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Abstract We determined the intersubject association between the rhythmic entrainment abilities 
of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and 
microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-
weighted images were obtained from 32 subjects who performed the SCT with auditory or visual 
metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine 
the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby 
cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audio-
motor system were correlated with the degree of phase accuracy between the stimuli and taps 
across subjects. These correlations were specific to the synchronization epoch with auditory metro-
nomes and tempos around 1.5 Hz. In addition, a significant association was found between phase 
accuracy and the density and bundle diameter of the corpus callosum (CC), forming an interval-
selective map where short and long intervals were behaviorally correlated with the anterior and 
posterior portions of the CC. These findings suggest that the structural properties of the SWM and 
DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical 
U-fiber density is linked to the preferred tapping tempo and the bundle properties of the CC define 
an interval-selective topography.

Editor's evaluation
This paper is valuable in that it provides a critical missing link between measures of structural 
connectivity and rhythmic tapping abilities, pointing to interesting possibilities for how tapping 
synchronization is carried out. The methodology and findings are convincing, and of interest to 
those studying the neural mechanisms of timing.

Introduction
Moving in synchrony with regular musical events (i.e., beat) is a basic and generalized human ability 
that can reach sophisticated levels in professional percussionists (Honing et  al., 2015; Merchant 
et al., 2015b). Indeed, humans are extremely sensitive to auditory regularities and can entrain to 
auditory beats across a wide range of tempos, as well as use timed movements of different body 
parts (such as finger or foot taps or body swaying) to keep the beat (Mendoza and Merchant, 2014; 
Repp and Su, 2013). A classical task used to study rhythmic entrainment is the synchronization-
continuation task (SCT), where subjects first entrain their tapping to a set of isochronous stimuli, also 
known as a metronome, and then continue tapping without the periodic stimulus using an internal 
clock (Merchant et al., 2008a; Wing, 2002; Wing and Kristofferson, 1973). In this type of task, 
humans show negative asynchronies, namely they tap a few milliseconds before the metronome, 
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supporting the notion that entrainment depends on a predictive internal beat that is phase-locked 
to the stimuli (Lenc et al., 2021; Repp and Su, 2013; Zarco et al., 2009). Neurophysiological and 
functional imaging studies have shown that the internal beat representation during an SCT rests in the 
motor system, including the basal ganglia and supplementary motor regions (Bartolo et al., 2014; 
Merchant et al., 2013a; Merchant and Averbeck, 2017; Rao et al., 2001; Sánchez-Moncada et al., 
2024). These areas produce a regenerating rhythmic signal (Crowe et al., 2014; Gámez et al., 2019; 
Merchant et al., 2015a) that dynamically interacts with the auditory areas, creating audiomotor loops 
where the motor prediction of the beat is flexibly compared and adjusted depending on changes 
in the input stream of rhythmic stimuli to phase-lock sensory and motor signals (Comstock et al., 
2018; Merchant and Honing, 2014b; Patel and Iversen, 2014). In addition, neurons in the supple-
mentary motor areas (SMAs) are tuned to the tempo duration of tapping (Merchant et al., 2014a; 
Merchant et al., 2013b), giving rise to interval-specific circuits that define a chronotopic map with 
short preferred intervals in the anterior portion and long preferred intervals in the posterior portion of 
the medial premotor areas (Protopapa et al., 2019; Merchant et al., 2024b).

The existence of neural circuits with preferred intervals comprising chronotopic maps is consis-
tent with the human flexibility to tap in phase (with asynchronies close to zero) and high precision 
to isochronous stimuli over a wide range of interstimulus-onset intervals (ISIs), spanning from 400 
to 1200 ms (Mates, 1994; Repp, 2005). Within this window, subjects demonstrate a spontaneous 
rhythmic tempo, which corresponds to the interval produced naturally when asked to tap in without 
external cues (McAuley et al., 2006; Zamm et al., 2018). This spontaneous or preferred tempo is 
around 600–750 ms in human adults (Fischl, 2012; Fraisse, 1978, but see Parncutt, 1994), but is 
faster in early childhood and slower in late adulthood (McAuley et al., 2006). A recent study demon-
strated that the perception of rhythmic stimuli also has a preferred tempo, with an optimal sampling 
rate of ~1.4 Hz (ISI of 714 ms) in audition and ~0.7 Hz (ISI of 1428 ms) in vision. Furthermore, motor 
tapping helps to synchronize the temporal fluctuations of attention with maximal effects at ~1.7 Hz (ISI 
of 588 ms), but only for the auditory modality (Zalta et al., 2020). These findings support the notion 
that ongoing motor activity shapes attention and beat perception, as it imposes temporal constraints 
on the sampling of sensory information within a narrow frequency range (Morillon et  al., 2019). 
Hence, the audiomotor system is built to optimally work at a preferred tempo.

Although rhythmic entrainment is prevalent across all human cultures and is a natural behavior for 
social interaction (Nettle, 2000; Jacoby et al., 2024), there are wide individual differences in the 
period (inter-tap interval) and phase (asynchronies) of movement synchronization. There are subjects 
who lack musical training, yet spontaneously synchronize to rhythmic stimuli ranging from strictly 
periodic metronomes to complex musical pieces, with performance comparable to that of trained 
musicians (Scheurich et al., 2018; Tranchant et al., 2016). Conversely, there are poor synchronizers 
(around 10% of the population) that show low period accuracy and large asynchronies to isochronous 
metronomes and musical excerpts (Phillips-Silver et al., 2011; Sowiński and Dalla Bella, 2013; Tran-
chant et  al., 2016). Furthermore, non-musicians synchronize less flexibly and less precisely across 
tempos than musicians (Scheurich et al., 2018). Hence, both genetic and learning factors influence 
the beat-entrainment abilities of humans. A large-scale genome-wide association study (GWAS) 
recently demonstrated a highly polygenic architecture of the human capacity to synchronize to a 
musical beat. The GWAS phenotype for beat synchronization was related to performance in beat 
synchronization tasks and rhythm perception tasks (Niarchou et  al., 2022). Nevertheless, genetic 
influences account for only a small portion of human variation in beat synchronization, while environ-
mental influences are the primary drivers of rhythmic accuracy. In fact, functional imaging has revealed 
that individual differences in beat perception depend on activation differences in the SMA and the 
posterior auditory cortex (Grahn and McAuley, 2009). In addition, the putamen, SMA, and auditory 
cortex show greater functional connectivity during rhythm perception, with larger modulation for 
musicians than non-musicians (Grahn and Rowe, 2009; Grahn and Rowe, 2013). Consequently, the 
magnitude of the anatomofunctional association between the auditory and motor control areas of the 
cerebral cortex seems to covary with the individual difference in how humans perceive and entrain to 
simple regular beats. Such brain networks rely on the structural connectivity provided by white matter, 
which can be evaluated through diffusion-weighted imaging (DWI). Long-range anatomical connec-
tivity is supported by deep white matter (DWM) bundles, while short-range connectivity is achieved 
through fibers that run tangentially to the cortical surface and connect adjacent and proximal cortical 
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regions. These fibers are collectively termed U-fibers due to their shape (Schüz and Braitenberg, 
2002; Schmahmann et al., 2006, Shastin et al., 2022). In this work, we individually analyze the role 
of these two forms of connectivity in rhythmic entrainment abilities. We hypothesize that if the cortical 
connectivity of the audiomotor system is defining rhythmic entrainment abilities, then individual differ-
ences in tapping synchronization should covary with the degree of anatomical connectivity (Assaneo 
et al., 2019; Steele et al., 2013). Previous evidence suggests that the audiomotor system is tuned at 
a limited interaction rate (Zalta et al., 2020; Morillon et al., 2019). Hence, we also hypothesize that 
the relationship between rhythmic tapping abilities and the structural connectivity of the audiomotor 
system should be more evident for intervals close to the preferred tempo.

To test these hypotheses, we acquired DWIs from 32 subjects that had previously performed an 
SCT using flashing visual or auditory tones as metronomes in the range of hundreds of milliseconds 
(Figure 1). SCT rhythmic performance across durations (ISI: 550, 650, 750, 850, or 950 ms) and modal-
ities (auditory and visual) was characterized using the absolute asynchronies, the autocorrelation 

Figure 1. Synchronization-continuation task (SCT). Initially, the subjects placed their finger at the central-bottom target of a touchscreen to start the trial 
and maintained the finger in this position while observing a sequence of right–left alternating visual stimuli with a constant interstimulus interval (target 
duration, perception epoch). The subjects were instructed to start tapping once they got the beat from the metronome; they had two to six stimuli to 
start tapping. Thus, when they considered they had extracted the beat, subjects tapped the touchscreen on the left or right target in synchrony with the 
alternating visual metronome for six intervals (synchronization epoch). Finally, they continued tapping on the right or left targets for another six intervals 
without the metronome (continuation epoch). The mean produced and the target interval were displayed at the end of each trial as feedback. Subjects 
also performed an auditory metronome version of the SCT, where the metronome consisted of 500 Hz tones that were presented on the right or left 
side of a headphone. Five target durations (550, 650, 750, 850, or 950 ms) were presented pseudorandomly, with the visual and auditory conditions 
interleaved between subjects.

https://doi.org/10.7554/eLife.83838
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of the inter-tap interval time series during the synchronization epoch, the constant error, and the 
temporal variability during both synchronization and continuation epochs. These parameters measure 
the phase accuracy, error correction, period accuracy, and period precision of the rhythmic tapping 
of the subjects, respectively (Figure 2A). We used an ISI range of 550–950 ms because it contains 
the preferred interval and is within the optimal window for tap synchronization (Repp, 2005). Hence, 
with this ISI range, we could potentially identify structural correlates for both the preferred tempo 
and interval selectivity. With this in mind, we evaluated DWM fascicles using a fixel-based approach 
(Dhollander et al., 2021) and developed two metrics for superficial white matter (SWM): fiber density 
corresponding to fibers entering or exiting the cortex and U-fibers running tangentially to the cortex. 
Widespread correlations in the right audiomotor circuit were found between the tangential U-fiber 
density and the phase accuracy of subjects during the synchronization epoch of the auditory condi-
tion for the 650 and 750 ms intervals. The interval specificity in these associations suggests that the 
preferred tempo for rhythmic entrainment has its origins in the structural properties of the U-fibers 
running superficially across the audiomotor circuit. In addition, there was a significant association 
between asynchronies in the auditory condition and the density and bundle diameter of the corpus 
callosum (CC), forming an interval-selective map with an anterior–posterior gradient, similar to the 
topography of interval-tuned clusters observed with functional imaging. Crucially, the anatomo-
behavioral associations were negative, indicating that subjects with good predictive abilities and small 
asynchronies exhibited large superficial and deep apparent fiber densities (AFDs), while subjects with 
large asynchronies showed low fiber densities.

Results
Rhythmic behavior
Thirty-two subjects performed a modified version of the classical SCT that included the following 
three epochs: beat perception, synchronization, and continuation (Figure 1). This task starts with the 
active perception of the isochronous beat defined by alternating left–right visual stimuli, followed by 
tapping synchronization to the alternating stimuli, and the internally driven tapping continuation to 
the right or left targets without the metronome (Pérez et al., 2023). The subjects also performed an 
auditory version of the SCT (Figure 1, see Methods).

Absolute asynchronies correspond to the time difference between each stimulus and response 
pair and are a measure of the phase accuracy between taps and stimuli (Figure  2A). Hence, this 
parameter can only be measured during the synchronization epoch of the SCT. We performed a 
repeated-measures analysis of variance (ANOVA) on absolute asynchronies with metronome modality 
(auditory and visual: two levels) and instructed interval duration (550, 650, 750, 850, and 950 ms: five 
levels) as within-subject factors. The ANOVA showed significant main effects for duration (F(4,124) = 
36.88, p < 0.0001) and modality (F(1,31) = 20, p < 0.0001), as well as a significant duration × modality 
interaction (F(4,124) = 32.3, p < 0.0001). Tukey’s honest significant difference (HSD) post hoc test 
showed significantly larger asynchronies for the visual than auditory modality across all durations (p 
< 0.0001 for 550, 650, 750, and 850 ms; p = 0.006 for 950 ms; with the interaction effect mainly 
driven by the difference in the 950 ms across modalities). These results confirm the preponderance 
of the auditory modality over the visual modality to produce phase alignment of the taps with the 
metronome (Comstock et al., 2018; Gámez et al., 2018; Merchant et al., 2015a). In addition, we 
computed the intersubject correlation matrix on the absolute asynchronies across instructed intervals 
and found a significant correlation between 650 and 750 ms for both the auditory and visual condi-
tions (r = 0.67, p = 0.000026; r = 0.69, p = 0.000011, respectively) (Figure 2—figure supplement 1). 
This finding suggests the existence of a shared mechanism for metronome-tap phase alignment in the 
intervals that correspond to the preferred tempo indicated in previous studies, thereby corroborating 
the notion that the audiomotor system is efficiently tuned to this tempo (Zalta et al., 2020).

A negative lag 1 autocorrelation of the produced intervals during the synchronization epoch indi-
cates the involvement of an error correction mechanism that maintains tap synchronization with the 
metronome, since a longer produced interval tends to be followed by a shorter interval, while a shorter 
interval tends to be followed by a longer produced duration (Figure 2A; Iversen et al., 2015; Repp 
and Su, 2013). The corresponding repeated-measures ANOVA on autocorrelation of the inter-tap 
interval time series (Figure 2C) showed no significant differences between modalities (F(1,31) = 1.6, p 

https://doi.org/10.7554/eLife.83838
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Figure 2. Behavior during the synchronization-continuation task (SCT). (A) Parameters of rhythmic performance during the SCT. Asynchronies 
correspond to the time difference between stimulus (SO) and tap onset (TO) across the n intervals of the synchronization epoch. The constant error is 
the difference between produced (PI) and target intervals (TI), and the temporal variability is the standard deviation of the PI. Finally, the autocorrelation 
of the PI during synchronization and the lag 1 autocorrelation are computed. A negative value indicates that the subject is using an error correction 
mechanism (see the text). (B) Absolute asynchronies for each instructed interval and metronome modality (auditory: blue, visual: red) during the 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.83838
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= 0.21), intervals (F(4,124) = 2.05, p = 0.09) or their interaction (F(4,124) = 2.34, p = 0.06). Thus, lag 1 
autocorrelation across trials was negative (~80% of the trials) and similar across modalities and target 
durations, supporting the notion of a robust and amodal error correction mechanism during the SCT.

Constant error is the difference between produced and target intervals and is a measure of period 
accuracy during the synchronization and continuation epochs (Figure  2A). A repeated-measures 
ANOVA on constant error with modality, target duration, and task epoch as within-subject factors 
revealed statistically significant main effects for modality (F(1,31) = 46.05, p < 0.0001), target duration 
(F(4,124) = 29.15, p < 0.0001), and epoch (F(1,31) = 6.44, p = 0.01), as well as significant interactions 
between modality × interval (F(4,124) = 3.5, p = 0.008), epoch × interval (F(4,124) = 48.33, p < 0.0001), 
and epoch × modality (F(1,31) = 23.35, p < 0.0001). The post hoc Tukey HSD showed no significant 
differences for target duration in constant error during synchronization for both modalities, with accu-
rate timing close to zero. In contrast, during continuation, the same post hoc test revealed that the 
significant interactions between factors were mainly due to the significant differences between distant 
intervals within the auditory and visual modalities (Figure 2D). In fact, for the continuation epoch, 
the constant error followed the bias effect, with overestimation for short durations and underesti-
mation for long durations, especially for the auditory condition (Jazayeri and Shadlen, 2010; Pérez 
and Merchant, 2018; Pérez et al., 2023). Indeed, the indifference interval, which corresponds to 
the interval associated with zero constant error, was 654 ms for the auditory condition (Figure 2D, 
blue arrow) and 420 ms for the visual condition. This finding suggests that our subjects had a clear 
preferred interval in the auditory condition that is close to the 2 Hz reported in the literature (Zamm 
et al., 2016). Finally, temporal variability was defined as the standard deviation of the produced inter-
vals and is a metric of timing period precision (Figure 2A). The same repeated-measures ANOVA on 
temporal variability showed significant main effects for target duration (F(4,124) = 110, p < 0.0001) 
and modality (F(1,31) = 58.06, p < 0.0001), but no significant main effect for task epoch (F(1,31) = 
0.94, p = 0.33). In addition, significant effects were revealed for the following interactions: epoch-
interval (F(4,124) = 3.42, p = 0.01), epoch-modality (F(1,31) = 70.68, p < 0.0001), interval-modality 
(F(4,124) = 11.34, p = 0.0001), and epoch-modality-interval (F(4,124) = 14.74, p = 0.0001). The HSD 
post hoc tests showed significantly greater temporal variability in the visual metronome than in the 
auditory metronome (for the intervals 650, 750, 850, and 950 ms: p < 0.0001) during the synchroniza-
tion but not the continuation epoch, confirming the high period precision for auditory metronomes, 
especially during synchronization (Figure 2E; Gámez et al., 2018; Repp and Penel, 2004).

White matter analysis
Before the task performance session, participants were scanned in a 3T Philips Achieva TX MR scanner 
with a 32-channel head coil. T1-weighted volumes and DWIs were obtained (see Methods). For each 
subject, the gray/white matter interface was identified using a surface mesh (Fischl, 2012; Fischl 
et al., 2002). The AFD (Raffelt et al., 2012), a metric that non-invasively evaluates axonal density 
(Rojas-Vite et  al., 2019), was derived from DWI using constrained spherical deconvolution (CSD) 
(Tournier et al., 2004), and sampled at each vertex of this mesh. To evaluate white matter properties 
at different depths with respect to the cortical mantle, we created synthetic trajectories that organi-
cally extended from each vertex at the gray/white matter interface toward the ventricles and sampled 
diffusion metrics along these trajectories every 0.5 mm (Figure 3A). Leveraging the ability of CSD to 
disentangle crossing fiber populations, AFD (Figure 3B) was evaluated separately for those fibers that 
enter or exit the cortex and are, therefore, parallel to the virtual trajectories (parAFD), and those that 
extend tangentially to the cortex, perpendicular to the virtual trajectories (tanAFD). Throughout this 

synchronization epoch. (C) Lag 1 autocorrelation for each interval and modality during the synchronization epoch. (D) Constant error as a function of 
target interval for both metronome modalities and the synchronization (left) and continuation (right) epochs of the SCT. The colored lines in D for the 
continuation epoch correspond to the linear fit between the constant error and the target interval; the indifference interval corresponds to 680 ms (blue 
vertical arrow) for the auditory condition. (E) Temporal variability as a function of target interval for both metronome modalities and the two epochs of 
the SCT.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Correlation matrix for the intersubject absolute asynchronies across instructed intervals for the auditory (left) and visual (right) 
conditions.

Figure 2 continued

https://doi.org/10.7554/eLife.83838
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Figure 3. Superficial white matter analysis. (A–D) Apparent fiber density (AFD) of superficial white matter was systematically sampled (red dashes in 
C) along synthetic streamlines (red lines in A and C) that extend from each vertex (red circles) of the gray/white matter interface surface toward the 
ventricles following a Laplacian field (A–C). The integral of all fiber orientation distribution functions (FOD, D) corresponds to the total apparent fiber 
density (totalAFD), further separated (B) into fiber densities corresponding to fibers entering/exiting the cortex parallel to the Laplacian streamlines 
(parAFD) and U-fibers running tangentially to the cortex (tanAFD). (E) There are widespread significant correlations between the subjects’ asynchronies 
during the synchronization-continuation task (SCT) with an auditory metronome and totalAFD, shown here for the 650 ms interval (E). (F) Large areas within 
the frontal, parietal, and occipital lobes showed significant correlations between behavior and tanAFD. (G) Only restricted frontal and temporal regions 
showed correlation between parAFD and the asynchronies. (H) Coefficient of determination across the 32 subjects between the three AFD metrics and 
asynchronies for one exemplary vertex (yellow dot in E–G).

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure supplement 1. Characterization of the superficial white matter (SWM) properties associated with synchronization-continuation task (SCT) 
performance.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.83838
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work, we assume that parAFD is related to association, commissural, and projection fibers that eventu-
ally enter or exit DWM bundles, while tanAFD is informative of short-range cortico-cortical connections 
through U-fibers (Schüz and Braitenberg, 2002).

Correlations between behavior and SWM
Next, we examined the association between behavioral performance and the microstructural proper-
ties of SWM inferred from DWIs. The surface-based analysis of SWM (see Methods) was performed to 
determine the possible association between the different metrics of rhythmic timing performance and 
the metrics of the SWM sampled at five depths with respect to the gray/white matter interface (0, 0.5, 
1, 1.5, and 2 mm). This analysis showed the existence of negative correlations between the auditory 
absolute asynchronies and values of the AFD maps in the five depths sampled (Figure 3E–G; also see 
Figure 3—figure supplement 1). Thus, subjects with auditory asynchronies closer to zero, and hence 
with larger predictive abilities, had significantly higher AFD and tanAFD values than subjects with less 
predictive performance.

Notably, these significant associations were observed mainly for the auditory asynchronies of 
the 650 and 750 ms intervals and the totalAFD and tanAFD values (see Figure 3—videos 1–3). No 
significant correlations were found between the three AFD maps and the constant error, temporal 
variability, and lag 1 autocorrelation for the auditory condition. Furthermore, no correlations were 
observed between the three metrics of the SWM and all the behavioral parameters for the visual 
condition (see Figure 3—figure supplement 1). We did not find significant correlations between the 
parameters of SCT rhythmic performance and the parAFD, except for a few clusters with low correla-
tion coefficients for the auditory asynchronies at the 550, 650, and 750 ms intervals (Figure 3—figure 
supplement 1 and Figure 3H). Indeed, the level of association between SCT phase accuracy and 
the AFD maps was greater for tanAFD than for parAFD (Figure 3H; compare Figure 5 with Figure 5—
figure supplement 1).

According to Schüz and Braitenberg, 2002, the average depth of the U-fiber system is approxi-
mately 1.5 mm. Thus, the following analyses were done at this depth. Figure 4 shows the correlation 
coefficient of determination values between the auditory asynchronies and tanAFD at 1.5 mm below 
the gray/white matter interface across all the tested tempos. After correction for multiple compari-
sons (pcft < 0.001 and pcluster < 0.001), only intervals of 650, 750, and 850 ms showed a significant asso-
ciation between the behavioral and structural parameters. Indeed, nine (with 2232 vertices), twelve 
(with 2827 vertices), and two (with 374 vertices) clusters showed significant correlations between audi-
tory asynchronies and tanAFD for the 650, 750, and 850 ms intervals, respectively. Figure 4—figure 
supplement 1 shows the association between asynchronies (650 ms intervals) and tanAFD at various 
depths from the gray/white matter interface.

To identify the anatomical regions with significant clusters of vertices, we parcellated the SWM 
based on the Brainnetome Atlas (Fan et al., 2016). Areas with significant vertices (after correction for 
multiple comparisons; pcft < 0.001 and pcluster < 0.001) were grouped into 14 regions: primary motor, 
dorsolateral secondary motor, medial motor (SMA and pre-SMA), dorsolateral prefrontal cortex, 
language motor, primary somatosensory, parietal association, precuneus, primary and secondary 
auditory areas (auditory), inferior temporal cortex, object and face recognition areas, primary and 
secondary visual areas (visual), and limbic association areas (Figure 5C).

Figure 3—video 1. Spatial correlations between the superficial white matter (SWM) apparent fiber density and interval-specific absolute asynchronies 
of the auditory modality.

https://elifesciences.org/articles/83838/figures#fig3video1

Figure 3—video 2. Spatial correlations between the tangential superficial white matter (SWM) apparent fiber density and interval-specific absolute 
asynchronies of the auditory modality.

https://elifesciences.org/articles/83838/figures#fig3video2

Figure 3—video 3. Spatial correlations between the parallel superficial white matter (SWM) apparent fiber density and interval-specific absolute 
asynchronies of the auditory modality.

https://elifesciences.org/articles/83838/figures#fig3video3

Figure 3 continued

https://doi.org/10.7554/eLife.83838
https://elifesciences.org/articles/83838/figures#fig3video1
https://elifesciences.org/articles/83838/figures#fig3video2
https://elifesciences.org/articles/83838/figures#fig3video3
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Canonical correlation between behavioral and AFD maps
In the previous section, we correlated many behavioral measures with all vertices of the AFD maps, 
risking inflation of type I error. To address this, we performed a canonical correlation analysis (rCCA) 
between the behavioral data of the SCT and the structural information of the SWM (see Methods). 
This approach allowed us to independently assess the correlation between our AFD measurements of 
every vertex and every variable of the SCT. Specifically, rCCA was calculated between the matrix of 
behavioral parameters from the synchronization phase of the SCT (i.e., absolute asynchrony, constant 
error, temporal variability, and lag 1 autocorrelation) for each sensory modality (auditory and visual), 
every target interval (550–950 ms) and the AFD metrics from all vertices across the brain surface. 
Separate models were built for each AFD metric (i.e., totalAFD, tanAFD, and parAFD). Notably, all pair-
ings of behavioral and AFD data rendered highly correlated canonical variates (Figure 6A). In line 
with the previous results, the highest correlation was found between the SCT data and the tanAFD, 
closely followed by totalAFD, and then parAFD (Figure 6A). The correlations between each behavioral 

Figure 4. Coefficient of determination between auditory asynchronies and tangential apparent fiber density for each vertex in superficial white 
matter (sampled at 1.5 mm below the gray/white matter interface) across all tested intervals in the synchronization-continuation task (SCT) for both 
hemispheres. Significant correlations were localized in large clusters within motor, auditory, and visual areas, particularly for 650 and 750 ms intervals.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Association between asynchronies (650 ms intervals) and tangential superficial white matter apparent fiber density (tanAFD) at 
various depths from the gray/white matter interface.

https://doi.org/10.7554/eLife.83838
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parameter and tanAFD and their corresponding canonical variates revealed a clear structure between 
the predictive behavior of subjects and the structural differences in U-fibers of the white matter in the 
audiomotor system. Figure 6B depicts the correlations between each standardized SCT parameter 
and the corresponding canonical variate (U), where it is evident that the asynchronies of the auditory 

Figure 5. Associations between the asynchronies and regions of interest of tanAFD. (A, B) Interregional correlation plot of the auditory asynchronies and 

tanAFD as a function of the instructed interval and depth of the tanAFD. Significant clusters were aggregated into fourteen regions (y-axis) based on the 
Brainnetome Atlas shown in C. The color and size of the circle for each cluster correspond to the correlation coefficient of determination (critical value r 
> 0.355 at p < 0.02, df = 29) and the percent of significant vertices in each area, respectively. The left hemisphere (A) showed more areas with significant 
vertices than the right (B; 17541>16641). A systematic decrease in circle size as a function of depth was observed across areas of both hemispheres. At a 
depth of 1.5 mm, the regions with a larger percent of significant vertices for the right hemisphere at 750 ms were the medial premotor (supplementary 
motor area [SMA] and preSMA), auditory, and language motor areas (B). In contrast, few significant vertices were observed across the regions of the left 
hemisphere (A). (C) Brainnetome Atlas (Fan et al., 2016) showing the 14 regions of interest (ROIs) analyzed in A and B. (D) Interval selectivity curves for 
the correlation coefficients and percent of significant vertices across tanAFD depths (color coded) for preSMA. (E) Same as D but for the auditory cortex. 
Note that the preferred interval in the two areas is between 650 and 750 ms.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Interregional correlation plot of the auditory asynchronies and parAFD as a function of the instructed interval and the depth of the 

parAFD calculation.

https://doi.org/10.7554/eLife.83838
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modality for the 650–850 ms intervals are the parameters with a significant relation to the canonical 
variate. A novel result from the rCCA is the significant association between the temporal variability of 
the auditory phase in the same intervals (650–850 ms). In addition, the tanAFD map shows a significant 
correlation between the tanAFD in audiomotor structures and the canonical variate. Again, the correla-
tion between all vertices and their canonical variates was negative, corroborating the hypothesis that 
subjects with greater predictive abilities had a larger tanAFD in the audiomotor circuit (Figure 6C).

DWM and structural selectivity to the interval
We also evaluated the association between the precision and accuracy of the SCT tapping period and 
phase and the DWM properties. Fixel-based analysis (FBA) (Dhollander et al., 2021; Raffelt et al., 
2017) was used to estimate micro- and macrostructural differences within DWM voxels (Genc et al., 
2018; Kelly et al., 2020; Mito et al., 2018; Rau et al., 2019). This method, similar to that of our SWM 
analysis, is based on the CSD of DWI data.

FBA provides three fiber-specific indices (fiber density, fiber cross-section, and fiber density and 
cross-section; FD, FC, and FDC, respectively) (Raffelt et al., 2017). FD is derived from the integral of 
the fiber orientation distribution (FOD) lobes and is proportional to the total intra-axonal volume, thus 
reflecting the density of a population of fibers within a voxel (Rojas-Vite et al., 2019). Note that FD is 
identical to totalAFD used in our surface-based analyses, with nomenclature for FBA following Raffelt 
et al., 2017. If more than one fiber population coexists in a given voxel, the FOD is segmented, and 
an FD is assigned to each population, referred to as a fixel (fiber element). FC is a macroscopic metric 
of the fiber bundle diameter and, finally, FDC is a combination of FD and FC (see Methods). Briefly, the 
FBA analysis pipeline consists of five steps. First, the images of each subject are processed to obtain 

Figure 6. Canonical correlation between behavioral metrics and tanAFD. (A) Loadings (correlations) of the synchronization-continuation task (SCT) 
variables for the tanAFD model. Note the absolute asynchronies of the auditory modality showed the highest correlations with the structural data, at the 
650–850 ms intervals, in line with previous results. In addition, this approach identified the total variability in the same sensory modality and intervals 
as significant, although with a lower correlation coefficient and of the opposite sign. (B) Pearson’s correlation of canonical variates (U = behavioral; V = 

tanAFD across vertices).(C) Loadings of the tanAFD map. Note that the audiomotor system is highly correlated with the SCT behavior.

https://doi.org/10.7554/eLife.83838
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a white matter FOD map in native space using CSD. Second, an FOD template and a fixel mask are 
built. Third, the AFD map and the corresponding fixels for each voxel are computed for each subject 
in native space. The FD metric is obtained for each fixel computed from the total DWI signal per 
voxel. Fourth, the fixels and AFD map are reoriented to the template. Finally, fixel-wise statistics are 
performed at each spatial location in template space.

The FBA revealed significant negative correlations between the FDC in the CC and the absolute 
asynchronies to the auditory metronome for 650, 750, 850, and 950 ms intervals (Figure 7). There-
fore, this analysis showed a tight relationship between the density and bundle diameter of CC fibers 
and beat entrainment. Subjects exhibiting large phase accuracy with asynchronies close to zero also 
showed large FDC values, and subjects with poor phase accuracy and large asynchronies had low FDC 
values (Figure 7—figure supplement 1). As in the case of the U-fiber metrics, the FBA values were 
not correlated with period accuracy or precision, nor with the error correction for the auditory and 
visual conditions during the synchronization and continuation epochs.

The association between entrainment phase and white matter properties defined an interval-
selective map in the CC, with the FDC at different levels of the CC showing significant correlations 
with the absolute asynchronies at specific intervals (Figure 7). This map showed an anterior–posterior 
gradient, with behavioral and structural associations for short and long intervals in the anterior and 
posterior portions of the CC, respectively. Thus, the FDC fixel values of the posterior midbody of the 
CC (interconnecting motor and premotor cortices and M1) showed a significant negative correlation 
with absolute auditory asynchronies for the 650 and 750 ms intervals (Figure 7BC; family-wise error-
corrected p-value <0.05). For the asynchronies at the intermediate interval of 850 ms, a negative 
correlation was observed with FDC fixel values located in the isthmus and the splenium (Figure 7C; 
interconnecting primary motor, temporal, and visual cortices). Finally, the asynchronies of the 950 
ms interval showed a significant negative correlation with fixels located in forceps minor and major 
(Figure 7A, D; interconnecting prefrontal and visual cortices, respectively).

It is evident in Figure 7A–E that the streamline segments of the fixels with entrainment correlations 
were located mainly at the joint of the two hemispheres across the CC. Nevertheless, a lateralization 
effect was found for the left hemisphere, with fixels associated with auditory asynchronies of 750 and 
950 ms in the isthmus and splenium, respectively. In addition to the CC, the right fornix showed a 
significant association with the asynchronies of the 750 ms interval for the FD metric (see Figure 7—
figure supplement 1).

Lastly, we carried out a correlation analysis between the mean absolute asynchronies across the 
five intervals and the FC (Figure 8) and FDC (see Figure 7—figure supplement 1). Notably, for the 
auditory condition, the tracts with significant FC fixels were the left arcuate fasciculus (Figure 8A, E), 
CC M1 (Figure 8C, E), forceps major (Figure 8B, D), superior longitudinal fasciculus 2 (Figure 8F), and 
right fornix (see Figure 7—figure supplement 1).

Discussion
The present research determined the intersubject association between the structural properties of 
the SWM and DWM and different measures of rhythmic timing during a synchronization-continuation 
tapping task. Our study supports five conclusions: First, the tapping phase and period during the SCT 
showed precision and accuracy, as well as error corrections that were biased toward auditory rather 
than visual metronomes, thereby confirming previous observations. Second, the right audiomotor 
system exhibited individual differences in SWM and U-fiber density. These differences were correlated 
with the degree of phase accuracy of the tapping synchronization across subjects. Notably, the correla-
tions were selective for the synchronization epoch of the auditory condition and were specific to the 
650 and 750 ms intervals. Third, there was a significant association between the rhythmic entrainment 
phase and the density and bundle diameter of the CC, forming an interval-selective map with an 
anterior–posterior trend. This implies that the behavioral and structural associations for short and 
long intervals tended to be in the anterior and posterior portions of the CC, respectively. Fourth, the 
fiber bundle diameter of the arcuate fasciculus, CC, forceps major, and superior longitudinal fascic-
ulus showed a significant correlation with the mean asynchronies across all tested tempos. Finally, 
we found no significant associations between SWM and DWM properties and temporal variability, 
constant error, or lag 1 autocorrelation under the visual and auditory conditions during the synchro-
nization and continuation epochs of the SCT. These last findings suggest that connectivity within the 

https://doi.org/10.7554/eLife.83838
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Figure 7. Interval-selective map of the correlations in the deep white matter. (A–E) Fiber bundles that showed significant correlations between the 
asynchronies in the synchronization-continuation task (SCT) auditory condition and the fiber density cross-section (FDC) of the corpus callosum (CC). 
Panels A–C correspond to the anterior coronal sections of the sagittal map depicted in the center of the figure. Panels D and E correspond to the 
posterior axial sections of the same central sagittal map. An interval-selective map with an anterior posterior gradient is depicted. (F) Coronal section of 
the CC showing the fixels with a significant correlation coefficient (color-coded r values; only fixels with pcorr < 0.05 are shown) between asynchronies at 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.83838
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audiomotor system is tightly linked with the ability to synchronize in phase at the preferred tempo for 
auditory metronomes. We speculate that the structural white matter is associated with tapping-phase 
control, not with period representation, as the latter depends on neural population dynamics within 
the timing network (Gámez et al., 2019; Betancourt et al., 2023) and the former depends on a prior 
ability to detect changes in phase at the preferred tempo, whose intrinsic nature is defined in the 
audiomotor connectivity.

Many studies have shown that performance tapping synchronized to an auditory metronome is 
more precise and accurate than synchronization to a flashing visual metronome with the same timing 
characteristics (Chen et al., 2002; Hove et al., 2013; Merchant et al., 2008c; Patel et al., 2005; Repp 
and Penel, 2004; Zarco et al., 2009). This auditory–visual asymmetry can be cancelled out by visual 
moving metronomes (Hove et al., 2010; Pérez et al., 2023). Since the first processing relays, the 
auditory system has higher temporal resolution compared to the visual system (Duysens et al., 1996; 
He et al., 1997; Sayegh et al., 2011) and plays a critical role in time perception and reproduction 
across many tasks, not only in tapping SCTs (Grondin et al., 2005; Merchant et al., 2008b; Merchant 
and de Lafuente, 2014c). For example, when audiovisual stimuli are used in an oddball paradigm, the 
perceived duration is dominated by the auditory modality (Chen and Yeh, 2009). In addition, transcra-
nial magnetic stimulation (TMS) disruption of the auditory cortex impaired time estimation for auditory 
and visual stimuli, while disruption in the visual cortex only produced timing impairments for visual 
stimuli (Kanai et al., 2011). Consequently, a current hypothesis is that the auditory cortex is engaged 
in multimodal temporal processing, and the interaction between the auditory and motor systems 

the 750 ms interval in the auditory condition and FDC. (G) Distribution of the coefficients of determination (r2) of the FDC vs absolute asynchronies for 
the four intervals listed on the x-axis. The interquartile box plots are depicted on the right.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Spatial extent of deep white matter findings.

Figure 7 continued

Figure 8. Association between deep white matter and mean absolute asynchronies across all target intervals. (A) Sagittal brain section showing the 
p-value of significant fixels. (B) Example of the significant correlation between the fiber cross-section (FC) metric and the mean absolute asynchronies in 
a single illustrative fixel (red dot in panel D). (C–F) Axial sections showing the negative correlation (r) between FC and mean absolute asynchronies for 
significant fixels. CC = corpus callosum (C), FMA = forceps major (D), AF = arcuate fasciculus (E), SLF 2 = superior longitudinal fasciculus 2 (F).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Spatial extent of deep white matter findings.

https://doi.org/10.7554/eLife.83838
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in the frontal lobe allows not only time encoding but also time prediction (Merchant and Honing, 
2014b; Merchant and Yarrow, 2016; Patel and Iversen, 2014; Schwartze et al., 2012). Our present 
findings support this notion in different ways. First, the rhythmic timing performance of our subjects 
was biased toward the auditory condition across different behavioral measures. Second, the right 
audiomotor system showed widespread and significant correlations between the density of superficial 
U-fibers and the degree of sensorimotor phase accuracy across subjects. These anatomo-behavioral 
associations are selective to the intervals in the 650–750 ms range. Third, the fiber bundle diameter of 
the left arcuate fasciculus, a key tract connecting the parietotemporal auditory system with the frontal 
lobe, showed a significant correlation with the mean asynchronies across all tested tempos. Further-
more, the clear clustering of subjects as either good or bad synchronizers in a syllabic isochronous 
entrainment task correlates with both the difference in the activation magnitude in frontal areas and 
the changes in white matter pathways (i.e., left arcuate fasciculus) that connect the auditory system 
with the premotor cortical system (Assaneo et al., 2019). Hence, our results accentuate the audio-
motor structural foundation for rhythmic entrainment (Honing and Merchant, 2014; Miyata et al., 
2022). The lack of structural associations in the visual condition is probably due to the larger variability 
in rhythmic tapping for this modality, making it difficult to infer statistical correlations between our 
metrics. As described above, the null anatomo-behavioral associations for the visual condition could 
also be due to the slow sampling rate of visual periodic temporal attention, with a sampling interval 
that is longer than our tested durations (Zalta et al., 2020).

The observed associations between the measured SWM and DWM properties and the accuracy in 
the synchronization phase were negative. This result indicates that the white matter parameter values 
were greater in subjects with asynchronies close to zero and an accurate tapping phase with the metro-
nome than in subjects with large gaps in time between the stimuli and taps. These results support the 
theory that intersubject differences in rhythmic entrainment phase depend on micro- and macrostruc-
tural white matter properties, which could have a genetic and/or learned substrate. From a genetics 
perspective, we could speculate that the existence of poor and superior synchronizers (Blecher et al., 
2016) may depend on the FD of superficial U-fibers in the right audiomotor system, as well as on the 
density of deep tracts such as the CC and arcuate fasciculus. From a training perspective, these SWM 
and DWM bundles may develop larger density and myelination during intense musical practice, distin-
guishing the audiomotor tracts between musicians and non-musicians (Palomar-García et al., 2020; 
Vaquero et al., 2018; Zatorre et al., 2007).

The correlations between the density of tangential U-fibers in the right audiomotor circuit and the 
asynchronies for the auditory condition were interval-selective for the intermediate tested tempos. 
The observed interval specificity corroborates the existence of an spontaneous rhythmic tempo, 
already observed in many studies of rhythmic entrainment, and with values between 600 and 750 
ms (Drake et al., 2000a; Drake et al., 2000b; McAuley et al., 2006: Dalla Bella et al., 2017). The 
biological intrinsic periodicity may depend on a biased distribution of preferred tempos toward 1.5 Hz 
in the interval-tuned neurons of the motor system (Bartolo et al., 2014; Bartolo and Merchant, 2009; 
Pérez et al., 2023; Pérez and Merchant, 2018). Interestingly, Zalta et al., 2020 showed that humans 
were best at following auditory rhythms at a rate of ~1.4 Hz and that overt motor activity optimizes 
auditory periodic temporal attention at a similar rate. This rate is close to the intervals with structural 
associations in the present study. Consequently, we suggest that cortico-cortical connectivity within 
the audiomotor system is especially designed to support the internal representation of an auditory 
beat at the preferred tempo, providing larger phase-locking abilities with the metronome for spon-
taneous motor tempos (Balasubramaniam et al., 2021). On the other hand, Zalta et al., 2020 also 
demonstrated that the best rate for visual rhythms was far slower, at ~0.7 Hz (Zalta et al., 2020). 
Therefore, it is possible that we did not get effects in the visual condition because our target interval 
of 950 ms was not slow enough for this modality.

Ultra-high-field (7T) functional imaging revealed that the medial premotor areas (SMA and pre-
SMA) of the human brain possess neural circuits that are tuned to different durations, forming a 
topographical arrangement during a visual discrimination task. These chronomaps show units with 
enhanced responses for the preferred interval and suppressed activity for the non-preferred duration, 
and define a topographical gradient with short preferred intervals in the anterior portion and long 
preferred intervals in the posterior portion of the medial premotor areas (Protopapa et al., 2019; 
Schwartze et al., 2012). Protopapa et al., 2019 also showed chronomaps in the SMA during an 

https://doi.org/10.7554/eLife.83838


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Garcia-Saldivar et al. eLife 2024;13:e83838. DOI: https://doi.org/10.7554/eLife.83838 � 16 of 27

interval reproduction task using auditory cues, which is similar to the task used in this study. Notably, 
chronomaps also showed an anterior–posterior gradient, but they represent relative rather than abso-
lute time, and they presented some flexibility in the location of the preferred interval depending on the 
task context (Bueti et al., 2021). In addition, a recent imaging study described the existence of large 
chronomaps covering the cortical mantle from the dorsal and ventral premotor areas to the occipital 
pole (Harvey et al., 2020; Hendrikx et al., 2022). Our measurements of the FDA also revealed a 
topographical arrangement in the correlations between FD in the DWM and CC and the sensorimotor 
phase accuracy of subjects. We also found significant anatomo-behavioral associations in the anterior 
part of the CC for short intervals and in the posterior CC for long tapping tempos (Schwartze et al., 
2012). Nevertheless, our interval-selective map is defined by the correlation between asynchronies 
and FDA, with no topographic model of the distribution of preferred intervals as shown in functional 
magnetic resonance imaging (fMRI) studies. These studies have not explored individual differences. 
Moreover, we found a frontal CC cluster of fixels with longer interval selectivity, producing a disconti-
nuity in the anterior–posterior gradient of preferred intervals. These findings suggest that the map for 
duration selectivity starts anteriorly in the CC, which is linked to the premotor system, and ends in the 
CC of the visual areas of the occipital lobe. The anterior selectivity for the 650 and 750 ms ISI supports 
the notion that the motor system functions at 1.7 Hz during beat perception and entrainment and 
strongly influences the auditory system but not the visual system at this tempo (Zalta et al., 2020). 
The latter could explain why we did not find interval selectivity in the CC for the visual condition. 
Consequently, timing maps define a cortical processing framework for efficient timing integration 
that has both functional and anatomical bases, especially for the auditory modality (Merchant and de 
Lafuente, 2024a).

Previous studies have shown correlations between sensorimotor synchonization task performance 
and the microstructural characteristics of DWM. For instance, Blecher et al., 2016 found a positive 
association between the fractional anisotropy of the left arcuate fasciculus and CC and performance in 
an auditory-cued finger-tapping task. The SWM immediately below the cortex has received has been 
less studied than DWM fasciculi, even though it accounts for 60% of the total white matter volume 
and is pivotal in maintaining cortico-cortical connectivity (Schüz and Braitenberg, 2002; Schmah-
mann et al., 2006). Nonetheless, recent studies have implicated SWM abnormalities in epilepsy (Liu 
et al., 2016), autism spectrum disorder (Hong et al., 2019), Alzheimer’s disease (Phillips et al., 2016), 
schizophrenia (Nazeri et  al., 2013), and stroke (Stockert et  al., 2021). The SWM contains short-
range association fibers that connect adjacent gyri (U-fibers) and the initial or final portions of long-
range connections that traverse the DWM (Schüz and Braitenberg, 2002; Guevara et al., 2020; 
Kirilina et al., 2020; Yoshino et al., 2020). The SWM is difficult to study because of its complicated 
geometry and abundance of fiber crossings (Guevara et al., 2020). To better characterize the SWM 
microstructure, we separated the two components of the SWM and performed a surface- and depth-
wise evaluation. Complementarily, we analyzed the DWM using FBA, which addresses many of the 
shortcomings of voxel-wise analysis of diffusion tensor imaging (Dhollander et al., 2021). This two-
pronged approach allowed us to evaluate the entire white matter volume and show the association 
between its mesoscopic characteristics (i.e., AFD) and predictive tapping synchronization.

A potential limitation of our study is the relatively small number of participants, related to the time-
consuming nature of the behavioral evaluation and the long scanning time. Moreover, many statistical 
tests were performed, relating several behavioral metrics to various diffusion metrics across the brain 
at different depths. To minimize the possibility of statistical errors, we performed an rCCA to jointly 
model the behavioral and imaging metrics, thus accounting for the numerous statistical tests and 
reducing the possibility of reporting false positive findings. This reinforced the importance of super-
ficial cortico-cortical communication through U-fibers and the SCT for intervals around the preferred 
tempo. While we have attempted to control for statistical errors as much as possible, a sample of 32 
young adults with specific inclusion and exclusion criteria may inevitably not represent the population. 
We expect our current findings to be replicated and extended in future studies.

In conclusion, our results showed that the subjects’ accuracy in SCT performance was associated 
with higher FC, FDC, or FD values. This is consistent with the literature that shows that better perfor-
mance in different tasks is associated with higher values of FBA metrics. For example, better perfor-
mance in a bimanual coordination task was associated with higher FBA values in the CC (Zivari Adab 
et al., 2020).

https://doi.org/10.7554/eLife.83838
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Methods
This study was approved by the Ethics Committee of our Institution (049H-RM).

Participants
Thirty-two healthy human subjects (age = 25.37 ± 3.21 years; 19 females) without musical training 
volunteered to participate and gave informed consent, which complied with the Declaration of Helsinki 
and was approved by our Institutional Review Board. All participants were right-handed and native 
Spanish speakers. They did not have MRI contraindications or neurological, psychiatric, or cognitive 
conditions.

Apparatus
Participants were seated comfortably in a quiet experimental room, facing a high-definition 23″ touch 
screen (refresh rate: 60 Hz; ELO Touch solutions) located 50 cm away, which they were instructed to 
tap using the right index finger. Auditory stimuli were presented through noise-canceling headphones 
(Sony, MDR-NC50).

Experimental task
The SCT of the present study is similar to the standard SCT described elsewhere (Merchant et al., 
2008b; Merchant et  al., 2008b). However, instead of tapping a button, the subject tapped on 
the right or left halves of the touch screen. The task started when three empty white circles (radius 
1 degree of visual angle) on a black background were presented simultaneously, forming an inverted 
isosceles triangle (2 degrees of visual angle on each side). Subjects were trained to place their finger 
at the central-bottom target to start the trial and attend to a sequence of two to six right/left alter-
nating stimuli with a constant interstimulus interval (perception epoch). They were instructed to tap 
the touchscreen on the corresponding target in synchrony with a metronome for six intervals (synchro-
nization epoch) and continue tapping on the screen for another six intervals without the metronome 
(continuation epoch; Figure 1). During the perception epoch, the subjects were instructed to start 
tapping once they got the beat from the metronome, and they had two to six stimuli to start tapping. 
The mean produced interval was presented at the end of the trial as feedback. A trial was considered 
correct if, for every interval, the absolute difference between the produced interval and the target 
interval was below 30% of the target interval during the synchronization and below 40% during the 
continuation epoch. The task was programmed using Psychtoolbox for Matlab (2018, Mathworks).

Stimuli
The visual metronome (33 ms, yellow circle, 0.5 degrees of visual angle) was alternatively displayed 
inside the right or left empty circles. The auditory metronome (33 ms , 550 Hz, 80–85 dB SPL) was also 
presented alternatively in the right or left headphone. The isochronous target intervals were 550, 650, 
750, 850, and 950 ms, which were pseudorandomly presented within a block. Each subject performed 
10 correct trials for each target interval.

Procedure
The MRIs were collected in the first session. In a second visit, the auditory and visual tasks were 
performed randomly across subjects outside of the MRI scanner.

Analysis of behavioral data
Four metrics were calculated to assess the subjects’ performance during SCT (Figure 2A; Gámez et al., 
2018; Merchant et al., 2008c). During the synchronization epoch, we estimated the absolute asyn-
chronies and autocorrelations of the inter-tap interval time series (Iversen et al., 2015; Wing, 2002). 
The constant error and temporal variability were calculated from the produced intervals during both 
the synchronization and continuation epochs. Absolute asynchronies were defined as the unsigned 
difference between stimulus onset and tap onset. Constant error was calculated as the difference 
between the produced interval and the target interval and is a measure of timing accuracy. Temporal 
variability was defined as the standard deviation of the total produced intervals and is a metric of 
timing precision. The autocorrelation of the six inter-tap intervals during a trial was calculated and 
averaged across trials. Thus, lag 1 autocorrelation is normally negative for isochronous metronomes, 
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meaning that a longer produced interval tends to be followed by a shorter interval and vice versa, 
reflecting an error correction mechanism used to maintain the beat of the metronome during synchro-
nization (Iversen et al., 2015). A repeated-measures ANOVA with two and three factors was carried 
out for the analysis of asynchronies, constant error, and temporal variability.

Imaging protocol
Images were acquired using a 3T Philips Achieva TX scanner with a 32-channel head coil. T1-weighted 
volumes were obtained using a three-dimensionally encoded spoiled gradient echo sequence (repe-
tition/echo times (TR/TE) = 8.2/3.7 ms, flip angle = 8°, field of view = 256 × 256 × 176 mm3, matrix 
size = 256 × 240 × 176 mm3 yielding voxel resolution = 1 × 1 × 1 mm3). DWIs were acquired with 
echo-planar imaging, 2 × 2 × 2 mm3 voxel resolution, FOV = 256 × 256 mm3, 62 axial slices, TR/
TE = 16,500/72 ms. Images were sensitized to diffusion with b = 1000 s/mm² (64 unique directions) 
and b = 3000 s/mm² (96 directions). Five volumes without diffusion weighting (b = 0 s/mm2) were 
also acquired, along with an additional b = 0 s/mm2 volume obtained with reversed-phase encoding 
polarity for correction of geometric distortions.

Image processing
a.	 Cortical surface. T1-weighted images were used to estimate cortical surfaces. Images were first 

denoised (Coupe et al., 2008) and corrected for intensity inhomogeneities (Tustison et al., 
2011). Binary masks of the brain were obtained with volBRAIN v.2.0 (Manjón and Coupé, 2016). 
Cortical surfaces were obtained through the FreeSurfer pipeline v.6.0 (Fischl, 2012). Individual 
surfaces were registered to the surface template with 20,484 vertices (fsaverage5).

b.	 DWIs were first denoised (Manjón et  al., 2013) and bias field corrected (Tustison et  al., 
2011), then corrected for geometric distortions and motion using FSL’s topup-eddy algorithm 
(Andersson and Sotiropoulos, 2016).

Fixel-based analysis
We analyzed individual fiber-specific properties in the presence of crossing fiber populations (‘fixels’; 
Raffelt et al., 2015) following the steps described in Raffelt et al., 2017 and using the tools available 
in MRtrix3 (Tournier et al., 2019). A white matter mask was computed for each subject, followed by 
global signal intensity normalization of the DWI, which was performed across subjects by dividing all 
volumes by the median b = 0 s/mm2 intensity. Images were upsampled to 1 mm3 isometric resolu-
tion (Dyrby et al., 2014). White matter FODs were estimated using the multi-shell, multi-tissue CSD 
(MSMT-CSD) algorithm (Jeurissen et al., 2014). Tissue-specific response functions were calculated for 
each subject, from which we derived group-averaged response functions that were used to estimate 
FODs (lmax = 8) for each subject. An FOD template was constructed through iterative non-linear 
registration using the FODs of all 32 subjects followed by the calculation of the intersection of masks 
of all subjects. Fixels were derived at each voxel by FOD segmentation and reoriented to the study 
template. Finally, FBA metrics (FD, FC, and FDC) were calculated for each fixel.

Statistical analysis
A whole-brain probabilistic tractogram was calculated based on the FOD population template, seeded 
from a whole-brain white matter mask to produce a tractogram of 20 million streamlines. Next, the 
SIFT algorithm (Smith et al., 2013) was used to select a subset of streamlines (n = 2 million) that best 
fit the diffusion signal and therefore reduce tractography biases. The structural connectivity metric 
between fixels was obtained according to probabilistic tractography using the connectivity-based fixel 
enhancement tool (Raffelt et al., 2015).

The FD, FC, and FDC measures were correlated with SCT for both conditions (visual and audi-
tory) using a general linear model. Non-parametric permutation tests and connectivity-based fixel 
enhancement (Raffelt et al., 2015) were carried out for correction of multiple comparisons (Nichols 
and Holmes, 2002).

After the statistical analysis, tracts with significant fixels in the group space were identified using 
the tract-selection regions from the XTRACT tool (Warrington et al., 2020) included in FSL software 
(FMRIB’s Software Library – FSL, Oxford, UK) (Smith et al., 2004), which were warped into our popu-
lation template. Tracts with significant fixels were reconstructed using MRTrix (Tournier et al., 2019).

https://doi.org/10.7554/eLife.83838
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SWM surfaces
To assess SWM properties, we used a synthetic representation of axons based on cortical topology. 
We computed a Laplacian potential field between the ventricles and the gray/white matter boundary 
(Jones et  al., 2000; Lerch et  al., 2008; Liu et  al., 2016) using minclaplace (Lerch et  al., 2008). 
Next, Laplacian streamlines were seeded at each vertex of the white matter surface and propagated 
toward the ventricles using Matlab, 2020A. Thus, one Laplacian streamline was obtained for every 
white matter surface vertex (Figure 3A). The distance between each step of the Laplacian streamline 
was 100 µm, and streamlines were truncated at 5 mm. This resulted in smooth and non-overlapping 
pathways that respect topology and traverse the SWM. Furthermore, the first segment of these 
streamlines is perpendicular to the gray-white matter (GM–WM) surface, with subsequent segments 
gradually bending as they extend away from it. These aspects make the Laplacian streamlines behave 
similarly to what is expected from the anatomy of the SWM. Finally, all the white matter surfaces and 
synthetic streamlines were warped to their corresponding subject-specific DWI space via between-
modality non-linear registration using ANTS (Avants et al., 2011). Data for one subject was discarded 
for SWM analysis (Figures 3–5) due to suboptimal registration between DWI metric maps and white 
matter surface.

We used the fixel-based information to independently evaluate the two fiber systems that coexist 
in the SWM: U-fibers subserving short-range cortico-cortical connectivity and long-range projection, 
association and commissural fibers (Kirilina et  al., 2020; Schüz and Braitenberg, 2002; Yoshino 
et al., 2020). With the assumption that U-fibers run tangentially to the gray/white matter surface and 
long-range fibers impinge on the surface in a perpendicular fashion, we attributed the fixels oriented 
parallel to the segments of the Laplacian streamlines to long-range fibers, and the remaining fixels to 
the U-fiber system. DWI-derived metrics were sampled along each Laplacian streamline at 0, 0.5, 1, 
1.5, and 2 mm under the gray/white matter interface. The metrics sampled were totalAFD (the integral 
of all FODs within a given voxel) and AFD attributed to either long-range fibers (parAFD; the integral 
of the FOD of the fixel parallel to the Laplacian streamline) or U-fibers (tanAFD; defined as totalAFD 
− parAFD).

All metrics along the Laplacian streamlines were projected onto the gray/white matter surface of the 
fsaverage5 template for visualization and statistical analyses and smoothed using a two-dimensional 
kernel of 15 mm of full width at half maximum.

Surface-based analysis of SWM
Analyses were performed by fitting a general linear model at each vertex using SurfStat (https://
www.math.mcgill.ca/keith/surfstat). This analysis assessed the relation between the value of diffusion 
metrics in each vertex (i) and the behavioral metrics from the SCT (absolute asynchronies, constant 
error, temporal variability, and lag 1 of the autocorrelation of the inter-tap-interval time series), as:

	﻿‍ SWMi = β0 + β∗
1 STCmetric‍�

Surface vertex-wise analysis was corrected for multiple comparisons using random-field theory 
with a cluster-forming threshold pcft < 0.001 (Eklund et al., 2016). Clusters with pcluster < 0.001 were 
deemed significant (https://www.math.mcgill.ca/keith/surfstat).

Significant clusters were anatomically identified using the Brain Atlas Based on Connectional Archi-
tecture (Brainnetome) (Fan et al., 2016). All the analyses were carried out in Surfstat (Worsley et al., 
2009) for Matlab (2018; Mathworks).

Regularized canonical correlation analysis
As an additional verification of the results obtained via random-field theory analysis, we performed a 
canonical correlation analysis between the behavioral data of the SCT and the structural information 
of the SWM. This approach allowed us to independently assess the correlation of the AFD measure-
ments of every vertex with every variable of the SCT. Concretely, rCCA was calculated between the 
matrix of behavioral metrics from the synchronization phase of the SCT (i.e., absolute asynchrony, 
constant error, temporal variability, and lag 1 autocorrelation) for each sensory modality (auditory 
and visual), and every target interval (550–950 ms) and the AFD matrix of the whole brain. Given the 
orthogonality between tanAFD and parAFD, and their collinearity with totalAFD individual models were 
built for every AFD metric.

https://doi.org/10.7554/eLife.83838
https://www.math.mcgill.ca/keith/surfstat
https://www.math.mcgill.ca/keith/surfstat
https://www.math.mcgill.ca/keith/surfstat
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Since the number of variables (particularly the number of vertices) is much larger than the sample 
size, we included two regularizing parameters for the covariance matrices in the model (rCCA) 
(Mihalik et al., 2022). These parameters were optimized by a grid search algorithm that maximized 
the correlation of the canonical variates (Figure 6A). Confidence intervals (at 99%) for the loadings 
of the variables after model fitting were estimated by building null distributions of loadings based on 
random permutations (n = 10,000) of the original metrics. This was useful to identify the most relevant 
behavioral variables (Figure 6) associated with the structural data.
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