A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites

Abstract

Malaria parasites avoid immune clearance through their ability to systematically alter antigens exposed on the surface of infected red blood cells. This is accomplished by tightly regulated transcriptional control of individual members of a large, multicopy gene family called var and is the key to both the virulence and chronic nature of malaria infections. Expression of var genes is mutually exclusive and controlled epigenetically, however how large populations of parasites coordinate var gene switching to avoid premature exposure of the antigenic repertoire is unknown. Here we provide evidence for a transcriptional network anchored by a universally conserved gene called var2csa that coordinates the switching process. We describe a structured switching bias that shifts overtime and could shape the pattern of var expression over the course of a lengthy infection. Our results provide an explanation for a previously mysterious aspect of malaria infections and shed light on how parasites possessing a relatively small repertoire of variant antigen encoding genes can coordinate switching events to limit antigen exposure, thereby maintaining chronic infections.

Data availability

Whole genome sequence and transcriptome data are available at the BioProject database of the NCBI. The genome sequencing data can be accessed at this link: http://www.ncbi.nlm.nih.gov/bioproject/515738. The RNAseq data can be accessed at this link: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA802886.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xu Zhang

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Francesca Florini

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2579-3820
  3. Joseph E Visone

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Irina Lionardi

    Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mackensie R Gross

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Valay Patel

    Department of Microbiology and Immunology, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kirk W Deitsch

    Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, United States
    For correspondence
    kwd2001@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9183-2480

Funding

National Institute of Allergy and Infectious Diseases (AI 52390)

  • Kirk W Deitsch

National Institute of Allergy and Infectious Diseases (AI99327)

  • Kirk W Deitsch

National Institutes of Health (T32GM008539)

  • Joseph E Visone

Swiss National Science Foundation (P2BEP3_191777)

  • Francesca Florini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olivier Silvie, Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, France

Version history

  1. Preprint posted: September 30, 2022 (view preprint)
  2. Received: September 30, 2022
  3. Accepted: December 13, 2022
  4. Accepted Manuscript published: December 14, 2022 (version 1)
  5. Version of Record published: January 11, 2023 (version 2)

Copyright

© 2022, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,346
    Page views
  • 223
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xu Zhang
  2. Francesca Florini
  3. Joseph E Visone
  4. Irina Lionardi
  5. Mackensie R Gross
  6. Valay Patel
  7. Kirk W Deitsch
(2022)
A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites
eLife 11:e83840.
https://doi.org/10.7554/eLife.83840

Share this article

https://doi.org/10.7554/eLife.83840

Further reading

    1. Microbiology and Infectious Disease
    Nguyen Thi Khanh Nhu, Minh-Duy Phan ... Mark A Schembri
    Research Article

    Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974–2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.

    1. Microbiology and Infectious Disease
    Swati Jain, Gherman Uritskiy ... Venigalla B Rao
    Research Article

    A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.