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Abstract We present a new approach for macromolecular structure determination from multiple 
particles in electron cryo-tomography (cryo-ET) data sets. Whereas existing subtomogram averaging 
approaches are based on 3D data models, we propose to optimise a regularised likelihood target 
that approximates a function of the 2D experimental images. In addition, analogous to Bayesian 
polishing and contrast transfer function (CTF) refinement in single-particle analysis, we describe the 
approaches that exploit the increased signal-to-noise ratio in the averaged structure to optimise 
tilt-series alignments, beam-induced motions of the particles throughout the tilt-series acquisition, 
defoci of the individual particles, as well as higher-order optical aberrations of the microscope. 
Implementation of our approaches in the open-source software package RELION aims to facilitate 
their general use, particularly for those researchers who are already familiar with its single-particle 
analysis tools. We illustrate for three applications that our approaches allow structure determination 
from cryo-ET data to resolutions sufficient for de novo atomic modelling.

Editor's evaluation
Single-particle tomography (SPT) is a useful method to determine the structure of proteins imaged 
in situ. This important work presents an easy-to-use tool for SPT that approximates the use of 2D 
tomographic projections using a ‘pseudo-subtomogram’ data structure, chosen to facilitate imple-
mentation within the existing RELION codebase. The examples shown provide solid support for the 
claims about the efficacy of the approach.

Introduction
In recent years, electron cryo-microscopy (cryo-EM) has allowed the 3D imaging of an increasing 
number of biological macromolecules at resolutions sufficient for de novo atomic modelling. This 
development, originally driven by advances in detector technology, was further facilitated by novel, 
robust image processing algorithms. In single-particle analysis, images of multiple copies of isolated 
macromolecular complexes, or particles, that are suspended in random orientations in a thin layer of 
vitreous water are combined in a 3D reconstruction. Nowadays, many aspects of single-particle anal-
ysis workflows can be performed with only minimal human supervision, for example, the detection, 
extraction, and initial classification of particles in the images (Zivanov et al., 2018; Bepler et al., 
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2019; Wagner et al., 2019), 3D reconstruction (Zivanov et al., 2018; Punjani et al., 2017), as well 
as refinement of the optical parameters (Zivanov et al., 2018; Zivanov et al., 2020; Punjani et al., 
2017; Tegunov et al., 2021) and per-particle tracking of electron beam-induced motion (Zheng et al., 
2017; Zivanov et al., 2019). Many of the algorithms that underlie these modern methods are built on 
solid statistical foundations that require few tunable parameters. This decreases the need for operator 
expertise and provides objectivity, as well as robustness, in obtaining optimal structures.

The single-particle approach is, however, limited to investigating isolated protein complexes that 
are purified to relative homogeneity. To examine these complexes in their crowded physiological envi-
ronment, electron cryo-tomography (cryo-ET) may be used instead. In the tomographic approach, the 
sample is tilted multiple times during image acquisition, yielding a so-called tilt series of images from 
which a 3D tomogram can be computed. In the same manner as single-particle analysis, repeated 
occurrences of particles in those tomograms can then be aligned and averaged to obtain higher-
resolution reconstructions. This process is referred to as subtomogram averaging. Unlike the field of 
single-particle analysis, labs use many different tools for subtomogram averaging (e.g. Kremer et al., 
1996; Nickell et al., 2005; Heumann et al., 2011; Castaño-Díez et al., 2012; Hrabe et al., 2012; 
Chen et al., 2013; Galaz-Montoya et al., 2016; Sanchez et al., 2019; Chen et al., 2019; Jiménez de 
la Morena et al., 2022) and many of the tools used require considerable levels of expertise from the 
operator, often in order to tune parameters that arise from heuristics in the underlying algorithms. This 
not only provides a barrier for new scientists entering the field, but can also lead to the calculation of 
suboptimal structures.

Compared to single-particle analysis, subtomogram averaging faces several unique challenges. In 
addition to estimating the position and orientation of each particle, the algorithm also has to consider 
the geometry of the tilt series. Typically, this is solved through a set of preprocessing steps that include 
estimation of contrast transfer function (CTF) parameters and alignment of the tilt series, followed 
by the reconstruction of, often inconveniently large, tomograms for the entire field of view. Smaller 
subtomograms, centred around selected particles, are then extracted from the tomograms and used 
in a separate process of subtomogram alignment and averaging. The separation between tomogram 
reconstruction and subtomogram averaging can lead to an accumulation of errors, because errors 
in the CTF estimation or tilt-series alignments are hard to correct. In addition, because the sample 
cannot be rotated 180° within the microscope, the subtomograms contain empty regions in Fourier 
space, the so-called missing wedge, which are difficult to deal with in subtomogram averaging (e.g. 
see Schmid and Booth, 2008; Förster et al., 2008; Bartesaghi et al., 2008; Frank et al., 2012).

A fundamental problem with subtomogram averaging as described above is that it transforms the 
original 2D image data into 3D subtomograms, which are then used as a substitute for experimental 
data in the alignment algorithm. RELION-2 introduced the concept of a 3D CTF to describe the 
transfer of information from the 2D images to the subtomograms, which dealt to some extent with 
the missing wedge and the loss of information through interpolations in the reconstruction algorithm 
(Bharat and Scheres, 2016). A drawback of the 3D CTF approach is that it does not deal correctly 
with the lower resolution regions of Fourier space, where information from different tilt images over-
laps. A statistically more attractive approach would be to formulate the optimisation target function 
directly as a function of the actual 2D images that are measured in the microscope. This has been 
proposed in an approach called constrained single-particle cryo-ET (Bartesaghi et al., 2012), where 
individually boxed particles from the tilt-series images are processed as in single-particle analysis, but 
their relative orientations are kept fixed. A similar approach was also implemented in the program 
emClarity (Himes and Zhang, 2018). To deal with unknowns in the relative orientations of the parti-
cles from the tilt-series images, as well as their CTFs, the program M recently introduced new optimis-
ation approaches that compare reference projections against the 2D particle images (Tegunov et al., 
2021). M relies on RELION for alignment and classification of 3D subtomograms that are recalculated 
from the optimised parameters in M. Nevertheless, this iterative approach allows subtomogram aver-
aging to resolutions that approach those observed for single-particle analysis, even for particles in 
complex cellular environments (Tegunov et al., 2021).

Here, we describe a new approach to subtomogram averaging in RELION-4.0 that optimises a 
regularised likelihood function that approximates the direct use of the 2D images of the tilt series. 
In order to do so at acceptable computational and implementation costs, we have altered the 
main refinement program in RELION-4.0 to work with so-called pseudo-subtomograms: explicitly 
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constructed sets of 3D data arrays that contain sums of CTF pre-multiplied 2D tilt-series images, 
together with auxiliary arrays that contain the corresponding sum of squared CTFs and how often 
each 3D voxel has been observed. Pseudo-subtomograms no longer aim to represent the actual 
scattering potential of the underlying particles, in the way that conventional subtomograms would. 
Instead, they represent a convenient way to implement an approximation to the 2D approach within 
the existing RELION code. Evaluation of the pseudo-subtomograms by RELION-4.0 approximates the 
likelihood of observing a hypothetical particle in the images of the entire tilt series, given the current 
model. Using that likelihood as a metric, operations equivalent to those in single-particle analysis can 
now be performed on tomographic data, for example, 3D initial model generation, 3D classification, 
or high-resolution refinement. In addition, we describe new methods for optimising parameters of the 
tilt series that exploit the increased signal-to-noise ratio in the average structure. Besides optimisation 
of the tilt-series alignment itself, we also describe methods analogous to CTF refinement (Zivanov 
et al., 2018; Zivanov et al., 2020) for refining descriptors of the optical properties (defocus, astig-
matism, and higher-order aberrations) and a method akin to Bayesian polishing (Zivanov et al., 2019) 
to model beam-induced particle motion throughout the tilt series. Once all these parameters have 
been optimised, new pseudo-subtomograms can be constructed and the alignment can be repeated. 
The resulting iterative image processing workflow is similar to existing approaches for single-particle 
analysis in RELION.

Methods
Particle alignment and averaging
RELION performs maximum a posteriori estimation to find the set of model parameters ‍Θ‍ that maxi-
mise the probability of observing the experimental images ‍X‍. Using Bayes’ theorem, we define a 
regularised likelihood optimisation target function as

	﻿‍ P(Θ|X) = P(X|Θ)P(Θ),‍� (1)

where ‍P(Θ)‍ expresses prior information about the model, that is, that the reconstructed map has 
limited power in Fourier space, and ‍P(X|Θ)‍ is the likelihood of observing the data given the model. A 
marginalised likelihood function is used, where one integrates over the unknown alignments ‍ϕ‍ of each 
individual particle. For simplicity, these integrals are omitted from the notations used in this article.

The data model assumes independent Gaussian noise on the Fourier components of the cryo-EM 
images of individual particles ‍p‍. We therefore write the negative log-likelihood of observing a particle 

‍p‍ in a hypothetical alignment ‍ϕ‍ as a sum over a grid of 2D Fourier pixels ‍j ∈ R2
‍:

	﻿‍
− log

(
P(Xp|ϕ)

)
∝
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|Xp
j − CTFp(j)V(p)
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where ‍Xp‍ is the Fourier transform of the experimental particle image, ‍CTFp‍ its contrast-transfer 
function, ‍V

(p)
j ‍ denotes the 2D slice out of the 3D Fourier transform of the known map ‍V ‍ into the view 

of the particle, and ‍σ
2
j ‍ is the noise variance of the frequency band of ‍j‍ given by

	﻿‍ V(p)
j = exp(itp · j)V(Apj)‍� (3)

for a 2D vector ‍tp‍ and a ‍2 × 3‍ matrix ‍Ap‍ that respectively encapsulate the particle’s position and 
orientation, and the evaluation of ‍V(Apj)‍ is achieved through linear interpolation.

In tomography, our aim is to approximate that same likelihood on tilt-series data. The equivalent is 
a sum over the pixels of the relevant regions of all images ‍f ‍ from the tilt series:

	﻿‍
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We model the shifts and rotations as compositions of per-particle and per-image components:

	﻿‍ tpf = A⊺
f Tpf + tf ‍� (5)
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	﻿‍ Apf = RpAf,‍� (6)

where we keep the per-particle rotation component, ‍Rp‍, identical for all images in the tilt series, 
and only vary ‍Af ‍, the rotational alignment of the tilt-series images. In turn, the tilt-series alignment ‍Af ‍ 
is shared among all particles in a given tilt image. The per-particle part of the translation is modelled 
as a 3D vector, ‍Tpf ∈ R3

‍, that can vary over different tilt images ‍f ‍. This contrasts with single-particle 
analysis, where beam-induced motion of the particle can be corrected for as a preprocessing step (Li 
et al., 2013; Scheres, 2014; Zheng et al., 2017; Zivanov et al., 2019), so that each particle is asso-
ciated with a single 2D translation in a motion-corrected image.

For our pseudo-subtomogram approach, we now approximate the sum over 2D pixels ‍j‍ and tilt 
images ‍f ‍ in Equation 4 by a sum over 3D voxels ‍k‍ in the pseudo-subtomogram:

	﻿‍
− log

(
P(X|ϕ)

)
∝

∑
k

|Dp
k − Wp

kV(Rpk)|2

Mpσ2
k

.
‍�

(7)

Here, the data term ‍Dp‍, the weight term ‍Wp‍, and the multiplicity term ‍Mp‍ are 3D arrays in the 
Fourier domain. Together, they constitute a pseudo-subtomogram. They are constructed as follows:

	﻿‍
Dp
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where ‍l(·)‍ represents linear interpolation with forward mapping, that is, each 2D Fourier pixel ‍j‍ is 
projected into 3D Fourier space, updating the eight closest voxels.

Ignoring the difference of pre-multiplying the images with their CTFs, Equation 7 aims to be 
equivalent of Equation 4. The variance ‍σ

2
k‍ is equivalent to ‍σ

2
j ‍, the power of the noise in the individual 

Fourier components in the 2D images.
We then optimise Equation 1 by expectation-maximisation (Dempster et al., 1977), using Equa-

tion 7 to construct the likelihood function and using a prior 
‍
P(Θ) ∝ exp

∑
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expected frequency-dependent power of the signal ‍τ
2
k ‍. This leads to the following iterative algorithm:
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where (n) denotes the iteration; the divisions by ‍τ
2
k ‍ and ‍σ

2
k ‍ in Equation 11 are evaluated element-

wise; and ‍τ
2
k ‍ and ‍σ

2
k ‍ are calculated by averaging over ‍τ

2
k ‍ and ‍σ

2
k‍, respectively, in hollow spheres of 

radius ‍k‍ and thickness 1, described by ‍Sk‍. The ratio of the terms containing ‍Wk‍ and ‍Mk‍ in Equation 13 
corrects the estimate for the power of the signal from the CTF-corrected map ‍V ‍ by the average CTF2 
to account for the fact that the likelihood in Equation 7 was calculated for CTF pre-multiplied images.

Pre-oriented priors
Many proteins are organised in imperfect 2D arrays inside the tomograms, for example, inside 
membranes or as part of capsid-like structures. Often, the individual protein molecules inside these 
arrays exhibit limited rotational freedom with respect to the surface normal of the array, although they 
may be able to rotate freely around that normal. This knowledge is often exploited in subtomogram 
averaging approaches through local orientational searches, for example, see Förster et al., 2005. This 
not only accelerates the refinement, as fewer orientations need to be evaluated, it also makes it possible 
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to solve more challenging structures because fewer solutions are allowed. In RELION, local orienta-
tional searches are implemented as Gaussian priors on the Cartesian translations and on the three 
Euler angles that describe rotations (Scheres, 2012). One advantage of using pseudo-subtomogram 
alignment is that the coordinate system of the pseudo-subtomograms themselves can be chosen arbi-
trarily. By default, pseudo-subtomograms are created in the same orientation as the tomogram, but the 
user can choose to orient them in a more meaningful way. For example, by constructing the pseudo-
subtomograms with their ‍Z ‍-axis parallel to the 2D array, using a rotational prior of approximately 90° 
on the tilt angle will limit the amount of rocking of the particles inside the array, while avoiding singu-
larities in the definition of the Euler angles that occur when the tilt angle is close to 0°.

Tilt-series refinement
Averaging over multiple particles leads to an increased signal-to-noise ratio in the estimated density 
map ‍V ‍. We also implemented procedures that exploit ‍V ‍ for subsequent re-estimation of parame-
ters that describe the tilt series. These procedures do not require pseudo-subtomograms, but are 
performed by comparing projections of the density maps directly with the (Fourier) pixels of 2D boxes 
that are extracted from the tilt-series images, with a sufficient size to hold the CTF-delocalised signal. 
The various tilt-series parameters are then estimated by minimising the negative log-likelihood as 
defined in Equation 4, that is, the sum over noise-weighted square differences between the predic-
tion and the observation.

The tilt-series properties that can be refined fall into two broad categories: optical and geometrical. 
The optical refinement concerns the different parameters of the CTF, while the geometrical refinement 
aims to optimise the alignment of the tilt series, as well as the beam-induced motion of the individual 
particles. Both sets of algorithms are closely related to the corresponding single-particle algorithms 
in RELION: optical-aberration refinement (Zivanov et al., 2018; Zivanov et al., 2020) and Bayesian 
polishing (Zivanov et al., 2019), respectively. In spite of the similarity between the algorithms, the 
models that are optimised differ significantly from single-particle analysis. Details of the implementa-
tion of the optical and geometrical refinement algorithms are given in Appendix 1. We also note that 
Bayesian polishing in SPA describes particle motions between individual movie frames. Although our 
approach for tomography can also consider movie frames, the current implementation uses the same 
regularisation of particle motions between movie frames within each tilt image as between the movie 
frames from other tilt images. Because preliminary tests showed limited benefits in considering the 
movie frames in this manner, only the functionality to model particle motions between the tilt-series 
images was exposed on the GUI.

CTF refinement for tomographic data in RELION-4.0 includes optimisation of scale factors that 
model frequency-dependent radiation damage, defocus, astigmatism, and higher-order symmetrical 
and antisymmetrical aberrations. Although individual particles within a field of view are at distinct 
defoci in the tilt-series images, their relative defoci are known from the geometry of the tilt series 
and the known 3D positions of the particles in the tomogram. Therefore, one can efficiently perform 
defocus estimation in a single pass, considering all particles in a tilt-series image simultaneously. In 
order to do so, we modified procedures that were developed for higher-order aberration estimation 
in single-particle analysis (Zivanov et  al., 2020), where the information from all particles in each 
tilt-series image is condensed into two images that are used to estimate a common phase shift (see 
Appendix).

Similar procedures can also be used to model higher-order symmetrical and antisymmetrical aber-
rations in the tomographic data. Analogously to our single-particle approach, they are modelled using 
Zernike polynomials and estimated in the same way. Because the higher-order aberrations are often 
only a limiting factor at relatively high spatial frequencies, a large number of particles are needed to 
estimate them reliably. Optimally, higher-order aberrations would thus be estimated globally, over the 
entire data set, and only for cases that yield high-resolution averages. If aberrations change during 
data collection, data sets may be split into optics groups, for which aberrations are estimated sepa-
rately. Typically, the third-order antisymmetrical aberrations are the most important ones, that is, trefoil 
and axial coma, which can both be caused by a tilted beam. The resolution gains that these optimis-
ations will yield depend on the microscope (mis)alignment. Provided alignment has been performed 
reasonably well, higher-order aberration correction will probably be most useful for reconstructions 
that extend beyond 3 Å resolution.

https://doi.org/10.7554/eLife.83724
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The geometric alignment includes both (rigid) rotational and translational re-alignment of the tilt-
series images, as well as the modelling of beam-induced motion of individual particles throughout the 
tilt series. For the latter, we neglect rotations of the particles, and only model beam-induced transla-
tions. By doing so, we can precompute the likelihood of each particle being in each position around 
its original one, and then look for an alignment that simultaneously maximises the sum of those like-
lihoods over all tilt-series images and all particles, as well as a prior that ensures spatially coherent 
motion. This allows us to evaluate the likelihood of a hypothetical particle position by looking up a 
single interpolated value in an image. In this formulation, the problem becomes equivalent to the 
Bayesian polishing approach that we originally developed for single-particle analysis, except for the 
inclusion of a third spatial dimension for the motion.

Results
We tested our approach on three test cases. Appendix 2—table 1 provides experimental details for 
each of the data sets; Appendix 2—table 2 provides details on the image processing.

HIV-1 immature capsid
We tested the workflow above on the cryo-ET data set that was used to determine the structure of the 
immature capsid lattice and spacer peptide 1 (CA-SP1) regions of the Gag polyprotein from human 
immunodeficiency virus 1 (HIV-1) (Schur et al., 2016) (EMPIAR-10164). We used the same subset of 
five tomograms that were also used to assess the NovaCTF (Turoňová et al., 2017), emClarity (Himes 
and Zhang, 2018), and Warp (Tegunov and Cramer, 2019) programs. Introducing 3D CTF correction, 
and using the alignment parameters from the original analysis by Schur et al., NovaCTF reported a 
resolution of 3.9 Å (Turoňová et al., 2017). The Warp program introduced local and global motion 
correction in the tilt-series images, as well as optimisation of CTF parameters. The combination of 
Warp and subtomogram alignment and averaging in RELION-3 led to a resolution of 3.8 Å. A recent 
application of emClarity led to a reconstruction to 3.3 Å resolution (Ni et al., 2022).

We used tilt-series projections after movie frame alignment from the original analysis (Schur et al., 
2016), without any other preprocessing step, along with the tilt-series alignment data, performed with 
IMOD package (Kremer et al., 1996), and CTF parameters estimation using CTFFIND4 (Rohou and 
Grigorieff, 2015). We used 12,910 particles from the five tomograms subset, reconstructed an initial 
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Figure 1. Subtomogram averaging of the HIV-1 immature capsid. (a) Fourier Shell Correlation (FSC) for resolution estimation of iteratively improved 
reconstructions using the new RELION-4.0 workflow. (b) Representative region of reconstructed density in the final map. (c) The same density as in 
(b), together with the published atomic model 5L93, which has not been additionally refined in the density.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Iterative map improvement.

Figure supplement 2. Comparison with emClarity.

Figure supplement 3. Comparison with M/RELION-3.1.
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reference map using the original published particle alignment, and filtered it to 5 Å. A first alignment 
in 3D auto-refine, followed by averaging of the initial pseudo-subtomograms, led to a resolution of 
3.6 Å. This average was then used for a full cycle of pseudo-subtomogram improvement and realign-
ment. We first applied CTF refinement to optimise the defoci of all particles. This improved the reso-
lution only marginally. Subsequent optimisation of the tilt-series geometry, including modelling local 
particle motion, improved the resolution to 3.5 Å. Finally, realignment of newly generated pseudo-
subtomograms led to a resolution of 3.4 Å. A second cycle of these three steps provided 3.3 Å, while 
a third cycle converged to 3.2 Å (Figure 1a). Geometrical refinement was performed estimating local 
particle motion. The consideration of deformations did not show additional improvement. In the first 
cycle, where improvements in both CTFs and geometry are most obvious, the order of applying those 
optimisations did not alter the final result for this data set. These data and results are also distributed 
as part of the subtomogram tutorial in RELION-4.0, as described on https://relion.readthedocs.io/​
en/release-4.0/. Figure 1—figure supplement 1 shows the improvement in map quality during the 
iterative refinement process; Figure 1—figure supplement 2 shows a comparison with the 3.3 Å map 
from emClarity.

Analysis of the complete data set generated a structure at 3.0  Å resolution (Figure  1—figure 
supplement 1), which is the same resolution obtained using the M and RELION-3 workflow (Tegunov 
et al., 2021; Figure 1—figure supplement 3), and is likely limited by flexibility and asymmetry in the 
CA hexamer.

Caulobacter crescentus S-layer
We also applied our approach to thin cellular appendages of C. crescentus bacteria known as stalks, 
which have previously been imaged using cryo-ET (Bharat et al., 2017). The cell body and cell stalks of 
C. crescentus cells are covered by a nearly hexagonal, paracrystalline array known as the surface layer 
(S-layer) (Smit et al., 1992). The structure of the S-layer was solved using a combination of X-ray crys-
tallography, cryo-EM single-particle analysis, and subtomogram averaging, revealing how the S-layer 
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Figure 2. Subtomogram averaging of the C. crescentus S-layer from cell stalks. (a) FSC for resolution estimation 
of iteratively improved reconstructions using the new RELION-4.0 workflow, tested on the S-layer inner domain. 
(b) Densities for the previously identified lipopolysaccharide (LPS) (cyan and orange) and Ca2+ ions (green) in prior 
electron cryo-microscopy (cryo-EM) single-particle analyses are resolved. (c, d) The final map shows two densities 
for bound LPS O-antigen chains. Panel (c) shows only the S-layer protein as blue ribbon and (d) shows LPS O-
antigen as orange and cyan sugars corresponding to the N-acetyl-perosamine and mannose moieties, respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of subtomogram averaging (STA) and single-particle analysis (SPA) 
reconstructions of the C. crescentus RsaA.

https://doi.org/10.7554/eLife.83724
https://relion.readthedocs.io/en/release-4.0/
https://relion.readthedocs.io/en/release-4.0/
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is attached to bacterial cells by an abundant glycolipid called lipopolysaccharide (LPS) (Bharat et al., 
2017; von Kügelgen et al., 2020). Previously, cryo-ET of the S-layer, using 110 tilt series collected with 
a dose-symmetric scheme, yielded 51,866 hexamers of the S-layer. This study used a subtomogram 
averaging approach that is based on a constrained cross-correlation approach implemented in the 
AV3 MATLAB suite (Förster and Hegerl, 2007), and which was specifically optimised for the analysis 
of macromolecules arranged in a lattice (Wan et al., 2017). A 7.4 Å reconstruction of the S-layer was 
obtained, in which alpha-helices were resolved (Bharat et al., 2017). This reconstruction was improved 
by application of NovaCTF (Turoňová et al., 2017), leading to a 4.8 Å reconstruction, in which large 
amino acid residue side chains were resolved (von Kügelgen et al., 2020). Moreover, density for an 
LPS molecule was observed near the putative LPS-binding residues of the S-layer, in agreement with 
a cryo-EM single-particle structure of an in vitro reconstituted coplex (von Kügelgen et al., 2020). 
We used the tilt series after movie frame alignment from the initial analysis (Bharat et al., 2017), 
along with the tilt-series alignments performed within IMOD (Kremer et al., 1996), CTF parameters 
from CTFFIND4 (Rohou and Grigorieff, 2015), and the Euler angle assignments and subtomogram 
coordinates from the original analysis. These parameters were imported into RELION-4.0, followed by 
multiple cycles of pseudo-subtomogram generation and refinement, analogous to the immature HIV-1 
data set described above, leading to a 5.6 Å reconstruction of the S-layer hexamer (Figure 2a). Next, 
we defined a mask around the central pore of the S-layer, corresponding to the inner domain bound 
to LPS, to perform focused refinements. Another cycle of pseudo-subtomogram reconstruction, CTF 
refinement, and refinement within the new mask improved the resolution to 4.4 Å. Accounting for 
per-particle motions with additional cycles of pseudo-subtomogram improvements and refinements 
increased the resolution of the central pore to 4.0 Å, and the inner domain of the S-layer to 3.7 Å. 
Further 3D classification without alignments identified a subset of 42,990 subtomograms that gave a 
3.5 Å resolution reconstruction of the inner S-layer.

The 3.5 Å map is in excellent agreement with the single-particle structure of the in vitro recon-
stituted complex, including the LPS binding site (von Kügelgen et al., 2020; see Figure 2—figure 
supplement 1). Furthermore, divalent metal ions, known to be tightly bound to the inner S-layer 
(Matthew, 2021), are resolved (Figure 2b). Surprisingly, at lower isosurface contour levels, we also 
observed a second LPS binding site (Figure 2c and d). The size and shape of this density agree with 
the structure of the LPS O-antigen, illustrating how improved subtomogram averaging in RELION-4.0 
can help uncover new biology.

Coat protein complex II
Finally, we applied our approach to the Saccharomyces cerevisiae coat protein complex II (COPII), 
which mediates the transport of newly synthesised proteins from the endoplasmic reticulum (ER) to 
the Golgi apparatus as part of the secretory pathway. COPII is formed by five proteins that assemble 
sequentially on the ER membrane to induce remodelling of the bilayer into coated carriers in a 
process known as COPII budding, while simultaneously selectively recruiting cargo into these budding 
membrane carriers. COPII budding can be reconstituted in vitro from purified proteins and artificial 
membranes, to form small, spherical vesicles, or long, straight tubes. Cryo-ET has previously been 
used to visualise the architecture of COPII on reconstituted tubules (Hutchings et al., 2018; Hutch-
ings et al., 2021). The coat assembles into two concentric layers; the inner layer forms a pseudo 
helical lattice, which has previously been solved to 4.6 Å resolution using Dynamo-based subtomo-
gram averaging protocols (Castaño-Díez et al., 2012).

We used the tilt series after movie alignment from the initial analysis (Hutchings et al., 2021), 
along with the tilt-series alignments performed in Dyname (Castaño-Díez et  al., 2012) and CTF 
parameters from CTFFIND4 (Rohou and Grigorieff, 2015). COPII-coated tubes were manually traced 
in the resulting tomograms, and particles were extracted by randomly oversampling their surface, 
with approximate initial orientations assigned based on the cylindrical geometry. Dynamo was used 
for initial alignment of 8× binned subtomograms to define the centre of the particles and the direc-
tionality of individual tubes. We then imported the particle coordinates for processing in RELION-
4.0 using 3D refinement at 4× and 2× binning. Since we expect inner coat subunits to arrange in a 
lattice, we cleaned the data set by excluding any subtomograms that did not conform to the expected 
geometrical relationship with their neighbouring particles. A first 3D refinement of the unbinned data 
set gave a map at 4.4 Å resolution, which was further improved to 4.2 Å and 4.0 Å by tilt-series frame 

https://doi.org/10.7554/eLife.83724
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alignment and CTF refinement, respectively. Two further rounds of 3D refinement, followed by tilt-
series frame alignment and CTF refinement, yielded a final map with a resolution of 3.8 Å (Figure 3).

At this resolution, most side chains are visible in the map, enabling us to build and refine an atomic 
model. The improved model will allow the design of point mutants to precisely disrupt interfaces 
between coat subunits and test their effects in COPII budding.

Discussion
We formulate the problem of averaging over multiple identical particles in tomographic tilt series 
in an empirical Bayesian framework that is based on a statistical model that approximates one for 
two-dimensional experimental data. The Bayesian framework has proven effective in reducing the 
number of tunable parameters and in obtaining high-quality reconstructions from single-particle data 
(Fernandez-Leiro and Scheres, 2016). The two-dimensional data model describes the experimental 
images better than alternative approaches that use 3D reconstructed subtomograms as an inter-
mediate. One example of a problem with the intermediate 3D data model is the need for missing 
wedge correction, which arises from the observation that the experimental images were acquired, 
incompletely, in three dimensions. Artefacts related to suboptimal missing wedge correction may 
affect both alignment and classification of particles. By using an approximation to the 2D data model, 
missing wedge correction is no longer required. Instead, the problem approaches that of single-
particle analysis, where projections from different orientations and of different structural states are 
sorted out simultaneously. Provided the 3D Fourier transform of the distinct classes is fully sampled 
through the orientation distribution of the raw particles, likelihood optimisation techniques have been 
highly successful in tackling this problem in single-particle analysis (Scheres et al., 2007; Fernandez-
Leiro and Scheres, 2016).

In practice, the implementation in RELION-4.0 does not use stacks of 2D projection images as 
input for the refinement program that performs alignment and classification. Instead, the concept 
of 3D pseudo-subtomograms is introduced, where the tilt-series images are Fourier transformed, 
pre-multiplied with their CTF, and inserted as a slice into a 3D Fourier volume according to the best 
current estimates for the tilt-series geometry. The use of 3D pseudo-subtomograms allowed reusing 
existing code for subtomogram averaging in RELION, while input stacks of 2D images would have 
required significant software development efforts. Nevertheless, in the future we might still choose to 
implement a true 2D version of the code, which would be more efficient, both in terms of processing 
time and disk storage requirements. In cases where the number of tilt images is small in compar-
ison to the box size, fewer Fourier pixels need to be examined in a stack of 2D images than in a 
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pseudo-subtomogram, with a corresponding decrease in processing time. Moreover, the likelihood 
calculation from the 3D pseudo-subtomogram approach requires separate storage of the accumu-
lated squares of the CTFs, and the corresponding multiplicity terms. In contrast, in the 2D approach, 
only the 2D images need to be stored, as CTF parameters can be calculated on-the-fly and there is no 
need for a multiplicity term, giving a corresponding decrease in storage requirements. However, if one 
were to collect tilt series with very fine angular increments or in a continuous manner (Chreifi et al., 
2019), then the current implementation may still be preferable.

Besides the alignment and classification of individual particles, the methods described here also 
deal with re-estimation of parameters that describe the optical and geometrical features of the tilt 
series. As soon as an initial average structure has been obtained, its increased signal-to-noise ratio can 
be exploited to determine these parameters more accurately than what is possible from the raw tilt-
series images alone. The implementations in RELION-4.0 again follow those previously implemented 
for single-particle analysis, where CTF refinement is used for re-estimation of the tilt-series images 
CTFs, and algorithms akin to Bayesian polishing are used to re-estimate the tilt-series alignment, as 
well as the movement of individual particles throughout the tilt-series acquisition process. As better 
tilt-series parameters will allow better pseudo-subtomograms, particle alignment and classification 
are iterated with the optimisation of the tilt-series parameters.

Similar tilt-series and CTF optimisation approaches have been implemented in the program M 
(Tegunov et al., 2021). Compared to M, RELION-4.0 uses computationally more efficient algorithms; 
M uses GPUs to accelerate the calculations. In both tomography and SPA, RELION-4.0 only models 
beam-induced translations of the particles, whereas M also models beam-induced rotations. Since 
SPA routinely reaches 2 Å resolutions without modelling beam-induced rotations, we assumed that 
the effect of rotations of individual particles throughout the tilt series is not large enough to warrant 
their correction at typical tomography resolutions. In cases where the data do allow for better than 
2 Å resolutions, M could still be used to correct for beam-induced rotations in a postprocessing step, 
following alignment and classification of the individual particles in RELION. It is likely that adaptation 
of M, in order to function with the pseudo-subtomograms proposed here, would lead to increased 
synergy between the two programs. In the meantime, external tools to convert from M parameters 
to RELION-4.0 are already available (https://github.com/joton/reliontomotools; Zivanov, 2022 copy 
archived at swh:1:rev:bfa43828876ceb77bed0c7eb72f794c79c9de5e6).

Besides the reduction in tunable parameters that is characteristic of the Bayesian approach, its 
uptake by researchers that are new to the field is further facilitated through the implementation of a 
graphical user interface. This interface is already widely used for single-particle analysis and has been 
extended for the processing of tomographic data in RELION-4.0. Apart from the calculations that will 
be familiar to users of single-particle analysis, for example, 3D classification, 3D initial model genera-
tion, and 3D auto-refinement, the new interface also provides convenient access to the tomography-
specific versions for CTF refinement and Bayesian polishing, as well as preprocessing operations to 
calculate the pseudo-subtomograms. However, tilt-series alignment, tomogram reconstruction, and 
particle picking are not yet part of the RELION workflow. Efforts to also implement solutions for those 
steps in a single tomography processing pipeline are ongoing and will be part of future RELION 
releases. Meanwhile, current import procedures rely on specific preprocessing operations in IMOD 
(Kremer et al., 1996), and particle coordinate conversion tools to use in RELION-4.0 are available for 
a range of third-party software packages (Pyle et al., 2022). To further facilitate the uptake of this new 
software by the community, we have provided an online tutorial that uses the publicly available HIV-1 
immature capsid data set to describe and illustrate all steps necessary to obtain the results described 
in Figure 1.

In summary, we introduce new methods for subtomogram averaging to resolutions that are suffi-
cient for de novo atomic modelling and increase the accessibility of this emerging technique. We 
envision that our methods will allow more researchers to calculate better structures from tomographic 
data, which will aid the next revolution in structural biology, where macromolecular complexes are 
imaged, not in isolation, but in their biologically relevant environment.
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Appendix 1
CTF refinement
CTF refinement in RELION-4.0 optimises the following parameters: scale, defocus, astigmatism, and 
higher-order (even and odd) optical aberrations. Since, save for the difference in defocus, the same 
CTF needs to be valid for an entire micrograph of particles, similar optimisations can be applied as 
in our single-particle algorithms. All the relevant information is first consolidated into a minimal form 
using linear transformations, and the final, typically non-linear, optimisation is then performed on 
that minimal form.

We formulate the CTF for tilt-series frame ‍f ‍ of particle ‍p‍ as follows:

	﻿‍ CTFpf(j) = −αfτf(j) sin(γpf(j)) exp(iρf(j)),‍� (14)

where ‍αf ‍ describes the overall scaling factor, ‍τf(j)‍ the empirical radiation-damage model as 
defined by Grant and Grigorieff, 2015, ‍γpfj‍ the symmetrical phase delay component, and ‍ρfj‍ 
the antisymmetrical one. Note that only ‍γ‍ varies between particles. This is because it contains 
the quadratic defocus term that depends on the position of the particle. The phase delays are 
parametrised the same way as in single-particle analysis in RELION-3 – as a combination of explicitly 
named low-order terms and higher-order Zernike polynomials:

	﻿‍
γpf(j) = πλj⊺Dpfj + π

2
Csλ

3|j|4 − χf +
∑

Zm
n (j),

‍� (15)

	﻿‍

Dpf =


δzp + a1 a2

a2 δzp − a2



‍�

(16)

As before, the astigmatic-defocus matrix ‍Dpf ‍ is decomposed into a defocus term ‍δzp‍ and two 
linear astigmatism terms, a1 and a2, while ‍Cs‍ describes the spherical aberration of the microscope, 

‍χf ‍ a constant phase offset (owing to amplitude contrast and a phase plate, if one is used), ‍λ‍ is the 
wavelength of the electron, and ‍Zm

n ‍ are the higher-order even Zernike terms. One key difference to 
single-particle analysis is that the defocus term ‍δzp‍ is no longer a free parameter for each particle, but 
it instead depends on the already known 3D position of the particle. Therefore, in tomography, the 
defocus term is only estimated once per tilt image, and all the particles contribute to that estimate.

The scaling factor ‍αf ‍ is estimated by computing the following two sums for each micrograph and 
dividing them (the † symbol indicates complex conjugation):

	﻿‍
αf =

Gf
Hf ‍�

(17)

	﻿‍
Gf =

∑
p,j

1
σ2

|j|
Re(Xpfj(CTF′

pf(j)V
(p)
pfj)

†)
‍�

(18)

	﻿‍
Hf =

∑
p,j

1
σ2

|j|
|CTF′

pf(j)V
(p)
pfj |

2.
‍�

(19)

Note that the ‍CTF′‍ used in Equation 19 is missing its scale factor:

	﻿‍ CTF′
pf(j) = −τf(j) sin(γpf(j)) exp(iρf(j)).‍� (20)

Alternatively, we also allow the user to fit the parameters of Lambert’s extinction model to the 
data instead, assuming perfectly flat samples of constant thickness. In that case, the CTF scale in 
image ‍f ‍ of tomogram ‍t‍ is expressed as a function of the beam luminance ‍α0‍, sample normal ‍nt‍, and 
optical sample thickness ‍κt‍:

	﻿‍ αtf(α0,κt, nt) = α0κ
1

|nt·zf |
t ‍� (21)

https://doi.org/10.7554/eLife.83724
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If this option is used, then the CTF scales of all the tilt series in the data set are estimated together. 
The beam luminance ‍α0‍ is modelled globally, while the sample thickness and normal are allowed to 
differ among tomograms, but not between the images of a tilt series. The vector ‍zf ‍ points in viewing 
direction of tilt image ‍f ‍. Note that this model does not allow for separating the geometrical sample 
thickness from its extinction factor, so we can only estimate the product of the two. Also, the ice 
normal is required to be perpendicular to the estimated tilt axis of the tilt series since its component 
pointing in the direction of the axis is indistinguishable from an increase in ice thickness or opacity. 
This global optimisation is performed using the sums ‍Gtf ‍ and ‍Htf ‍ computed in Equations 18 and 19, 
where the subscript ‍t‍ indicates tilt-series ‍t‍. This is done by finding a global value of ‍α0‍ and values 
of ‍κt‍ and ‍nt ∈ S2‍ for all tomograms that produce ‍αtf ‍ which minimise the following quantity and thus 
maximise the overall likelihood in Equation 4:

	﻿‍

∑
t,f

(Htfαtf(α0,κt, nt) − Gtf)
2.

‍�
(22)

To perform defocus estimation efficiently, we apply the optimisations we originally developed 
for the estimation of higher-order aberrations in single-particle analysis (Zivanov et al., 2020). It 
allows us to determine a collective offset to ‍γ‍ for a large set of particles that all have different 
values of ‍γ‍. Specifically, it allows the change to the log-likelihood arising from changing the value 
of ‍γ‍ at any Fourier pixel to be expressed as a pair of 2D images, independently of the number of 
particles. Therefore, each pixel of each particle only needs to be considered once. After that, the 
log-likelihood can be evaluated by iterating over the pixels of a single image.

In single-particle analysis, this approach is used to estimate the higher-order aberrations that are 
shared among all the particles in a data set. In tomography, we also use this approach to condense 
the information from all the particles in a tilt image (all of which exhibit slightly different defoci), 
into two such images, and to then determine the optimal change to ‍γ‍ efficiently using a nonlinear 
algorithm.

The two condensed images ‍R‍ and ‍̂t ‍ that we compute are the same as the ones in single-particle 
analysis, except for the inclusion of the noise power ‍σ2‍. The definitions are repeated here for the 
sake of completeness. Note that each pixel ‍j‍ of ‍R‍ contains a real symmetrical ‍2 × 2‍ matrix and each 
pixel of ‍̂t ‍ a ‍C2‍ vector:

	﻿‍
Rfj =

∑
p

1
σ2

j
|�V(p)

fj |2dpfjd
⊺
pfj

‍�
(23)

	﻿‍

�tfj = −R−1
fj

∑
p

1
σ2

j
Re(X†

pfj
�V(p)

fj )dpfj,
‍�

(24)

where ‍dpfj ∈ R2
‍ describes the point on the unit circle corresponding to the initial phase angle ‍γ

(0)
‍, 

which is given by the initial CTF parameters:

	﻿‍

dpfj =


cos(γ(0)

pf (j))

sin(γ(0)
pf (j))



‍�

(25)

The predicted 2D images ‍̃V
(p)
f ‍ contain the effect of the initial CTFs, except for the symmetrical 

aberration:

	﻿‍ Ṽ(p)
fj = −αfτf(j) exp(iρf(j))V

(p)
fj ‍� (26)

The vector-valued condensed image ‍̂tf ‍ describes the most likely phase shift ‍γ‍ for each pixel ‍j‍, 
expressed as a point on a circle, while the matrix-valued one, ‍Rf ‍, describes the anisotropic weight of 
that information. With these two condensed images computed for a given tilt image ‍f ‍, the change 
to the likelihood defined in Equation 4 resulting from the change to the phase delay ‍γ‍ at any pixel 
can be expressed as a quadratic form. Therefore, we look for a change ‍δD‍ to the astigmatic-defocus 
matrices ‍Dpf ‍ which produces phase delays that minimise that quadratic form:

https://doi.org/10.7554/eLife.83724
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	﻿‍
Cf =

∑
j

e⊺j (δD)Rjej(δD),
‍�

(27)

where the per-pixel error ‍ej(δD)‍ is given by the deviation from the optimal phase shift ‍̂tj‍:

	﻿‍

ej(δD) =


cos(δγ) − Re(̂tj)

sin(δγ) − Im(̂tj)



‍�

(28)

	﻿‍ δγ = j⊺δDj‍� (29)

As an alternative to fitting ‍D‍ independently for each tilt-series image, our program also allows the 
user to apply an ‍L2‍ regulariser to the ‍δDf ‍ of the different images in the same series. In that case, the 
sum in Equation 27 runs over all the pixels ‍j‍ of all the tilt-series frames ‍f ‍. This helps to stabilise the 
CTFs of the higher tilts, but it risks impairing the estimates of the CTFs of the more important lower 
tilts. Formally, this is done by minimising the following cost:

	﻿‍
Cglob =

∑
f,j

e⊺fj(Df)Rfjefj(Df) + λ
∑

f
|Df − �D|2,

‍�
(30)

Since the early tilt-series images carry more information than the later ones, their values in ‍R‍ are 
typically significantly greater. Therefore, using this formulation, they automatically assume a greater 
weight in the estimation. The optimal weight for the regulariser itself, ‍λ‍, cannot be measured from 
the data. Its optimal value depends on how reproducible the defocus values are for each of the tilt-
series images, which in turn depends on the microscope setup, such as the stability of the stage.

Geometric refinement
Analogously to Bayesian polishing, the log-likelihood of a particle being observed at a position ‍s‍ is 
given by twice its cross-correlation with the predicted image:

	﻿‍ log(P(X|s)) = 2CC(s)‍� (31)

	﻿‍ CC = IFT(ωXV(P)†)‍� (32)

	﻿‍
wj = 1

σ2
j
,
‍ � (33)

where IFT stands for inverse Fourier transform.
To keep the problem differentiable, the cross-correlation CC is always accessed using cubic 

interpolation. After the inverse Fourier transformation, each such cross-correlation table is cropped 
to a smaller size to make storing many such tables feasible, and the memory throughput efficient. 
The size of the tables can be controlled by the user, and should be set to the maximal positional error 
expected in the data set.

The geometrical model that is optimised this way projects points ‍s ∈ R3‍ in the tomogram to 2D 
positions ‍pf ∈ R2

‍ in each tilt image:

	﻿‍ pf = W
(
1f
)
‍ � (34)

	﻿‍

If = Jf


S

1



‍�

(35)

The initial linear projection ‍lf ‍ is obtained by multiplying ‍s‍ with a ‍2 × 4‍ matrix ‍Jf ‍, and then optionally 
shifted by the non-linear image distortion ‍W ‍. The cost ‍Calign‍ that is being minimised consists of the 
sum over all (negative) cross-correlation values of all particles in all images plus all regularisers for all 
regularised parameters:

	﻿‍ Calign = −
∑

p,f CC(pf − p(0)
f ) + R‍� (36)

https://doi.org/10.7554/eLife.83724
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Although our framework supports arbitrary projection matrices ‍Jf ‍, our optimisation algorithm 
only looks for orthogonal rotations to the initial projection matrix. This is achieved by parametrising 
that rotation using Tait–Bryan angles, not Euler angles. The disadvantage of Euler angles is that they 
are gimbal locked in the initial configuration where all three angles are zero, that is, the first and third 
angles refer to the same axis. The rigid alignment of the tilt image is never regularised because we 
do not assume to have any prior information on it.

The distortion field ‍W ‍ can take different forms. We have implemented models that express the 
distortion using the Fourier basis, a cubic spline basis, and an affine linear one. The intended purpose 
of these deformations is to model distortions of the image that arise at the image forming lenses at 
the bottom of the optical system. An imperfect calibration of these lenses is likely to go unnoticed 
as long as the microscope is only used for single-particle analysis because the same particle is never 
observed at starkly different positions during the collection of a single-particle movie. In tomography, 
a given particle may appear at any image position in any tilt image, so arbitrary deformations to the 
2D image become relevant. We expect these deformations to be stable over time, so the intended 
purpose of the deformation field ‍W ‍ is to model only one such deformation per tilt series. Optionally, 
we also allow the user to instead model a different deformation for each tilt image, but we have 
not encountered any data sets where this has produced an improvement. The deformation fields 
are optionally regularised by penalising the squared coefficients of the respective model. This limits 
the extent of deformation, and it forces the system to explain changes in position through particle 
motion, rather than image deformations.

The quantity that we do expect to change during the collection of the tilt series is instead the 
3D position of the particle, ‍sf ‍. Analogously to Bayesian polishing, we model this change as motion 
over time. The position in image ‍f ‍ is given by the sum over its per-tilt-series-frame velocities ‍vf ∈ R3

‍ 
up to that point. Note that the velocity vector ‍vf ‍ refers to the motion between images ‍f ‍ and ‍f + 1 :‍

	﻿‍
Sf = S0 +

f
′
<f∑

f′=0
vf

‍�
(37)

It is important to note that the tilt images are implicitly assumed to be ordered chronologically. 
In practice, this is usually not given, so the images are reordered by the program based on the 
cumulative radiation dose of each image.

As in Bayesian polishing, the motion vectors themselves are expressed in a collective coordinate 
system for all the particles. This allows the spatial smoothness of a hypothetical motion field to be 
evaluated and used as a prior. For a more detailed derivation, we refer to the paper on Bayesian 
polishing for single-particle analysis (Zivanov et al., 2019). The formal details will be given in the 
following for the sake of completeness and to highlight differences to the original formulation.

The collective coordinate system for particle motion is obtained through a low-rank approximation 
of a Gaussian process. This is done by constructing and then diagonalising the ‍P × P‍ covariance 
matrix ‍S‍ for a set of initial particle positions (where ‍P‍ is the number of particles). The entries of ‍S‍ 
contain the value of the following square-exponential covariance function for each pair of particles 

‍p‍ and ‍q‍:

	﻿‍ Sp,q = σ2
V exp(−|sp − sq|2/σD).‍� (38)

Optionally, the user can instead also use the original formulation without the square inside the 
exponential:

	﻿‍ S′p,q = σ2
V exp(−|sp − sq|/σD).‍� (39)

The former option forces particles in immediate proximity to move more similarly, but it allows 
for a greater discrepancy at greater distances. Both the single-particle and the tomography 
implementations allow the user to choose either function, but the default has changed from the 
latter to the former in tomography. This choice was motivated by both empirical observations and 
the fact that the square-exponential kernel produces fewer meaningful deformation components, 
which speeds up the optimisation for tomograms with hundreds of particles.

We perform a singular-value decomposition of the covariance matrix ‍S‍,

https://doi.org/10.7554/eLife.83724
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	﻿‍ S = UΛW⊺,‍� (40)

which allows us to construct the coordinate system as follows:

	﻿‍ bi =
√
λiwi,‍� (41)

where ‍λi ∈ R‍ is the ‍ith‍ singular value and ‍wi ∈ RP
‍ the corresponding singular vector. Basis vectors 

with small ‍λi‍ are discarded here to speed up the optimisation. Let ‍P′‍ represent the number of 
remaining basis vectors. In this coordinate system, the set of all particle velocities in a tilt image 

‍Vf ∈ (R3)P
‍ can be expressed as ‍Vf = BQf ‍, where ‍Qf ‍ is a ‍P′ × 3‍ coefficient matrix that encodes the 

velocity in three spatial dimensions. Note that the same basis ‍B‍ is shared between all three dimensions 
and all tilt-series frames. In this coordinate system, the negative log-likelihood of a configuration of 
particle velocities is given by the Frobenius norm of the coefficient vector, ‍||Qf||‍, that is, the sum of 
the squares of its entries. Therefore, the motion regulariser takes a simple form:

	﻿‍
Rmotion =

∑
f

||Qf||.
‍�

(42)

The acceleration regulariser that would penalise changes in velocity from one tilt-series frame 
to the next in single-particle analysis has been omitted from tomography. This is because, unlike 
a single-particle movie, the tilt images are not collected in one continuous exposure. Since they 
are being exposed individually, there is no reason to assume that the particle velocities will be 
continuous between them. Two further differences to the original Bayesian polishing are hidden 
in the notation: the covariance is now based on the 3D distances between the particles, and the 
coefficient matrix ‍Q‍ contains three columns instead of two.

As in the original Bayesian polishing approach, the complete alignment of the tilt series is 
performed by finding parameters that minimise ‍Calign‍ from Equation 36 using L-BFGS (Liu and 
Nocedal, 1989). The set of parameters that are being optimised always includes the three Tait–Bryan 
angles for each tilt image and the set of initial particle positions. The latter are essential because 
all the information we have about their 3D positions is derived from the tilt images themselves, so 
changing the alignment requires the particles to be able to shift to more likely positions. Estimating 
the image deformations and particle motion is optional. If they are being estimated, then a set of 
deformation coefficients is fitted either to each tilt image or to each tilt series, while a set of motion 
coefficients is fitted to each image transition.

In addition to this local, L-BFGS-based refinement, we also offer two methods to align only the 
2D shifts of all tilt images globally. This means that instead of trying to obtain the optimal alignment 
through small changes to the initial one, we instead look for the best possible image shift overall, 
keeping all other parameters constant. This is helpful when individual tilt images are so badly aligned 
that a local optimisation cannot converge to the globally optimal position. Note that the initially 
assumed angles are rarely as incorrect as the image shifts since the angles can be controlled more 
effectively through the experimental setup.

There are two variants to this method. If the sample contains few particles per tomogram, then 
the best results are obtained by predicting an entire micrograph and computing its cross-correlation 
with the original one. The maximum value in that large cross-correlation image then indicates 
the optimal image shift. This approach can in theory deal with arbitrarily large misalignments. If 
the sample is dense, however, then this whole-micrograph approach can fail. In that case, better 
results are obtained by instead adding up the small, per-particle cross-correlation images defined 
in Equation 31, and finding the maximum in that sum. This latter approach can only correct for 
misalignments smaller than half the box size of the particle, and it often produces inferior results on 
samples with few particles per tomogram.

https://doi.org/10.7554/eLife.83724
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Appendix 2

Appendix 2—table 1. Electron cryo-tomography (Cryo-ET) data collection, refinement, and 
validation statistics.

HIV-1 Gag
(EMD-16207 /EMD-16209)

S-layer_inner_domain
(EMD-16183)
(PDB 8BQE)

COPII inner coat
(EMD-15949)
(PDB 8BSH)

Data collection

Microscope Titan Krios Titan Krios Titan Krios

Detector K2 (Gatan) K2 (Gatan) K2 (Gatan)

Software
SerialEM (Mastronarde, 
2003)

SerialEM (Mastronarde, 
2003)

SerialEM  
(Mastronarde, 2003)

Voltage (kV) 300 300 300

Slit width (eV) 20 20 20

Defocus range (μm) –1.5 to –5.0 –1.5 to –5.0 –1.5 to –4.5

Pixel size (Å) 1.35 1.35 1.33

Total exposure (‍e−/Å2‍) 120–145 ∼140 ∼120

Exposure per tilt 
(‍e−/Å2‍) 3.0–3.5 3.4 2.9

Total number of tilts 41 41 41

Frames per tilt-movie 8–10 10 10

Tilt increment ‍±3◦‍ ‍±3◦‍ ‍±3◦‍

Tilt-series scheme Dose-symmetrical Dose-symmetrical Dose-symmetrical

Tilt range ‍±60◦‍ ‍±60◦‍ ‍±60◦‍

Tilt-series (no.) 5/43 110 137

Data processing

Software tilt-series 
alignment IMOD (Kremer et al., 1996)

IMOD (Kremer et al., 
1996)

Dynamo (Castaño-Díez et al., 
2012)

Software CTF 
estimation

CTFPLOTTER (Xiong et al., 
2009)

CTFFIND4 (Rohou and 
Grigorieff, 2015)

CTFFIND4 (Rohou and 
Grigorieff, 2015)

Particle images (no.) 12,910/144,275 42,990 106,533

Pre-cropped box-size 
(pix) 512 600 512

Final box-size (pix) 192 180 196

Pixel size final rec. (Å) 1.35 1.35 1.33

Symmetry imposed C6 C6 C1

Map resolution (Å) 3.2/3.0 3.5 3.8

FSC threshold 0.143 0.143 0.143

Map resolution range 
(Å) 3.2–4.3/3.0–3.5 3.5–4.8 3.8–7.2

Map sharpening B 
factor (Å 2) –85 / –95 –75 –106

Model refinement

Initial model used 
(PDB code) 6T72 6GNI

Appendix 2—table 1 Continued on next page
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HIV-1 Gag
(EMD-16207 /EMD-16209)

S-layer_inner_domain
(EMD-16183)
(PDB 8BQE)

COPII inner coat
(EMD-15949)
(PDB 8BSH)

Software
PHENIX (Afonine et al., 
2018)

Isolde (Croll, 2018) and PHENIX 
(Afonine et al., 2018)

Model resolution (Å) 3.6 4.0

FSC threshold 0.5 0.5

Model composition

Non-hydrogen atoms 
(no.) 11,274 13,635

Protein residues (no.) 1452 1729

R.m.s. deviations

Bond lengths (Å) 0.001 0.004

Bond angles (°) 0.322 0.858

Validation

MolProbity score 1.13 2.01

Clashscore 3.42 14.71

Poor rotamers (%) 0 0.66

C‍β‍ outliers (%) 0 0.00

CABLAM outliers (%) 0.84 2.33

Ramachandran plot

Favoured (%) 98.8 95.1

Allowed (%) 1.2 4.8

Disallowed (%) 0 0.1

Appendix 2—table 2. Computational costs and hardware specifics.

HIV-1 Gag S-layer inner domain COPII inner coat

Tilt-series (no.) 5/43 110 137

Final particle images (no.) 12,910/144,275 42,990 106,533

Pre-cropped box-size (pix) 512 600 512

Final box-size (pix) 192 180 196

Computational costs

Pseudo-subtomogram

Compute time 21 min/40 min 34 min 67 min

Number of CPU nodes 1/1 1 1

Disk space 343 GB/3.8 TB 777 GB 3.1 TB

Refine3D

Compute time 18 hr*/33 hr 14 hr 57 hr

Number of GPU nodes 1/1 1 1

Ctf refinement

Compute time 15 min*/35 min 2 hr 2 hr

Number of CPU nodes 1/1 1 1

Appendix 2—table 1 Continued

Appendix 2—table 2 Continued on next page
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HIV-1 Gag S-layer inner domain COPII inner coat

Disk space 32 MB/247 MB 621 MB 673 MB

Frame alignment

Compute time 2 hr*/12 hr 2 hr 6 hr

Number of CPU nodes 1/1 1 1

Disk space 383 MB/4.1 GB 1.9 GB 2.2 GB

Hardware specifics

CPU nodes

CPU model
2x Intel Xeon E5-
2698 v4 2x Intel Xeon 6258R 1x AMD EPYC 7H12

CPU memory 512 GB 754 GB 256 GB

GPU nodes

CPU model
2x Intel Xeon Silver 
4116 2x Intel Xeon E5-2667 v4 1x AMD EPYC 7H12

CPU memory 384 GB 256 GB 256 GB

GPU model
2x Nvidia Quadro 
RTX 5000

4x Nvidia GeForce GTX 
1080 Ti 4x Nvidia RTX A6000

*These calculations were performed using the same hardware as for the S-layer inner domain.

Appendix 2—table 2 Continued
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