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Abstract Comparing connectomes can help explain how neural connectivity is related to 
genetics, disease, development, learning, and behavior. However, making statistical inferences 
about the significance and nature of differences between two networks is an open problem, and 
such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate 
this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. 
We translate notions of ‘bilateral symmetry’ to generative models of the network structure of the 
left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find 
significant differences in connection probabilities both across the entire left and right networks and 
between specific cell types. By rescaling connection probabilities or removing certain edges based 
on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. 
This work shows how statistical inferences from networks can inform the study of connectomes, facil-
itating future comparisons of neural structures.

Editor's evaluation
This important work demonstrates a significant asymmetry between the connectivity statistics of the 
left and right hemispheres of the Drosophila larva brain. The evidence supporting the conclusions 
is compelling and represents a first step toward the development of statistical tests for comparing 
pairs of connectomes more generally. This work will therefore be of interest to the broad neurosci-
ence community.

Introduction
Connectomes – maps of neural wiring – have become increasingly important in neuroscience, and are 
thought to be an important window into studying how connectivity relates to neural activity, evolu-
tion, disease, genetics, and learning (Vogelstein et al., 2019; Abbott et al., 2020; Barsotti et al., 
2021; Galili et al., 2022). However, many of these pursuits in connectomics depend on being able to 
compare networks. For instance, to understand how memory relates to connectivity, one would need 
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to map a connectome which has learned something and one which has not, and then assess whether 
and how the two networks are different. To understand how a gene affects connectivity, one would 
need to map a connectome from an organism with a genetic mutation and one from a wild-type 
organism, and then assess whether and how the two networks are different. Authors have advocated 
for comparing connectomes across the phylogenetic tree of life (Barsotti et al., 2021; Galili et al., 
2022), disease states (Abbott et al., 2020), life experiences (Galili et al., 2022; Abbott et al., 2020), 
development (Galili et al., 2022), and sex (Galili et al., 2022).

Several recent works have already started toward this goal of comparative connectomics. Gerhard 
et  al., 2017, compared the connections in the nerve cord (the insect equivalent of a spinal cord) 
of the L1 and L3 stages of the larval Drosophila melanogaster to understand how these connec-
tions change as the animal develops. Similarly, Witvliet et al., 2021, collected connectomes from 
Caenorhabditis elegans at various life stages, and examined which connections were stable and which 
were dynamic across development. Cook et al., 2019, generated connectomes for both a male and 
hermaphrodite C. elegans worm to understand which aspects of this organism’s wiring diagram differ 
between the sexes. Valdes-Aleman et al., 2021, made genetic perturbations to different individual 
D. melanogaster fly larva, and examined how these perturbations affected the connectivity of a 
local circuit in the organism’s nerve cord. Viewed through the lens of the wiring diagrams alone (i.e. 
ignoring morphology, subcellular structures, etc.), these pursuits all amount to comparing two or more 
networks.

In addition to those described above, one comparison that has been prevalent in the connectomics 
literature is to assess the degree of left/right structural similarity of a nervous system. Bilateria is a 
group of animals which have a left/right structural symmetry. This clade is thought to have emerged 
around 550 million years ago (Fedonkin and Waggoner, 1997), making it one of the oldest groups of 
animals. Most organisms studied in neuroscience (including C. elegans, D. melanogaster, mice, rats, 
monkeys, and humans) are all bilaterians. While functional asymmetries in the brain have been discov-
ered, this axis of structural symmetry is generally thought to extend to the brain (Hobert, 2014).

Connectomic studies have investigated this structural similarity in various ways. The degree of 
left/right symmetry in a single connectome has often been studied as a proxy or lower bound for the 
amount of stereotypy that one could expect between connectomes of different individuals. Lu et al., 
2009, reconstructed the connectome of the axons projecting to the interscutularis muscle on the 
left and right sides of two individual mice. They found that the branching patterns of axons between 
the left and right sides within one animal were no more similar than a comparison between the two 
animals, and also no more similar than two random branching patterns generated by a null model. In 
contrast, Schlegel et al., 2021, found a striking similarity between the morphologies of neurons (as 
measured by NBLAST; Costa et al., 2016) in the left and right hemispheres of the D. melanogaster 
antennal lobe, and a similar level of stereotypy between the antennal lobes of two different individ-
uals. Cook et al., 2019, used the observed level of left-right variability in a C. elegans hermaphrodite 
connectome as a proxy for the amount of variability in connectivity between individuals, assuming 
that one should expect the connectomes of the left and right to be the same up to developmental 
and experiential variability. Conversely, they also point out the fact that the ASEL neuron (on the left 
side) projects more strongly to neuron class AWC than the analogous version on the right, verifying 
this difference via fluorescent labeling in another animal. Similarly, in confocal imaging studies in 
Drosophila, the vast majority of genetically defined cell types were found to have bilaterally symmetric 
morphologies, but with one notable exception. A population of neurons projecting to the aptly named 
asymmetric body were found to preferentially target this structure on the right hemisphere in most 
animals (Jenett et al., 2012; Wolff and Rubin, 2018), and this bias was even found to be related to 
function (Pascual et al., 2004). These studies highlight the complicated relationship between neuro-
scientists and bilateral symmetry: at times, we may assume that the left and right sides of a nervous 
system are in some sense the same in expectation, but at other times we find marked, reproducible 
differences between them. To date, no study (to our knowledge) has framed this question of bilateral 
symmetry of connectivity as a statistical hypothesis comparing two networks.

In this work, we compare the connectivity of the left and the right hemispheres of an insect connec-
tome from the perspective of statistical hypothesis testing. Motivated by the discussion above, in this 
work we make three major contributions: (1) we formally state several notions of bilateral symmetry for 
connectomes as statistical hypotheses, (2) we present test procedures for each of these hypotheses 
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of bilateral symmetry, and (3) we demonstrate the utility of these tests for understanding the signifi-
cance and nature of bilateral symmetry/asymmetry in the brain of a D. melanogaster larva. In doing so, 
we provide a framework and methodology for any neuroscientist wishing to compare two networks, 
facilitating future work in comparative connectomics. We also provide Python implementations and 
documentation for the statistical tests for network comparison developed in this work.

Results
Connectome of a larval Drosophila brain
Recently, authors mapped a connectome of the brain of a D. melanogaster larva (Winding et al., 
2023). To understand how the neurons in this brain were connected to each other, the authors first 
imaged this brain using electron microscopy (Ohyama et al., 2015), and then manually reconstructed 
each neuron and its pre- and post-synaptic contacts. This synaptic wiring diagram consists of 3016 
neurons and over 548,000 synapses. We represent this connectome as a network, with nodes repre-
senting neurons and edges representing some number of synapses between them (Figure 1). Impor-
tantly, this work yielded a complete reconstruction of both the left and right hemispheres of the brain. 
In order to assess bilateral symmetry, we focused on the left-to-left and right-to-right (ipsilateral) 
induced subgraphs. While there are conceivable ways to define bilateral symmetry which include the 
contralateral connections, we did not consider them here in order to restrict our methods to the more 
widely applicable case of two-network-sample testing. More details on how we created the networks 
to compare here are available in Network construction. This process yielded a 1506 neuron network 
for the left hemisphere, and a 1506 neuron network for the right (note that the number of nodes in 
the two hemispheres need not have been exactly the same).

We sought to understand whether these two networks were significantly different according to 
some definition, in order to characterize whether this brain was bilaterally symmetric. As with any 
statistical hypothesis test, this required that we make some modeling assumptions about the nature of 
the networks being compared. We stress that our subsequent results should be interpreted in light of 
these models and what they do (and do not) tell us about these networks (see Váša and Mišić, 2022, 
for an excellent discussion of this point in network neuroscience, and see Limitations for a discussion 
of alternative modeling assumptions). For all of our models, we treated the networks as directed 
(since we knew the direction of synapses), unweighted (creating an edge when there was one or more 
synapse between neurons unless otherwise specified), and loopless (since we ignored any observed 
self-loops). We made no assumptions about whether individual neurons in the left hemisphere 

Figure 1. Visualizations of a larval Drosophila brain connectome from Winding et al., 2023. (A) Adjacency matrix for the full brain connectome network, 
sorted by brain hemisphere. Note that we ignore the left → right and right → left (contralateral) subgraphs in this work. (B) Network layouts for the left → 
left and right → right subgraphs.

The online version of this article includes the following source data for figure 1:

Source data 1. Drosophila larva brain connectome.

https://doi.org/10.7554/eLife.83739
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correspond with individual neurons in the right hemisphere. Next, we detail a series of more specific 
models, what aspects of the networks they characterize, and how we construct a hypothesis test from 
each.

Density test
Our first test of bilateral symmetry was based on perhaps the simplest network model, the Erdos-
Renyi (ER) model (Gilbert, 1959; Erdős and Rényi, 1960), which models each potential edge as 
independently generated with the same probability, ‍p‍. Comparing two networks under the ER model 
amounts to simply comparing their densities (Figure 2A).

	﻿‍ H0 : p(L) = p(R) vs. HA : p(L) ̸= p(R)
‍� (1)

This comparison of probabilities can be tested using well-established statistical machinery for two-
sample tests under the binomial distribution (see ER model and density testing for more details). We 
refer to this procedure as the density test.

Figure 2B shows the comparison of the network densities between the left and right hemisphere 
networks. The densities of the left and right are ~0.016 and ~0.017, respectively, making the density 
of the left ~0.93 that of the right. To determine whether this is a difference likely to be observed by 
chance under the ER model, we ran a two-sided chi-squared test, which tests whether the proba-
bilities of two independent binomials are significantly different. This test yielded a p-value ‍<10−23‍, 
suggesting that we have strong evidence to reject this version of our hypothesis of bilateral symmetry. 
While the ratio of the estimated densities is only ~0.93, this extremely small p-value resulted from the 
large sample size for this comparison, as there are 2,266,530 potential edges on both the left and the 
right sides.

To our knowledge, when neuroscientists have considered the question of bilateral symmetry, they 
have not meant such a simple comparison of network densities. In many ways, the ER model is too 
simple to be an interesting description of connectome structure. However, it is also striking that perhaps 
the simplest network comparison produced a significant difference between brain hemispheres for 
this brain. It is unclear whether this difference in densities is biological (e.g. a result of slightly differing 
rates of development for this individual), an artifact of how the data was collected (e.g. technolog-
ical limitations causing slightly lower reconstruction rates on the left hemisphere), or something 
else entirely. Still, in addition to highlighting a simple departure from symmetry in this dataset, the 
density test result also provides important considerations for other tests. More complicated models 

A) Density test methods B) Density comparison

Figure 2. Comparison of left and right hemisphere networks via the density test. (A) Diagram of the methods used 
for testing based on the network density. See Erdos-Renyi model and density testing for more details. (B) The 
estimated density ‍̂p‍ (probability of any edge averaged across the entire network) for the left hemisphere is ~0.016, 
while for the right it is ~0.017 – this makes the left density ~0.93 that of the right. Vertical lines denote 95% 
confidence intervals for this estimated parameter ‍̂p‍. The p-value for testing the null hypothesis that these densities 
are the same is ‍<10−23‍ (two-sided chi-squared test), meaning very strong evidence to reject the null that the left 
and right hemispheres have the same density.

https://doi.org/10.7554/eLife.83739
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of symmetry could compare other network statistics – say, the clustering coefficients, the number of 
triangles, and so on. These statistics, as well as the model-based parameters we will consider in this 
paper, are strongly related to the network density (Suarez et al., 2022; Chen et al., 2021). Thus, if the 
densities are different, it is likely that tests based on any of these other test statistics will also reject 
the null hypothesis of bilateral symmetry. Later, we describe methods for adjusting for a difference in 
density in other tests for bilateral symmetry.

Group connection test
To understand whether this broad difference between the hemispheres can be localized to a specific 
set of connections, we next tested bilateral symmetry by making an assumption that the left and 
right hemispheres both come from a stochastic block model (SBM). Under the SBM, each neuron is 
assigned to a group, and the probability of any potential edge is a function of the groups to which 
the source and target neurons belong. For instance, the probability of a connection from a neuron in 
group ‍k‍ to a neuron in group ‍l‍ is set by the parameter ‍Bkl‍, where ‍B‍ is a ‍K × K ‍ matrix of connection 
probabilities if there are ‍K ‍ groups. Here, we used broad cell type categorizations from Winding 
et al., 2023, to determine each neuron’s group (see Figure 3—figure supplement 1 for the number 
of neurons in each group in each hemisphere, see Table 1 for naming conventions). Alternatively, 
there are many methods for estimating these assignments to groups for each neuron which we do not 
explore here (see Limitations for discussion on this point). Under the SBM with a fixed group assign-
ment for each node, testing for bilateral symmetry amounts to testing whether the group-to-group 
connection probability matrices, ‍B(L)‍ and ‍B(R)‍, are the same.

	﻿‍ H0 : B(L) = B(R) vs. HA : B(L) ̸= B(R)
‍� (2)

Rather than having to compare one probability as in Equation 1, we were interested in comparing 
all ‍K2‍ group-to-group connection probabilities between the SBM models for the left and right hemi-
spheres. We developed a novel statistical hypothesis test for this comparison, which uses many tests 
to compare each of the group-to-group connection probabilities, followed by appropriate correction 

Table 1. Neuron group definitions, categorizations from Winding et al., 2023.

Acronym Full name

Ascending Ascending neurons from the ventral nerve cord

CN Convergence neurons, receiving input from lateral horn and mushroom body

DNSEZ Descending neurons (to the sub-esophageal zone)

DNVNC Descending neurons (to the ventral nerve cord)

KC Kenyon cells

LHN Lateral horn neurons

LN Local neurons

MB-FBN Mushroom body feedback neurons

MB-FFN Mushroom body feedforward neurons

MBIN Mushroom body input neurons

MBON Mushroom body output neurons

Other Neurons lacking any other categorization

PN Projection neurons

PNSomato Somatosensory projection neurons

Pre-DNSEZ Neurons projecting to DNSEZs

Pre-DNVNC Neurons projecting to DNVNCs

RGN Ring gland neurons

Sensory Sensory neurons

https://doi.org/10.7554/eLife.83739
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for multiple comparisons (when examining the individual group-to-group connections) or combination 
of p-values (when assessing the overall null hypothesis in Equation 2). Details on the methodology 
used here is provided in SBM and group connection testing, and is shown as a schematic in Figure 3A. 
We refer to this procedure as the group connection test.

Figure 3B shows both of the estimated group-to-group probability matrices, ‍̂B(L)‍ and ‍̂B(R)‍. From a 
visual comparison of ‍̂B(L)‍ and ‍̂B(R)‍, the group-to-group connection probabilities appear qualitatively 
similar. Note also that some group-to-group connection probabilities are zero, making it nonsensical 
to do a comparison of probabilities. We highlight these elements in the matrices with explicit ‘0’s, and 
note that we did not run the corresponding test in these cases. Figure 3C shows the p-values from all 
285 tests that were run to compare each element of these two matrices. After multiple comparisons 
correction, seven tests produced p-values less than ‍α = 0.05‍, indicating that we could reject the null 
hypothesis that those specific connection probabilities are the same between the two hemispheres. 
We also combined all (uncorrected) p-values, yielding an overall p-value for the entire null hypothesis 
(Equation 2) of equivalence of group-to-group connection probabilities of ‍<10−7‍.

Taken together, these results suggest that while the group-to-group connections are roughly 
similar between the two hemispheres, they are not the same under this model. Notably, there are 
seven group-to-group connections which were significantly different: Kenyon cells (KC) → KC, lateral 
horn neurons (LHN) → other, other → LHN, other → other, projection neurons (PN) → LHN, somatosen-
sory projection neurons (‍PNSomato‍) →other, and ‍PNSomato‍ ‍PNSomato‍. We stress that, as with any statistical 
test, a lack of a significant difference (e.g. in other subgraphs) could be the result of the null hypoth-
esis of no difference being true, or simply from a lack of power against a particular alternative (see 
Figure 3—figure supplement 2 and Figure 3—figure supplement 3 for analysis of the power of this 
test in simulation, and Helwegen et al., 2023, for an excellent discussion on this point). Nevertheless, 
knowing some neuron groups which are wired significantly differently between the two hemispheres 
highlights the interpretability of this test. If a neuroscientist wanted to study mechanisms which could 
cause bilateral asymmetries in the brain, these seven group-to-group connections would be prime 
candidates for investigation.

However, in Density test, we saw that the densities of the two networks are significantly different. 

‍p‍, the density of the network, can be thought of as a weighted average of the individual group-to-
group connection probabilities, ‍B‍. Should we then be surprised that if the density is different, the 
group-to-group connection probabilities are, too? Interestingly, for all the group-to-group connec-
tion probabilities which are different, the probability on the right hemisphere (which has the greater 
density) is higher (Figure 3D). We consider this phenomenon in the next section.

Density-adjusted group connection test
Next, we examined whether the group-to-group connection probabilities on the right are simply a 
‘scaled-up’ version of those on the left. Figure 3D showed that for all the individual connections 
which are significant, the connection probability on the right hemisphere is higher. This is consistent 
with the hypothesis stated above, which predicts that the connection probabilities in ‍B(R)‍ should be 
consistently higher than those in ‍B(L)‍.

We thus created a test for this notion of bilateral symmetry in group-to-group connections (up to 
a density adjustment):

	﻿‍ H0 : B(L) = cB(R) vs. HA : B(L) ̸= cB(R)
‍� (3)

Note that these adjusted hypothesis do not test whether the density across all subgraphs of the 
left or right hemisphere networks are the same; rather, they are asking wither a single scaling factor (‍c‍ 
in Equation 3) makes any significant density differences disappear from our previous comparison. To 
implement this hypothesis test, we first computed the density correcting constant ‍c‍, which is simply 
the ratio of the left to the right hemisphere densities, finding that ‍c ≈‍ 0.93. Then, we replaced each 
of the component tests in the group connection test with a modified version of the standard chi-
squared test for non-unity probability ratios (see Density-adjusted group connection testing for more 
details) (Miettinen and Nurminen, 1985). We refer to this procedure as the density-adjusted group 
connection test (Figure 4A). The p-values for each of the component tests for the density-adjusted 
group connection test are shown in Figure 4B. After correction for multiple comparisons, there are 
two group-to-group connections which are significantly different (at significance level 0.05): KC → 

https://doi.org/10.7554/eLife.83739
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A) Group connection test methods

B) Group connection probabilities

C) Connection p-values D) Probabilities for
significant connections

Figure 3. Comparison of left and right hemisphere networks via the group connection test. (A) Description 
of methodology for the group connection test. See SBMs and group connection testing for more details. 
(B) Estimated group-to-group connection probabilities for both hemispheres. Note that they appear qualitatively 
similar. Estimated probabilities which are zero (no edge was present between that pair of groups) are indicated 
with a ‘0’ in those cells. (C) p-Values (after multiple comparisons correction) for each hypothesis test between 
individual elements of the connection probability matrices. Each cell represents a test for whether a specific 
group-to-group connection probability is the same on the left and right sides. ‘X’ denotes a significant p-value 
after multiple comparisons correction, with significance level ‍α = 0.05‍. ‘B’ indicates that a test was not run since 
the estimated probability was zero on both hemispheres, ‘L’ indicates this was the case on the left only, and ‘R’ that 
it was the case on the right only. The individual (uncorrected) p-values were combined using Tippett’s method, 
resulting in an overall p-value (for the null hypothesis that the two group connection probability matrices are the 
same) of ‍<10−7‍. (D) Comparison of estimated group-to-group connection probabilities for the group pairs that are 
significantly different. In each case, the connection probability on the right hemisphere is higher.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.83739


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Pedigo et al. eLife 2023;12:e83739. DOI: https://doi.org/10.7554/eLife.83739 � 8 of 23

convergence neurons (CN) and KC → mushroom body output neurons (MBON). Thus, all significant 
differences between the hemispheres under this version of the SBM are associated with the Kenyon 
cells.

Removing Kenyon cells
Based on the results of Figure 4C, we sought to verify that the remaining differences in group-to-
group connection probabilities after adjusting for a difference in density can be explained by asym-
metry that is isolated to the Kenyon cells. To confirm this, we simply removed the Kenyon cells (i.e. 
all Kenyon cell nodes and edges to or from those nodes) from both the left and right hemisphere 
networks, and then re-ran each of the tests for bilateral symmetry presented here (Figure 5A). We 
observed significant differences between the left and right hemispheres for the density and group 
connection tests when excluding Kenyon cells, yielding p-values of ‍<10−27‍ and ‍<10−2‍, respectively 
(Figure 5B and C). However, for the density-adjusted group connection test, the p-value was ~0.60, 
indicating that we no longer rejected bilateral symmetry under this definition when the Kenyon cells 
are excluded from the analysis (Figure  5D). This sequence of results suggests that the difference 

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The number of neurons in each neuron group in the left and right hemispheres.

Figure supplement 2. Empirical power (in simulations) for tests comparing subgraph connection probabilities 
(chi-squared test, i.e. each component test in the group connection test).

Figure supplement 3. Estimated empirical power for each component of the group connection test in simulations 
based on the observed Drosophila larva brain connectome.

Figure supplement 4. Demonstration that the group connection test is both valid and powerful against a range of 
alternatives in a synthetic simulation based on the observed data.

Figure supplement 5. p-Values from the group connection test (as described in Figure 3), but using Fisher’s exact 
test for each individual subgraph comparison.

Figure 3 continued

A) Density-adjusted group connection test B) Connection p-values

Figure 4. Comparison of left and right hemisphere networks via the density-adjusted group connection test. 
(A) Description of methodology for adjusting for a density difference between the two stochastic block models. 
See SBMs and group connection testing for more details. The adjustment factor (ratio of the left to the right 
density), c, is ~0.93. (B) p-Values for each group-to-group comparison after adjusting for a global density 
difference. p-Values are shown after correcting for multiple comparisons. Note that there are two significant 
p-values, and both are in group connections incident to Kenyon cells. These individual (uncorrected) p-values 
were combined using Tippett’s method, resulting in an overall p-value (for the null hypothesis that the two group 
connection probability matrices are the same after correcting for the density difference) of ‍<10−2‍.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Distribution of p-values from experiments in which 2760 edges were randomly removed 
from the right hemisphere to set the densities of the left and right hemispheres equal, and the group connection 
test was re-run.

https://doi.org/10.7554/eLife.83739
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between the left and right hemispheres (at least in terms of the high-level network statistics studied 
here) can be explained as the combination of a global effect (the difference in density) and a cell type-
specific effect (the difference in Kenyon cell projection probabilities).

It is noteworthy that the Kenyon cells were the specific cell type where we detected asymmetry after 
correcting for the density difference. Kenyon cells are involved in associative learning in Drosophila 
and other insects (Heisenberg, 2003; Aso et al., 2014; Eichler et al., 2017). Other studies have 
suggested that certain connections (specifically from antennal lobe projection neurons to Kenyon 
cells) are random (Caron et al., 2013; Eichler et al., 2017). The marked lack of symmetry we observed 
specifically in the Kenyon cells in the current study could be the result of these features, which suggest 
their uniquely non-stereotyped patterns of connectivity in this nervous system.

Edge weight thresholds
Next, we sought to examine how the definition of an edge used to construct our binary network 
affects the degree of symmetry under each of the definitions considered here. For the networks 

A) Kenyon cell removal B) Density test

C) Group connection test D) Density-adjusted
group connection test

Figure 5. Comparison of left and right hemisphere networks when not including Kenyon cells. (A) Diagram of the 
methods used, indicating that Kenyon cells (and any incident edges) were simply removed from the network, and 
all previously mentioned tests were run again. (B) Comparison of network densities, as in Figure 2B. The p-value 
for this comparison is ‍<10−27‍, indicating very strong evidence to reject the null that the two networks share the 
same density. (C) Comparison of group-to-group connection probabilities, as in Figure 3C. p-Values are shown for 
each group-to-group connection comparison (after multiple comparison correction). The (uncorrected) p-values 
were combined to yield an overall p-value of ‍<10−2‍, showing evidence that the group connection probabilities 
are not the same even after removing Kenyon cells. (D) Comparison of group-to-group connection probabilities 
after density adjustment, as in Figure 4C. p-Values are shown for each group-to-group connection comparison 
(after multiple comparison correction). Note that there are no longer any significantly different connections. The 
(uncorrected) p-values were combined to yield an overall p-value of ~0.60. After removing Kenyon cells, there is no 
longer evidence to reject the null that the group connection probabilities are the same.

https://doi.org/10.7554/eLife.83739
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considered in the previous sections, we considered an edge to exist if one or more synapses from 
neurons ‍i‍ to ‍j‍ were in the dataset. To understand how our analysis might change based on this 
assumption, we considered two types of edge weight threshold schemes for creating a binary network 
before testing: the first based simply on a threshold on the number of synapses, and the second based 
on a threshold of the proportion of a downstream neuron’s input (Figure 6A). By varying the threshold 
in both schemes, we were able to evaluate many hypotheses about bilateral symmetry, where higher 
thresholds meant that we only considered the symmetry present in strong edges (Figure 6B).

Before running the tests for each of these notions of symmetry, we first examined the distribu-
tions of edge weights to get a sense for how we should expect these tests to perform. Figure 6C 
and D displays the distribution (total count) for the synapse count or input proportion edge weights, 
respectively. The right hemisphere has more connections than the left for all synapse count values 
(Figure 6C), hinting that the density of the right hemisphere will be slightly higher for any poten-
tial edge weight threshold using this definition. Conversely, the distributions of weights as an input 
percentage shows a different trend. For edge weights less than ~1.25%, the right appears to have 
more edges, but past this threshold, the counts of edges between left and right appear comparable 
(Figure 6D).

Figure 6E and F shows the effect of varying these thresholds on the p-values from each of our 
tests of bilateral symmetry. We observed that for either thresholding scheme (synapse count or input 
proportion), the p-value for each test generally increased as a function of the threshold – in other 
words, the left and right hemisphere networks became less significantly different (under the defini-
tions of ‘different’ we have presented here) as the edge weight threshold increased. Previous works 
have shown that higher-weight edges are more likely to have that corresponding edge present on 
the other side of the nervous system (Gerhard et al., 2017; Ohyama et al., 2015). Here, we provide 
evidence that considering networks formed from only strong edges also decreases asymmetry at a 
broad, network-wide level.

To make these two thresholding schemes more comparable, we also examined these results 
as a function of the proportion of edges from the original network which that threshold removed 
(Figure  6E and F, lower x-axis). We found that when thresholding based on synapse counts, the 
majority (~60%) of the edges of the networks need to be removed for any test (in this case the density-
adjusted group connection test) to yield non-significant p-values. Conversely, for the thresholds based 
on input proportion, the density-adjusted group connection test yielded a p-value greater than 0.05 
after removing only the weakest ~20% of edges. Strikingly, we observed that when considering only 
the strongest ~60% of edges in terms of input proportion, even the density test had a high p-value 
(>0.05), while for the synapse-based thresholds we examined, this never occurred. We observed similar 
trends when running a thresholding experiment in isolation on the KC → KC subgraph (Figure 6—
figure supplement 1).

These findings are consistent with previous work in connectomics which has hinted at the impor-
tance of input proportion as a meaningful ‘edge weight.’ Gerhard et al., 2017, compared the connec-
tivity of select neurons in the nerve cord between L1 and L3 stages of the larva. They observed that 
while the number of synapses from the mdIV cell type onto various nerve cord local neurons can 
grow ~3- to 10-fold from L1 to L3, the proportion of that downstream neuron’s input stays relatively 
conserved. Based on this finding, the authors suggested that perhaps the nervous system evolved to 
keep this parameter constant as the organism develops. An analysis of wiring in the olfactory system 
of the adult Drosophila suggested a similar interpretation after examining a projection neuron cell 
type with an asymmetric number of neurons on the two sides of the brain (Tobin et al., 2017). Here, 
we provide further evidence based on the entire brain of the Drosophila larva that while the left and 
right hemispheres may appear significantly different when considering all observed connections, the 
networks formed by only the strongest edges (especially in terms of input proportion) are not signifi-
cantly different between the hemispheres when viewed through the lens of the models considered in 
this work.

https://doi.org/10.7554/eLife.83739
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A) Notions of edge weight B) Thresholding methods

C) Synapse count distribution D) Input proportion distribution

E) Synapse thresholding p-values F) Input thresholding p-values

Figure 6. The effect of edge weight threshold on the significance level for each of the tests of bilateral symmetry. 
Diagrams of (A) two notions of edge weight and (B) application of edge weight thresholds to examine bilateral 
symmetry. See Edge weight thresholds for more explanation. (C) Distribution of synapse count edge weights. The 
right hemisphere consistently has more edges in each synapse count bin. (D) Distribution of input percentage 
edge weights. The right hemisphere has more edges in the lower (‍<1%‍) portion of this distribution, but the 
hemispheres match well for high edge weights. (E) p-Values for each test after synapse count thresholding, plotted 
as a function of the percentage of edges which are removed from the networks, as well as the corresponding 
weight threshold (lower x-axis). The p-values for all tests generally increased as a function of synapse count 
threshold, but the density test never reached a p-value >0.05 over this range of thresholds. (F) p-Values for each 
test after input percentage thresholding, plotted as a function of the percentage of edges which were removed 
from the networks, as well as the corresponding weight threshold (lower x-axis). Note that all tests yielded 
insignificant (>0.05) p-values after a threshold of around 1.25% input proportion. Compared to the results in (E), 
thresholding based on input percentage reached insignificant p-values faster as a function of the total amount of 
edges removed for all tests.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. p-Values for left/right comparisons as a function of edge weight thresholds (as in Edge 
weight thresholds), but performed only on the KC → KC subgraph.

https://doi.org/10.7554/eLife.83739
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Discussion
Summary
We began with what was at its face a very simple question: is the connectivity on the left and the 
right side of this brain ‘different?’ We then described several ways that one could mathematically 
formalize notions of ‘different’ from the perspective of network model parameters: difference in 
density of connections across the entire network (Density test), difference in group connection prob-
abilities (Group connection test), or difference in group connection probabilities while adjusting for a 
difference in density (Density-adjusted group connection test). We proposed a test procedure corre-
sponding with each of these notions, relying on well-established statistical techniques for evaluating 
contingency tables and combining p-values to construct our tests. The results of these different test 
procedures varied markedly (Table 2). Specifically, we saw that the network densities were significantly 
different between the hemispheres. The group connection test also detected a difference, high-
lighting seven group-to-group connections which had significantly differing connection probabilities 
when comparing the hemispheres. However, when we added an adjustment to the group connection 
comparison to account for the difference in network density, this test had only two significant group 
connections, and both were projections from the Kenyon cells. Thus, the asymmetry observed (at 
least when viewed through the lens of these high-level network statistics) between the hemispheres 
can be thought of as a global density difference in addition to a cell type-specific effect shown in 
the Kenyon cells. We confirmed this finding by simply removing the Kenyon cells, and showing that 
the density-adjusted group connection test no longer rejected (Removing Kenyon cells). Finally, we 
examined whether the left and right hemisphere networks would become less dissimilar when only 
high-edge-weight edges were considered (Edge weight thresholds). We found that whether thresh-
olding based on number of synapses or the proportion of input to the post-synaptic neuron, p-values 
generally increased for each test (i.e. less significant asymmetry was detected) as the edge weight 
threshold grew. However, we observed that thresholds based on neuron input proportion could 
achieve symmetry while removing fewer (only 20% for some tests) edges. These results are consistent 
with the idea that the nervous system evolved to preserve a relative balance of inputs to individual 
neurons, which has been suggested by previous studies on specific subcircuits in the larval and adult 
Drosophila nervous system (Gerhard et al., 2017; Tobin et al., 2017; Berck et al., 2016).

Limitations
As with any statistical inference, our conclusions are valid under particular model assumptions. There-
fore, it is important to highlight the assumptions which motivated each of our tests in order to under-
stand what each p-value means (and what it does not). We highlight several of these assumptions 
below, and comment on alternative assumptions that one could make in each case.

What model?
First, while we motivated the tests presented here by assuming that some statistical model produced 
the connectivity of the left and the right hemispheres, these models do not literally describe the 

Table 2. Summary of tests, models, hypotheses, whether Kenyon cells (KC) were included, and the 
resulting p-values for each evaluation of bilateral symmetry.

Test method Model ‍H0‍ (vs ‍HA ̸=‍) KC p-Value

Density test ER ‍p(L) = p(R)
‍ + ‍<10−23‍

Group connection test SBM ‍B(L) = B(R)‍ + ‍<10−7‍

Density-adjusted group connection test DA-SBM ‍B(L) = cB(R)‍ + ‍<10−2‍

Density test ER ‍p(L) = p(R)
‍ - ‍<10−27‍

Group connection test SBM ‍B(L) = B(R)‍ - ‍<10−2‍

Density-adjusted group connection test DA-SBM ‍B(L) = cB(R)‍ - ~0.60

https://doi.org/10.7554/eLife.83739
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process which generated these networks. However, without knowledge of how genes and develop-
ment give rise to the connectome, we know of no more correct model for how this connectome was 
generated (Vogelstein et al., 2019; Witvliet et al., 2021; Barabási and Barabási, 2020) (and even 
this would still be just a model). Without an agreed upon definition of bilateral symmetry, we chose 
to start from the simplest definition of what one could mean by bilateral symmetry. From this simplest 
network model, we iteratively added complexity to the definition of bilateral symmetry until we found 
the simplest model for which the Drosophila larva connectome displayed no significant asymmetry. 
We also note that previous studies have found associations between the test statistic we study here 
(graph or subgraph density) and various other biological properties, such as development (Witvliet 
et al., 2021), neurodegeneration (Pfeiffer et al., 2020), and phylogenetics (Suarez et al., 2022).

However, many other network models could have been applied to examine different definitions of 
bilateral symmetry. For instance, SBM may fail to capture certain features of an empirically observed 
network, such as degree distributions. This led to the development of the popular degree-corrected 
SBM (Karrer and Newman, 2011), which adds parameters to account for heterogeneous node 
degrees. A modified group connection test which also compares these degree correction parameters 
would be a natural extension of the current work, but requires further study to establish as a valid 
statistical test. Tests based on the random dot product graph model (Tang et al., 2017; Athreya 
et al., 2018; Chung et al., 2022) would allow us to compare connection probabilities between hemi-
spheres without assuming that neurons belong to a finite number of groups. Bravo-Hermsdorff et al., 
2021, showed that a two-network-sample test could be constructed from subgraph counts, which 
they argue characterize a network’s ‘texture’ rather than its ‘backbone’ as studied in this work. We 
also did not use network models that incorporate edge weights, as two-network-sample tests for this 
case are even less developed than for the unweighted case. Further, a variety of neuroscience-specific 
network models (such as those which incorporate spatial information) have been proposed (Váša and 
Mišić, 2022). Nevertheless, we note that even if one is concerned with these more elaborate notions 
of symmetry, they are still related to the simple models studied here. For instance, the network density 
would affect a network’s latent positions under the random dot product graph model, as well as the 
count of any possible subgraph. Thus, even if one prefers a different definition of bilateral symmetry, 
the definitions presented here were worth testing.

What is a cell type?
Second, even if these networks were generated from SBMs, alternative groupings of neurons could 
have been used. We used broad cell type categorizations from previous literature (Winding et al., 
2023) to partition our network into groups. However, we could have used a coarser partition, cate-
gorizing neurons as sensory, interneuron, and descending/output. Conversely, we could have used a 
finer partition, splitting the cell types used here into subgroups (such as whether a sensory neuron 
receives odor or visual information). As these different partitions likely lead to different subgraph 
sizes and connection probabilities, the statistical power of the group connection test would also be 
affected by these choices (Helwegen et al., 2023). Thus, the results presented for any group connec-
tion test need to be interpreted in terms of the specific cell type groupings used.

Further, a rich literature exists on inferring the partition for an SBM from the observed connectivity 
(Lee and Wilkinson, 2019; Peixoto, 2014; Peixoto, 2017; Rohe et al., 2011; Sussman et al., 2012; 
Funke and Becker, 2019) – this is one perspective for clustering neurons based on their observed 
connectivity, much like clustering procedures are used to predict meaningful groups of neurons based 
on morphology, activity, or gene expression. Applying these techniques to a connectome would yield 
alternative groupings of neurons (as in Winding et al., 2023) to use for a group connection test, which 
again could change its conclusions. However, this approach requires further study, as it introduces a 
new source of uncertainty since more model parameters are estimated from the data.

What about neuron pairs?
Third, we assumed that the two networks we observed were unmatched – that is, the tests we applied 
did not use any pairing of individual neurons between hemispheres. In Drosophila, this 1-to-1 neuron 
correspondence is known to exist for most neurons, particularly in the larva. GAL-4 lines are able 
to reliably label bilateral neuron pairs on the basis of their gene expression (Jenett et  al., 2012; 
Eschbach et  al., 2020). These neurons tend to be similar in terms of their morphology and their 
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connectivity (Winding et al., 2023; Ohyama et al., 2015; Pedigo et al., 2022; Schlegel et al., 2021; 
Eschbach et al., 2020; Gerhard et al., 2017; Schneider-Mizell et al., 2016). Methods which use this 
pairing (e.g. Tang et al., 2017; Ghoshdastidar and Von Luxburg, 2018; Bhadra et al., 2019, as well 
as tests based on correlated ER and SBM models) would be able to evaluate symmetry in light of 
edge correspondences between the two networks, and could have higher power at detecting certain 
asymmetries. However, these methods assume that the matching of nodes is perfect and complete – if 
even one neuron pairing is a mistake, or if even one neuron does not have a partner in the opposite 
hemisphere, then these tests could be invalid or inapplicable. We note that graph matching tech-
niques could estimate a correspondence between nodes for all neurons (Fishkind et al., 2019; Vogel-
stein et al., 2015; Saad-Eldin et al., 2021; Winding et al., 2023; Pedigo et al., 2022); however, the 
statistical consequences of first learning this (likely imperfect) alignment prior to using a method which 
assumes the alignment is known and exact have not been thoroughly studied, so we did not explore 
it further here.

Outlook
We presented the first statistical comparison of bilateral networks in a neuron-level brain connectome. 
While we focused on the larval Drosophila brain connectome, these techniques could be applied to 
future connectomes to evaluate bilateral symmetry in other individuals or organisms. More generally, 
we presented several notions that can be used to compare two networks, a particularly relevant 
problem in the current age of connectomics. Human (macroscale) connectomics has seen an explo-
sion in the number of network samples that can be obtained, allowing for different approaches for 
comparing connectomes across populations, from simple comparisons of edges (Ingalhalikar et al., 
2014) to low-rank and sparse regressions across networks (Xia et  al., 2020). However, nanoscale 
connectomics is still technologically limited in its acquisition rate, often to only one or at best a few 
(<10, e.g. Witvliet et al., 2021) individuals for a given experiment. Nevertheless, we wish to make 
valid inferences and comparisons between these connectomes (Vogelstein et  al., 2019; Barsotti 
et al., 2021; Abbott et al., 2020; Galili et al., 2022). The framework for two-network-sample testing 
presented here will facilitate these kinds of comparisons. To make these comparisons more practical 
to neuroscientists, we demonstrated the importance of adjustments to simple null hypotheses – as we 
saw, even a difference in something as simple as a network density can be related to other network 
comparisons. For example, take the problem of comparing the connectome of the larval and adult 
Drosophila. Since the adult Drosophila brain has orders of magnitude more nodes (Raji and Potter, 
2021; Winding et al., 2023; Bates et al., 2020), the density of this network is likely to be smaller than 
that of the larva. Therefore, we may want to consider a more subtle question – are the connectomes of 
the adult and larva different (and if so, how) after adjusting for this difference in density? These kinds 
of biologically motivated adjustments to out-of-the-box statistical hypotheses will be key to drawing 
valid inferences from connectomes which are also relevant to meaningful questions in neuroscience.

Methods
Network construction
Here, we explain how we generated networks for the bilateral symmetry comparison. We started 
from a network of all neurons in the brain and sensory neurons which project into it for a larval 
Drosophila (Winding et  al., 2023). As in Winding et  al., 2023, we removed neurons which were 
considered partially differentiated. From this network, we selected only the left-to-left (ipsilateral) 
induced subgraph, and likewise for the right-to-right. We ignored a pair of neurons which had no 
left/right designation, as their cell bodies lie on the midline (Winding et al., 2023). To ensure we had 
fully connected networks on either hemisphere, we took the largest weakly connected component of 
neurons on the left, and likewise on the right.

With this selection for our nodes of interest, we then choose our set of edges to be:

•	 Unweighted: we only considered the presence or absence of a connection, creating a binary 
network. For most analyses except where explicitly indicated, this meant we considered an 
edge to exist if there was at least one synapse from the source to the target neuron. For this 
connectome, four edge types are available: axo-axonic, axo-dendritic, dendro-dendritic, and 
dendro-axonic. We made no distinction between these four edge types when constructing the 
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binary networks. One could consider notions of bilateral symmetry for a weighted network, 
but we focused on the unweighted case for simplicity and the fact that most network models 
are for binary networks. We studied the effect of varying the edge weight requirement (i.e. the 
threshold) for an edge to exist in Edge weight thresholds.

•	 Directed: we allow for a distinction between edges which go from neuron ‍i‍ (pre-synaptic) to 
neuron ‍j‍ (post-synaptic) and the reverse.

•	 Loopless: we remove any edges which go from neuron ‍i‍ to neuron ‍i‍, as the theory on network 
testing typically makes this assumption. We note that while ~18% of neurons have a connection 
to themselves, these self-loops comprise only ~0.7% of edges.

When comparing two networks, methods may make differing assumptions about the nature of 
the two networks being compared. One of the most important is whether the method assumes a 
correspondence between nodes (Tantardini et  al., 2019). Some methods (matched comparisons, 
also called known node correspondence) require that the two networks being compared have the 
same number of nodes, and that for each node in network 1, there is a known node in network 2 
which corresponds to it. Other methods (unmatched comparisons, also called unknown node corre-
spondence) do not have this requirement. To make an analogy to the classical statistical literature 
on two-sample testing, this distinction is similar to that between an unpaired (unmatched) and a 
paired (matched) t-test. We focused on the unmatched case in this work, where we say nothing about 
whether any neurons on the left correspond with any specific neurons on the right.

Two-network-sample testing
Here, we describe in more detail the methods used to evaluate bilateral symmetry, each of which is 
based on some generative statistical model for the network. For each model, we formally define the 
model, describe how its parameters can be estimated from observed data, and then explain the test 
procedure motivated by the model. A more thorough review of these models can be found in Chung 
et al., 2021.

Independent edge random networks
Many statistical network models fall under the umbrella of independent edge random networks, 
sometimes called the inhomogeneous ER model. Under this model, the elements of the network’s 
adjacency matrix ‍A‍ are sampled independently from a Bernoulli distribution:

	﻿‍ Aij ∼ Bernoulli(Pij)‍�

If ‍n‍ is the number of nodes, the matrix ‍P‍ is an ‍n × n‍ matrix of probabilities with elements in ‍[0, 1]‍. 
Depending on how the matrix ‍P‍ is constructed, we can create different models. We next describe 
several of these choices. Note that for each model, we assume that there are no loops, or in other 
words the diagonal of the matrix ‍P‍ will always be set to zero.

ER model and density testing
Perhaps the simplest model of a network is the ER model. This model treats the probability of each 
potential edge in the network occurring to be the same. In other words, all edges between any two 
nodes are equally likely. Thus, for all ‍(i, j), i ̸= j‍, with ‍i‍ and ‍j‍ both running from ‍1...n‍, the probability of 
the edge ‍(i, j)‍ occurring is

	﻿‍ P[Aij = 1] = Pij = p‍�

where ‍p‍ is the global connection probability.
Thus, for this model, the only parameter of interest is the global connection probability, ‍p‍. This is 

sometimes also referred to as the network density. For a directed, loopless network, with ‍n‍ nodes, 
there are ‍n(n − 1)‍ unique potential edges (since we ignore the ‍n‍ elements on the diagonal of the 
adjacency matrix). If the observed network ‍A‍ has ‍m‍ total edges, then the estimated density is simply

	﻿‍
p̂ = m

n(n − 1)
.
‍�

In order to compare two networks ‍A(L)‍ and ‍A(R)‍ under this model, we simply need to compute 
these estimated network densities (‍̂p(L)

‍ and ‍̂p(R)
‍), and then run a statistical test to see if these 
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densities are significantly different. Under this model, the total number of edges ‍m‍ comes from a 

‍Binomial(n(n − 1), p)‍ distribution. This is because the number of edges is the sum of independent 
Bernoulli trials with the same probability. If ‍m(L)‍ is the number of edges on the left hemisphere, and 
‍m(R)‍ is the number of edges on the right, then we have:

	﻿‍ m(L) ∼ Binomial(n(L)(n(L) − 1), p(L))‍ �

and independently,

	﻿‍ m(R) ∼ Binomial(n(R)(n(R) − 1), p(R))‍ �

To compare the two networks, we are interested in a comparison of ‍p(L)
‍ vs. ‍p(R)

‍. Formally, we are 
testing:

	﻿‍ H0 : p(L) = p(R), Ha : p(L) ̸= p(R).‍�

Fortunately, the problem of testing for equal proportions under the binomial is well studied. In our 
case, we used a chi-squared test (Agresti, 2013) to run this test for the null and alternative hypotheses 
above.

SBMs and group connection testing
An SBM is a popular statistical model of networks (Holland et al., 1983). Put simply, this model treats 
the probability of an edge occurring between node ‍i‍ and node ‍j‍ as purely a function of the commu-
nities or groups that node ‍i‍ and ‍j‍ belong to. This model is parameterized by:

•	 An assignment of each node in the network to a group. Note that this assignment can be 
considered to be deterministic or random, depending on the specific framing of the model 
one wants to use. Here, we are assuming ‍τ ‍ is a fixed vector of assignments. We represent this 
non-random assignment of neuron to group by an ‍n‍-length vector ‍τ ‍. If there are ‍K ‍ groups, ‍τ ‍ 
has elements in ‍{1...K}‍. If the ‍i‍ -th element of ‍τ ‍ is equal to ‍k‍, then that means that neuron ‍i‍ is 
assigned to group ‍k‍.

•	 A set of group-to-group connection probabilities. We represent these probabilities by the 
matrix ‍B ∈ [0, 1]K×K ‍, where the element ‍(k, l)‍ of this matrix represents the probability of an 
edge from a neuron in group ‍k‍ to one in group ‍l‍.

Thus, the probability of any specific edge ‍(i, j)‍ can be found by looking up the appropriate element 
of ‍B‍:

	﻿‍ P[Aij = 1] = Pij = Bτi,τj‍�

In our case, we assume ‍τ ‍ is known – in the case where it is not, or one simply wishes to estimate 
an alternative partition of the network, many methods exist for estimating ‍τ ‍. But with ‍τ ‍ known, esti-
mating ‍B‍ becomes simple, amounting to doing ‍K2‍ subgraph density estimates. Specifically, let ‍m(k, l)‍ 
be the number of edges from nodes in group ‍k‍ to nodes in group ‍l‍. We then compute the density of 
this subgraph for each ‍(k, l)‍ pair (ignoring self-loops):

	﻿‍

B̂k,l =




m(k,l)
nknl

, if k ̸= l
m(k,l)

nk(nk−1) , if k = l‍�

where nk is the number of nodes in group ‍k‍, and likewise for nl.
Assuming the SBM, we are interested in comparing the group-to-group connection probability 

matrices, ‍B‍, for the left and right hemispheres. The null hypothesis of bilateral symmetry becomes

	﻿‍ H0 : B(L) = B(R), HA : B(L) ̸= B(R)
‍� (4)

Rather than having to compare one proportion as in ER model and density testing, we are now 
interested in comparing all ‍K2‍ probabilities between the SBM models for the left and right hemi-
spheres. The hypothesis test above can be decomposed into ‍K2‍ hypotheses. ‍B(L)‍ and ‍B(R)‍ are both 
‍K × K ‍ matrices, where each element ‍Bkl‍ represents the probability of a connection from a neuron in 
group ‍k‍ to one in group ‍l‍. We also know that group ‍k‍ for the left network corresponds with group ‍k‍ 
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for the right. In other words, the groups are matched. Thus, we are interested in testing, for ‍k, l‍ both 
running from ‍1...K ‍:

	﻿‍ H0 : B(L)
kl = B(R)

kl , HA : B(L)
kl ̸= B(R)

kl ‍� (5)

Now, we are left with ‍K2‍ p-values from Equation 5, each of which bears upon the overall null 
hypothesis in Equation 4. We therefore require some method of combining these p-values into one, 
or otherwise making a decision about the hypothesis in Equation 4. Many methods for combining 
p-values have been proposed. This problem of combining p-values can itself be viewed as a hypoth-
esis testing problem. Denoting the ‍(k, l)‍ th p-value from Equation 5 as ‍pkl‍, we are testing

	﻿‍ H0 : pkl ∼ Uniform(0, 1)‍�

versus the alternative hypothesis that at least one of the p-values is distributed according to some 
non-uniform, non-increasing density with support ‍[0, 1]‍ (Birnbaum, 1954; Heard and Rubin-Delanchy, 
2018). Birnbaum, 1954, showed that no method of combining these p-values can be optimal in 
general to all alternatives, so we are left with a decision to make (with no universally preferred answer) 
about which methods to use to combine p-values (Heard and Rubin-Delanchy, 2018). Here, we select 
Tippett’s method (Tippett, 1931; Heard and Rubin-Delanchy, 2018) due to its ubiquity, simplicity, 
and power against various alternatives to bilateral symmetry under a simulation described in Power 
and validity of group connection test under various alternatives (Figure 3—figure supplement 4). In 
future work, specific classes of alternatives may motivate different methods for combining p-values, 
as described in Heard and Rubin-Delanchy, 2018.

We also examined the p-values from each of the individual tests after Holm-Bonferroni correc-
tion to correct for multiple comparisons. As in ER model and density testing, we used chi-squared 
tests (Agresti, 2013) to perform each of the individual hypothesis tests in Equation 5. Note also 
that in some cases, an element of ‍B(L)‍ and/or ‍B(R)‍ could be 0; in each of these cases, we did not run 
that specific comparison between elements, as the notion of testing for proportions being the same 
becomes nonsensical. We indicated these tests in Figure  3C, Figure  4C, and Figure  5C–D, and 
note that these tests were not included when computing the number of comparisons for the Holm-
Bonferroni correction. We also note that when few edges (say, <10 are present in a given subgraph), 
exact tests (e.g. Fisher’s exact test; Agresti, 2013) may be more appropriate, as they do not rely on 
asymptotic approximations. We found that in the current work, this choice of test did not substantially 
affect the results (Figure 3—figure supplement 5).

Density-adjusted group connection testing
In density-adjusted group connection test, we considered the null hypothesis that the left hemisphere 
connection probabilities under the SBM are a scaled version of those on the right:

	﻿‍ H0 : B(L) = cB(R) vs. HA : B(L) ̸= cB(R).‍� (6)

The scale for this comparison is the ratio of the densities between the left and the right hemisphere 
networks:

	﻿‍
c = p(L)

p(R) .‍
 
�

(7)

Analogous to the group connection testing in Equation 5, this means that the individual group 
connection hypotheses become

	﻿‍ H0 : B(L)
kl = cB(R)

kl , HA : B(L)
kl ̸= cB(R)

kl .‍� (8)

where ‍c‍ can be viewed as a probability ratio:

	﻿‍ B(L)
kl

?= cB(R)
kl ‍�

	﻿‍

B(L)
kl

B(R)
kl

?= c
‍�

https://doi.org/10.7554/eLife.83739
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In essence, we wish to test whether this probability ratio for each subgraph matches a prespecified 
hypothesized value, ‍c‍. To test Equation 5, we used a modified score test (Miettinen and Nurminen, 
1985), which aims to determine whether the ratio of two proportions is significantly different from 
some known constant, ‍c‍. Note that this test reduces to the standard chi-squared test when the prob-
ability ratio ‍c = 1‍. We used this score test in the individual group connection tests, with all other 
machinery (e.g. for combining p-values or correcting for multiple comparisons) remaining the same 
as in SBMs and group connection testing. We found that the results using this score test agreed well 
with an intuitive approach to performing the density adjustment wherein we randomly removed edges 
from the right hemisphere to set the densities of the networks equal, and then re-ran the standard 
group connection test over many resamples (Figure  4—figure supplement 1). Again, it is worth 
noting that when testing on very sparse subgraphs, exact versions of this test may be advisable, 
though these are computationally more difficult to implement (Chan, 1998).

Edge weight thresholds
To examine the effect of which edges are used to define the left and right networks on the p-values 
from each test, we tested various edge weight thresholds used to define our binary networks for 
comparison. Given a set of edges (i.e. ‍(i, j)‍ pairs) with corresponding weights ‍wij‍, a thresholding ‍E(t)‍ 
simply selects the subset of those edges for which ‍wij‍ is greater than or equal to some threshold, ‍t‍.

	﻿‍ E(t) = {(i, j) : wij ≥ t}‍�

Let ‍sij‍ be the observed number of synapses from neuron ‍i‍ to neuron ‍j‍. We considered two thresh-
olding schemes: the first was to simply use the number of synapses from neuron ‍i‍ to ‍j‍ as the edge 
weight and the second was to consider the edge weight from neuron ‍i‍ to ‍j‍ to be the number of 
synapses from ‍i‍ to ‍j‍ divided by the total number of observed synapses onto neuron ‍j‍. We stress that 
the number of synapses onto neuron ‍j‍ is not necessarily equal to the weighted degree of neuron ‍j‍. 
This is simply because we consider all annotated post-synaptic contacts onto neuron ‍j‍, and some 
number of those contacts may not be connected to another neuron in the current networks consid-
ered here. We denote the number of synapses onto neuron ‍j‍ as ‍Dj‍. To summarize:

•	 Synapse number threshold:‍wij = sij‍
•	 Input proportion threshold:‍wij =

sij
Dj ‍

Given either definition of the weighting scheme, we formed a series of networks by varying the 
edge weight threshold, ‍t‍. We stress that edge weights were used only for the purposes of defining 
the edges to consider for our (binary) networks – the edge weights themselves were not used in the 
statistical tests. We then re-ran the density, group connection, and density-adjusted group connection 
tests for each network. The p-values for these tests are plotted against the weight thresholds and 
the proportion of edges removed in Figure 6E and F for the synapse number and input proportion 
thresholds, respectively.

Power and validity of group connection test under various alternatives
In SBMs and group connection testing, we considered the group connection test, where the goal was 
to test

	﻿‍ H0 : B(L) = B(R) vs. HA : B(L) ̸= B(R).‍� (9)

We saw that this set of hypotheses could be decomposed into ‍K2‍ (where ‍K ‍ is the number of 
groups) different hypotheses

	﻿‍ H0 : B(L)
kl = B(R)

kl , HA : B(L)
kl ̸= B(R)

kl ,‍� (10)

yielding a p-value for the ‍(k, l)‍ th test, ‍pkl‍. We now consider the problem of trying to combine these 
p-values into one which bears on the overall hypotheses in Equation 9. We proposed using Tippett’s 
method for combining p-values (Tippett, 1931), and we now demonstrate the utility of this method 
against various alternatives.

To do so, we performed the following simulation experiment. First, we consider two hypo-
thetical group connection matrices, ‍B(1)‍ and ‍B(2)‍. We set ‍B(1) = B̂(L)‍. We also consider the matrix 

https://doi.org/10.7554/eLife.83739
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‍M ‍, which is a ‍K × K ‍ matrix denoting the number of possible edges in each block of an SBM. 
Here, we again set ‍M = M̂(L)‍, in other words, we use the number of potential edges for each 
block observed for the left hemisphere network. To analyze the sensitivity of Tippett’s method to 
different alternatives, we conducted the following simulation: Let ‍t‍ be the number of probabili-
ties to perturb. Let ‍δ‍ represent the strength of the perturbation. We performed experiments using 

‍δ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}X t ∈ {0, 25, 50, 75, 100, 125}‍ (note that if ‍δ = 0‍ or ‍t = 0‍, then we are under the 
null hypothesis in Equation 9). For each ‍(δ, t)‍, we ran 50 replicates of the simulation below:

1.	 Randomly select ‍t‍ probabilities without replacement from the elements of ‍B‍.
2.	 For each of the selected elements, set ‍B

(2)
kl = TN(B(1)

kl , δB(1)
kl )‍, where ‍TN ‍ is a truncated normal 

distribution with support ‍[0, 1]‍.
3.	 For each of the unselected elements, set ‍B

(2)
kl = B(1)

kl ‍.
4.	 For each block ‍(k, l)‍, sample the number of edges in that block for network 1: 

‍m
(1)
kl ∼ Binomial(Mkl,B

(1)
kl ).‍

Sample the number of edges in each block similarly for network 2, but using ‍B(2)‍.
5.	 For each block ‍(k, l)‍, compare ‍m

(1)
kl ‍ and ‍m

(2)
kl ‍ using chi-squared tests as in SBMs and group connec-

tion testing. This yields a set of p-values ‍P = {p1,1, p1,2...p(K−1),K, pK,K}‍ for each comparison.
6.	 Apply Tippett’s method to combine the p-values ‍P ‍ into one p-value for the overall hypotheses.

We observed that the p-values obtained from Tippett’s method were valid – they controlled the 
probability of Type I error for any significance level (Figure 3—figure supplement 4A). Further, we 
observed that Tippett’s method was also powerful against differing alternatives to the null hypoth-
esis (Figure  3—figure supplement 4B). Tippett’s method had a power of 1 against the alterna-
tive ‍(t = 25, δ = 0.5)‍, meaning a small number of large perturbations. It also had a power of ~0.8 
against the alternative ‍(t = 125, δ = 0.1)‍, in other words, a large number of small perturbations. Thus, 
we concluded that Tippett’s method is a reasonable choice of method for combining p-values for our 
group connection test.

Code and data
Analyses relied on graspologic (Chung et al., 2019), NumPy (Harris et al., 2020), SciPy (Virtanen 
et al., 2020), Pandas (McKinney, 2010), statsmodels (Seabold and Perktold, 2010), and NetworkX 
(Hagberg et  al., 2008). Plotting was performed using matplotlib (Hunter, 2007) and Seaborn 
(Waskom, 2021).
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