A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites

Abstract

Malaria parasites avoid immune clearance through their ability to systematically alter antigens exposed on the surface of infected red blood cells. This is accomplished by tightly regulated transcriptional control of individual members of a large, multicopy gene family called var and is the key to both the virulence and chronic nature of malaria infections. Expression of var genes is mutually exclusive and controlled epigenetically, however how large populations of parasites coordinate var gene switching to avoid premature exposure of the antigenic repertoire is unknown. Here we provide evidence for a transcriptional network anchored by a universally conserved gene called var2csa that coordinates the switching process. We describe a structured switching bias that shifts overtime and could shape the pattern of var expression over the course of a lengthy infection. Our results provide an explanation for a previously mysterious aspect of malaria infections and shed light on how parasites possessing a relatively small repertoire of variant antigen encoding genes can coordinate switching events to limit antigen exposure, thereby maintaining chronic infections.

Data availability

Whole genome sequence and transcriptome data are available at the BioProject database of the NCBI. The genome sequencing data can be accessed at this link: http://www.ncbi.nlm.nih.gov/bioproject/515738. The RNAseq data can be accessed at this link: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA802886.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xu Zhang

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Francesca Florini

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2579-3820
  3. Joseph E Visone

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Irina Lionardi

    Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mackensie R Gross

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Valay Patel

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kirk W Deitsch

    Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, United States
    For correspondence
    kwd2001@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9183-2480

Funding

National Institute of Allergy and Infectious Diseases (AI 52390)

  • Kirk W Deitsch

National Institute of Allergy and Infectious Diseases (AI99327)

  • Kirk W Deitsch

National Institutes of Health (T32GM008539)

  • Joseph E Visone

Swiss National Science Foundation (P2BEP3_191777)

  • Francesca Florini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olivier Silvie, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, France

Version history

  1. Preprint posted: September 30, 2022 (view preprint)
  2. Received: September 30, 2022
  3. Accepted: December 13, 2022
  4. Accepted Manuscript published: December 14, 2022 (version 1)
  5. Version of Record published: January 11, 2023 (version 2)

Copyright

© 2022, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,450
    views
  • 232
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xu Zhang
  2. Francesca Florini
  3. Joseph E Visone
  4. Irina Lionardi
  5. Mackensie R Gross
  6. Valay Patel
  7. Kirk W Deitsch
(2022)
A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites
eLife 11:e83840.
https://doi.org/10.7554/eLife.83840

Share this article

https://doi.org/10.7554/eLife.83840

Further reading

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Carlo Giannangelo, Matthew P Challis ... Darren J Creek
    Research Article

    New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.