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Abstract The treatment of neurodegenerative diseases is hindered by lack of interventions 
capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved 
brain health. To address this problem, we combined deep learning with a model capable of repro-
ducing whole-brain functional connectivity in patients diagnosed with Alzheimer’s disease (AD) 
and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific 
atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal 
and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational 
autoencoders, we visualized different pathologies and their severity as the evolution of trajectories 
in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-
specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained 
novel insights on disease progression and control by means of external stimulation, while identifying 
dynamical mechanisms that underlie functional alterations in neurodegeneration.
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evidence is provided for the disease-specificity of the framework, however, the real-world impact 
of such stimulation protocols to alleviate psychiatric and neurological symptoms remains to be 
evaluated.

Introduction
Neurodegenerative diseases and dementia represent an increasing social and economic burden to 
worldwide health (GBD 2019 Dementia Forecasting Collaborators, 2022), with rising prevalence 
and incidence in countries with an aging population and specially across underrepresented popu-
lations from the developing world, where classical biomarkers and treatments are not yet massively 
available (Hou et al., 2019; Mukadam et al., 2019; Parra et al., 2018; Parra et al., 2023). Alzheimer’s 
disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are among the most prevalent 
neurodegenerative diseases, each linked to specific pathophysiology and to highly heterogeneous 
and atypical manifestation, hindering detection and diagnosis (Musa et al., 2020; Parra et al., 2018). 
Neuroimaging methods such as positron emission tomography (PET) (Engler et al., 2008; Foster 
et al., 2007; Jack et al., 2018; Mosconi et al., 2008; Nordberg, 2004), functional magnetic reso-
nance imaging (fMRI) (Hafkemeijer et al., 2015; Jalilianhasanpour et al., 2019; Moguilner et al., 
2021), and electroencephalography (EEG) Dottori et al., 2017; Lindau et al., 2003; Nishida et al., 
2013; Nishida et al., 2011; Cruzat et al., 2023 have been employed extensively to profile these 
diseases based on their underlying whole-brain activity patterns, and to develop automated classifiers 
capable of assisting clinical decision-making (Kim et al., 2019; Moguilner et al., 2021; Herzog et al., 
2022). In spite of these advances, the limited knowledge of the large-scale network mechanisms of 
neurodegenerative dementias hinders the development of interventions oriented to improve brain 
health and subjective well-being. Moreover, without addressing the underlying neurobiological mech-
anisms, purely data-driven metrics can be heterogeneous and difficult to interpret, in particular when 
obtained from large-scale studies which are capable of picking up small differences that arise due to 
confounding factors (Deco and Kringelbach, 2014).

Several methods capable of externally modulating brain activity have been proposed to treat AD 
and bvFTD, including transcranial magnetic stimulation (TMS) (Antczak et al., 2018; Nardone et al., 
2012), direct and alternating electrical current stimulation (tDCS and tACS) (Benussi et al., 2021; 
Benussi et al., 2020a; Bréchet et al., 2021; Ferrucci et al., 2008; Prehn and Flöel, 2015; Sprugnoli 
et al., 2021; Zhou et al., 2022; Pini et al., 2022; Birba et al., 2017), and ultrasound pulse stimulation 
(Liu et al., 2021), among others. Overall, the use of transcranial stimulation techniques resulted in 
mixed results, with only some of these studies reporting promising results in terms of the restoration 
of disease-specific cognitive impairments and functional abnormalities. A frequent limitation is given 
by their exploratory nature, highlighting the need for principled methods to determine the brain 
regions to be stimulated, as well as relevant parameters such as the scalp location of the stimula-
tion devices (montage), and the intensity and frequency of the delivered perturbation. These limita-
tions could be addressed using whole-brain models of brain activity that incorporate multiple sources 
of experimental data to reproduce realistic estimates of brain dynamics and functional connectivity 
(Menardi et al., 2022; Deco et al., 2019; Wang et al., 2015). After parameter optimization, models 
can be used as a sandbox to test the outcome of different forms of external perturbation (Cofré et al., 
2020). Previous research supports the feasibility of fitting whole-brain phenomenological models to 
fMRI data acquired from AD patients, suggesting mechanistic explanations for reduced whole-brain 
synchronization and small-worldness of functional networks in the patients (Demirtaş et al., 2017). 
However, the use of whole-brain models to infer and reverse the large-scale network mechanisms 
underlying neurodegenerative dementias (AD and bvFTD) remains largely unexplored.

Computational models of brain activity present a trade-off between interpretability and accuracy 
to represent empirical data, the latter being closely related to the number of parameters that are 
optimized during the fitting procedure (Cofré et al., 2020; Ipina et al., 2020). Increasing the size of 
parameter space is necessary to model brain states characterized by spatially heterogeneous changes 
in neural dynamics, as is the case of neurodegenerative disorders, where atrophy has been linked to 
alterations in the local excitation/inhibition (E/I) balance (Mehta et al., 2013; Lopatina et al., 2019; 
Maestú et al., 2021; Palop and Mucke, 2016). Neurodegenerative diseases such AD and bvFTD are 
characterized by heterogeneity across different brain levels involving both structure and dynamics 
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(Mehta et al., 2013; Peet et al., 2021; Seelaar et al., 2011; Verdi et al., 2021; Prado et al., 2023), 
challenging the assumptions of spatially homogeneous biomarker models. Moreover, the issue of 
interpretability manifests when the impact of simulated stimulation is considered. In which ways 
whole-brain activity can be modified? How do these changes depend on the selected stimulation 
site? What is the relationship between the perturbed dynamics and those observed in target healthy 
brain states? Providing answers to these questions (and thus exploring the landscape of perturbation-
induced states, i.e., the perturbational landscape) becomes increasingly difficult as the number of 
model parameters is increased.

We implemented a two-stage procedure to tackle these issues by means of whole-brain activity 
models. First, we introduced empirical structural connectivity data to couple the local dynamics, as 
well as priors to modulate local model parameters based on atrophy maps of different neurodegen-
erative diseases, such as AD, bvFTD, and Parkison’s disease (PD), with the hypothesis that disease-
specific maps are capable of improving the model fit to the fMRI data of the corresponding disease. 
Next, we fitted these models to the empirical data, which allowed us to identify potential mecha-
nisms underlying the changes observed in AD and bvFTD, relative to the relationship between the 
dynamical regime of local activity and whole-brain connectivity patterns. Finally, we used variational 
autoencoders (VAE) (Perl et al., 2020) to obtain a low-dimensional representation of brain activity, 
investigating how positioning in this latent space is related to the diagnosis and the severity of the 
disease. Our analysis concluded with the systematic exploration of different stimulation protocols, 
visualizing the outcome as trajectories in latent space, and thus allowing us to interpret the effects of 
the stimulation in terms of their capacity to restore healthy whole-brain activity patterns.

Results
The outline of the procedure followed in this work is shown in Figure 1. First, we implemented a whole-
brain model with local dynamics (one per node in the Automated Anatomical Labeling atlas [AAL]) 
(Tzourio-Mazoyer et al., 2002) given by the normal form of a Hopf bifurcation (Deco et al., 2017). 
Depending on the bifurcation parameter a (related to the excitation/inhibition ratio) these dynamics 

Figure 1. Methodological outline. A phenomenological whole-brain model (normal mode of a Hopf bifurcation) was implemented at nodes defined by 
the Automated Anatomical Labeling (AAL) parcellation and coupled with the anatomical connectome. Different priors were explored to induce spatial 
heterogeneity in the model (i.e., variation in the local bifurcation parameters). The model was tuned to reproduce the empirical functional connectivity 
(FC) for each condition (CNT, Alzheimer’s disease [AD], behavioral variant frontotemporal dementia [bvFTD]), and the resulting parameters were 
represented in a latent space using a variational autoencoder, facilitating comparison between groups. Finally, the three different perturbations (Wave, 
Sync, Noise) were introduced in the model, resulting in a set of trajectories in latent space (one per pair of homotopic AAL regions).

https://doi.org/10.7554/eLife.83970


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Sanz Perl et al. eLife 2023;12:e83970. DOI: https://doi.org/10.7554/eLife.83970 � 4 of 25

present two qualitatively different behaviors: fixed-point dynamics (a < 0) and oscillations around a 
limit cycle (a > 0). When noise is added to the model, dynamics close to the bifurcation (‍a ≈ 0‍) change 
stochastically between both regimes, giving rise to oscillations with complex amplitude modulations. 
Regions were coupled by the anatomical connectivity matrix obtained from diffusion tensor imaging 
(DTI) measurements. The model was used to simulate phenomenological time series (i.e., the output 
of the model is interpreted as the measured BOLD signal, without the need to apply biophysical trans-
formations). Then, the whole-brain functional connectivity (FC) matrices computed from the simulated 
time series by means of Pearson’s correlation were encoded into a two-dimensional space using a 
deep learning architecture known as VAE (Perl et al., 2020).

Briefly, VAEs are deep neural networks with autoencoder (AE) architecture (Kingma and Welling, 
2013), which are trained to map inputs to probability distributions in latent space by minimizing the 
error between the input and the output. This output corresponds to the input as reproduced from 
the latent space values. Moreover, VAEs can be regularized during the training process to produce 
meaningful outputs after the decoding step, as well as to ensure continuity between the outputs and 
the corresponding choice of latent space values. The most common architecture of this network can 
be subdivided into three parts: the encoder network, the middle variational layer (with units corre-
sponding to the latent space), and decoder network. The encoder transforms the input into the latent 
space, which is typically of much lower dimension than the input and output layers. On the other hand, 
the decoder converts the values of the units in the latent space to the output space.

The whole-brain model had different bifurcation parameters for each AAL region, constrained by 
the spatial maps of the following anatomical priors: resting state networks (RSN), regions with different 
brain atrophy values, random assignment of regions to the spatial maps, and maps corresponding to 
an equipartition of neighboring regions. For each region in the prior, an independent parameter (Δ) 
was fitted, then these parameters were combined to obtain the local bifurcation parameters of the 
model (note that regions were potentially overlapping) (Ipina et al., 2020). Following Ipina et al., 
2020, these free parameters were optimized using a genetic algorithm to optimize the agreement 
with fMRI FC from an elderly healthy control (CNT), AD, and bvFTD patients. We explored different 
forms of in silico external perturbations that emulate specific empirical perturbation protocols. Wave 
stimulation (periodic perturbation delivered at the dominant frequency of the local BOLD fluctuations) 
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Figure 2. Fitting the whole-brain model to the empirical data. The violin plots display 1 – GoF values (300 independent realizations of parameter fitting) 
for CNT, Alzheimer’s disease (AD), and behavioral variant frontotemporal dementia (bvFTD) using anatomical priors based on resting state networks 
(RSN), AD, and bvFTD atrophy maps (AD + FTD), Parkinson’s disease atrophy map (PD), random assignment (Random), and equally sized groups of 
nodes defined by anatomical proximity (Equal) (* and ** indicate large [ ‍

∣∣d∣∣‍ >0.8] and very large [ ‍
∣∣d∣∣‍ >1.3] effect sizes according to Cohen’s d, computed 

in each case against the best fitting prior; e.g., in the models fitted to the CNT and AD groups, the effect size was computed against the RSN and 
AD + FTD priors, respectively). Insets present the empirical (‘emp,’ below diagonal) and the best simulated (‘sim,’ above diagonal) FC matrices, with 
contradiagonal matrix entries added for visualization purposes. The rightmost panel shows the bifurcation parameters obtained using the RSN vs. AD + 
FTD atrophy priors for AD (red) and bvFTD (green), together with the corresponding Pearson correlation values and least-squares linear fits.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Atrophy maps.

Figure supplement 2. Correlations between disease-atrophy maps.

Figure supplement 3. Fitting the whole-brain model to the empirical data.

https://doi.org/10.7554/eLife.83970
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imitates the characteristics of tACS, considering that both approaches are based on an external peri-
odical driver applied to the brain. The specific application of the nodal natural oscillatory frequency is 
based on reports that suggest electrophysiological oscillations can be synchronized by in-phase tACS 
stimulation (Helfrich et al., 2014), even though this mechanism has been recently disputed (Lafon 
et al., 2017) and further research is required for its validation. On the other hand, the simulated Sync/
Noise stimulation increases/decreases the overall value of the bifurcation parameter underlying the 
switching of the dynamical regime of a specific brain region. This can be associated with a direct alter-
ation in nodal neural excitability, which resembles the impact created by tDCS stimulation (Nitsche 
and Paulus, 2000). After systematically applying these perturbations to all pairs of homotopic nodes 
and encoding the resulting FC matrices, we obtained low-dimensional perturbational landscapes, 
consisting of trajectories in latent space parametrized by the stimulation intensity. In turn, these trajec-
tories were classified depending on how closely they brought the dynamics to a predefined target 
state, in this case, that of the healthy control group.

Fitting the whole-brain model
The results of model fitting are shown in Figure 2. The violin plots display 1 – goodness of fit (GoF) 
values for CNT, AD, and bvFTD using the following anatomical priors: RSN (Beckmann and Smith, 
2004), AD, and bvFTD atrophy maps (AD + FTD), Parkinson’s disease atrophy map (PD), random 
assignment (Random), and equally sized groups of nodes defined by anatomical proximity (Equal). 
Note that we combined the anatomical priors (i.e., atrophy maps) from AD and FTD due to their high 
level of spatial correlation (R = 0.75, p<0.0001, see Figure 2—figure supplements 1 and 2). These 
values were obtained for 300 independent realizations of parameter optimization with a genetic algo-
rithm (Ipina et al., 2020). Here, the use of maps from a different neurodegenerative disease (PD, 
without dementia and less characterized by atrophy) was implemented as an additional control to 
compare the resulting GoF with the values obtained using disease-specific atrophy maps. We found 
that the best fits were obtained using RSN for CNT, AD + FTD atrophy maps or RSN for AD, and AD + 
FTD atrophy maps for bvFTD (in all cases with 1 − GoF ≈ 0.6, similar to values reported in previous 
publications based on different datasets) (Deco et al., 2017; Demirtaş et al., 2017; Sanz Perl et al., 
2021), showing that atrophy maps contain meaningful spatial heterogeneities that improve the fit to 
the empirical whole-brain FC matrix. We repeated the same procedure but considering separately the 
AD and FTD maps, and evaluated the goodness of fit for each condition, as shown in supplementary 
material Figure 2—figure supplement 3. We found that the best fits were obtained using RSN for 
CNT, RSN, AD, or FTD atrophy maps for AD, and the FTD atrophy map for FTD (with 1 – GoF≈0.6) 
(see supplementary material).

The insets show the empirical (‘emp,’ below diagonal) and simulated (‘sim,’ above diagonal) FC 
matrices. While good correspondence between empirical and simulated data can be observed in the 
off-diagonal blocks of the FC matrix, a comparatively lower homotopic FC was obtained for the simu-
lated dynamics, as can be expected from known limitations of the anatomical connectome (Reveley 
et al., 2015). Due to the use of SSIM as a target optimization function (Ipina et al., 2020), the optimal 
simulated matrices captured both the average FC and the relative differences between matrix entries, 
which jointly minimize the Euclidean and correlation distances, respectively.

Finally, to facilitate further comparison, we used the same prior (RSN) to fit all the groups. The 
panels in Figure 2 show that the GoF obtained using the RSN prior was similar to that obtained using 
disease-specific atrophy maps. Moreover, after fitting the model and converting the ‍∆‍ to bifurcation 
parameters, we correlated the regional parameters obtained for the RSN and AD + FTD atrophy 
maps. Even though the RSN prior resulted in significantly lower GoF for the bvFTD group, we found 
an acceptable level of similarity (R ≈ 0.5) between the local bifurcation parameters obtained using 
the RSN and AD + FTD atrophy map priors. Based on this result, in the rest of this work we adopted 
the necessary approximation of using the RSN parcellation to constrain local bifurcation parameters, 
in order to obtain models based on the same prior that could be compared across the different 
pathologies.

Comparison of model parameters between groups
Here and in the following analysis, we divided the AD group into two subgroups of different severity 
(AD- and AD+), as determined using non-atrophy measures of brain disease obtained from the patients. 

https://doi.org/10.7554/eLife.83970
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For this purpose, we used the median white-matter hyperintensity (WMHI) scores, a marker of small 
vessel cerebrovascular damage associated with AD disease severity, scored using fluid-attenuated 
inversion recovery (FLAIR) images (Lee et al., 2016). Vascular compromise has been recently identi-
fied as a critical selective vulnerability to AD in vascular subpopulations, transcriptomic perturbations, 
and expression of genes identified in AD genome-wide association studies (Yang et al., 2022). We 
chose to use an anatomical marker of disease severity instead of a cognitive/behavioral one since it 
is more closely related to the empirical neuroimaging data used to train the model. We compared 
the optimal model parameters (Δ and bifurcation parameters) between CNT, AD-, AD+, and bvFTD 
across 300 independent runs of the optimization procedure (Figure 3A). Comparing the resulting 
distributions in terms of the mean and standard deviation, we observed increased/decreased Δ values 
for the auditory-salience RSN (Aud +Sal) for AD/bvFTD, respectively, and the converse result for the 
sensorimotor network.

To facilitate the interpretation of these findings, we combined the local Δ values for each AAL, 
yielding the local bifurcation parameters; next, we visualized brain regions with increased or decreased 
values relative to control (defined as those regions with ‍

∣∣d∣∣‍ > 0.8 between both distributions). The 
corresponding results are shown in Figure 3B. For AD patients with low WMHI scores (AD-), we only 
observed a shift towards dynamical instability (i.e., closer to the bifurcation) in the posterior cingulate 
cortex and the right insula. These results were maintained for the AD+ group, but we also observed 

Figure 3. Changes in dynamical stability underlie differences in whole-brain functional connectivity (FC) between controls and patients diagnosed 
with neurodegenerative diseases. (A) Distribution of parameters Δ (which encode the contribution of each resting state networks (RSN) towards the 
local bifurcation parameter) across 300 runs of parameter optimization for CNT, Alzheimer’s disease (AD-), AD+, and behavioral variant frontotemporal 
dementia (bvFTD) (* indicates ‍

∣∣d∣∣‍ > 0.8 between distributions). (B) Brain regions with values  ‍
∣∣d∣∣‍ > 0.8 between the local distribution of bifurcation 

parameters of CNT vs. AD-, AD+, and bvFTD.

https://doi.org/10.7554/eLife.83970
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a shift away from the bifurcation towards stable fixed-point dynamics in the bilateral hippocampus 
and regions of the frontal cortex. Finally, the bvFTD group was characterized by a shift away from the 
bifurcation but in the opposite sense, that is, towards the synchronized regime, located in the bilateral 
insular cortex.

Overall, these results show that the changes in FC observed in AD and bvFTD can be related to 
region-specific shifts away from the complex and flexible dynamics that manifest in the proximity of 
the bifurcation point, with shifts towards stable noisy dynamics in the bilateral hippocampus for AD 
(but only for the subgroup with high WMHI scores) and shift towards stable oscillations in the bilateral 
insula for bvFTD. Note that these results concern the bifurcation parameters, which are obtained as a 
combination of the Δ values optimized using the genetic algorithm (Figure 3A).

Latent space encoding
After investigating the differences between groups in the six-dimensional parameter space spanned 
by the Δ values, we obtained two-dimensional representations of these states by encoding the simu-
lated FC using a VAE. Figure 4A presents a comparison between the original (above diagonal) and 
reconstructed (below diagonal) FC matrices; clearly, the reconstructed matrices closely resemble the 
originals. SSIM values between original and reconstructed FC matrices were 0.86 (CNT), 0.71 (AD+), 
0.82 (AD-), and 0.76 (bvFTD). Panel B illustrates the structure of the FC matrix decoded at each point 
of the two-dimensional latent space spanned by the two hidden units of the VAE. Panel C shows 
the encoding of 300 independent runs of the model fitted to CNT, AD-, AD+, and bvFTD, with the 
larger colored circles indicating the average positioning of all runs in latent space. The two different 
neurodegenerative diseases, AD and bvFTD, were encoded in different directions of the latent space, 
indicating their qualitatively different effects on whole-brain connectivity and dynamics. Moreover, we 
observed that AD- and AD+ are within the same line in latent space, with AD- being closer to CNT 
than AD+, as expected in terms of the WHMI scores (see Figure 4D). These results highlight that the 
organization of the latent space is suggestive of different pathophysiological mechanisms and that it 
is sensitive to disease severity, which can be inferred from the relative placement of the encoded FC 
matrices.

Perturbational landscapes of neurodegenerative diseases
The latent space encoding facilitates the visualization of complex manipulations applied to the model. 
We leveraged this method to investigate how each disease group responded to three different pertur-
bations: periodic forcing at the peak BOLD frequency of each node (Wave stimulation), shift of the 
bifurcation parameter towards the synchronized regime (Sync perturbation), and shift towards the 
noisy regime (Noise perturbation). These perturbations can be applied with different intensities and 
at different pairs of homotopic brain regions, resulting in a series of FC matrices that depend on 
these two variables. After encoding, these FC matrices appear as a set of continuous trajectories in 
latent space that start from the state under perturbation (perturbational landscape), as can be seen 
in Figure 5. Interestingly, all perturbation protocols presented an asymptotic behavior where further 
increases of the parameter failed to keep displacing the encoded state. Here, the trajectories in dark 
gray tones are the closest to CNT, with lighter colors indicating less proximity. Both the Wave and 
Sync stimulations resulted in a similar perturbational landscape, as expected from the similar effects 
of these perturbations on the nodal dynamics. As shown in the right column of Figure 5, while AD- 
could be displaced to reach CNT, this became progressively more difficult for AD+ and bvFTD (for 
all pairs of distributions shown in this panel, ‍

∣∣d∣∣‍ > 0.8). For bvFTD, in particular, very few trajectories 
approached the region corresponding to CNT.

Brain regions that increased similarity to controls when stimulated
Finally, we ranked regions according to the proximity of their corresponding trajectories to CNT. 
It is important to note that the 2D location in the embedding and its proximity to CNT provides 
more information than one-dimensional metrics such as the GOF between the perturbed FCs and 
the CNT FC, including the trajectory of the perturbation (see Figure 5—figure supplement 1 in the 
supplementary material). Figure 6 presents this information, showing the top decile of regions for 
each disease subgroup and stimulation type. We found that Wave and Sync stimulation applied to 
regions in the visual and temporal lobes (mainly in the hippocampus) displaced both AD- and AD+ 

https://doi.org/10.7554/eLife.83970
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towards CNT. In the case of bvFTD, frontal regions involved with social cognition were highlighted. 

For the Noise protocol, regions of the sensorimotor cortex were the most important to displace the 

brain state from AD to CNT, while frontal regions were again the most relevant for the bvFTD group. 

Finally, for AD the temporo-posterior involvement was more systematic across different types of stim-

ulation compared to bvFTD.

AD- AD+ FTD

**

*

A B

C D

Figure 4. Latent space encoding of whole-brain functional connectivity (FC) reflects the different neurodegenerative diseases and the severity of 
Alzheimer’s disease (AD) in terms of white-matter hyperintensity (WHMI) scores. (A) Original (above diagonal) and reconstructed (below diagonal) FC 
matrices. (B) Illustration of the FC matrix encoded at each point of the latent space by the variational autoencoder (VAE). (C) Latent space encoding of 
300 independent runs of the model fitted to empirical CNT, AD-, AD+, and behavioral variant frontotemporal dementia (bvFTD) data. The larger circles 
represent the average of the positioning of all encoded points for each group. (D) Distribution of distances (D) to CNT for each condition (*indicates ‍

∣∣d∣∣‍ 
>0.8 between distributions).

https://doi.org/10.7554/eLife.83970
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Discussion
We used a phenomenological model of fMRI dynamics informed by disease-specific priors to investi-
gate the mechanisms underlying whole-brain FC changes in AD and bvFTD, the most common neuro-
degenerative diseases leading to dementia (Bang et al., 2015; Scheltens et al., 2021). The use of 
VAE for dimensionality reduction allowed us to explore the global effects of simulated stimulation 
in the model, yielding the perturbational landscape of AD and bvFTD whole-brain dynamics, from 
which we identified key regions to induce transitions towards healthy brain states. In the following, we 
discuss our findings in light of the multiscale pathophysiology of neurodegenerative diseases and the 
different interventions that have been proposed for its treatment.

Contrary to previous implementations of the Hopf normal mode as a whole-brain activity model, 
we allowed regional variations constrained by different spatial heterogeneity maps. We obtained the 
best fits using priors based on RSN and disease-specific atrophy maps, with lower GoF when using 
maps obtained from a different neurodegenerative disease (PD), prompting the need to discuss the 
relationship between atrophy and local dynamics. AD is linked to altered cellular energy metabolism 
(Gu et al., 2012), excitation/inhibition ratio (Lopatina et al., 2019; Maestú et al., 2021) and neuro-
trophic factor release (Murer et al., 2001), impairing neural microcircuit function (Palop and Mucke, 
2016). Using TMS, it was shown that imbalances between inhibition and excitation correlate with 
negative and positive symptoms in bvFTD patients (Benussi et al., 2020b), and distinguish between 

Figure 5. Perturbational landscapes of neurodegenerative diseases. Each row corresponds to a different simulated stimulation protocol (Wave, Sync, 
and Noise), while each column corresponds to a different group (Alzheimer’s disease [AD-], AD+, and behavioral variant frontotemporal dementia 
[bvFTD]). Trajectories represent the encoded sequence of functional connectivity (FC) matrices obtained as a result of parametrically increasing the 
perturbation. Individual trajectories represent the outcome of the stimulation applied at different pairs of homotopic Automated Anatomical Labeling 
(AAL) regions, with darker tones indicating higher proximity to the target state, CNT. The rightmost column presents the minimum distances of the 
trajectories to CNT, with AD- being the closest in this sense.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Mapping 1 – GOF in the latent space comparing with distance to CNT.

https://doi.org/10.7554/eLife.83970
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bvFTD and AD patients (Benussi et al., 2017). Considering the relationship between the Hopf bifur-
cation parameter and the local excitation/inhibition ratio (which can be inferred by studying the bifur-
cation diagram of more biophysically realistic models, such as the Wilson–Cowan model) (Cowan 
et al., 2016), it is likely that this feature of cortical dynamics is being captured during local parameter 

Figure 6. Top brain regions ranked according to the proximity of their corresponding trajectories to CNT. Columns correspond to disease subgroups 
(Alzheimer’s disease [AD-], AD+, and behavioral variant frontotemporal dementia [bvFTD]), while rows correspond to the three explored simulated 
stimulation protocols (Wave, Sync, and Noise).

https://doi.org/10.7554/eLife.83970
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optimization. The methodological framework developed here could be applied to investigate the 
dynamical consequences of other spatial heterogeneities, which in the case of AD and bvFTD include 
glucose metabolism, tau and amyloid PET imaging, and multimodal allostatic markers (Engler et al., 
2008; Foster et al., 2007; Jack et al., 2018; Mosconi et al., 2008; Nordberg, 2004; Migeot et al., 
2022).

The regions with the most prominent alterations in the local bifurcation parameters are the most 
affected by AD and bvFTD pathology. Temporo-posterior atrophy, including the hippocampus in the 
medial temporal lobe (MTL), is indicative of AD and predicts disease onset and progression (Pini 
et al., 2016). Moreover, these regions also show altered FC profiles (Liu et al., 2008) and hemo-
dynamic responses in spatial navigation (Vlček and Laczó, 2014) and memory-related tasks (Golby 
et al., 2005), both functions compromised in AD. The expansion of temporo-posterior compromise 
to more frontal regions in AD+ is also consistent with multimodal models of disease progression (Raj 
et al., 2015). The shift towards stable fixed-points hippocampal dynamics is consistent with reports 
of functional uncoupling of the MTL in AD (Berron et al., 2020), as well as with increased cortical 
inhibition (Maestú et al., 2021). On the other hand, bvFTD presents disruptions in a fronto-insular-
temporal network implied in social cognition, among other functions (Beeldman et al., 2018; Ibáñez, 
2018; Legaz et al., 2022; Salamone et al., 2021; Santamaría-García et al., 2017). In particular, the 
breakdown of the salience network includes degeneration of the anterior insula, impacting emotional, 
social, and interoceptive deficits in bvFTD (Garcia-Cordero et al., 2021; Ibañez and Manes, 2012; 
Migeot et al., 2022). Consistent with our results (i.e., shift away from the bifurcation towards synchro-
nous dynamics in the bilateral insula), these abnormalities manifest in the fMRI signal as increases in 
the power of low-frequency oscillations (Day et al., 2013). Interestingly, using the RSN prior resulted 
in GoF values comparable to those obtained using AD atrophy maps, a result compatible with the 
observation that disrupted whole-brain dynamics and FC in AD patients follows the general outline of 
the major RSN (Brier et al., 2012).

While previous modeling studies addressed the effect of localized perturbations (Deco et  al., 
2019; Ipina et  al., 2020; Leonardo et  al., 2017), the high dimensionality of whole-brain FC has 
hampered their global analysis and visualization. For this purpose, we adopted a framework based 
on VAE, a deep learning method for nonlinear dimensionality reduction, capable of representing the 
simulated FC matrices in a bidimensional latent space with low reconstruction error (Perl et al., 2020). 
Within this latent space, we distinguished controls, AD and bvFTD patients, with different directions 
encoding the severity of each disease. Despite the distinctive clinical patterns that characterize these 
two diseases, their overlap in terms of cognition and behavior can complicate their differential diag-
nosis (Musa et al., 2020; Parra et al., 2018). Our model was capable of learning FC patterns that 
mapped into clearly separated latent space regions, suggesting that future modeling efforts at the 
single subject level could significantly contribute to the problem of classification between AD and 
bvFTD, assisting the development of mechanistic biomarkers (Deco and Kringelbach, 2014). More-
over, the latent space encoding also captured the severity of AD in terms of WMHI (note that the same 
analysis could not be conducted for the bvFTD dataset due to insufficient number of participants). 
Also, while WMHI are highly prevalent and associated with disease severity, such association is weak 
in the case of bvFTD patients (Hu et al., 2021). As documented in the literature, the severity of small-
vessel cerebrovascular disease (visualized using T2-weighted MRI) is increased in AD patients, serves 
as a predictor of AD future development and rate of cognitive decline, and correlates with atrophy 
progression (Hu et al., 2021; Kim et al., 2020; Lee et al., 2016; Liu et al., 2018). Moreover, our 
results support recent critical evidence unveiling a major vascular contribution to AD (Yang et al., 
2022). The low (AD-) and high (AD+) severity groups were encoded within the same direction, but at 
different distances from the control group, suggesting that disease progression could be described in 
terms of a one-dimensional manifold.

We explored three different forms of simulated stimulation, finding one trajectory in latent space 
per pair of homotopic AAL regions (where stimulation was delivered), parameterized by Δa (for Noise 
and Sync stimulation), and ‍F0‍ (for Wave stimulation). As expected, the Wave stimulation delivered 
at the dominant frequency of each node displaced the dynamics towards the oscillatory regime, 
resulting in effects very similar to those obtained with the Sync stimulation. For these two types of 
stimulation, key nodes to transition from AD towards the healthy state included the hippocampus 
as well as temporo-posterior regions. In the case of bvFTD, these regions comprised frontal areas 

https://doi.org/10.7554/eLife.83970
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involved with social cognition, which is known to be compromised by this pathology (Bang et al., 
2015; Garcia-Cordero et al., 2021; Ibañez and Manes, 2012; Migeot et al., 2022). Interestingly, the 
brain regions important to revert abnormal brain FC did not match with those presenting different 
bifurcation parameters (see Figure  3), implying that the simulated perturbation is not limited to 
the normalization of these differences, but also causes complex downstream effects displacing the 
dynamics in the desired direction.

Our study presents some limitations to be acknowledged, partly stemming from the model and 
the sources of empirical data necessary for its construction. Phenomenological models are not directly 
interpretable in terms of biophysical variables, and they only allow exploring mechanisms associated 
with general aspects of the dynamics. With respect to model fitting, as in previous studies (Ipina et al., 
2020; Sanz Perl et al., 2021; Perl et al., 2020), we observed low inter-hemispheric simulated FC, 
which is related to the known underestimation of homotopic fiber tracts by DTI (Reveley et al., 2015). 
These analyses should be revisited when more accurate whole-brain connectivity estimates become 
available, expecting a better fit to the empirical data that could strengthen the main conclusions 
of our work. We conducted group-level analyses, which constitute a valuable proof of principle for 
applying whole-brain modeling to neurodegenerative diseases, but fall short of providing information 
at the single subject level, which would be required to correlate the results of the model with behav-
ioral outcomes, especially given results showing that the therapeutic effect of transcranial stimulation 
depends on individual characteristics of brain anatomy (Unal et al., 2020; Tsapkini et al., 2018; de 
Aguiar et al., 2020; Pytel et al., 2021). For this purpose, models tailored to data from individual 
patients will be required (Menardi et  al., 2022). Another limitation of this work is related to the 
diagnosis of the patients, which was based on current clinical criteria. Mainstream dementia diagnosis 
may also include biomarkers such as deposition of amyloid-β and tau proteins. These are quanti-
fied through positron emission tomography (PET) or plasma, especially in AD (Agrawal and Biswas, 
2015). However, it is currently common for dementia research to use the standard clinical criteria as 
reported in this paper (Birba et al., 2022; Herzog et al., 2022; Legaz et al., 2022; Maito et al., 
2023; Parra et al., 2023). Moreover, PET/plasma biomarkers present caveats for global settings. PET 
is not widely available, that is, the percentage of PET access for patients in global settings is less than 
1% (Parra et al., 2023; Parra et al., 2018) nor cost-effective (Parra et al., 2023). It does not provide 
a conclusive diagnosis (Brown et al., 2014) nor discriminates well between FTD variants (Ntymenou 
et  al., 2021). Fluid biomarkers (i.e., plasma) are very promising, but are not yet massively acces-
sible. More importantly, plasma biomarkers currently lack systematic validation in diverse and non-
stereotypical populations (Parra et al., 2023) like the current sample. However, future works should 
(a) combine clinical and biomarkers criteria to model whole brain dynamics and (b) use metabolic 
maps of tau and amyloid maps as priors to improve the fit of the whole brain modeling. Finally, despite 
our choice of the AAL parcellation being based on its widespread adoption in dementia research 
(Agosta et al., 2013; Lord et al., 2016; Reyes et al., 2018; Sedeño et al., 2017; Whitwell et al., 
2011), future research may require a systematic exploration of other brain parcellations applied to the 
dementia population. In that direction, to compare the differences across parcellations, a recent study 
by Gonzalez et al. used the AAL and HCP atlas (Glasser et al., 2016) parcellations on a dementia 
subsample (graph connectivity and graph multifeature in both modalities) and did not find significant 
differences (Gonzalez-Gomez et al., 2023).

In conclusion, we developed a computational model capable of capturing the most salient differ-
ences in whole-brain dynamics between controls and patients. In doing so, the model informed poten-
tial underlying dynamical mechanisms that could be traceable to biophysical observables, such as the 
local excitation/inhibition ratio. We also introduced a novel methodological framework to visualize 
complex global manipulations of brain activity, leveraging it to investigate the relationship between 
bvFTD and AD of different severity, as well as their perturbational landscape. Whole-brain models 
of neurodegeneration may bring together innovative combinations of multimodal brain biomarkers 
(atrophy, structural and functional connectivity, vascularity, metabolism) while assessing the critical 
challenges of dimensionality, heterogeneity, and differential diagnosis. While the implemented model 
facilitated interpretation in dynamical terms, future efforts should expand our work towards more 
biophysically realistic models, allowing the assessment of pharmacological modulation, among other 
simulated interventions to enhance cognitive function and slow down its decline in patients suffering 
from neurodegeneration.

https://doi.org/10.7554/eLife.83970
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Materials and methods
Experimental design
This is a modeling study that includes multiple sources of empirical data (DTI, fMRI, structural MRI, and 
FLAIR imaging), with the objective of investigating the dynamical mechanisms underlying structural 
and functional changes in patients diagnosed with neurodegenerative diseases (AD and bvFTD), and 
of searching for optimal external stimulation protocols capable of restoring dynamics indicative of 
healthy participants.

Participants
The study comprised 94 participants: 39 patients diagnosed with AD (26 females, 76.6 ± 7 y [mean 
± SD]), 18 patients diagnosed with bvFTD (5 females, 66.7 ± 10.8 y), and 57 healthy controls (38 
females, 69.8 ± 7.9 y), no significant differences in the age of participants were observed between 
groups (Kruskal–Wallis test, p>0.05). Additionally, a group of 43 PD patients (18 females, 68.7 ± 8.2 y) 
was used to obtain the atrophy maps for this condition. Patients were diagnosed by expert neurolo-
gists following current criteria for probable behavioral variant bvFTD (Rascovsky et al., 2011), and 
NINCDS-ADRDA clinical criteria for AD (McKhann et al., 1984; McKhann et al., 2011). Recruitment 
and diagnosis were conducted in clinical centers by a multidisciplinary team as part of an ongoing 
multicentric protocol (Donnelly-Kehoe et al., 2019; Salamone et al., 2021; Salamone et al., 2021). 
Diagnoses were supported by extensive examinations (Baez et al., 2014; Melloni et al., 2016; Piguet 
et al., 2011; Santamaría-García et al., 2017), in line with the Multi-Partner Consortium to Expand 
Dementia Research in Latin America (ReDLat) standardized protocol (Ibanez et al., 2021a; Ibanez 
et al., 2021b; Maito et al., 2023). Fifty-four participants fulfilled the NINCDS-ADRDA criteria for 
typical AD (Dubois et al., 2007) presented memory deficits and showed atrophy in middle-temporal, 
hippocampal, and posterior regions, among others (Figure 2—figure supplement 1 in the supple-
mentary material). Thirty-one participants met the revised criteria for probable bvFTD (Piguet et al., 
2011), presented behavioral and social deficits according to caregivers, and showed fronto-temporo-
insular atrophy (see Figure 2—figure supplement 1 and detailed explanation on the atrophy maps 
computation in the supplementary material). No participants reported a history of other neurolog-
ical disorders, psychiatric conditions, primary language deficits, or substance abuse. All participants 
provided written informed consent pursuant to the Declaration of Helsinki. The study was approved 
by the Ethics Committees of the involved institutions (Comite de Ética Científico Servicio de Salud 
Metropolitano Oriente, IRB00007701; Instituto Alberto C. Taquini de Investigaciones en Medicina 
Traslacional, IRB00013030; Universidad Adolfo Ibañez, IRB00012394).

MRI data acquisition
We acquired three-dimensional volumetric and 10-min-long resting-state MRI sequences. Participants 
were instructed not to think about anything in particular while remaining still, awake, and with eyes 
closed. Recordings were conducted in two independent centers, using the parameters described 
below.

Center 1 (Argentina)
Using a 3 T Phillips scanner with a standard head coil, we acquired whole-brain T1-rapid anatomical 
3D gradient echo volumes, parallel to the plane connecting the anterior and posterior commissures, 
with the following parameters: repetition time (TR) = 8300 ms; echo time (TE) = 3800 ms; flip angle 
= 8°; 160 slices, matrix dimension = 224 × 224 × 160; voxel size = 1 mm × 1 mm × 1 mm. Also, func-
tional spin echo volumes, parallel to the anterior-posterior commissures, covering the whole brain, 
were sequentially and ascendingly acquired with the following parameters: TR = 2640 ms; TE = 30 
ms; flip angle = 90°; 49 slices, matrix dimension = 80 × 80 × 49; voxel size in plane = 3 mm × 3 mm 
×3 mm; slice thickness = 3 mm; sequence duration = 10 min; number of volumes = 220. A total of 18 
AD patients, 13 bvFTD patients, and 23 controls were scanned in this center.

Center 2 (Chile)
Using a 3  T Siemens Skyra scanner with a standard head coil, we acquired whole-brain T1-rapid 
gradient echo volumes, parallel to the plane connecting the anterior and posterior commissures, 
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with the following parameters: repetition time (TR) = 2400 ms; echo time (TE) = 2000 ms; flip angle 
= 8°; 192 slices, matrix dimension = 256 × 256 × 192; voxel size = 1 mm × 1 mm × 1 mm. Finally, 
functional EP2D-BOLD pulse sequences, parallel to the anterior-posterior commissures, covering the 
whole brain, were acquired sequentially intercalating pair-ascending first with the following param-
eters fMRI parameters: TR = 2660 ms; TE = 30 ms; flip angle = 90°; 46 slices, matrix dimension = 76 
× 76 × 46; voxel size in plane = 3 mm × 3 mm × 3 mm; slice thickness = 3 mm; sequence duration = 
10.5 min; number of volumes = 240.

Anatomical connectivity
Anatomical connectivity was obtained applying diffusion tensor imaging (DTI) to diffusion weighted 
imaging (DWI) recordings from 16 healthy right-handed participants (11 men and 5 women, mean 
age: 24.75 ± 2.54 y) recruited at Aarhus University, Denmark. For each participant, a 90 × 90 matrix 
was obtained, representing the connectivity between pairs of AAL regions. Data preprocessing was 
performed using FSL diffusion toolbox (Fdt) with default parameters. The probtrackx tool in Fdt 
provided automatic estimation of crossing fibers within voxels, which has been shown to significantly 
improve the tracking sensitivity of non-dominant fiber populations in the human brain. The connec-
tivity probability from a seed voxel ‍i‍ to another voxel ‍j‍ was computed as the proportion of fibers 
passing through voxel ‍i‍ that reached voxel ‍j‍ (sampling of 5000 streamlines per voxel). All the voxels in 
each AAL region were seeded (both gray and white matter voxels were considered). The connectivity 
probability ‍Pij‍ from region ‍i‍ to region ‍j‍ was calculated as the number of sampled fibers in region ‍i‍ 
that connected the two regions, divided by 5000 × n, where ‍n‍ is the number of voxels in region ‍i‍. The 
resulting connectivity matrices were computed as the average across voxels within each region in the 
AAL, thresholded at 0.1% (i.e., a minimum of five streamlines) and normalized by the number of voxels 
in each ROI. Finally, the data were averaged across participants to yield the ‍Kij‍ .

fMRI data preprocessing
We discarded the first five volumes of each fMRI resting state recording to ensure a steady state. 
Images were preprocessed using the Data Processing Assistant for Resting-State fMRI (DPARSF V2.3) 
(Chao-Gan and Yu-Feng, 2010), an open-access toolbox that generates and implements an auto-
matic pipeline for fMRI analysis within SPM12 and the Resting-State fMRI Data Analysis Toolkit (REST 
V.1.7) (Song et al., 2011). Preprocessing steps included slice-timing correction and realignment to the 
first scan of the session to correct head movement. Using least squares, we regressed out six motion 
parameters, as well as cerebrospinal fluid and white matter signals to attenuate the potential effects 
of residual movement and physiological noise. For this purpose, motion parameters were estimated 
during the realignment step, and cerebrospinal fluid and white matter masks were obtained from the 
tissue segmentation of each subject’s T1 scan in native space. None of the participants presented 
head movements larger than 3 mm and/or rotations higher than 3° and no differences in head motion 
among groups were found. As a final step, images were normalized to common MNI space and 
smoothed using an 8 mm full-width-at-half-maximum isotropic Gaussian kernel.

Atrophy maps
Images were preprocessed using the DARTEL Toolbox. After smoothing with a 10  mm full-width 
half-maximum kernel, images were normalized to the MNI space and analyzed through general linear 
models for 2nd level analyses on SPM-12 software. To analyze the images of each center together 
and avoid biases due to different scanners in our results, the normalized and smoothed outputs were 
transformed to W-score images adjusted for age, disease, total intracranial volume and scanner type. 
W-scores, similar to Z-scores (mean = 0, SD = 1), represent the degree to which the observed gray 
matter volume in each voxel is higher or lower (positive or negative W-score) than expected relative 
to the healthy control sample of each acquisition center.

White matter hyperintensity
From raw FLAIR images, white matter lesions were segmented using the lesion prediction algorithm 
(LPA) as implemented in the Lesion Segmentation Toolbox version 2.0.15 (https://www.statistical-​
modelling.de/lst.html) for SPM (SPM12, Matlab v.2020a; MathWorks, Natick, MA), based on the calcu-
lation of a lesion probability score for each voxel. Lesion probability maps were smoothed using a 
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Gaussian kernel with FWHM at 1 mm for voxels with a lesion probability >0.1. Voxels with no direct 
neighbors were deleted from the lesion maps. Lesion size maps were then acquired from the proba-
bility maps considering voxels with a probability >0.5 and lesion sizes with a threshold >0.015. Lesion 
maps were visually inspected per subject to check for possible artifacts and discarded when artifacts 
were found (in choroid plexus and in basal cisterns). Total WMHI volume in cubic centimeters was 
defined as the voxel size multiplied by the total number of voxels labeled as lesions in the cerebrum. 
The total WMHI volume was normalized by the total intracranial volume in each subject.

Group averaged FC matrices
fMRI signals were detrended, demeaned, and band-pass filtering in the 0.04–0.07   Hz range. This 
frequency range was chosen because it was shown to contain more reliable and functionally relevant 
information compared to other bands, and to be less affected by noise (Cordes et al., 2001). Subse-
quently, the filtered time series were transformed to z-scores. Fixed-effect analysis was used to obtain 
group-level FC matrices, meaning that the Fisher’s R-to-z transform (‍z = atanh

(
R
)
‍) was applied to the 

correlation values before averaging over participants within each group.

Model equations
The whole-brain model consisted of nonlinear oscillators coupled by the structural connectivity matrix, 

‍Kij‍ . Each oscillator was modeled using the normal form of a Hopf bifurcation, which represented the 
dynamics at one of the 90 brain regions in the AAL template (Tzourio-Mazoyer et al., 2002). We 
adopted the neurobiological assumption that dynamics of macroscopic neural masses range from 
fully synchronous to a stable asynchronous state governed by random fluctuations. Building upon 
previous work, we also assumed that fMRI can capture the dynamics from both regimes with sufficient 
fidelity to be modeled by the equations (Deco et al., 2019; Deco et al., 2017; Demirtaş et al., 2017; 
Sanz Perl et al., 2021). Passing through the Hopf bifurcation changes the qualitative nature of the 
solutions from a stable fixed point in phase space towards a limit cycle, allowing the model to present 
self-sustained oscillations. Without coupling, the local dynamics of brain region j was modeled by the 
complex equation:

	﻿‍
dzj
dt =

[
a + iωj

]
zj − zj|zj|2‍� (1)

Here, ‍zj‍ is a complex-valued variable (‍zj = xj + iyj‍), and ‍ωj‍ is the natural oscillation frequency of node j. 
These frequencies ranged from 0.04 to 0.07 Hz and were determined by the averaged peak frequency 
of the bandpass-filtered fMRI signals at each individual brain region. The parameter a represents the 
bifurcation parameter that controls the dynamical behavior of the system. For a < 0, the phase space 
presents a unique stable fixed point at ‍zj = 0‍ and the system asymptotically decays towards this point. 
For a > 0, the stable fixed point gives rise to a limit cycle with self-sustained oscillations of frequency 

‍fj = ωj/2π‍ and amplitude proportional to ‍
√

a‍ . In the full model, nodes i and j are coupled by the struc-
tural connectivity matrix ‍Cij‍ . To ensure oscillatory dynamics for a > 0, the SC matrix was scaled to a 
maximum of 0.2 (weak coupling condition) (Deco et al., 2017). In full form, the differential equations 
of the model are:

	﻿‍

dxj
dt = dRe

(
zj
)

dt =
[
a − x2

j − y2
]

xj − ωjyj + G
∑90

i=1 Kij
(
xi − xj

)

+βηj
(
t
)

‍�

	﻿‍

dyj
dt = dIm

(
zj
)

dt =
[
a − x2

j − y2
]

yj + ωjxj + G
∑90

i=1 Kij
(
yi − yj

)

+βηj
(
t
)

‍�
(2)

The parameter ‍G‍ represents a global coupling factor that scales the anatomical coupling equally for 
all node pairs, and ‍βj‍ represents the amplitude of the additive Gaussian noise in each node, which 
was fixed at 0.04. Note that when a is close to the bifurcation (a ~ 0) the additive Gaussian noise gives 
rise to complex dynamics as the system continuously switches between both sides of the bifurcation. 
For each choice of parameters, these equations were integrated using the Euler–Maruyama algorithm 
with a time step of 0.1 s.
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Spatial heterogeneity priors
Based on previous work (Deco et al., 2018; Ipina et al., 2020; Sanz Perl et al., 2021), we introduced 
additional parameters to account for regional variations in the dynamical regime of the nodes. Since 
introducing an independent bifurcation parameter for each node could lead to costly optimization 
and overfitting, we grouped AAL regions with the same contribution to the local parameters. This 
grouping procedure was conducted using different priors encoding the possible spatial heterogene-
ities that can be captured by the model.

Each prior consisted of a grouping matrix ‍Mi,j‍, which had 1 in its ‍i, j‍ entry if the region ‍i‍ is in group 

‍j‍ (note that groups could be overlapping). Group ‍j‍ contributed an independent coefficient to the 
bifurcation parameter of region ‍i‍, given by ‍∆i,j‍ , which was obtained by the linear combination:

	﻿‍ ai =
∑N

j=1 ∆i,jMi,j‍� (3)

We explored five different priors: the RSN prior (grouping the nodes based on their membership to six 
RSN), the AD + FTD atrophy prior (divided the combined AD and bvFTD atrophy map into six ranges 
of values, resulting in equally sized groups), PD atrophy prior (same as for the AD + FTD atrophy 
prior), random assignment of nodes into six groups (Random prior), and assignment into six equally 
sized groups based on anatomical proximity (Equal prior).

Parameter optimization
The objective is to fit the model to maximize the similarity between the simulated and empirical FC 
matrices. Following previous work, we computed the GoF using the structure similarity index (SSIM) 
(Wang et al., 2004), a metric that balances sensitivity to absolute and relative differences between 
the FC matrices. Thus, the SSIM can be considered a trade-off between the Euclidean and correlation 
distances. For further details on the computation of the SSIM, see Sanz Perl et al., 2021.

Next, the scaling parameter ‍G‍ was obtained by the exhaustive exploration of the model with 
spatially homogeneous bifurcation parameters. For this, the GoF between empirical and simulated 
FC was computed over a 100 × 100 grid in parameter space, with the bifurcation parameter ‍a‍ in the 
[–0.2, 0.2] interval and G in the [0,3] interval. Note that the simulated FC matrix was obtained using 
the procedure outlined in the ‘Group averaged FC matrices’ subsection (resampled to one sample per 
2 s and bandpass filtered in the 0.04–0.07 Hz range). After averaging 50 independent runs, we found 
the absolute minimum of GoF in ‍a = 0‍ and  ‍G‍ = 0.5 for all three groups of subjects (controls, AD, and 
bvFTD). These results were used as initial conditions in the following model that incorporated regional 
variation in the bifurcation parameters, fixing  ‍G‍ = 0.5 in further analyses.

Afterwards, the coefficients ‍∆i,j‍ remain to be optimized. For this purpose, we implemented a 
genetic algorithm inspired in biological evolution. This method consists of an algorithmic representa-
tion of natural selection, which lets the fittest individuals prevail in the next generation, thus spreading 
the genes responsible for their better fitness.

The algorithm starts with a generation of 10 sets of parameters (‘individuals’) chosen randomly with 
values close to zero, to then generate a population of outputs with their corresponding GoF. A score 
proportional to the GoF is assigned to each individual. Afterwards, a group of individuals is chosen 
based on this score (‘parents’), and the operations of crossover, mutation, and elite selection are 
applied to them to create the next generation. These three operations can be described as follows: (1) 
elite selection occurs when an individual of a generation shows an extraordinarily high GoF in compar-
ison to the other individuals, thus this solution is replicated without changes in the next generation; 
(2) the crossover operator consists of combining two selected parents to obtain a new individual that 
carries information from each parent to the next generation; and (3) the mutation operator changes 
one selected parent to induce a random alteration in an individual of the next generation. In our 
implementation, 20% of the new generation was created by elite selection, 60% by crossover of the 
parents, and 20% by mutation. A new population is thus generated (‘offspring’) that is used iteratively 
as the next generation until at least one of the following halting criteria is met: (1) 200 generations are 
reached (i.e., limit of iterations), (2) the best solution of the population remains constant for 50 gener-
ations, and (3) the average GoF across the last 50 generation is less than 10-6 . Finally, the output of the 
genetic algorithm contains the simulated FC with the highest GoF, and the optimal coefficients ‍∆i,j‍ .

https://doi.org/10.7554/eLife.83970
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Simulated stimulation
We implemented three different simulated stimulation protocols to induce transitions between patho-
logical and healthy states. As in previous work, all stimulations were applied to pairs of homotopic 
nodes (Deco et al., 2019; Sanz Perl et al., 2021). The Wave stimulation corresponds to an additive 
periodic forcing term incorporated to the equation of the nodes, given by ‍F0cos

(
ω0t

)
‍, where ‍F0‍ is the 

forcing amplitude and ‍ω0‍ the dominant frequency of the nodes, obtained as explained in the ‘Model 
equations’ subsection. The Sync stimulation corresponds a change in the local bifurcation parameters 
given by Δa > 0, that is, towards increased synchronization. The Noise stimulation corresponds to a 
change in the local bifurcation parameters given by Δa < 0, that is, towards fixed-point noisy dynamics.

For each pair of homotopic regions, the parameter representing the strength of the perturbation 
(either ‍F0‍ or ‍∆a‍) was increased from 0 to 2 in steps of 0.1 (averaging 100 independent simulations 
for each node pair). For the Noise stimulation, the parameter ‍∆a‍ was decreased from 0 to –2. The 
matrices obtained for each value of the stimulation strength parameters and choice of stimulation 
regions were encoded in latent space using the VAE, as described in the next subsection.

Encoding and decoding with VAE
We implemented a VAE to encode the FC matrices ‍Cij‍ in a low-dimensional representation. VAE map 
inputs to probability distributions in latent space, which can be regularized during the training process 
to produce meaningful outputs after the decoding step, allowing to decode latent space coordinates. 
The architecture of the implemented VAE (shown in Figure 1) consists of three parts: the encoder 
network, the middle variational layer, and the decoder network. The encoder consists of a deep neural 
network with rectified linear units (ReLu) as activation functions and two dense layers. This part of 
the network bottlenecks into the two-dimensional variational layer, with units ‍z1‍ and ‍z2‍ spanning the 
latent space. The encoder network applies a nonlinear transformation to map the ‍Cij‍ into Gaussian 
probability distributions in latent space, and the decoder network mirrors the encoder architecture to 
produce reconstructed matrices ‍C

∗
ij‍ from samples of these distributions.

Network trained consists of error backpropagation via gradient descent to minimize a loss func-
tion composed of two terms: a standard reconstruction error term (computed from the units in the 
output layer of the decoder), and a regularization term computed as the Kullback–Leibler divergence 
between the distribution in latent space and a standard Gaussian distribution. This last term ensures 
continuity and completeness in the latent space, that is, that similar values are decoded into similar 
outputs, and that those outputs represent meaningful combinations of the encoded inputs.

We generated 5000 correlation matrices ‍Cij‍ corresponding to controls, AD and bvFTD, using the 
model optimized as described in the ‘Parameter optimization’ subsection. We then created 80%/20% 
random splits into training and test sets using the training set to optimize the VAE parameters. The 
training procedure consisted of batches with 128  samples and 50 training epochs using an Adam 
optimizer and the loss function described in the previous paragraph.

Statistical analysis
To compare the output of the model between conditions, we first obtained a distribution of values 
across several independent realizations of the model. Afterwards, we compared the overlap in the 
resulting distributions by means of Cohen’s d, a measure of effect size. We did not report the results 
in terms of p-values or other metrics that depend on the statistical power, since this can be increased 
artificially by computing additional realizations of the model.
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