertilization (IVF). Fertility specialists collect eggs and sperm from the prospective 
parents. They combine the egg and sperm in a laboratory and allow the fertilized eggs to develop 
for five days into a multi-celled blastocyst. Then, the specialists select the healthiest blastocysts and 
return them to the patient's uterus.

Since 1978, more than 8 million children have been conceived through IVF. Yet, only about 30% of 
IVF attempts result in a successful birth. As a result, fertility patients often undergo multiple rounds of 
IVF, which can be expensive and emotionally draining. Several factors determine IVF success, one of 
which is the health of the blastocysts selected for transfer to the uterus. Specialists select the blasto-
cysts using several criteria. But these human assessments are subjective and inconsistent in predicting 
which ones are most likely to result in a successful birth. Recent studies suggest artificial intelligence 
technology may help select blastocysts.

Liu et al. show that using artificial intelligence to assess blastocysts and fertility patient character-
istics leads to more accurate predictions about which blastocysts are likely to result in a successful 
birth. In the experiments, the researchers trained an artificial intelligence computer program using 
pictures of 17,580 blastocysts with known birth outcomes and the parents' clinical characteristics. 
The model identified 16 parental factors associated with birth outcomes. The top 5 most predictive 
parental factors were maternal age, the day of blastocyst transfer to the uterus, how many eggs 
were present in the ovaries, the number of eggs retrieved and the thickness of the uterus lining. The 
program achieved the highest prediction of healthy births so far, compared to success rates listed in 
other studies.

Artificial intelligence-aided blastocyte selection using patient and blastocyst characteristics may 
improve IVF success rates and reduce the number of treatment cycles patient couples undergo. 
Before specialists can use artificial intelligence in their clinics, they must conduct confirmatory clinical 
studies that enroll patient couples to compare conventional methods and artificial intelligence.

https://doi.org/10.7554/eLife.83662
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couple’s clinical features consist of 103 features including maternal age and BMI, the day of blastocyst 
transfer, infertility diagnosis and treatment history of patient couples, ovarian stimulation protocols, 
maternal hormone profiles, and ultrasound results measured during the ovarian stimulation process 
and before transfer, and paternal semen diagnosis results (see Supplementary file 1 for a complete 
list). Based on p value analysis and logistic regression (LR)-based sequential forward feature selection 
(Solorio-Fernández et al., 2020; Raschka, 2018), 16 clinical features that are most relevant to live 
birth prediction were identified and used for training the machine learning model (see Figure 3). 
Feature selection reduces the input feature dimensions by removing redundant features and features 
with limited predictive power, thus improving the model generalization capability (see Figure 3—
figure supplement 1). The LR-based feature selection was used due to its computing efficiency, we 
also presented the result of multilayer perceptron (MLP)-based feature selection in Figure 3—figure 
supplement 1 and Figure 3—figure supplement 2.

A total of 28,118 blastocysts with known live birth outcomes were reviewed, among which 17,580 
blastocysts with two blastocyst images and all the 16 clinical features available were included in the 
data set.

Model architecture
Figure 1 shows the architecture of the live birth prediction model based on multimodal blastocyst 
evaluation. It consists of a CNN to process blastocyst images and an MLP to process patient couple’s 
clinical features. Features from the CNN and the MLP are fused; thus, the model can be trained to 
simultaneously take into account both blastocyst images and patient couple’s clinical features for live 

Figure 1. Architecture of the live birth prediction model based on multimodal blastocyst evaluation. CNN, convolutional neural network; FC, fully 
connected layer; MLP, multilayer perceptron.

The online version of this article includes the following source data for figure 1:

Source data 1. Source code to reproduce the model.

https://doi.org/10.7554/eLife.83662
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birth prediction. The last fully connected layer in the CNN and the last fully connected layer in the MLP 
each output a decision-level feature, which has two variables used to classify the blastocyst into the 
positive or negative live birth outcome category. The adding operation fuses decision-level features 
from the CNN and the MLP, and the result of addition is taken as the final output of the overall live 
birth prediction model.

Model implementation and training
The proposed live birth prediction model used EfficientNetV2-S as the backbone CNN. Efficient-
NetV2-S is the baseline model in the EfficientNetV2 family, which is a new family of CNN models that 
provide higher accuracy and training speed than conventional models (Tan and Le, 2021). In our 
work, the output dimension of the final fully connected layer in EfficientNetV2-S was set to be two, 
representing the positive and negative live birth outcome of a blastocyst, respectively. The model was 
implemented using PyTorch 1.10.1 (Paszke et al., 2019).

Each of the 17,580 blastocysts had two images taken at different focal planes, one focused more 
on TE cells and the other on ICM. Furthermore, for each blastocyst, live birth outcomes and all the 16 
patient couple’s clinical features were available. The blastocysts were randomly split into 80%:10%:10% 
to construct the training, validation, and testing data sets. The stratified random sampling approach 
was used to ensure that all split data sets have the same distribution of minority and majority classes. 
Since the ratio of blastocysts with a positive live birth outcome in the data set is 0.368, to mitigate 
the model’s prediction bias toward the majority category (i.e., the negative live birth outcome), the 
weighted sampling approach, which can help rebalance the class distributions when sampling from 
an imbalanced data set (Feng et al., 2021), was employed for training the model. In the weighted 
sampling approach, the probability of each item to be selected is determined by its weight, and 
the weight of each item is assigned by inverse class frequencies. In this way, the weighted sampling 
approach rebalances the class distributions by oversampling the minority class and under-sampling 
the majority class. We also verified the approach of using weighted cross-entropy loss, which assigns 
greater weights to the loss caused by the prediction error of minority classes. Both approaches helped 
mitigate the prediction bias toward the majority class, and the results showed that the weighted 
sampling approach outperformed the weighted cross-entropy loss method.

Model performance is subject to training hyperparameters (e.g., optimizer, learning rate, batch 
size, and number of layers). Hence, an automatic hyperparameter-tuning tool is used, Facebook Ax 
(version 0.2.2, https://github.com/facebook/Ax), to search for the optimal hyperparameters for model 
training. The selected hyperparameters for training the model include a batch size of 16, an SGD 
optimizer with a learning rate of 0.008, and a momentum of 0.39, and three hidden layers in the MLP. 
A dropout layer follows each hidden layer in the MLP to prevent overfitting. The number of nodes in 
each hidden layer is 6836, 5657, and 468, respectively. The dropout rate in each dropout layer is 0.01, 
0.07, and 0.67, respectively. The model was trained with four RTX A6000 GPUs. It took about 30 hr 
to search for the optimal hyperparameters and about an hour to train the model using the optimal 
hyperparameters.

Statistical analysis
Statistical tests were calculated to compare clinical features between blastocysts with the positive 
live birth outcome and blastocysts with the negative live birth outcome. Chi-squared test was used 
for categorical features, t test was used for numerical features. Chi-squared test and t test were 
performed using Python (version 3.6). ROC curves were compared by the DeLong test implemented 
in MedCalc software (version 20). All statistical tests were two-tailed and considered significant if p 
value≤0.05.

Results
The inclusion of patient couple’s clinical features increased AUC for live 
birth prediction
To quantify the individual effect of blastocyst images and the combined effect of patient couple’s 
clinical features, we built and compared models that (1) used only blastocyst images for live birth 
prediction, and (2) used both blastocyst images and patient couple’s clinical features for prediction. 

https://doi.org/10.7554/eLife.83662
https://github.com/facebook/Ax
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In addition, to quantify the specific effect of endometrium status-related features (i.e., endometrium 
thickness before transfer, endometrium thickness on HCG day, and endometrium pattern B (yes/
no) on HCG day) on live birth prediction, a third model trained using blastocyst images and patient 
couple’s clinical features where endometrium status-related features were excluded, was also built 
and compared.

Figure 2. Receiver operating characteristic (ROC) analysis. ROC curves of the model using only blastocyst images, the model using blastocyst images 
and patient couple’s clinical features where EM-status related features were excluded, and the model using blastocyst images and patient couple’s 
clinical features where EM-status related features were included to predict live birth outcomes of 1758 blastocysts in the test data set. AUC, area 
under the ROC curve; EM, endometrium; EM status-related features, endometrium thickness before transfer, endometrium thickness on HCG day, 
endometrium pattern B (yes/no) on HCG day.

The online version of this article includes the following source data for figure 2:

Source data 1. Code and data used to generate the ROC curves.

https://doi.org/10.7554/eLife.83662
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Figure 2 shows the ROC curves and AUCs of the three models for predicting live birth outcomes 
of 1758 blastocysts (i.e., 10% of 17,580) in the test data set. Using only blastocyst images for live 
birth prediction gave an AUC of 0.67, with a 95% confidence interval (CI) of 0.65–0.70. Using blas-
tocyst images and patient couple’s clinical features (endometrium status-related features excluded) 
significantly increased the AUC to 0.74 (95% CI: 0.72–0.76, p value<0.0001). Using both blastocyst 
images and patient couple’s clinical features (endometrium status-related features included) achieved 
a prediction AUC of 0.77 (95% CI: 0.75–0.79), which is significantly higher than using only blastocyst 
images for prediction (p value<0.0001) and than using blastocyst images and patient couple’s clinical 
features where endometrium status-related features were excluded (p value=0.007).

Ranking the predictive power of patient couple’s clinical features
We then investigated the predictive power of each patient couple’s clinical feature in predicting live 
birth outcome. Figure 3 shows the 16 features that were identified to be most related to the live birth 
outcomes of the blastocysts. These features were ranked according to their AUCs for individually 
predicting the live birth outcomes of blastocysts using univariable LR. The AUC for each feature was 
reported as the mean AUC over a tenfold cross-validation process.

Figure 3. Ranking the predictive power of patient couple’s clinical features. The 16 patient couple’s clinical features that were identified to be most 
related to the live birth outcomes of the blastocysts ranked by the AUC for individually predicting live birth outcome. AUC, area under the curve.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Code and data used to generate the AUC ranking chart.

Figure supplement 1. ROC curves of the model using LR-selected clinical features and blastocyst images, the model using MLP-selected clinical 
features and blastocyst images, and the model using all clinical features showing statistical significance and blastocyst images.

Figure supplement 2. Ranking the predictive power of multilayer perceptron (MLP)-selected patient couple’s clinical features.

https://doi.org/10.7554/eLife.83662
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Figure 4. CNN heatmaps analysis. Heatmaps of the CNN trained without and with patient couple’s clinical features. Column (A): original blastocyst 
images. Column (B): corresponding heatmaps of the CNN trained without including patient couple’s clinical features. Column (C): corresponding 
heatmaps of the CNN trained with the inclusion of patient couple’s clinical features. CNN, convolutional neural network.

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 4:

Source data 1. Code and data used to generate the heatmaps shown in Figure 4.

Figure supplement 1. Two-channel blastocyst images, one channel focusing on the ICM, the other channel focusing on the TE of a same blastocyst.

Figure supplement 1—source code 1. Code for Figure 4—figure supplement 1.

https://doi.org/10.7554/eLife.83662
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CNN heatmaps
In blastocyst images, what does CNN focus on to predict the live birth outcome of a blastocyst? 
Is there a difference in what the CNN focuses on between the model trained without and with the 
inclusion of patient couple’s clinical features? To answer these questions, we used the class activation 
mapping method to generate heatmaps. Figure 4 shows blastocyst images, corresponding heatmaps 
of the CNN trained without including patient couple’s clinical features, and corresponding heatmaps 
of the CNN trained with including patient couple’s clinical features.

The blastocyst images were cropped and padded to a consistent size to facilitate model training. 
The padding value was calculated as the mean pixel value of blastocyst images in the data set. Heat-
maps were generated by XGradCAM (Fu et al., 2020). Note that the CNN takes two-channel blasto-
cyst images as the input, one focusing on ICM and the other focusing on TE. The blastocyst images 
shown in Figure 4 are those focused on ICM, and Figure 4—figure supplement 1 shows the two-
channel blastocyst images. As can be seen in Figure 4, when trained using only blastocyst images, 
the CNN mainly focuses on ICM and TE for predicting live birth outcomes. When training with both 
blastocyst images and patient couple’s clinical features, TE-related features contributed more to live 
birth prediction compared with training with blastocyst images only.

Discussion
In this study, the individual effect of blastocyst images and the combined effect of patient couple’s 
clinical features for live birth prediction were quantified by comparing the AUC values of the model 
using only blastocyst images and the model using both blastocyst images and patient couple’s clinical 
features. An AUC of 0.67 was achieved with blastocyst images only while using both blastocyst images 
and patient couple’s clinical features led to a significantly higher AUC of 0.77 in live birth prediction. 
When endometrium status-related features were excluded from patient couple’s clinical features, the 
AUC of the live birth prediction model significantly decreased (p value=0.007) from 0.77 to 0.74, indi-
cating the strong relevance of endometrium status-related features in live birth prediction. Sixteen 
patient couple’s clinical features were identified to be most related to live birth outcomes of blasto-
cysts, among which maternal age, the day of blastocyst transfer, AFC, retrieved oocyte number, and 
endometrium thickness before transfer are the top five features contributing to live birth prediction.

This study was based on a comprehensive multimodal data set collected for blastocyst evalua-
tion. The data set includes 17,580 blastocysts with known live birth outcomes, blastocyst images, 
and 16 patient couple’s clinical features. As shown in Figure 3, 16 patient couple’s clinical features 
comprehensively include maternal basal characteristics (age and BMI); hormone profiles measured 
after period (LH and FT4), on HCG day (PE2, P, and LH), and before transfer (E2); endometrium status-
related features (endometrium thickness on HCG day and before transfer, endometrium pattern on 
HCG day); features related to oocytes (AFC, retrieved oocyte number); the day of blastocyst transfer; 
number of ovarian stimulation cycles; and paternal features (the ratio of grade A sperm after semen 
processing). For comparison, the data set studied by Miyagi et al., 2020 did not contain endome-
trium status-related features and key hormone profiles (e.g., P, E2, and LH). There are numerous IVF 
data sets containing over 100,000 records of clinical features and live birth outcomes (Nelson and 
Lawlor, 2011; McLernon et  al., 2016; La Marca et  al., 2021); however, there are no blastocyst 
images in these data sets, and thus, these data sets cannot be used for building models to evaluate 
blastocysts from their images.

To handle the multimodal data set, our proposed model was designed to integrate two modules 
including a CNN and an MLP to enable the model to simultaneously consider images and numerical 
clinical features for blastocyst evaluation. The large and comprehensive multimodal data set and the 
proposed CNN+MLP model resulted in the highest AUC value of 0.77 ever reported thus far for 
predicting live birth outcomes of blastocysts. They also enabled us to quantify the predictive power of 
each feature in predicting the live birth outcomes of blastocysts.

The blastocyst grading system introduced in 1999 (Gardner and Schoolcraft, 1999; Gardner, 
1999) remains the most common method used by embryologists to evaluate blastocyst quality 
although the morphological grades of blastocyst development stage, ICM and TE have limited predic-
tive power on live birth outcomes (e.g., AUC=0.58–0.61 for live birth prediction reported by Reignier 
et  al., 2019; Bartolacci et  al., 2021; Xiong et  al., 2022). Since CNN became a state-of-the-art 

https://doi.org/10.7554/eLife.83662
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method for image-based classification, many attempts have been made to apply the CNN to blasto-
cyst evaluation for predicting clinical outcomes (e.g., VerMilyea et al., 2020; Kragh et al., 2021b; 
Berntsen et al., 2022; Enatsu et al., 2022; Loewke et al., 2022; Miyagi et al., 2019; Nagaya and 
Ukita, 2021). Among these, the AUC values reported in the literature using blastocyst images only 
were around 0.65 for live birth prediction (Miyagi et al., 2019; Nagaya and Ukita, 2021). Similarly, 
we achieved an AUC of 0.67 (see Figure 2). Compared with the AUC of 0.58–0.61 reported in the 
literature using Gardner grades for live birth prediction, these results confirmed that CNN can achieve 
a higher prediction accuracy. As shown in Figure 4, the CNN mainly focuses on ICM and TE. Different 
from the Gardner-defined TE grade on the number of TE cells and the cohesiveness of TE cells as a 
whole, the CNN tends to focus on specific TE clusters. Understanding the heatmaps further requires 
more investigations.

Miyagi et al., 2020 used both blastocyst images and maternal clinical features (age, AMH, and 
BMI) to predict live birth outcomes and achieved an AUC of 0.74 (Miyagi et al., 2020). The additional 
contribution from the three maternal clinical features was not clear since no AUC was reported by 
using blastocyst images alone. Furthermore, despite their importance in pregnancy and live birth, 
endometrium status-related features were not considered in their work. Therefore, our study used 
a comprehensive data set and quantitatively compared the AUC values of live birth prediction using 
only blastocyst images versus using both blastocyst images and patient couple’s clinical features. 
We also quantified the usefulness of endometrium status-related features in working with blastocyst 
images to improve live birth prediction. Furthermore, we revealed that hormone profiles such as E2, 
LH, P, and FT4, features related to oocyte retrieval such as AFC and number of oocytes retrieved, and 
the ratio of grade A sperm after processing representing semen quality are able to work with blas-
tocyst images to further improve the live birth prediction accuracy. Note that in this study, only the 
total testosterone (T) was analyzed, and free T or bioavailable T was not available for clinical feature 
analysis (see Supplementary file 1). This may cause potential bias in determining the significance of 
testosterone as a predictor of live birth.

Another finding of this study, by comparing the heatmaps of the CNN trained without and with 
the inclusion of patient couple’s clinical features, is that the weights of TE-related features increased 
(see Figure 4). A potential reason may be that TE and the endometrium status-related features (e.g., 
endometrium thickness and pattern) play critical roles when a blastocyst initiates implantation, and a 
positive live birth outcome is not possible without the success of this implantation process (Ahlström 
et al., 2011; Hill et al., 2013; Chen et al., 2014; Bakkensen et al., 2019).

In conclusion, in this retrospective study involving 17,580 blastocysts with known live birth 
outcomes, blastocyst images and 16 patient couple’s clinical features, we built a live birth prediction 
model based on multimodal blastocyst evaluation using both blastocyst images and patient couple’s 
clinical features. We quantified the individual effect of blastocyst images and the combined effect of 
patient couple’s clinical features on live birth prediction. Results demonstrated that using both blas-
tocyst images and patient couple’s clinical features can significantly improve live birth prediction than 
using blastocyst images alone.

The proposed live birth prediction model improves the evaluation of a blastocyst in terms of its live 
birth potential for best blastocyst selection from multiple blastocysts of a patient. The next step is to 
validate the model’s prediction accuracy using prospectively collected data and verify its effectiveness 
in blastocyst selection via a randomized controlled trial (RCT). Patients enrolled in the RCT will be split 
into the study group and the control group (1:1 ratio). In the study group, the model selects a top blas-
tocyst having the highest probability of live birth for transfer, and in the control group, embryologists 
select a top blastocyst based on their routine morphological grading for transfer. Live birth outcomes 
of both groups will be tracked and compared.

https://doi.org/10.7554/eLife.83662
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