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Abstract The microbial community composition in the human gut has a profound effect on 
human health. This observation has lead to extensive use of microbiome therapies, including over-
the-counter ‘probiotic’ treatments intended to alter the composition of the microbiome. Despite 
so much promise and commercial interest, the factors that contribute to the success or failure of 
microbiome-targeted treatments remain unclear. We investigate the biotic interactions that lead to 
successful engraftment of a novel bacterial strain introduced to the microbiome as in probiotic treat-
ments. We use pairwise genome-scale metabolic modeling with a generalized resource allocation 
constraint to build a network of interactions between taxa that appear in an experimental engraft-
ment study. We create induced sub-graphs using the taxa present in individual samples and assess 
the likelihood of invader engraftment based on network structure. To do so, we use a generalized 
Lotka-Volterra model, which we show has strong ability to predict if a particular invader or probiotic 
will successfully engraft into an individual’s microbiome. Furthermore, we show that the mechanistic 
nature of the model is useful for revealing which microbe-microbe interactions potentially drive 
engraftment.

Editor's evaluation
This manuscript uses genome-scale metabolic modeling to estimate interspecies interactions and 
subsequently assess engraftment outcomes. This is an important line of work with potentially broad 
applications in different fields, including microbiota studies. The authors provide solid evidence to 
support the usefulness of their proposed approach in engraftment studies.

Introduction
Microbiome research has come to encompass key areas of disease, ranging from infections (Antharam 
et al., 2013; Honda and Littman, 2012; Battaglioli et al., 2018) and cancer prevention (Moss and 
Blaser, 2005; Walther-António et al., 2016; Kim et al., 2020) to systemic immune and neurological 
responses (Severance et al., 2016; Kang et al., 2014; Chen et al., 2016). The effect of the micro-
biome on health is now undeniable, and every year in the US over 400,000 people collectively spend 
$1 billion dollars on over-the-counter probiotics intended to alter their microbiome (Kristensen et al., 
2016). Many of the purported interactions between microbes and health involve resident microbiota 
and their interactions with the host, i.e., the interface between microbial ecology and human health. 
The goal of microbiome-targeted interventions is therefore to promote health by ‘restoring and main-
taining the microbiota and the crucial health-associated ecosystem services that it provides’ (Costello 
et al., 2012).
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Despite the many links between the microbiome and health, our ability to deploy probiotics to 
modify the microbiome as intended has been met with relatively little success (Mullard, 2016; Zhu 
et al., 2019; Yuan et al., 2017; Zhao et al., 2021; Wu et al., 2017; Lawson et al., 2019). Studies 
looking at the ecological effects of probiotic administration show that administration of a probiotic 
is not sufficient to alter the community in the desired way. Specifically, engraftment of the adminis-
tered microbial species is often limited, with only one-third to one-half of patients showing any signs 
of medium- or long-term engraftment (Maldonado-Gómez et al., 2016; Pudgar et al., 2021). We 
offer the argument that probiotic interventions are primarily ecological in nature; their purpose is 
to reshape the complex microbial communities in our body in beneficial ways. Therefore, to predict 
whether a probiotic has the desired effects in the gut microbial community, we need more studies 
examining the ecology of probiotic interventions (Walter et al., 2018; van den Berg et al., 2022). A 
mechanistic, personalized approach to probiotic design—one rooted in empirical metabolic data and 
ecological principles—has the potential to propel the field forward.

Previous work trying to predict engraftment has been mostly restricted to fecal microbiome trans-
plant (FMT) studies using non-mechanistic classifiers (Smillie et al., 2018; Podlesny et al., 2021). 
While potentially predictive, such classifier approaches are sensitive to the underlying assumptions or 
conditions in which the study is carried out. Because such models are built using statistical methods 
on data that is assumed to be uniformly collected, these models cannot be generalized to new circum-
stances. It would be unexpected to see predictions built from patients with diarrhea, undergoing 
bowel prep, taking antibiotics, and given an FMT accurately predict what happens in patients taking 
orally administered probiotics. For these reasons, more detailed mechanistic approaches, such as 
genome-scale metabolic modeling, have been recently explored as more generalizable alternatives 
(Heinken et al., 2021a; Heinken et al., 2021b; Dillard et al., 2021; Jenior et al., 2021).

The goal of this work is to examine the use of metabolic modeling-informed population dynamic 
approaches. This builds on top of related work in both constraint-based metabolic modeling and 
population models such as Lotka-Volterra (LV). It is worth highlighting that the use of dynamic flux 
balance analysis (FBA) for population models has also been a well-published approach. Despite these 
successes, there are a number of practical drawbacks for communities of high complexity such as 
labor-intensive interpretation and high computational complexity.

Population models such as the generalized LV (gLV) model are popular tools for understanding micro-
bial community dynamics in a mechanistic manner (Stein et al., 2013; Friedman et al., 2017; Angulo 
et al., 2019; Kuntal et al., 2019). However, these models are in general difficult to parameterize, with 
state-of-the-art gradient-matching procedures requiring somewhat dense time-longitudinal data with 
many replicates (Bucci et al., 2016). Furthermore, it has previously been shown that parameters fit 
from data to these models do not extend to novel environmental situations, and may even change 
with the addition of a new taxa to the community (Brunner and Chia, 2019; Momeni et al., 2017). 
These drawbacks make such mechanistic population models impractical for predicting engraftment. 
However, by leveraging metabolic modeling we are able to parameterize population models in a way 
that can be easily adapted to novel environments and does not require dense time-longitudinal data. 
This allows us to use these models to predict microbial engraftment into a community. See Figure 1 
for a comparison of our method with standard parameter fitting.

Genome-scale metabolic models (GSMs) encode the metabolic pathways available in a cell, 
allowing simulation of cellular metabolism and growth (Lewis et al., 2012). These tools have been 
used extensively to understand and engineer microbial mono-cultures, and have recently begun to 
be used to understand and predict the composition and metabolic function of microbial communities 
(Chan et al., 2017; Diener et al., 2020; Kim et al., 2022). Community methods using GSMs often 
suffer from a number of drawbacks. These can include a focus on equilibrium states, high complexity 
and computational cost, and the difficulty of providing accurate GSMs for each community member. 
By layering simple, pairwise GSM community modeling with population models, we allow for predic-
tion that includes transient behavior (e.g. how quickly an extinction happens within a community) 
and reduces computational complexity. The availability of accurate GSMs remains a major difficulty, 
but we demonstrate that progress can be made using algorithmically generated models from whole 
genomes.

In this paper, we present a method to predict engraftment of an invader into a microbial commu-
nity in the following manner. First, we construct an interaction network of the microbial taxa found 

https://doi.org/10.7554/eLife.83690
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in a sample from the community using pairwise FBA with resource allocation constraints (Kim et al., 
2022), which requires a GSM for each taxa. To construct the necessary GSMs, we matched taxa found 
in the sample to the genomes found in the RefSeq database (O’Leary et al., 2016), and used these 
genomes to build models using ModelSEED (Seaver et al., 2021). A complete list of the genomes 
used can be found in Supplementary file 1. We then simulated pairwise growth using community FBA 
with growth media adapted from the AGORA genome-scale modeling project (Heinken et al., 2023); 
precise details are available in S1 Data.

After network construction, we make a prediction based off of simulations with the gLV model 
(Edelstein-Keshet, 2005; Stein et al., 2013; Friedman et al., 2017), and test the model’s predictive 
potential by predicting the outcomes of microbiome invasion experiments (Maldonado-Gómez et al., 
2016) from the initial presence/absence of species in each sample. The LV model is widely used, but 
we found that this model could lead to uncontrolled simulated growth. We therefore also investigated 
alterations to the LV model that dampen the numerical instability.

Despite the drawbacks to both population models and GSMs, limitations in our ability to construct 
high-quality GSMs, and the limited data requirement of our method, our method produces positive 
predictive value in the scenario in which it was tested. Our method therefore represents a ‘low-budget’ 

Figure 1. Population models such as Lotka-Volterra generally require dense time-longitudinal data to accurately parameterize, and directly fit 
interactions between species (solid arrow in right panel). In this work, we leverage genome-scale metabolic modeling to parameterize population 
models with only genomic data from a single time-point. This is accomplished by modeling microbial interactions with their shared environment 
(colored circles in the left panel).

https://doi.org/10.7554/eLife.83690
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tool that nevertheless can be useful. This success is also evidence that more complex methods that 
expand on our simple approach could provide great predictive value with a still limited data require-
ment. Furthermore, we perform two types of sensitivity analysis to demonstrate that the mechanistic 
nature of the model provides additional insight into the impact of the various components of the 
network. We perform simulated knock-out experiments to test how sensitive engraftment is to each 
community member, and we use parameter sensitivity analysis to test how sensitive engraftment is to 
each network connection.

Results
Predictive value of the method
We first examine the ability of our metabolic modeling-based approach to successfully predict 
engraftment versus non-engraftment for different microbial species introduced orally across different 
experimental or clinical trial settings. The study that we use to test predictive power, authored by 
Maldonado-Gómez et al., 2016, involved the introduction of candidate probiotic into an established 
microbial community. In the study, Bifidobacterium longum AH1206 was administered as an oral 
probiotic to 23 subjects, with data available for 22 of these subjects. We predicted engraftment of the 
candidate probiotic using the ‘baseline’ samples, which were taken before introduction of the probi-
otic, and the ‘treatment’ samples, which were taken during probiotic administration. We compared 
our predictions to a binary ‘engrafter’ or ‘non-engrafter’ classification based on cell culture at later 
time-points.

As a metric of classification success for the data set, we use the area under the curve of the receiver 
operator characteristic (AUC-ROC). This metric provides a measure of performance based on the 
model’s ability to identify true positives while avoiding false positives, so that 1 is perfect classifier 
performance and o.5 is equivalent to random classification (i.e. flipping a coin for each sample). We 
used six sets of parameters inferred from joint FBA with different hyperparameters to parameterize 
the gLV model, and report the resulting predictive value in Table 1.

Our method showed moderate positive predictive value on predictions from the baseline samples, 
and good predictive value on predictions made from samples taken during treatment. Improved predic-
tion between baseline and treatment samples suggests that a change in microbiome as a response to 
the introduction of the probiotic impacts our method. This in turn suggests that our method captures 
at least part of the underlying biological processes that determine engraftment. Furthermore, these 

Table 1. Area under the receiver operating characteristic curves for our method’s predictions of 
22 samples from each of two time-points (TP) using six sets of parameters inferred from joint flux 
balance analysis (FBA) with six different sets of hyperparameters.
The first three sets of inferred parameters differ in the ‘resource allocation constraint (RAC)’ in 
joint FBA. We used values of 35 and 70 for this parameter, as well as using joint FBA without RAC. 
The next three sets of parameters were inferred using an RAC value of 35 but changes to the 
model environments. EU average diet (C halved/doubled) had the major carbon sources of the ‘EU 
average diet’ (D-maltose, sucrose, D-fructose, and D-glucose) halved or doubled in availability, and 
‘complete medium’ simulated the availability of any exchangeable metabolite at uniform simulated 
inflow.

Baseline TP (p-value)
Treatment TP 
(p-value)

EU average diet (RAC 35) 0.6161 (0.1020) 0.8482 (<0.001)

EU average diet (No RAC) 0.6161 (0.1020) 0.8571 (<0.001)

EU average diet (RAC 70) 0.6429 (0.0741) 0.8482 (<0.001)

EU average diet (C halved) 0.6071 (0.1107) 0.8393 (<0.001)

EU average diet (C doubled) 0.6339 (0.0808) 0.8304 (0.0010)

Complete medium 0.6071 (0.1155) 0.7143 (0.0221)

https://doi.org/10.7554/eLife.83690
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results were mostly robust to choice of hyperparameters, with the exception being that the complete 
medium showed significantly worse predictive value on the samples taken during treatment.

In Figure 2, we show the estimated significance of our results when compared to the null model 
(720 samples of the null model). We use an approximate ‘edge swapping’ procedure as a null model, 
which draws interaction parameters randomly from the set of inferred interaction parameters, with 
replacement. In other words, our null model shuffles the original set of interaction parameters so that 
any ‍β

N
ji ‍ in the null model is some ‍βji‍ in the inferred parameter set. This ensures that the network of 

interactions in our null model has the same edge weight distribution as that of our inferred model so 
that we may test the significance of the interactions inferred, rather than summary statistics such as 
diversity.

We also compared our method with two standard machine learning techniques: a support vector 
machine (SVM) and a random forest (RF) classifier. Unlike our method, which does not use known clas-
sifications to ‘learn’ a model, both of these techniques require a ‘training’ set of data in which samples 
are labeled according to their known classification. We trained these models on 16 of the 22 samples 
(∼70% of the data), and tested their ability to predict the remaining 6 samples. We repeated this 
procedure 1000 times with randomly chosen testing/training sets. For both classifiers, we used the 
relative abundance data of the set of taxa that our model considered, as well as binarized presence/
absence version of the data. We did this because our method only considers presence or absence 
of taxa, rather than relative abundance. The SVM classifier did not outperform random assignment, 
while the RF classifier performed, on average across train/test splits, about as well as our method. Our 
method, therefore, provides the same ability to classify unknown samples as an RF classifier without 
the need for any a priori known sample classifications (Figure 3).

Uniform shifts in interaction parameters
One consequence of using the gLV model in our method is the possibility of finite-time blow-up in simula-
tion. This happens when one or more taxa approach infinite biomass in finite simulation time. In practice, 

Figure 2. Comparison of AUC-ROC Between Inferred Parameters & Null Model. (A, B) The power to predict engraftment versus non-engraftment of 
the B. longum probiotic was relatively robust to the joint flux balance analysis (FBA) hyperparameter setup, as shown and measured by the area under 
the receiver operator characteristic curve (AUC-ROC) (with 1 being perfect classification of engraftment and 0.5 being random). The null model had 
generally less predictive power than inferred parameters, in particular when predictions were made with samples from the ‘treatment’ time-point. The 
overall improvement in predictions for the ‘treatment’ time-point vs. the ‘baseline’ time-point suggests that early changes to the microbiome after 
introduction of a probiotic play a significant role in determining eventual engraftment. p-Values were estimated based on over 1000 samples from a null 
model.

https://doi.org/10.7554/eLife.83690
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Figure 3. AUC-ROC of Standard Classifier Predictions. (A) Our method (horizontal lines) significantly outperformed the support vector machine 
classifier, which was assessed with 1000 random train/test splits. (B) The random forest classifier, also assessed with 1000 train/test splits, performed 
similarly on average to our method.

https://doi.org/10.7554/eLife.83690
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whenever one or more taxa increase to a level much higher than the initial total biomass of the simulated 
system, simulation is slowed down and results may be less reliable. There are two simple methods to 
prevent this from happening. The first is to alter every interaction parameter to be more negative (see 
Equation 3), making the system uniformly more antagonistic and less likely to show finite-time blow-up. 
The second is to include negative self-inhibition (e.g. add ‍βii < 0‍ parameters [see Equation 4]).

We tested both of these alterations by implementing them and computing predictions and the 
AUC-ROC of those predictions. Figure 4 shows that these changes did not have a significant impact 
on the performance of our predictions, as long as only antagonism was considered. When we shifted 
parameters in the positive direction (simulating commensalism or mutualism), finite-time blow-up was 
more likely and our results were much less stable.

Interpreting mechanism—sensitivity to inferred parameters
One major advantage to any mechanistic model is that we may measure the sensitivity of our results to 
perturbations in the model. Here, we investigate the results of perturbing the model of the B. longum 
experiments in two ways: simulating ‘knock-out’ experiments and computing sensitivity to changes in 
interaction strength.

First, we simulate knock-out experiments by removing a taxa from the full network of interactions. 
As a result, this organism will be removed from any sample it was previously present in. We then 
measure the effect this has on our prediction of B. longum’s likelihood of engrafting based on the LV 
dynamics.

Next, we measure the sensitivity of B. longum growth to each interaction parameter in the LV 
model. That is, we measure the effect of perturbing each parameter individually on the simulated 
abundance of B. longum at equilibrium according to antagonistic LV dynamics.

Sensitivity to community members
In order to investigate how sensitive B. longum engraftment is to each of the other species present in 
any sample of the B. longum experimental data set, we simulate ‘knock-out’ experiments and observe 

AUC-ROC of Baseline Time-Point Samples AUC-ROC of Treatment Time-Point Samples

Commensalism Antagonism Commensalism Antagonism

A B

Figure 4. Effect of Uniform Parameter Shifts in the Lotka-Volterra Model. (A, B) We altered the generalized Lotka-Volterra model with uniform shifts 
in parameters which added either antagonism or self-inhibition to the model. We tested self-inhibition with values from 0 to 1 (no self-promotion) and 
antagonism with values from 1 (complete antagonism) to –1 (complete commensalism), with all ‍βij ∈ [0, 1]‍. Neither change had a significant impact on 
the area under the receiver operator characteristic curve (AUC-ROC) of our method’s predictions, although adding commensalism to the model made 
the model and resulting predictions much less stable due to increased finite-time blow-up.

https://doi.org/10.7554/eLife.83690
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the effect this has on our prediction of engraftment. For each simulated knock-out, we removed a 
taxa from every sample it was present in and repeated our predictive procedure. We recorded the 
difference in sample score for engraftment of B. longum (Equation 2) as well as the change in AUC-
ROC of our set of predictions. We simulated knock-outs for the five most abundant taxa in the data 
(averaging across samples).

Table 2 shows the summary statistics of the simulated knock-out experiments. Of the five knock-
outs and two sample time-points that we tested, all but one increased predicted engraftment by a 
slight amount. Interestingly, most of these also increased prediction accuracy slightly, suggesting that 
the increase in engraftment was more pronounced among the true engrafter samples.

This experiment demonstrates that incorporating mechanism into prediction can provide useful 
insight beyond prediction. Because our model considers the network of interactions between micro-
bial taxa, we are able to experiment with the effects of each individual taxa by using simulated exper-
iments like knock-outs.

Sensitivity to interactions
Our method is based on the network of interactions between microbial species, which ties together 
the individual interactions between each pair of species into one complex picture. This means that the 
interaction between two species unrelated to B. longum may have an effect on B. longum’s growth. 
We can compute this effect by computing how B. longum’s simulated abundance changes as we vary 
each parameter. Precisely, we can compute the derivative of B. longum with respect to each param-
eter ‍βlk‍ in the model.

We computed the sensitivity of our engraftment score to 8 of the interaction parameters in the 
model, using an RAC value of 35 and the ‘EU average diet’. For each of the baseline and treatment 
time-point sample sets, we chose the 2 strongest negative and 2 strongest positive interactions that 
appeared in at least half of all samples, as well as the 2 strongest positive and 2 strongest negative 

Table 2. We experimented with simulated knock-outs for the top 5 taxa in average abundance in the 
data.
The ‘sample proportion’ column gives the proportion of samples in the data set that contain the 
organism that was knocked out. The ‘average score difference’ is the average effect of the knock-
out on our computed engraftment score, with a positive number indicating an average increase in 
engraftment after knock-out of the organism (implying a negative interaction between the organism 
and B. longum). The final column shows the impact on our predictions of removing the organism 
from the analysis.

Sample proportion
Average score 
difference AUC-ROC difference

Baseline TP
Bifidobacterium 
adolescentis 0.954545 0.010114 0.017857

Uncultured Ruminococcus 
sp. 1.000000 0.012803 0.026786

Uncultured Clostridium 
sp. 1.000000 0.006259 –0.008929

Eubacterium rectale 1.000000 0.006183 0.017857

Faecalibacterium 
prausnitzii 1.000000 –0.002250 0.000000

Treatment TP B. adolescentis 0.954545 0.015415 0.000000

Uncultured Ruminococcus 
sp. 1.000000 0.016707 0.008929

Uncultured Clostridium 
sp. 1.000000 0.014424 0.017857

E. rectale 1.000000 0.011133 0.026786

F. prausnitzii 0.954545 0.013323 0.035714

https://doi.org/10.7554/eLife.83690


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Brunner and Chia. eLife 2024;13:e83690. DOI: https://doi.org/10.7554/eLife.83690 � 9 of 18

interactions that have B. longum as a target (and so act directly on the probiotic) that appeared in at 
least half of all samples. We observed that engraftment score was very sensitive to all the parameters 
chosen. In Table 3, we show the average sensitivity across the 22 baseline and 22 treatment samples 
and 8 edges, as well as the average (across edges) variance across the samples. We also include the 
average (across samples) of the variance in engraftment score across the hyperparameter choices that 
we tested (with different environmental conditions and RAC values) for comparison. We notice that, 
in contrast to the model interaction parameters ‍βlk‍, engraftment score was not particularly sensitive 
to hyperparameter choices.

Discussion
Our work examines the scenario where the goal of probiotic intervention is a long-lasting alteration 
of the resident host microbiota. Given that the links between microbes and health have a basis in 
observations of the resident human microbiota (Gupta et al., 2020), one common assumption is that 
alterations to resident microbiota would impact health outcomes. Along those lines, we demonstrate 
that genome-scale metabolic modeling can be used in a simple way to predict the outcome of species 
invasion experiments with minimal study data required. This suggests that GSMs can provide value 
in understanding microbial community dynamics from cross-sectional microbiome relative abundance 
profiling.

Genome-scale metabolic modeling uses genomic data to predict the growth and resource use of 
a microbial population by considering the entire internal metabolism of the species. This technique 
can be extended to community modeling in a number of ways (Zomorrodi and Maranas, 2012; Chan 
et al., 2017; Diener et al., 2020; Kim et al., 2022; Frioux et al., 2020), all with relatively high levels 
of complexity. Community dynamics can be inferred from GSMs using a model known as dynamic 
FBA, which uses a GSM for each taxa in the community to infer growth rates and dynamic resource 
usage (Brunner and Chia, 2020). While dynamic FBA provides a complete picture of community 
dynamics according to GSMs, it represents a very complex model that is difficult to analyze and simu-
late, and still contains a set of unknown parameters.

As a limitation, it is worth noting that all GSM-based methods, including our own, are limited to 
a large extent by the accuracy of the metabolic model reconstructions. Low-quality reconstructions 
often omit key reactions, or worse, may include reactions that should not have been included. In all 
cases, this creates the potential for reaction fluxes or interactions that do not reflect reality. Improving 
the quality of metabolic model reconstruction is the subject of challenging and nuanced research that 
includes automated pipelines (Benedict et al., 2014; Seaver et al., 2021; Faria et al., 2023) and 
hand-curation efforts (Heinken et al., 2023). These efforts are essential to improve the accuracy of 
community metabolic modeling, but are beyond the scope of this particular study.

Here, we present a simpler model—a network of emergent interactions between microbes, whose 
interaction parameters we can approximate from pairwise genome-scale modeling. The gLV model 
and other similar microbial network models are popular tools for understanding community dynamics 
(Friedman et al., 2017; Fisher and Mehta, 2014; Angulo et al., 2019; Bucci and Xavier, 2014). 
Such models are difficult to parameterize for a myriad of reasons. Good parameterization requires 
relatively dense time-longitudinal data of absolute, rather than relative, community abundance (Bucci 

Table 3. The average sensitivity of engraftment score across 8 parameters and the 22 baseline and 
22 treatment samples, as well as the average (across samples) variance across the 8 edges.
The 8 edges were chosen because they were the 2 strongest positive edges, 2 strongest negative 
edges, the 2 strongest positive direct edges (i.e. with B. longum as a target) and the 2 strongest 
negative direct edges. Detailed sensitivity results for these 8 edges can be found in Supplementary 
file 1.

Baseline time-point
Treatment 
time-point

Variance across setups 4.270608e-06 2.621430e-05

Average sensitivity (8 tested edges) 3.435107e+33 7.504735e+10

Variance of sensitivity (8 tested edges) 6.250203e+68 1.626682e+23

https://doi.org/10.7554/eLife.83690
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et al., 2016; Kuntal et al., 2019). By taking advantage of GSMs, we provide a parameterized network 
that does not require any time-longitudinal data. In fact, our method as presented here makes use 
of previously published GSMs or genomes, meaning that only binary presence/absence information 
is necessary for a prediction. Additionally, GSMs can be built directly from the genomes found in a 
sample using automated tools such as CarveMe (Machado et al., 2018) or ModelSEED (Seaver et al., 
2021), meaning that our method can be extended to include taxa not found in any database.

Another strength of our approach is its interpretability. The B. longum engraftment analysis 
provides us with an example motivation, which would be to identify other partner microbes that could 
improve the responsiveness to the engraftment of a target probiotic. In this instance, we demonstrate 
how this might be done by quantifying the impact of five high-abundance microbes on B. longum 
engraftment. We see, for example, that B. adolescentis has a negative impact on B. longum engraft-
ment (simulated knock-outs increased engraftment score), while F. prausnitzii has a positive impact 
on B. longum engraftment. Although time consuming, a complete set of simulated knock-out exper-
iments is is readily possible using our method, which could identify the largest positive and negative 
relationships between specific taxa and B. longum engraftment.

Inspecting the sensitivity of our method’s engraftment score revealed that it is very sensitive to the 
individual interaction parameters ‍βlk‍ but quite robust to changes in hyperparameters. This suggests 
that the method is sensitive to the interactions between microbes, while robust to changes in compu-
tational and environmental parameters. It also suggests that individual interactions between microor-
ganisms can have an out-sized impact on the downstream composition of a microbial community. This 
is consistent with the idea that probiotics may have a role in treating human disease by reorganizing 
the microbiome through the addition of one or a few species.

Lastly, we note that we have previously shown that species-species interaction modeling, i.e., models 
built from interactions between microbes, do not capture the complexities of microbial community 
dynamics that emerge as communities change in composition (Brunner and Chia, 2019). Here, we 
mitigate this shortcoming by determining interaction parameters from pairwise models under specific 
metabolic conditions, providing limited environmental context to our method. However, it is unlikely 
that these interactions remain constant as the microbial community manipulates its environment. We 
conjecture that prediction can be improved by accounting for changes in microbial interaction as the 
environment changes. In upcoming work (Brunner et al., 2023), we demonstrate that dynamic FBA 

Figure 5. Schematic of the modeling process. In brief, we generate an interaction network of genome-scale models using pairwise joint flux balance 
analysis. To produce a prediction of engraftment for a given sample, we use the taxa present in the sample to generate an induced sub-graph of the full 
network. This is then used to define the parameters in the generalized Lotka-Volterra dynamical system to generate a prediction of engraftment.

https://doi.org/10.7554/eLife.83690
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implies that a microbial community behaves according to a discrete sequence of interaction networks 
over time. Incorporating this dynamic behavior may improve prediction with only a modest increase in 
model complexity, as long as this sequence of networks can be efficiently determined.

Methods
Our method, as shown in Figure 5, is based on the generalized Lotka-Volterra model. Using genome-
scale metabolic models, we infer interaction parameters from pairwise joint flux balance analysis for 
all pairs of taxa in a dataset. We then predict engraftment of an invader for each sample by simulating 
the invasion using the generalized Lotka-Volterra dynamics with the taxa present in the sample.

Assessing receptivity with the gLV model
In order to assess how receptive a sub-graph is to an invading taxa, we used the gLV model, which 
can be associated with any pairwise graph. We simulated the community represented by each sample 
to equilibrium and scored the performance of the invading taxa by simulated final abundance or time 
to extinction.

The gLV model (Edelstein-Keshet, 2005) of a community of ‍N ‍ species is written as follows:

	﻿‍

dxi
dt

= xi


1 +

∑
j ̸=i

βjixj


 .

‍�
(1)

Notice that we use a version of this model that assumes an intrinsic growth rate of 1 for each taxa 
because fitting accurate intrinsic growth rates would require additional data, while we wish to assess 
the performance of our methods without the need for parameter fitting. Our predictions were based 
on the equilibrium relative abundance of the target variable (e.g. the variable representing a candi-
date probiotic) in the dynamical system.

The gLV model can display an array of behaviors, including multi-stability and chaos. For this reason, 
we use a Monte-Carlo sampling approach to generating predictions, taking repeated random draws 
of initial conditions and simulating forward. In our experiments, we used 1000 draws (i.e. we compute 
1000 separate ODE so) for each sample. In each trial, we scored the network based on the simulated 
relative abundance of the invader at some large time ‍T ‍. It is possible that the invading taxa either 
dominates the community (i.e. relative abundance approaches 1) or becomes extinct in our simulation. 
We take this into account by setting a score as follows:

	﻿‍
si = 1

3

(
time to extinction

T
+ relative abundance at time T + time to community dominance

T

)

‍�
(2)

for each trial ‍i‍ and averaging over all trials.
To test changes in the structure of the gLV model and control for possible finite-time blow-up of 

model solutions, we tested two general alterations to the model. The first is a constant shift of the 
interaction parameters:

	﻿‍

dxi
dt

= xi


1 +

N∑
j=1

(βji − c)xj




‍�
(3)

and the second is a shift only in the self-interaction terms:

	﻿‍

dxi
dt

= xi


1 − cxi +

∑
j̸=i

βjixj


 .

‍�
(4)

For both alterations, we used a single constant ‍c‍ across the entire model, and experimented with 
changes in the value of ‍c‍.

Inferring interaction parameters
To infer the interaction parameters ‍βji‍ of the dynamical system, we use a network of interactions 
implied by a technique known as FBA. FBA is a technique used to predict growth rates of microbes 

https://doi.org/10.7554/eLife.83690
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using genome-scale information about their internal metabolisms (Lewis et al., 2012). This technique 
requires a GSM which represents the set of metabolic pathways of a microbe, as well as information 
about the environmental metabolites available. An optimization problem is then solved to predict a 
growth rate of the microbe. Similarly, a technique known as ‘joint FBA’ (Zomorrodi and Maranas, 
2012; Chan et al., 2017; Kim et al., 2022) can be used to estimate growth rates of pairs of microbes 
using a GSM from each microbe.

FBA and joint FBA allow us to simulate singleton and pair growth experiments in silico and use 
the results of these simulated experiments to parameterize our dynamical model. Simulated biomass 
when grown in a pair was compared to simulated biomass when grown alone in order to determine an 
implied interaction between microbes. This interaction is then used as a parameter in the dynamical 
model, which can be conceptualized as an edge in a network of interactions.

To compute growth simulations, we use joint FBA with a set of resource allocation constraints, 
which have been shown to improve predictions in pairwise experiments (Kim et al., 2022). Briefly, 
joint FBA with resource allocation constraints solves a linear program defined by the GSMs of the 
community members. The linear program maximizes total community biomass with the standard FBA 
constraints as well as the added constraints that each microbe grows a fixed known rate (simulating 
chemostatic equilibrium), that mass is balanced community wide (with inflow and outflow of nutrients), 
that there is forced leak of nutrients out of the community (introduced by Kim et al., 2022 to prevent 
unrealistically efficient cross-feeding), and that each community member’s total internal reaction flux 
is bounded (the resource allocation constraint). Our problem setup is identical to that described in 
Kim et al., 2022, and we provide Python code to carry out the computation in our supplemental 
repository.

To perform joint FBA, simulated inflow of nutrients was determined by medium defined as ‘EU 
average diet’ by the Virtual Metabolic Human project (Noronha et al., 2019; Ernährungsbericht and 
Elmadfa, 2012), with inflow of 10 mmol/day for nutrients not included in the medium but essential for 
simulated growth. Growth rates of microorganisms were set to be 0.04 g/day, and forced leak of nutri-
ents was set to be 0.1 mmol/day. For our main experiment, we set the RAC constraint to 35 mmol/day 
as was shown to lead to accurate prediction in Kim et al. We also adjusted this value, as well as the 
defined medium, in order to assess our method’s robustness to meta-parameters.

In order to test the impact of joint FBA hyperparameters including medium and resource allocation 
on our predictions, we also created networks of interaction parameters by performing joint FBA with 
five alternative sets of hyperparameters. Two of these networks were made with alterations to the 
RAC constraint we used in computing joint FBA. We computed interactions using an RAC value of 70, 
which relaxes the constraint on total flux, and without a resource allocation constraint. The final three 
networks were constructed with different media, simulating differences in the external environment. 
We constructed a network with the major carbon sources of the ‘EU average diet’ halved in availability, 
and a second with these carbons doubled. The major carbon sources were taken to be D-maltose, 
sucrose, D-fructose, and D-glucose. Finally, we computed a network with a ‘complete medium’ in 
which any exchangeable metabolite for each model was made available with uniform simulated inflow.

We use the log-ratio of simulated growth in pairs and alone as the implied effect of one microbe 
on another. That is, if simulated growth of species ‍i‍ alone is ‍xi‍, and growth of species ‍i‍ when coupled 
in a pair with species ‍j‍ is ‍xij‍, we weight the edge from species ‍j‍ to species ‍i‍ as

	﻿‍
w∗

ji = log
(

xij
xi

)

‍
 
�

(5)

We use the log-ratio because it is the simplest choice of translating simulated data to interac-
tion that accounts for fold-changes. Of course, the simple difference in simulated biomass is another 
possible choice, but this will be much more sensitive to absolute scaling in simulation, so, for example, 
slow growing taxa will be biased toward smaller interactions in the network. Furthermore, our in silico 
growth experiments only provide simulated biomass values at chemostatic equilibrium, meaning that 
fitting LV parameters directly to these data is an underdetermined problem, particularly when pair 
growth leads to a simulated extinction.

We also re-scale our network so that all edge weights are in the interval ‍[−1, 1]‍, meaning we take 
as our edge weights

https://doi.org/10.7554/eLife.83690


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Brunner and Chia. eLife 2024;13:e83690. DOI: https://doi.org/10.7554/eLife.83690 � 13 of 18

	﻿‍
wji =

w∗
ji

maxl,k(|w∗
lk|)

.
‍�

(6)

This re-scaling is done for computational convenience, and can be viewed as a time re-scaling of 
the network dynamics which does not effect our predictions. Additionally, we tested the approach 
after adjusting either all parameters by addition of a single constant value to every ‍βji‍, as well as by 
adjusting the parameters by addition of a single constant value to every self-regulatory parameter 

‍βjj‍.

Creation of GSMs
In order to carry out our analysis, we needed to construct GSMs for the taxa found in the data. To 
do this, we matched taxa in the data by NCBI taxa ID to genomes in the NCBI RefSeq database 
(O’Leary et al., 2016). We matched taxa to the nearest (by tree distance according to NCBI’s taxo-
nomic database) genome that was listed as ‘Chromosome’ or ‘Complete Genome’, or contained at 
least 1000 genes. On average, this approach allowed us to perform our experiments with ∼87–88% 
coverage of each sample. Taxa for which we failed to match a genome were removed from the data, 
and all analysis was performed on the remaining. For full details on the coverage of each sample, see 
Supplementary file 1.

Next, we used the ModelSEED database through ModelSEEDPy (Seaver et al., 2021) to recon-
struct 390 GSMs for each genome that we matched to the data. All models constructed showed 
positive 391 simulated growth rates using FBA on the ‘EU average diet’ medium.

Prediction and evaluation
We used data from Maldonado-Gómez et al., 2016, in order to test the predictive power of the 
method. This data consisted of bacterial community composition of fecal samples taken over 
the course of experiments in which B. longum AH1206 was administered as an oral probiotic to 
23 subjects, with data available for 22 of these. Subjects were then differentiated into ‘engrafters’ 
and ‘non-engrafters’ based on the survival of the probiotic strain, as determined by cell culture at 
later time-points, allowing us to use our method as a classifier. We note that our method ‘learns’ using 
joint FBA, and so there is no need to split the data into training and testing sets. In fact, the ‘learning’ 
procedure does not make use of any known sample classifications, as a traditional machine learning 
algorithm would. This allows us to test our predictions on the entire data set, which provides greater 
confidence in our results. We made and evaluated predictions using two sets of samples, one taken 
at a ‘baseline’ time-point before administration of the the probiotic, and one taken at a ‘treatment’ 
time-point during administration of the probiotic.

We computed scores for each sample using simulation to time ‍T = 100‍, and varied the discrimina-
tion threshold for the binary prediction across the observed values. From this, we computed an ROC 
curve and its integral (commonly referred to as finding the ‘AUC-ROC’). AUC-ROCs take values 
in the interval [0, 1] and, in general, an AUC-ROC greater than 0.5 indicates positive predictive 
value of the model. We compared the AUC-ROC to classification using SVM and RF classification 
(Pedregosa et al., 2011). The SVM and RF classifications were performed using both the relative 
abundances from the data and binary (presence/absence) forms of the data, which matches our 
method.

We estimated the significance of our predictions against predictions from a null model created 
by parameterizing an LV system from an ‘edge-swapped’ full network. The ‘edge-swapped’ network 
was constructed by drawing edge weights from the original full network, with replacement, as is 
commonly done to create a null model in network analysis (Röttjers et  al., 2021). This approach 
allows us to create random models that preserve the statistical characteristics of the models that we 
test on, while changing the specific interactions between taxa. That is, the distribution of the entire 
set of parameters in the null models ‍β

N
ij ‍ will be approximately the same as the distribution of param-

eters ‍βij‍ determined by joint FBA. Using this null model ensures that our conclusions are drawn from 
the joint FBA parameter learning method, and not simply a result of simpler characteristics, e.g., total 
connectedness of the community. We used 1039 samples from the null model to estimate the signif-
icance of our results.

https://doi.org/10.7554/eLife.83690
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SVM and RF classification
We compared the performance of our method to the performance of two traditional machine learning 
approaches: SVM and RF classifiers. We used 1000-fold cross-validation of the predictions made by 
these tools (i.e. 1000 independent train/test splits). Each trial consisted of splitting the data randomly 
into 16 training samples and 6 testing samples, fitting both an SVM and an RF classifier to the training 
samples using standard Python libraries (from scikit-learn v. 0.23.2; Pedregosa et al., 2011), and eval-
uating the 432 model’s predictions of the testing samples. This was repeated for both the ‘baseline’ 
and ‘treatment’ sets of samples.

Sensitivity to community members and interaction parameters
We compute B. longum AH1206 engraftment predictions using simulated knock-out experiments 
simply by removing select taxa from the model. The result is a prediction score computed according 
to Equation 2. This score can be compared to the non-knock-out experiment score to determine if the 
knock-out increased or decreased the predicted probability of B. longum engraftment. We compute 
and report the relative change in predicted engraftment score as

	﻿‍
∆ = (score with knock-out taxa removed) − (score with knock-out taxa included)

(score with knock-out taxa included)
.
‍�

(7)

We compute the sensitivity of B. longum’s growth to an interaction parameter ‍βkl‍ directly by using 
the chain rule (see, for example, Zi, 2011). This has the following form:

	﻿‍

∂

∂t

(
∂xi
∂βkl

)
= xixkδi=l + xi

∑
j̸=i

βji
∂xj
∂βkl

+


1 + 2βiixi +

∑
j ̸=i

βjixj


 ∂xi

∂βkl
.
‍�

(8)

Equation 8 allows us to solve a system of differential equations to determine the sensitivity of 
invader growth to that parameter. We solve this system of equations to a large time ‍T = 100‍ and report 
the weighted average of some late-time interval ‍[t, T]‍, with later time-points weighted more heavily, 
using the final 40 simulation time-points.
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