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Abstract The development of connectivity between the thalamus and maturing cortex is a 
fundamental process in the second half of human gestation, establishing the neural circuits that are 
the basis for several important brain functions. In this study, we acquired high- resolution in utero 
diffusion magnetic resonance imaging (MRI) from 140 fetuses as part of the Developing Human 
Connectome Project, to examine the emergence of thalamocortical white matter over the second to 
third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus 
according to its cortical connectivity using diffusion tractography. We then quantify microstructural 
tissue components along the tracts in fetal compartments that are critical substrates for white matter 
maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffu-
sion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, 
such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These 
maturational trajectories of MR signal in transient fetal compartments provide a normative reference 
to complement histological knowledge, facilitating future studies to establish how developmental 
disruptions in these regions contribute to pathophysiology.

Editor's evaluation
This study presents important new findings regarding prenatal thalamocortical development. The 
authors present convincing evidence, while overcoming substantial methodological challenges, in 
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charting prenatal brain development in vivo. This work will be of interest to pediatric and develop-
mental neuroscientists and neuroradiologists.

Introduction
Thalamocortical connections provide important inputs into the developing cortex during the second 
half of human gestation, where they play a key role in guiding cortical areal differentiation and estab-
lishing the circuitry responsible for sensory integration across the lifespan (Jones, 2007; Price et al., 
2006; Schummers et al., 2005; Sharma et al., 2000; Sur and Rubenstein, 2005). Their importance 
is highlighted by previous work implicating disruptions to thalamocortical development during the 
perinatal period in the pathophysiology of neurodevelopmental disorders, such as schizophrenia 
(Klingner et al., 2014; Marenco et al., 2012), bipolar disorder (Anticevic et al., 2014), and autism 
(Nair et al., 2013). Altered thalamocortical connectivity has also been described in preterm infants, 
and was used to predict cognitive outcome (Ball et al., 2013; Ball et al., 2015; Toulmin et al., 2021), 
highlighting the specific vulnerability of these pathways during the second to third trimester. Although 
thalamocortical development has been studied in rodents and non- human primates (Brody et al., 
1987; Kostović and Jovanov- Milosević, 2006; Molnár and Blakemore, 1995; Yakovlev et al., 1960) 
and post- mortem human tissue (Krsnik et al., 2017; Takahashi et al., 2012; Wilkinson et al., 2017), 
little is known about in vivo white matter maturation during fetal development.

White matter development in the late second and third trimesters of human gestation (between 
21 and 37 weeks) is characterised by a sequence of precisely timed biological processes occurring in 
transient compartments of the fetal brain. These processes include the migration of neurons along 
the radial glial scaffold, accumulation of thalamocortical axons in the superficial subplate, innervation 
of the target cortical area, conversion of radial glial cells into astrocytes, and ensheathment of axonal 
fibres (Krsnik et al., 2017; Molliver et al., 1973; Kostović et al., 2002, Kostovic and Judas, 2006). 
The challenge for in vivo neuroimaging studies is to disentangle the effect of these different neurobi-
ological processes on the diffusion magnetic resonance imaging (dMRI) signal, to improve mechanistic 
insight about the transformation of transient fetal compartments into segments of developing white 
matter (Kostovic 2012).

Recent advances in diffusion weighted imaging now allow in vivo characterisation and estimation of 
white matter development during the fetal period. Tractography has been used to estimate the fetal 
brain’s major white matter bundles and quantitatively characterise the evolution of the microstructure 
across the second half of gestation (Bui et al., 2006; Zanin et al., 2011; Jaimes et al., 2020; Jakab 
et al., 2015; Keunen et al., 2018; Khan et al., 2019; Machado- Rivas et al., 2021; Wilson et al., 
2021). Advanced acquisition and analysis methods enable the relative contribution of constituent 
tissue and fluid compartments to the diffusion signal to be estimated (Jeurissen et al., 2014; Pietsch 
et al., 2019). Using this approach, previous work has identified non- linear trends in diffusion metrics 
over the second to third trimester (Wilson et al., 2021). Namely, we observed an initial decrease in 
tissue fraction within developing white matter between 22 and 29 weeks, which could be due to the 
radial glial scaffold disassembling (Rakic, 2003). Subsequently, we observed an increase from 30 to 
36 weeks, potentially linked to more coherent fibre organisation, axonal outgrowth, and ensheath-
ment (Wimberger et al., 1995; Back et al., 2002; Haynes et al., 2005), increasing the structural 
integrity of maturing white matter. Interpreting these trends is especially challenging in the rapidly 
developing fetal brain, because of the high sensitivity and low specificity of diffusion metrics to various 
co- occurring biological processes.

We hypothesise that the biological processes occurring in different fetal compartments leads to 
predictable changes in diffusion metrics along tracts, reflecting the appearance and resolution of 
these transient zones. When a mean value across the whole tract is calculated, sensitivity to the unique 
neurobiological properties of each transient compartment is lost. For example, in the early prenatal 
and mid prenatal period, the subplate is a highly water- rich compartment containing extracellular 
matrix, whereas the cortical plate and the deep grey matter are relatively cell dense (Kostović, 2020). 
We therefore predict that the tissue fraction would be higher in the deep grey matter and the cortical 
plate and lower in the subplate. We investigate this by characterising the entire trajectory of tissue 
composition changes between the thalamus and the cortex, to explore the role of transient fetal brain 
developmental structures on white matter maturational trajectories.

https://doi.org/10.7554/eLife.83727
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We acquired diffusion weighted imaging from 140 fetuses over a wide gestational age (GA) range 
(21–37 weeks) and use tractography to delineate five distinct thalamocortical pathways. To investigate 
whether the immature axonal bundles can be traced back to specific and distinct locations within 
thalamus, we parcellate the thalamus according to streamline connectivity (Behrens et al., 2003). We 
find consistent and distinct origins of different tracts, resembling the adult topology of thalamic nuclei 
(Toulmin et al., 2015; Behrens et al., 2003) as early as 23 weeks’ gestation. We then apply a multi- 
shell multi- tissue constrained spherical deconvolution (MSMT- CSD) diffusion model (Jeurissen et al., 
2014) and derive tissue and fluid fraction values, charting tract- specific maturational profiles over the 
second to third trimester. We overlay the tracts on an atlas of transitioning fetal compartments and 
correlate changes in the dMRI signal across time with critical neurodevelopmental processes, such as 
the dissolution of the subplate and lamination of the cortical plate. We demonstrate that along- tract 
sampling of diffusion metrics can capture temporal and compartmental differences in the second 
to third trimester, reflecting the maturing neurobiology of the fetal brain described in histological 
studies. With these methods, we provide a detailed, accurate reference of the unique developing 
microstructure in each tract that improves mechanistic insight about fibre maturation, bridging the 
gap between MRI and histology.

Results
Estimating thalamocortical pathways using probabilistic streamline 
tractography
High- angular- resolution multi- shell diffusion weighted imaging (HARDI) was acquired from 140 
fetuses between 21 and 37 gestational weeks (70 male, 70 female) as part of the Developing 
Human Connectome Project (dHCP). Data were corrected for fetal head motion and other imaging 
artefacts (Christiaens et  al., 2021). Individual subject orientation density functions (ODFs) 
were then computed using cohort- specific fluid and ‘tissue’ response functions and compiled to 
generate weekly diffusion templates (see Materials and methods). The diffusion templates were 
then registered to a T2- weighted brain atlas (Gholipour et  al., 2017) of tissue segmentations, 
used to generate anatomically constrained whole- brain connectomes for each gestational week 

Figure 1. Methods pipeline to estimate and quantify thalamocortical tracts development. (Top row) (a) Whole- brain connectomes generated for each 
gestational week template. (b) Atlas- defined masks of the thalamus and cortical areas were used to extract white matter pathways of interest from the 
connectomes. (c) These pathways were transformed to the native fetal diffusion space, (d) the values were sampled along the tract. (f) Whole- tract 
average diffusion metrics were calculated or (g) values sampled along the tract were aligned to an atlas of transient fetal compartments.

https://doi.org/10.7554/eLife.83727
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(Smith et al., 2012; Tournier et al., 2019). To constrain our investigation, we selected thalamo-
cortical pathways that are at a critical stage in their development and are vulnerable to external 
influences in the second to third trimester (Batalle et al., 2017; Nosarti et al., 2014; Raybaud 
et  al., 2013), the anterior thalamic radiation (AT), thalamic- motor tract (TM), thalamic- sensory 
tract (TS), posterior parietal tract (PP), and optic radiation (OR). The connectomes were filtered 
down to the pathways of interest using inclusion regions defined by the T2 atlas, including the 
thalamus and specific cortical areas (Figure 1). These included the primary motor cortex, primary 
sensory cortex, posterior parietal cortex, dorso- lateral prefrontal cortex, and the primary visual 
cortex. With this method, we were able to delineate five major thalamocortical pathways in each 
gestational week. To keep regions of interest more consistent across the cohort, we grouped all 
cases into 2- weekly intervals, starting at 23 weeks (Figure 2), replicating methods used previously 
(Wilson et al., 2021).

Structural connectivity parcellation of the fetal thalamus resembles 
adult topology of thalamic nuclei
Tract density imaging (Calamante et al., 2010) was used in each ODF template to explore whether 
the different cortical areas were connected to distinct, specific regions of the thalamus (Figure 3a). 
We found that for all ages, there was symmetrical topographical representation of the cortical regions 
of interest in the thalamus. Furthermore, they spatially corresponded to the adult organisation of 
thalamic nuclei, demonstrated by the schematic (Figure 3a) which is based on Morel’s thalamus and 
other connectivity- derived parcellations from adult imaging studies (Morel et al., 1997; Najdenovska 
et al., 2018; Niemann et al., 2000). The tract projecting to the prefrontal cortex was connected to 
the anterior thalamus and in the younger ages (23–29 weeks) also to the medial thalamus. In the older 
templates (31, 33, and 35 weeks), frontal connectivity was more localised to the anterior thalamus and 
less evident in the medial area. There were distinct but neighbouring areas in the ventral thalamus 
connecting to the sensory and motor cortical areas, the motor- connected thalamic region being more 
frontal. The connectivity of the posterior parietal area was in the posterior part of the thalamus, and 
the most posterior voxels in the thalamic mask projected to the primary visual cortex.

Figure 2. Tractography of thalamocortical pathways in different gestational week templates across the second to third trimester. Tracts project to five 
different cortical areas, the prefrontal cortex, primary motor cortex, primary sensory cortex, posterior parietal cortex, and primary visual cortex, coloured 
according to the anterior- posterior axis.

https://doi.org/10.7554/eLife.83727
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Whole-tract average diffusion metrics have a characteristic U-shaped 
trend across the second to third trimester
The thalamocortical pathways were transformed from the age- matched templates to the native subject 
space for 140 fetal subjects (Figure 4a). The MSMT- CSD- derived voxel- average tissue and fluid ODF 
values were sampled along the warped group- average streamline tracts. Tract- specific values were 
derived by averaging these for each tract in each subject, replicating the approach that has been used 
in previous fetal studies (Wilson et al., 2021). The values for each tract were plotted against the GA 

Figure 3. Tract density imaging parcellation of thalamus at different fetal ages. (a) A schematic of expected cortical connectivity arrangement across 
the thalamus, based on Morel’s parcellation of the adult thalamic nuclei. (b) Axial slices of thalamic parcellation, thresholded for the top 20% of voxels, 
colour- coded according to streamline connectivity of different tracts at 23 weeks, (c) 27 weeks, (d) 31 weeks, and (e) 35 weeks.

https://doi.org/10.7554/eLife.83727
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of the subject. The Akaike information criterion suggested second- order polynomial relationships for 
all tracts for both tissue and fluid fraction metrics, except the fluid fraction in the AT which is linear 
(Figure 4b). Diffusion tensor metrics also displayed similar age- related polynomial trends (Figure 4—
figure supplement 1). We compared male vs. female (two- sample test) in each gestational week and 
found no significant differences (p>0.1).

Along-tract sampling reveals evolving properties of fetal brain 
transient compartments
To explore the origins of these trends in diffusion metrics, the values of tissue and fluid fraction were 
sampled in subject space at 100 equidistant intervals between the thalamus and the cortex. Tissue 
and fluid fraction are scaled jointly per scan such that they are approximately reciprocal of one another 
across the brain using a cubic polynomial spatial model (Pietsch et al., 2019). In each subject, we 
sampled the tissue and fluid fraction values beneath the streamlines from the thalamus to the cortex, 
plotting the microstructural tissue composition against the distance from the thalamus (Figure 5). 
We found that trajectories changed gradually between gestational weeks, and therefore we grouped 
them to match previous histological studies that define this fetal period according to three develop-
mental windows, early (21–25.5 weeks), mid (26–31.5 weeks), and late (32–36 weeks) prenatal period 
(Kostović, 2020; Appendix 1—figures 5 and 6). When comparing the microstructural profiles of all 
the tracts in the different periods, the motor, sensory, and parietal tracts shared similar trajectories, 
whilst those in the AT and OR tracts were more distinct (Figure 5a, b, and c and Figure 5—figure 
supplement 1a,b).

Figure 4. Diffusion metric age trajectories for each tract. (a) Distribution of age among the fetal cohort (n=140) in gestational weeks. (b) Whole- tract 
average tissue (top) and fluid fractions (bottom) for each subject in the left (orange) and right (blue) hemisphere, plotted against gestational age (GA) 
of the subject, best fit by second- order polynomials (AT = anterior thalamic radiation, OR = optic radiation, PP = posterior parietal tract, TS = thalamic- 
sensory tract, TM = thalamic- motor tract).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Whole- tract average of diffusion tensor metrics in the fetal cohort (n=140), fractional anisotropy (FA), and mean diffusivity (MD), 
in thalamocortical tracts across gestational age (every other week shown).

https://doi.org/10.7554/eLife.83727
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Figure 5. Microstructural composition of fetal compartments traversed by developing thalamic white matter. Tracts 
were overlayed on the atlas of fetal compartments (examples highlight the difference between fetal brain structure 
in early prenatal [25 weeks] on far left, and late prenatal [35 weeks] on far right). Tissue fraction trends (top row) and 
fluid fraction trends (bottom row), normalised to 1, between the thalamus and cortex (thalamocortical tract axis) 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.83727
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To improve our ability to corroborate changes in the dMRI signal with observations from histolog-
ical studies, we mapped the maturational trajectories to an atlas of fetal brain compartments (Gholi-
pour et  al., 2017) and overlayed the boundaries of these compartments on the tissue and fluid 
fraction trajectories (Figure 5). By overlaying the tracts on the atlas, and corroborating each sampling 
segment with an atlas region, we could characterise the diffusion properties of the different fetal 
compartments independent of their change in size across gestation. Tissue fraction values in the deep 
grey matter and the cortical plate areas increased with GA in all tracts. This increase was most marked 
in the tracts terminating in superior areas of the brain (motor, sensory, and superior parietal cortex) 
(Figure 5a TM, Figure 5—figure supplement 1 (a) TS and (b) PP). The tissue fraction of the ventric-
ular and intermediate zones decreased between the early and mid prenatal period, in all tracts. This 
decrease was very pronounced in the motor, sensory, and superior parietal tracts. The subplate tissue 
fraction changes were more tract specific. In the subplate of sensorimotor and parietal tracts, there 
was initially a very high fluid fraction and low tissue fraction, which transitions across the second to 
third trimester, increasing in tissue fraction from early to mid and then to late prenatal. Whereas in the 
AT, there was a decrease in subplate tissue fraction with GA (and a reciprocal increase in fluid fraction). 
In the OR, the subplate tissue fraction decreases between early and mid prenatal to then increase 
again in late prenatal. Highest tissue fractions were generally observed in the ventricular zone, with 
the lowest tissue fraction in the subplate area. To statistically test if there was a difference between 
the values in each compartment across GA, we correlated the tissue fraction values against age for 
each of the 100 sampling points. After correcting for multiple comparisons, points 1–16, 24–42, and 
70–100 had significant linear correlations with age. Sampling points 43–69 had significant second- 
order polynomial relationships with age.

Discussion
In this work, we studied in utero development of five distinct thalamocortical pathways using state- 
of- the- art dMRI methods and bespoke pre- processing pipeline (Christiaens et al., 2019a; Cordero- 
Grande et al., 2019; Hutter et al., 2018a; Pietsch et al., 2019; Wilson et al., 2021) in 140 fetuses 
aged 21–37 weeks’ gestation. We show that these pathways connect to distinct thalamic nuclei, which 
could be clearly defined at group level even at 23 weeks. To disentangle the impact of different neuro-
biological processes on diffusion metrics, we characterised the tissue composition profile along each 
of the thalamocortical tracts as they traverse the different developmental tissue layers of the fetal 
brain. We used MSMT- CSD to model this fetal DWI dataset because it does not mandate a specific 
set of b- values. The technique exploits the unique b- value dependencies of different tissue types, 
and so depends inherently on the characteristics of the tissue in the fetal brain. The distinct proper-
ties of different fetal compartments after the application of MSMT- CSD are highlighted by the ODFs 
(Appendix 1—figure 4). Readers are directed to Tournier et al., 2019, for a more comprehensive 
review of the optimisation process involved to select appropriate b- shell values for the acquisition.

We found that the spatiotemporal changes in the diffusion signal reflected known developmental 
processes that take place between the early, mid, and late prenatal period. The early period is char-
acterised by higher tissue fractions in the middle of the tract, where there is a radial scaffold for 
migrating neurons. As this scaffold dissipates in the mid prenatal period, this is accompanied by a 
reduction in the tissue fraction in the middle of the tract, and an increase in tissue fraction towards the 
termination of the tracts as the neurons of the cortical plate mature. Finally in the late prenatal period, 

for the (a) thalamic- motor tract, (b) optic radiation, and (c) anterior thalamic radiation. Subjects were grouped by 
age, and average trajectories plotted for early prenatal (22–25.5 weeks), mid prenatal (26–31.5 weeks), late prenatal 
(32–36 weeks). Error bars represent the standard deviation among all subjects in each group. Atlas- derived tissue 
boundaries are marked on the trajectories to reveal the changing tissue properties of each layer between early, 
mid, and late prenatal development (cortical spinal fluid = CSF, cortical plate = CP, subplate = SP, intermediate 
zone = IZ, ventricular zone = VZ, deep grey matter = GM, immature white matter = WM).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Microstructural composition of fetal compartments traversed by developing thalamic white 
matter.

Figure 5 continued

https://doi.org/10.7554/eLife.83727
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we observe the highest tissue fraction values at the start and end of the axis, as the pre- myelination 
phase of white matter development commences. This study demonstrates how the dMRI signal can 
be modelled to create in vivo spatiotemporal trajectories which relate to underlying neurobiological 
properties and are consistent with described trends from post- mortem histology (Kostović, 2020).

Early embryonic patterning of gene expression and cell division in the thalamus provide a template 
for specialised nuclei to emerge over the course of development, such that specific cells eventually 
occupy distinct locations within the thalamus (Clascá et al., 2012; Nakagawa, 2019, Kostovic and 
Goldman- Rakic, 1983). Rodent studies labelling the embryonic thalamus demonstrated that there is a 
characteristic topography of thalamic projections which roughly exists at their time of arrival; anterior 
to posterior movement along the convexity of the cortex is represented in a medial- to- lateral axis 
within the thalamus, while ventral- dorsal movement across the cortex is represented in an anterior- 
to- posterior axis within the thalamus (Molnár et  al., 1998; Molnár et  al., 2012). Thalamocortical 
tracts emerge over the same timescale as the thalamus parcellates and matures into its specialised 
group of nuclei (Clascá et al., 2012). Although the topography of thalamic nuclei and their cortical 
connectivity is acquired embryonically, no in vivo parcellation of the thalamus in the fetal brain has 
been published. Using tract density imaging, we observed that the cortical areas were connected to 
specific thalamic regions, organised in an anterior- posterior axis. This anterior- posterior representa-
tion of cortical connectivity in the thalamus was consistent across the second to third trimester and is 
in accordance with the topology of thalamic nuclei described in rodent studies and histology (Molnár 
and Blakemore, 1995; Molnár et al., 1998).

In addition, our fetal structural connectivity parcellation resembles the functionally derived 
thalamic parcellation in neonates, supporting the view that there is a strong association between 
structure and function in thalamocortical circuitry that begins early in life (Johansen- Berg et al., 2005; 
Toulmin et al., 2015; Alcauter et al., 2014). However, it is worth noting that this thalamic parcellation 
is dependent on streamline count through a voxel, and in the fetal brain streamlines are prone to 
spurious detection. This limitation is particularly relevant in the youngest fetuses, where we observe 
an extremely dense connectome (due to a fixed number of streamlines in a smaller brain) but there 
are very few coherent axonal bundles, so tracts might be overrepresented in the thalamic parcellation. 
The topography of thalamic nuclei is also not static during the embryonic and fetal period (Le Gros 
Clark, 1936), as pulvinar size increases and the dorsal lateral geniculate nucleus shifts its position 
from dorsolateral to ventromedial (Rakic, 1977; Mojsilović and Zecević, 1991). However, the image 
resolution of this study and the timespan in development over which this data was collected limit us 
from visualising these differences across age.

Recent studies characterising developing white matter pathways using human fetal MRI identified 
second- order polynomial maturational trends in diffusion metrics unique to this developmental period 
(Wilson et al., 2021; Machado- Rivas et al., 2021). Here, we replicated these methods with a different 
group of tracts and found the same U- shaped trends in thalamocortical white matter development. 
The inflection point at around 29–30 weeks was hypothesised to be the result of the dissipating radial 
glial scaffold followed by the pre- myelination phase of white matter development (Wilson et  al., 
2021; Machado- Rivas et al., 2021). The sensitivity of HARDI to radially organised structure in the 
fetal brain has been described by previous studies (Miyazaki et al., 2016; Takahashi et al., 2012; Xu 
et al., 2014) combining it with post- mortem tissue analysis to show that radially coherent diffusion 
signal corresponded to radial glial fibres in the early prenatal period, transitioning to cortico- cortical 
fibres around 30 weeks, coinciding with the appearance of astrocytes (Takahashi et al., 2012; Xu 
et al., 2014). However, with whole- tract average values, it is not possible to establish the precise 
effect of different neurodevelopmental processes on diffusion metrics across gestation.

To address this ambiguity, we characterised the entire trajectory of tissue composition changes 
between the thalamus and the cortex. We found that age- related changes in the tissue and fluid 
fraction along the tracts concurred with histological observations (Kostović and Judas, 2010). During 
the early prenatal period (22–25.5 GW), neuronal precursors migrate along the radial glial scaffold 
from proliferative zones to their destination in the cortical plate and thalamocortical axons accumu-
late in the superficial subplate, entering a ‘waiting phase’, forming transient synaptic connections 
(Ghosh et al., 1990; Kostovic and Rakic, 1984; Kostovic and Rakic, 1990). In terms of the diffusion 
signal, this strongly aligned microstructure of the radial glia is represented in our results by a higher 
tissue fraction in the transient compartments containing the most migratory cells (such as the VZ, IZ) 

https://doi.org/10.7554/eLife.83727
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(Kostović and Judas, 2010). Conversely, we observe the lowest tissue fraction in the early prenatal SP, 
which predominantly contains hydrophilic extracellular matrix, as demonstrated by rodent and non- 
human primate studies (Allendoerfer and Shatz, 1994; Miller et al., 2014; Molnár and Hoerder- 
Suabedissen, 2016).

By the mid prenatal period (26–31.5 weeks), we observe increased tissue fraction in the cortical 
plate, coinciding with the innervation of the cortical plate by thalamocortical axons, increasing soma 
volume and dendritic branching of CP neurons and CP synaptogenesis (Huttenlocher, 1979; Mrzljak 
et al., 1992; Huttenlocher and Dabholkar, 1997). We also observe increased tissue fraction in the 
SP zone in the mid prenatal period, consistent with histological observations of increased coherence 
of axonal fibres between cortical areas (Takahashi et al., 2012; Xu et al., 2014). The tissue fraction 
in the VZ and IZ decreases compared to the early prenatal period, corresponding to the timeframe 
when the radial glial scaffold dissipates (Kinney et al., 1988; Back et al., 2001; Haynes et al., 2005).

From the mid to late prenatal period, there is a marked increase in tissue fraction in last third of 
the axis between thalamus and cortex. By this point in development, the radial glia have converted 
into oligodendrocyte precursor cells which ensheath the axonal fibres to commence pre- myelination, 
enhancing the structural integrity of the fibre pathways (Back et al., 2001; Back et al., 2002; Haynes 
et al., 2005; Kinney et al., 1988; Kinney et al., 1994). A previous study in perinatal rabbits has 
shown that this oligodendrocyte lineage progression correlates with diffusion metrics (Drobyshevsky 
et al., 2005), suggesting it is likely to contribute to the increased tissue fraction we observe in the late 
prenatal period. The tissue fraction increase in the CP area is consistent in time with the lamination of 
the CP, the elaboration of thalamocortical terminals in layer IV, and a rapid growth of basal dendrites 
of layer III and V pyramidal neurons (Kostović and Jovanov- Milosević, 2006; Krsnik et al., 2017; 
Molliver et al., 1973). These high tissue fraction values at the origin and termination of the tracts 
suggest co- maturation between ascending and descending pathways between the thalamus and 
cortex to eventually form continuous, structurally mature fibre bundles. This concept was proposed 
in the 1990s by Blakemore and Molnar, termed the ‘handshake hypothesis’. They suggested that 
thalamocortical pathways ascending through the internal capsule project to their cortical targets with 
assistance from reciprocal descending cortical pathways (Molnár and Blakemore, 1995). We hypoth-
esise that continuing this analysis over subsequent weeks into the neonatal period would lead to an 
increasing tissue fraction in the middle of the axis, as fibre bundles become more uniformly structurally 
mature and the subplate completely resolves (Kinney et al., 1988; Haynes et al., 2005; Kostović and 
Jovanov- Milosević, 2006).

We observed that tracts terminating superiorly (motor, sensory, and parietal) shared very similar 
trajectories in the early, mid, and late periods. However, the OR and the AT had more distinct trajec-
tories. The microstructural change along the AT suggests increasing tissue fraction between the deep 
grey matter, VZ and IZ. We hypothesise that the high tissue fraction in the IZ is due to densely packed 
ascending and descending bundles within the anterior limb of the internal capsule (Emos et  al., 
2022). The precise timeline for outgrowth and intermingling of the thalamocortical and corticotha-
lamic projections remains ambiguous, and appears to be different between rodents and non- human 
primates (Alzu’bi et al., 2019).

On the other hand, the OR traverses the deep parietal lobe along the border of the lateral ventricle 
and has smoother transitions in tissue fraction between the fetal compartments. This is likely due to 
the tract area running more parallel to the tissue interfaces. Another explanation for the regional 
differences in microstructural properties is the variation in subplate remnants. In the late prenatal 
trajectories, all tracts except the OR have a large dip in tissue fraction along the tract. In the primary 
visual cortex, the subplate disappears during the final weeks of gestation, whereas in the somato-
sensory cortex there are still subplate neurons present in term- born neonates (Kostovic and Rakic, 
1990) and the subplate of the pre- frontal associative cortex gradually disappears over the 6 postnatal 
months. Therefore, the peaks of fluid fraction in the frontal and sensory trajectories might reflect the 
lasting presence of subplate in these areas (Kostović and Jovanov- Milosević, 2006; Kostovic and 
Rakic, 1990).

There are several important considerations to our work which may limit the interpretation of 
our findings. MRI has an inherently low signal:noise ratio as signal attenuation is deliberately intro-
duced and EPI acquisitions are highly susceptible to motion and distortion artefacts. Furthermore, 
the biophysical properties of the fetal environment introduce a series of additional inter- dependent 
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challenges for acquiring high- quality dMRI data (Christiaens et al., 2019a; Christiaens et al., 2019b, 
Tournier et al., 2020). In utero imaging methods must adapt and account for unpredictable, some-
times abrupt motion of fetus, in addition to the motion introduced by maternal breathing. Achieving 
even coverage of the magnetic coil is challenging due to varying fetal and maternal positions inside 
the scanner, introducing unique bias fields for every subject. The dHCP acquisition protocol and pre- 
processing pipelines have incorporated dynamic distortion and motion correction algorithms that 
were designed to specifically tackle the unique artefacts- associated imaging fetuses (Deprez et al., 
2020; Cordero- Grande et al., 2018; Cordero- Grande et al., 2019; Christiaens et al., 2019a; Chris-
tiaens et al., 2019b; Hutter et al., 2018b; Price et al., 2019). However, even after the extensive 
correction procedures, there is still some residual motion and distortion in the data. For a more exten-
sive and comprehensive review of challenges associated specifically with in utero diffusion imaging 
and constructive suggestions to address them, readers are directed to Christiaens et al., 2019b.

The conclusions that can be drawn from analysing the diffusion MR signal are limited more generally 
by the level of noise and lack of directionality in the signal, and therefore we are not able to distinguish 
between ascending and descending thalamic projections as they develop. The fibre- tracking process 
itself is also very sensitive to the residual motion and distortion in fetal data, producing highly variable 
results in terms of streamline count per tract. Therefore, the metrics generally used in this field to 
investigate fibre bundle morphology, such as streamline count, a proxy for ‘innervation density’, are 
not an accurate, quantitative measure (Calamante, 2019) and cannot be reliably used to assess fibre 
morphology. Consequently, we have just used tractography to delineate regions of interest and used 
the signal contrast in the diffusion maps to quantify microstructure.

The methods described allow the direct study of the maturational effects of the subplate and 
intermediate zones, which are known to represent critical substrates for early synaptogenesis and the 
spatial guidance of thalamocortical axons (Ghosh et al., 1990). Damage to this essential structural 
framework for developing cortical circuitry has been implicated in the origins of numerous develop-
mental disorders and is suspected to underly the altered structural and functional connectivity of the 
thalamus in preterm infants (Back and Volpe, 1997; Volpe, 2001; Volpe, 2009; Hüppi et al., 2001; 
Counsell et al., 2003; Hadders- Algra et al., 2017; Mathur and Inder, 2009; Toulmin et al., 2015; 
Ball et al., 2012; Ball et al., 2015). It is therefore critical to use clinically relevant tools, such as in utero 
MRI, to relate the microstructural properties of these transient fetal compartments to neurobiological 
processes. This improves mechanistic insight about both healthy white matter maturation and the 
developmental origins of white matter pathologies.

With this study we explore the development of thalamocortical white matter by quantifying micro-
structure in the different layers of the fetal brain. Using diffusion metrics, we characterise the emer-
gence of structural connectivity from the thalamus to spatially and functionally distinct cortical brain 
regions. We observe correlations between the transitioning tissue components and key neurobiolog-
ical processes in white matter development. By providing a detailed normative reference of MR signal 
change during the second to third trimester, this will help future studies to identify if the tissue prop-
erties of specific compartments are affected by preterm birth or other perinatal injury. To this effect, 
all fetal MRI data is made available to the research community.

Materials and methods
Sample
The study was approved by the UK Health Research Authority (Research Ethics Committee reference 
number: 14/LO/1169) and written parental consent was obtained in every case for imaging and open 
data release of the anonymised data. All data was acquired in St Thomas Hospital, London, United 
Kingdom. The sociodemographic characteristics of this sample are representative of the diversity in 
the London population (see Appendix 1—figure 1).

Acquisition, pre-processing, and quality control
GA was determined by sonography at 12 post- ovulatory weeks as part of routine clinical care. Three- 
hundred fetal MRI datasets were acquired with a Philips Achieva 3T system, with a 32- channel cardiac 
coil in maternal supine position. dMRI data was collected with a combined spin echo and field echo 
(SAFE) sequence (Hutter et al., 2018a, Cordero- Grande et al., 2018) at 2 mm isotropic resolution, 
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using a multi- shell diffusion encoding that consists of 15 volumes at b=0 s/mm2, 46 volumes at b=400 
s/mm2, and 80 volumes at b=1000 s/mm2 lasting 14 min (Christiaens et al., 2019a). For more insight 
on the choice of b- shell values for this acquisition, readers are directed to Appendix 1—figure 4 
(Tournier et al., 2019). The protocol also included the collection of structural T2w, T1w, and fMRI 
data, for a total imaging time of approximately 45 min (Price et al., 2019).

dMRI data were processed using a bespoke pipeline (Christiaens et  al., 2019a) that includes 
generalised singular value shrinkage image denoising and debiasing from complex data (Cordero- 
Grande et al., 2019), dynamic distortion correction of susceptibility- induced B0 field changes using 
the SAFE information (Ghiglia and Romero, 1994; Cordero- Grande et  al., 2018; Hutter et  al., 
2018b) and slice- to- volume motion correction based on a multi- shell spherical harmonics and radial 
decomposition (SHARD) representation (Christiaens et al., 2021). Quality control (QC) was imple-
mented using summary metrics based on the gradient of the motion parameters over time and the 
percentage of slice dropouts in the data (Christiaens et al., 2021). This was followed up with expert 
visual assessment, which considered any residual or uncorrected artefacts. Image sharpness, residual 
distortion, and motion artefacts were visually assessed and scored between 0 and 3, with 0 (=failure, 
e.g. because the subject moved out of the field of view) to 3 (=high quality), based on the mean b=0, 
b=400, and b=1000 images and the ODFs estimated with MSMT- CSD. See Appendix 1—figure 2 for 
examples of subjects that were excluded. Both DWI and T2 for each fetus were required to facilitate 
co- registration to template space via a structural intermediate. After co- registration, the QC scores 
were checked and validated again by different authors (MP, AU, SW), only subjects scoring 2 or 3 that 
were well aligned in T2 space were admitted to this study. Based on the above criteria, 140 of the 
300 subjects that were pre- processed were classified as high- quality reconstructions for both DWI 
and T2 modalities. Post hoc analysis was also conducted to check if any motion- related parameters 
correlate with GA (Appendix 1—figure 3).

Diffusion modelling and template generation
All diffusion processing and tractography was done using MRtrix3 (Tournier et al., 2019). To decon-
volve the tissue and fluid components of the diffusion data, white matter and cortical spinal fluid 
(CSF) response functions were estimated for each subject using T2- based tissue segmentations as 
inclusion areas. White matter response functions were extracted from areas of relatively mature white 
matter (corticospinal tract and corpus callosum) using the ‘tournier’ algorithm and CSF responses 
using the ‘dhollander’ algorithm in MRtrix3 (Jeurissen et al., 2014; Tournier et al., 2019; Tournier 
et al., 2013). The white matter response functions of the oldest 20 subjects were averaged to obtain 
a group- average response function of relatively mature white matter, whilst a group- average CSF 
response function was calculated from the whole cohort of subjects. dMRI signal of all subjects was 
subsequently deconvolved into tissue ODF and fluid components using MSMT- CSD and the group- 
average white matter and CSF response functions (Jeurissen et al., 2014), and resulting components 
were intensity normalised for each subject (Raffelt et al., 2011). Subject ODFs warped into weekly 
templates through a series of coarse pose normalisation and non- linear diffeomorphic image registra-
tion steps (Jenkinson et al., 2002; Raffelt et al., 2011; Pietsch, 2018). These transformations were 
composed to obtain pairs of inverse consistent diffeomorphic subject- to- template and template- to 
subject warps.

Connectome generation and tractography
The ODF templates were co- registered to the Boston T2- fetal atlas (Gholipour et al., 2017) using 
non- linear registration (Avants et al., 2008). The tissue segmentations of the cortex, white matter, 
and deep grey matter were used for anatomically constrained tractography to generate whole- brain 
structural connectomes of 100 M streamlines in each gestational week (Smith et al., 2012; Tournier 
et  al., 2019). The connectomes were filtered down to 10 M streamlines using the SIFT algorithm 
(Smith et al., 2013; Tournier et al., 2019), so that the number of streamlines connecting the two 
regions are approximately proportional to the cross- sectional area of the fibres connecting them 
(Smith et al., 2013). In each weekly template, thalamocortical pathways of interest were defined in 
both hemispheres by filtering the connectome using seed regions derived from the Boston T2- fetal 
atlas (Gholipour et al., 2017), including the thalamus, primary motor cortex, primary sensory cortex, 
posterior parietal cortex, dorso- lateral prefrontal cortex, and primary visual cortex. We also used 
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additional ROIs to exclude spurious streamlines that were projecting away from the expected path of 
the tract (e.g. to exclude callosal fibres from the TM).

Tract density parcellation of thalamus
Tckmap was used to identify which voxels in the thalamus mask were traversed by the streamlines of 
each tract (Calamante et al., 2010). The tract density maps were merged using FSL (Jenkinson et al., 
2012) and a colour- coded parcellation volume was constructed reflecting the maximum density tract 
for each voxel. For visualisation, the tract density maps for each tract were thresholded at 80%, only 
to include voxels with the highest streamline connectivity.

Extracting tissue and fluid fraction values
To extract diffusion metrics for analysis, tracts were transformed from the templates to age- matched 
subject space to be overlaid onto the normalised fluid ODF and the normalised tissue ODF. The mean 
value within the segmented tracts was calculated to give the tissue and fluid fractions.

Microstructural profiling
In each template, thalamocortical tracts were filtered so all the streamlines for each tract were of the 
same length, to ensure even sampling intervals along them. All template tracts were then registered 
into a standard space and resampled to 100 points, before being transformed to individual subjects 
and overlaid on the normalised tissue and fluid fraction maps. The average value for each sampling 
point was calculated to create a microstructural profile along the path between the thalamus and the 
cortical plate. To provide a reference for microstructural differences between fetal brain compartments, 
tracts were overlaid on the atlas- derived tissue parcellations. The value of the tissue labels underlying 
the tract were used to establish which sampling points corresponded to each fetal compartment. 
These boundaries between compartments were then used to label the plots in Figure 5.
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Appendix 1
Extended details about the methodological decision-making process
Sociodemographic information
One of the aims of the dHCP was to ensure that the cohort analysed were representative of the 
diverse sociodemographic spread within the London population. We compared our cohort with 
information derived from the Mayor of London database (https://data.london.gov.uk/dataset/ 
indices-of-deprivation) to check if the distributions were similar (Appendix  1—figure 1). We 
find that socioeconomic status, according to the index of multiple deprivation, and the ethnicity 
is comparable between our cohort and London. This suggests that our sample is representative, 
and our results should be generalisable across the London population. To ensure that we were not 
observing the effect of a preterm pregnancy, we also provide information on the GA at birth of the 
fetal cohort and the baby birth weight.

Appendix 1—figure 1. Sociodemographic and neonatal follow- up information. Including index of multiple 
deprivation (IMD), London. Gestational age at birth, birth weight, and ethnicity.

Quality control
QC was implemented using summary metrics based on the gradient of the motion parameters over 
time and the percentage of slice dropouts in the data (Christiaens et al., 2021). This was followed 
up with expert visual assessment, which considered any residual or uncorrected artefacts. Image 
sharpness, residual distortion, and motion artefacts were visually assessed and scored between 0 
and 3, based on the mean b=0, b=400, and b=1000 images. The scoring system was as follows: 
0=failure, brain outside field of view, 1=banding  and large distortion, 2=blurring  but no major 
artefacts, 3=relatively high quality.

https://doi.org/10.7554/eLife.83727
https://data.london.gov.uk/dataset/indices-of-deprivation
https://data.london.gov.uk/dataset/indices-of-deprivation
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Appendix 1—figure 2. Examples of QC scoring scale for subjects, between 0 and 3, with 0 (=failure, e.g. subject 
moved out of the field of view) to 3 (=high quality).

As an additional check to see if the extent of motion affected our results, we correlated the 
indices derived from the SHARD pipeline with GA. There are three output parameters per subject, 
which are signal- to- noise ratio (SNR), rotation, and translation. SNR = mean b=0 signal/mean noise 
level, measured in the reconstruction mask using MP- PCA denoising. Rotation = mean change in 
rotation of the subject pose between slices (degrees). Translation = mean change in translation of 
the subject pose between slices (mm).

https://doi.org/10.7554/eLife.83727
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Appendix 1—figure 3. Correlations between spherical harmonics and radial decomposition (SHARD)- derived 
indices describing subject motion and gestational age (signal- to- noise ratio [SNR], rotation and translation).

Diffusion data modelling
Previous publications provide detail on the optimisation process used to define the b- shell values 
used (Tournier et al., 2019 and Christiaens et al., 2019b; Christiaens et al., 2019a). This work 
demonstrates that there is a marked loss of signal at higher b- shells (>1000 s/mm3) in the neonatal 
brain compared to adults, due to the tissue being inherently much less restricted. There is also 
increased noise at higher b- shells. Both issues are amplified in the fetal brain, there are long relaxation 
times in the water- rich, relatively unrestricted fetal brain tissues and the amount of noise is higher.

To demonstrate the suitability of MSMT- CSD for this dataset, an important consideration is that 
the MSMT- CSD approach doesn’t mandate a specific set of b- values which are required for the 
modelling process, only that there are multiple shells in addition to b=0. The technique depends on 
the signals related to different tissue types having sufficiently distinct behaviours across the b- values 
sampled, and so depends inherently on the characteristics of the tissue. To demonstrate the distinct 
properties of the different compartments in the fetal brain, we have now included a figure in the 
Appendix (Appendix 1—figure 4) showing the signal amplitude per tissue type as a function of b- 
value, and the ODFs after MSMT- CSD has been applied.

https://doi.org/10.7554/eLife.83727
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Appendix 1—figure 4. Signal amplitude decay in tissue vs. fluid response functions at different b- shells (left). 
Polar plots of the distinct orientation density functions (ODFs) between the corpus callosum (white matter, tissue 
compartment) and ventricle (cortical spinal fluid [CSF], fluid compartment) after multi- shell multi- tissue constrained 
spherical deconvolution (MSMT- CSD) is applied to the data (right).

Along-tract changes for specific gestational weeks
Prior to grouping the data as seen in Figure 5. The analysis was conducted for individual subjects, 
then averaged for each gestational week. We present these trajectories (Appendix 1—figures 5 
and 6) to demonstrate how there are gradual changes in the diffusion signal, on a weekly basis, that 
justify our decision (for easier interpretation) to group the data into early, mid, and late prenatal 
groups.

https://doi.org/10.7554/eLife.83727
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Appendix 1—figure 5. Tissue fraction trajectories along thalamocortical tract axis in each gestational week, prior 
to grouping into early, mid, and late prenatal (every other week shown).

https://doi.org/10.7554/eLife.83727
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Appendix 1—figure 6. Fluid fraction trajectories along thalamocortical tract axis in each gestational week, prior 
to grouping into early, mid, and late prenatal (every other week shown).

https://doi.org/10.7554/eLife.83727
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