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Abstract G-protein-coupled receptors (GPCRs) transmit signals into cells depending on the G 
protein type. To analyze the functions of GPCR signaling, we assessed the effectiveness of animal 
G-protein-coupled bistable rhodopsins that can be controlled into active and inactive states by light 
application using zebrafish. We expressed Gq- and Gi/o-coupled bistable rhodopsins in hindbrain 
reticulospinal V2a neurons, which are involved in locomotion, or in cardiomyocytes. Light stimula-
tion of the reticulospinal V2a neurons expressing Gq-coupled spider Rh1 resulted in an increase 
in the intracellular Ca2+ level and evoked swimming behavior. Light stimulation of cardiomyocytes 
expressing the Gi/o-coupled mosquito Opn3, pufferfish TMT opsin, or lamprey parapinopsin 
induced cardiac arrest, and the effect was suppressed by treatment with pertussis toxin or barium, 
suggesting that Gi/o-dependent regulation of inward-rectifier K+ channels controls cardiac function. 
These data indicate that these rhodopsins are useful for optogenetic control of GPCR-mediated 
signaling in zebrafish neurons and cardiomyocytes.

Editor's evaluation
This work provides a valuable resource for scientists who wish to use optogenetics to manipulate 
GPCR signalling in larval zebrafish. It compares the physiological effects of vertebrate and inver-
tebrate bistable rhodopsins, by expressing them in reticulospinal neurons or cardiomyocytes. The 
evidence for light–induced effects is solid, although some aspects of heart physiology have not been 
examined, in part due to technical limitations. Overall, the tools described here should be of interest 
to investigators working in a variety of areas.

Introduction
G-protein-coupled receptors (GPCRs) are responsible for transmitting extracellular signals into the cell. 
Many of them function as receptors for neurotransmitters or hormones, and activate coupled trimeric 
G proteins consisting of α, β, and γ subunits (Hilger et al., 2018; Pierce et al., 2002; Rockman et al., 
2002; Rosenbaum et al., 2009). Upon activation of a GPCR, the α subunit (Gα) is converted from a 
GDP- to a GTP-bound form to regulate target proteins, while β and γ subunits are released from Gα 
as a complex (Gβγ) to control their own target proteins. GPCR regulates different signaling cascades 
depending on the type of Gα that they bind (e.g. Gs, Gq, Gt, and Gi/o). Gs- and Gi/o-coupled 
GPCRs activate and inhibit, respectively cAMP-producing adenylyl cyclase (AC) via the Gα subunits. 
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Gi/o-coupled GPCRs also regulate G protein activated inward-rectifier K+ channels (GIRKs) via the 
Gβγ subunit, increasing K+ efflux and thereby inducing hyperpolarization. In contrast, Gq-coupled 
GPCRs, via their Gα subunits, activate phospholipase β (PLCβ) to generate inositol 1,4,5-triphosphate 
(IP3) and diacylglycerol (DAG) from phosphatidyl 4,5-bisphosphate (PIP2), subsequently elevating 
intracellular Ca2+ and activating protein kinase C (PKC). For example, in the central nervous system, 
the neurotransmitter glutamate binds to and activates GPCRs that are referred to as metabotropic 
receptors (mGluRs), some of which function as Gq-coupled GPCRs (e.g. mGluR1), and others as Gi/o--
coupled GPCRs (e.g. mGluR2, 3; Reiner and Levitz, 2018). In the heart, noradrenaline binds to and 
activates the Gs-coupled β1 adrenergic receptor (β1AR), which increases myocardial contraction and 
heart rate (de Lucia et al., 2018), while acetylcholine binds to and activates the Gi/o-coupled musca-
rinic M2 receptor, which reduces heart rate and contraction (Wess et al., 2007). Although the func-
tions of many GPCR signals have been studied, exactly in which cells, when, and how they function 
have not yet been fully elucidated. To solve these unknowns, it is necessary to precisely manipulate 
the location and timing of GPCR signaling.

Several techniques have been developed to control the activity and signaling of target cells. 
Chemogenetics using artificially designed GPCRs that are derived from muscarinic M3 receptor and 
can be activated by chemical ligands (Designer Receptor Exclusively Activated by Designer Drugs, 
DREADD) (Armbruster et al., 2007; Kaganman, 2007; Roth, 2016; Wess et al., 2013) has been used 
to control GPCR signaling, but achieving temporally and spatially precise control has been difficult. In 
contrast, optogenetics using rhodopsins, which bind to a chromophore retinal and can regulate their 
function in a light-sensitive manner, has been used to control and study cell functions. Light-gated 
microbial channelrhodopsins (e.g. ChR2) and light-driven microbial ion pump-type rhodopsins (e.g. 
halorhodopsin, NpHR) have been exploited to control the activities of neurons and/or cardiomyocytes 
(Arrenberg et al., 2009; Arrenberg et al., 2010; Boyden et al., 2005; Deisseroth and Hegemann, 
2017). However, these rhodopsins induce depolarization or hyperpolarization of the membrane 
potential of cells in a light stimulus-dependent manner at a precise timing and locations, but do not 
directly control GPCR signaling. In contrast, animal rhodopsins are light-activated G-protein-coupled 
proteins and can activate various signaling cascades, like GPCRs for neurotransmitters and hormones, 
while displaying a diversity of wavelength sensitivity and G-protein selectivity (Koyanagi et al., 2021; 
Koyanagi and Terakita, 2014; Terakita, 2005).

Most animal rhodopsins bind to 11-cis retinal, which is isomerized to an all-trans form upon light 
absorption. This isomerization triggers a conformational change of rhodopsins and activates signal 
transduction cascades via the coupled G protein. Vertebrate visual rhodopsins release the chromo-
phore all-trans retinal after light absorption and become an inactive form (bleach). The photoregen-
eration of these rhodopsins depends on the enzymes that generate 11-cis retinal, such as retinal 
isomerases, which are specifically expressed in photoreceptor organs (Koyanagi et  al., 2021; 
Koyanagi and Terakita, 2014; Terakita, 2005; Terakita et al., 2015). Therefore, the photosensitivity 
of visual rhodopsins might not be very stable in cells other than photoreceptor organs. In contrast, 
animal rhodopsins other than vertebrate visual rhodopsins retain 11-cis retinal and convert into photo-
products having the all-trans form (active state) upon light absorption, and these then revert to the 
original (inactive) dark state by subsequent light absorption, so they are bleach-resistant and are 
called bistable opsins (Koyanagi et al., 2005; Koyanagi et al., 2021; Koyanagi and Terakita, 2014; 
Terakita and Nagata, 2014; Terakita et al., 2015; Tsukamoto and Terakita, 2010; Tsukamoto et al., 
2005). Although chimeric optogenetic tools have been engineered using visual opsins with cyto-
plasmic loops and the C-terminal tail of adrenergic receptors (Opto-XRs) (Airan et al., 2009; Kim 
et al., 2005; Siuda et al., 2015; Spangler and Bruchas, 2017), bistable opsins have the advantage of 
stable optical control of GPCR signaling in various tissues.

A number of Gq-coupled bistable rhodopsin families have been identified as visual opsins in arthro-
pods and molluscs, and as melanopsin in both vertebrates and invertebrates (Koyanagi and Terakita, 
2008). Among them, jumping spider rhodopsin-1 (SpiRh1) was isolated from the jumping spider 
Hasarius adansoni and was reported to activate the Gq-signaling cascade in a green light-dependent 
manner (Koyanagi et al., 2008; Nagata et al., 2012). Mosquito Opn3 (MosOpn3) is an invertebrate 
homolog of vertebrate Opn3 (Hill et al., 2002). The Opn3 group contains multiple members including 
Opn3, originally called encephalopsin, teleost multiple tissue (TMT) opsin, etc. (Blackshaw and 
Snyder, 1999; Koyanagi et al., 2021; Moutsaki et al., 2003; Terakita, 2005; Terakita and Nagata, 
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2014). When MosOpn3 was expressed in mammalian cultured cells, it bound to both 11-cis and 13-cis 
retinal (Koyanagi et al., 2013). MosOpn3 light-dependently activated Gi- and Go-type G proteins 
in vitro and initiated a Gi-signaling cascade in cultured cells (Koyanagi et al., 2013). Parapinopsin, 
which belongs to another group of bistable opsins, serves as a Gt-coupled opsin, like vertebrate visual 
opsins, and can also activate Gi-type G protein in vitro and in mammalian cultured cells (Kawano-
Yamashita et al., 2015; Koyanagi et al., 2021; Terakita et al., 2004; Tsukamoto et al., 2009). The 
stable photoproduct (active form) of parapinopsin has its absorption maximum at ~500 nm, which is 
considerably distant from that of the dark state (~360 nm). Therefore, light illumination with different 
wavelengths was shown to switch on and off G-protein-mediated signaling via parapinopsin in vitro 
and in cultured cells (Kawano-Yamashita et al., 2015; Koyanagi et al., 2004; Wada et al., 2018). 
MosOpn3 and lamprey parapinopsin (LamPP) were used to suppress neuronal activities in a light 
stimulation-dependent manner in mammals (Copits et al., 2021; Mahn et al., 2021; Rodgers et al., 
2021) and in Caenorhabditis elegans (Koyanagi et  al., 2022). In addition to these rhodopsins, a 
Gq-coupled rhodopsin, neuropsin (also known as Opn5), was used to induce the activation of neurons, 
the intestine, and heart (Dai et al., 2022; Wagdi et al., 2022). Optogenetic activation of Gs-coupled 
rhodopsin jellyfish opsin (JellyOp) and Gi-coupled long wavelength-sensitive cone opsin (LWO) were 
shown to accelerate and suppress the excitation of cardiomyocytes, respectively (Cokić et al., 2021; 
Makowka et al., 2019). However, it remains unclear whether they can control GPCR signaling in other 
types of cells and what mechanisms underlie optogenetic controls of GPCR signaling in each cell type. 
Zebrafish larvae (especially pigment-deficient mutants) are transparent, so zebrafish have been used 
for analyses using optogenetic tools (Antinucci et al., 2020; Arrenberg et al., 2010; Bernal Sierra 
et al., 2018; Umeda et al., 2013). In this study, we examined the optogenetic activity of Gq- and 
Gi/o-coupled animal bistable rhodopsins (listed in Table 1) by expressing them in hindbrain reticulo-
spinal V2a neurons that drive locomotion and cardiomyocytes in zebrafish.

Results
Activity of G-protein-coupled bistable rhodopsins in human cells
To examine the activity of G-protein-coupled rhodopsins in cells, we created two DNA constructs that 
expressed a rhodopsin and a fluorescent protein as a fusion protein, or that expressed a carboxy-
terminal Flag epitope-tagged rhodopsin and a fluorescent protein separately using a viral 2 A (P2A) 
peptide system. We first expressed a fusion protein of Gq-coupled SpiRh1 (Koyanagi et al., 2008; 
Nagata et al., 2012) and TagCFP (SpiRh1-TagCFP), or Flag-tagged SpiRh1 and TagCFP separately 
(SpiRh1-P2A-TagCFP), in human embryonic kidney 293S (HEK293S) cells. The effect of photoactivation 
of these proteins on intracellular Ca2+ level was examined by the aequorin assay (Bailes and Lucas, 
2013; Figure 1A). Light stimulation increased intracellular Ca2+ at a much higher level for SpiRh1-P2A-
TagCFP-expressing cells than SpiRh1-TagCFP-expressing cells, suggesting that the expression level 
and/or activity of bistable rhodopsins is higher with a Flag epitope-tagged protein than with a large 
fluorescent-fused protein (Figure 1B). The light stimulation-dependent increase in intracellular Ca2+ 
with SpiRh1 was suppressed by treatment with a Gαq inhibitor YM254890 (Figure 1E), confirming 
that SpiRh1 mediates Gq-mediated signaling. We created similar Flag-tagged expression constructs 
for bistable Gq- and Gi/o-coupled rhodopsins from various invertebrate and vertebrate animals listed 
in Table 1 and expressed these rhodopsins in HEK293S cells. The effect of photoactivation of these 
rhodopsins on intracellular Ca2+ or cAMP level was examined by the aequorin and noi GloSensor 
cAMP assays (Bailes and Lucas, 2013; Figure  1A). These included Gq-coupled SpiRh1[S186F], a 
SpiRh1 mutant that has a maximal sensitivity in the UV region (Nagata et al., 2019) as well as Gi/o--
coupled MosOpn3 (carboxy-terminal truncated MosOpn3 was used) (Koyanagi et al., 2013), puff-
erfish TMT opsin (PufTMT) (Koyanagi et al., 2013), LamPP (Koyanagi et al., 2004), and zebrafish 
parapinopsin1 (ZPP1) (Koyanagi et al., 2015). Stimulation of SpiRh1- and SpiRh1[S186F]-expressing 
cells with 500 and 410 nm light, respectively, increased intracellular Ca2+ (Figure 1C). Light stimula-
tion of cells expressing MosOpn3, PufTMT, LamPP, or ZPP1 with 500 (for MosOpn3 and PufTMT) or 
410 nm (for LamPP and ZPP1) light reduced intracellular cAMP levels to similar extents (Figure 1D). 
These data indicate that these Flag-tagged G-protein-coupled rhodopsins can be used for optoge-
netic manipulation of Gq- and Gi/o-mediated signaling in human HEK293S cells.
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Figure 1. Activity of G-coupled bistable rhodopsins in HEK293S cells. (A) Schematic of intracellular Ca2+ or cAMP measurements in HEK293S cells. 
Intracellular Ca2+ and cAMP concentrations in rhodopsin-expressing HEK293S cells were measured using the aequorin m2 assay or the GloSensor 20 F 
assay, respectively. (B) Comparison of optogenetic activities of Gq-coupled Spider Rh1 (SpiRh1) expressed using TagCFP fusion protein and the P2A-
TagCFP system. HEK293S cells were transfected with an expression plasmid for the fusion protein of SpiRh1 and TagCFP (SpiRh1-TagCFP, left panel), or 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.83974
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Optogenetic activation of zebrafish locomotion circuit by Spider Rh1
To evaluate the optogenetic activities of the G-protein-coupled rhodopsins in vivo, we expressed them 
in either hindbrain reticulospinal V2a neurons that were reported to drive locomotion (Kimura et al., 
2013) or in cardiomyocytes of zebrafish larvae by using the Gal4-UAS system. Transgenic (Tg) zebrafish 
Tg(vsx2:GAL4FF), which is also known as Tg(chx10:GAL4), express a modified version of the transcrip-
tional activator GAL4-VP16 (Asakawa et al., 2008) in hindbrain reticulospinal V2a neurons (Kimura 
et al., 2013). Tg(myl7:GAL4FF), in which GAL4FF was expressed under the control of the promoter 
of the cardiac myosin light chain gene myl7 (Huang et al., 2003), was used to express rhodopsins 
in cardiomyocytes. We generated stable transgenic lines Tg(UAS:opto-tool) that can express Flag-
tagged rhodopsins with P2A-TagCFP under the control of 5xUAS (upstream activating sequences of 
the yeast Gal1 gene) and the zebrafish hsp70l promoter (Muto et al., 2017), and mCherry in the heart. 
We used an EGFP fusion protein of the channelrhodopsin wide receiver (ChRWR), which is a chimeric 
protein of Chlamydomonas reinhardtii channelrhodopsins ChR1 and ChR2, as a positive control 
(Kimura et al., 2013; Umeda et al., 2013; Wang et al., 2009). First, we crossed Tg(vsx2:GAL4FF);T-
g(UAS:RFP) and Tg(UAS:opto-tool) to express various G-protein-coupled rhodopsins and ChRWR-
EGFP, listed in Table 1, in hindbrain reticulospinal V2a neurons. The expression of these rhodopsins 
was examined by TagCFP or fused EGFP expression in 3  days post fertilization (3-dpf) Tg larvae, 
and was further analyzed by immunohistochemistry (Figure 2B, Table 1). Since transgene-mediated 
protein expression depends on the nature of the introduced gene, the transgene-integrated sites and 
copy number, we established multiple Tg lines and analyzed stable Tg lines (F1 or later generations) 
that expressed equally high - but varying - levels of these tools. We irradiated a hindbrain area of 3-dpf 
Tg larvae expressing the G-protein-coupled rhodopsins with light of wavelength near their absorption 
maxima to stimulate each rhodopsin, using a patterned illuminator (Figure 2A, Table 1). Six consec-
utive stimulus trials were analyzed for 8–12 rhodopsin-expressing or non-expressing sibling control 
larvae. Tail movements after light stimuli were monitored (Figure 2C–E, Figure 2—videos 1–3). The 
rate at which light application was able to induce tail movements (locomotion rate, Figure 3A), the 
time from irradiation to the onset of tail movements (latency, Figure 3B), the duration of tail move-
ments (Figure 3C), and the amplitude of tail movements (strength, Figure 3D), were measured.

Among the G-protein-coupled rhodopsins examined, we found that SpiRh1 and SpiRh1[S186F] 
were most potent in inducing tail movements. Immunohistochemistry with anti-Flag or GFP antibodies 
revealed ChRWR expression on the cell surface of hindbrain reticulospinal V2a neurons was mosaic 
due to methylation-dependent silencing of the UAS system (Akitake et al., 2011), while SpiRh1 and 
SpiRh1[S186F] were uniformly expressed in these neurons (Figure 2B). As was previously reported 
(Kimura et al., 2013), light stimulation (0.4 mW/mm2) of reticulospinal V2a neurons with ChRWR for 
100 ms immediately evoked tail movements (locomotion rate 73.8 ± 9.48%, latency 0.0555±0.00879 s) 
(Figures 2E, 3A and B, Figure 2—video 1). Activation with SpiRh1 and SpiRh1[S186F] required longer 
stimulation (1 s) and 3–5 s to initiate tail movements (SpiRh1 locomotion rate 89.0 ± 3.53%, latency 
3.23±0.315  s; SpiRh1[S186F], locomotion rate 91.4 ± 3.9%, latency 4.12±0.246  s, Figures  2C, D, 
3A and B, Figure 2—videos 2 and 3). However, stimulation with SpiRh1 and SpiRh1[S186F] elicited 
tail movements for a significantly longer duration than ChRWR (SpiRh1 4.37±0.691, SpiRh1[S186F] 
3.17±0.735 s, ChRWR 0.684±0.226 s, Figure 3C). Light stimulation of control sibling larvae that did 

for that of Flag-tagged SpiRh1, porcine teschovirus 2 A peptide, and TagCFP (SpiRh1-P2A-TagCFP, right panel). Transfected cells were incubated with 
11-cis retinal and stimulated by different intensities of 500 nm light (0.1%, 1%, or 10% of the light intensity, with 0.106 mW/mm2 as 100%). Intracellular 
Ca2+ concentration was measured by using aequorin m2 and is indicated as a ratio to the unstimulated state in the graphs. (C) Comparison of activities 
of Flag-tagged SpiRh1 and SpiRh1 [S186F]. Transfected cells were stimulated by 500 nm (green arrow, 0.106 mW/mm2) or 410 nm (purple arrow, 0.0194 
mW/mm2) light and intracellular Ca2+ concentration was measured. (D) Light-stimulus-dependent reduction of intracellular cAMP level by Gi/o-coupled 
mosquito Opn3 (MosOpn3), pufferfish TMT (PufTMT), lamprey PP (LamPP), and zebrafish PP1 (ZPP1). HEK293S cells were transfected with expression 
plasmids for flagged-tagged Gi/o rhodopsins. Transfected cells were incubated with 11-cis retinal and stimulated by 500 nm (green arrow) or 410 nm 
(purple arrow) light. Intracellular cAMP concentration was measured with GloSensor 20 F and is indicated as a ratio to the unstimulated state. (E) Effects 
of Gαq inhibitor YM254890 on SpiRh1. HEK293S cells transfected with an expression plasmid for SpiRh1 were incubated with 11-cis retinal alone (left 
panel) or with 11-cis retinal and YM254890 (right panel), and stimulated by 500 nm light. Intracellular Ca2+ concentration was measured.

The online version of this article includes the following source data for figure 1:

Source data 1. Data for Figure 1, activity of bistable rhodopsins in HEK293S cells.

Figure 1 continued

https://doi.org/10.7554/eLife.83974
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Figure 2. Activation of reticulospinal V2a neurons by Gq-coupled bistable rhodopsins. (A) Schematic of experimental devices for induction of 
swimming behavior and a larva embedded in agarose. The hindbrain region was irradiated with light by using a patterned illuminator. Tail (caudal 
fin) movements were monitored by a high-speed camera with infrared light. (B) Expression of SpiRh1, SpiRh1[S186F], and channel rhodopsin 
wide receiver (ChRWR) in hindbrain reticulospinal V2a neurons. 3-dpf (days post fertilization) Tg(vsx2:GAL4FF);Tg(UAS-hsp70l:SpiRh1-Flag-
P2A-TagCFP, myl7:mCherry);Tg(UAS:RFP), Tg(vsx2:GAL4FF);Tg(UAS-hsp70l:SpiRh1[S186F]-Flag-P2A-TagCFP, myl7:mCherry);Tg(UAS:RFP) and 
Tg(vsx2:GAL4FF);Tg(UAS:ChRWR-EGFP);Tg(UAS:RFP) larvae were fixed and stained with anti-Flag or anti-GFP (EGFP, green), and anti-DsRed (RFP, 
magenta) antibodies. Inset: higher magnification views of the boxed areas showing double-labeled neurons. (C, D, E) Tail movements of 3-dpf Tg 
larvae expressing SpiRh1 (C), SpiRh1 [S186F] (D), and ChRWR (E) in the reticulospinal V2a neurons after light stimulation. The hindbrain area was 
stimulated with light (0.4 mW/mm2) of wavelengths of 520 nm (for SpiRh1), 405 nm (for SpiRh1[S186F]), and 470 nm (for ChRWR) for 1 s (for SpiRh1 and 
SpiRh1[S186F]) or 100 ms (for ChRWR). Typical movies are shown in Figure 2—videos 1–3. Scale bar = 150 μm in (B), 10 μm in the insets of (B).

The online version of this article includes the following video and source data for figure 2:

Source data 1. Data for Figure 2C–E, tail movements of Tg larvae expressing SpiRh1, SpiRh1[S186F], and ChRWR.

Figure 2—video 1. Tail movements in a larva expressing ChRWR-EGFP in reticulospinal V2a neurons.

https://elifesciences.org/articles/83974/figures#fig2video1

Figure 2—video 2. Tail movements in a larva expressing SpiRh1 in reticulospinal V2a neurons.

https://elifesciences.org/articles/83974/figures#fig2video2

Figure 2—video 3. Tail movements in a larva expressing SpiRh1[S186F] in reticulospinal V2a neurons.

https://elifesciences.org/articles/83974/figures#fig2video3

https://doi.org/10.7554/eLife.83974
https://elifesciences.org/articles/83974/figures#fig2video1
https://elifesciences.org/articles/83974/figures#fig2video2
https://elifesciences.org/articles/83974/figures#fig2video3
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Figure 3. Locomotion induced by SpiRh1, SpiRh1[S186F], and ChRWR. (A) Light stimulus-dependent locomotion rates of 3-dpf Tg larvae expressing 
SpiRh1, SpiRh1[S186F] and ChRWR in hindbrain reticulospinal V2a neurons. Sibling larvae that did not express the tools were used as controls. The 
hindbrain area of the larvae was irradiated with light (0.4 mW/mm2) of wavelengths of 520 nm for 1 s (SpiRh1), 405 nm for 1 s (SpiRh1[S186F]), and 
470 nm for 100 ms (ChRWR). Six consecutive stimulus trials were analyzed for 8 or 12 larvae of each Tg line (n=12 for SpiRh1 and SpiRh1[S186F], n=8 for 
ChRWR). For each larva, the average percentage of trials in which tail movement was elicited was calculated as the locomotion rates and plotted in 
graphs. Wilcoxon rank sum test (SpiRh1 vs control, p=0.000192; SpiRh1[S186F] vs control, p=0.00664; ChRWR vs control, p=0.000792). (B, C, D) Light 
stimulus-evoked tail movements of latency (B), duration (C), and strength (D). The time from the start of light application to the first tail movement 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.83974
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not express the rhodopsins scarcely induced tail movements, although stimulation with 405 nm light 
induced locomotion at a low frequency (locomotion rate of control larvae for SpiRh1, SpiRh1[S186F], 
ChRWR were 15.0 ± 5.88%, 35.0 ± 10.9%, 8.75 ± 3.33%, respectively, Figure  3A). Light stimula-
tion with SpiRh1, SpiRh1[S186F], and ChRWR induced tail movements similarly in trials 1 and 6 
(Figure 3—figure supplement 1). To analyze the photosensitivity of these rhodopsins, we applied 
light of various intensities (0.4, 0.2, and 0.1 mW/mm2) for 1 s. The rate of locomotion induced by 
ChRWR decreased when light intensity was reduced, that is, at 0.2 and 0.1 mW/mm2, while that with 
SpiRh1 and SpiRh1[S186F] did not change significantly when light intensity was reduced to 0.1 mW/
mm2 (Figure 3E). The latency and duration of tail movements induced with SpiRh1 and SpiRh1[S186F] 
did not vary with different light intensities (Figure  3—figure supplement 2). These data indicate 
that optical activation of reticulospinal V2a neurons with SpiRh1 and SpiRh1[S186F] is robust and 
long-lasting, although it requires longer stimulation and longer latency than channelrhodopsin. In 
G-protein-mediated signaling, it is generally accepted that Gq activates PLCβ and thereby gener-
ates IP3, which induces Ca2+ influx from the endoplasmic reticulum. To examine the level of intracel-
lular Ca2+ level, we expressed SpiRh1 or SpiRh1[S186F] with GCaMP6s in hindbrain reticulospinal V2a 
neurons. We found that light stimulation with these Gq-coupled rhodopsins increased the intracellular 
Ca2+ level in these neurons (Figure 3F and G, Figure 3—videos 1 and 2).

Optogenetic manipulation of zebrafish heart by Gi/o-coupled 
rhodopsins
Gi/o-coupled bistable rhodopsins MosOpn3 and LamPP were used to suppress neurotransmitter 
release (Copits et al., 2021; Mahn et al., 2021). We expressed Gi/o-coupled rhodopsin MosOpn3 
and LamPP in hindbrain reticulospinal V2a neurons and examined whether they could suppress tail 
movements induced by a visual stimulus (white light). However, light stimulation of the hindbrain in 
zebrafish expressing MosOpn3 or LamPP did not suppress tail movements (Table 1). It is currently 

was defined as latency (s), and the time from the beginning to the end of the first tail movement was defined as duration (s). The maximum distance 
the caudal fin moved from the midline divided by body length was measured as strength. One-way ANOVA with Tukey’s post hoc test (latency 
SpiRh1 vs SpiRh1[S186F], p=0.0424; SpiRh1 vs ChRWR, p=1.58e-08; SpiRh1[S186F] vs ChRWR, p=7.40 e-11; duration SpiRh1 vs ChRWR; p=0.00245; 
SpiRh1[S186F] vs ChRWR; p=0.0469). (E) Locomotion rates evoked by the stimulus light of various intensities. For each Tg line and each condition, six 
consecutive stimulus trials were analyzed for 4 or 12 larvae (n=12 for 0.4 mW/mm2 light stimulation with SpiRh1 and SpiRh1[S186F], n=4 for others) and 
the average locomotion rates were calculated. For comparison, Tg fish expressing ChRWR were also irradiated for 1 s. One-way ANOVA with Tukey’s 
post hoc test (ChRWR 0.4 mW/mm2 vs 0.2 mW/mm2, p=0.0181; 0.4 mW/mm2 vs 0.1 mW/mm2, p=0.0124; 0.2 mW/mm2 vs 0.1 mW/mm2, p=0.966). (F, 
G) Light-evoked Ca2+ increased with SpiRh1 (F) and SpiRh1[S186F] (G) in hindbrain V2a neurons. 3-dpf Tg(vsx2:GAL4FF);Tg(UAS-hsp70l:SpiRh1-Flag-
P2A-TagCFP, myl7:mCherry);Tg(UAS-hsp70l:GCaMP6s) and Tg(vsx2:GAL4FF);Tg(UAS-hsp70l:SpiRh1[S186F]-Flag-P2A-TagCFP, myl7:mCherry);Tg(UAS-
hsp70l:GCaMP6s) larvae were used. Sibling larvae that expressed GCaMP6s but did not express SpiRh1 or SpiRh1[S186F] were used as controls. 
The hindbrain area was irradiated and GCaMP6s fluorescence was detected with a fluorescence detection filter (excitation 470–495 nm, emission 
510–550 nm) for SpiRh1. For SpiRh1[S186F], GCaMP6s fluorescence was detected after 1 s of 405 nm light application and filter conversion (about 4 s, 
shown in gray shade). Two larvae for each condition (SpiRh1, SpiRh1[S186F], and controls) were analyzed and three consecutive trials were analyzed. 
The change in fluorescence intensity of GCaMP6s (ΔF/F) is indicated as a ratio to the fluorescence intensity at the start of stimulation (F) for SpiRh1 and 
before (G) the start of stimulation with 405 nm light for SpiRh1[S186F]. The ΔF/F of Tg larvae expressing SpiRh1 or SpiRh1[S186F] is indicated by green 
lines whereas that of control larvae is indicated by black lines. Data from the three light applications are shown. Ca2+ responses were significantly higher 
in Tg larvae expressing SpiRh1 and SpiRh1[S186F] than control larvae. Linear mixed-effects model, * p<0.05, ** p<0.01, *** p<0.001, ns, not significant. 
Means and SEMs are shown.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 3:

Source data 1. Data for Figure 3, locomotion inducced by SpiRh1, SpiRh1[S186F], and ChRWR.

Figure supplement 1. Effect of trial number on locomotion rate.

Figure supplement 1—source data 1. Data for Figure 3—figure supplement 1, effects of trial number on locomotion rate.

Figure supplement 2. Latency and duration of locomotion induced with light of various intensities.

Figure supplement 2—source data 1. Data for Figure 3—figure supplement 2, latency and duration of locomotion.

Figure 3—video 1. Ca2+ imaging of hindbrain reticulospinal V2a neurons of a larva expressing SpiRh1 and GCaMP6s.

https://elifesciences.org/articles/83974/figures#fig3video1

Figure 3—video 2. Ca2+ imaging in hindbrain reticulospinal V2a neurons of a larva expressing SpiRh1[S186F] and GCaMP6s.

https://elifesciences.org/articles/83974/figures#fig3video2

Figure 3 continued

https://doi.org/10.7554/eLife.83974
https://elifesciences.org/articles/83974/figures#fig3video1
https://elifesciences.org/articles/83974/figures#fig3video2
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unknown why Gi/o-coupled rhodopsins did not suppress the activity of reticulospinal V2a neurons. 
Optogenetic control of cardiac function in zebrafish (Arrenberg et al., 2010) and mammals (Nussino-
vitch and Gepstein, 2015; Vogt et al., 2015; Watanabe et al., 2017) was reported previously. Thus, 
we examined whether Gi/o-coupled rhodopsins could be used to control cardiomyocyte function in 
vivo. By crossing Tg(myl7:GAL4FF) and Tg(UAS:opto-tool), we expressed Gi/o-coupled rhodopsins in 
cardiomyocytes. We again established multiple Tg lines and analyzed stable Tg lines that expressed 
equally high - but varying - levels of these tools. Immunohistochemical staining revealed comparable 
expression of these Gi/o-coupled rhodopsins in zebrafish cardiomyocytes (Figure  4A, Figure  4—
figure supplement 4, Table 1). We irradiated the entire heart area of 4-dpf Tg larvae expressing the 
Gi/o-coupled rhodopsins with 0.5 mW/mm2 light of appropriate wavelengths (520 nm for MosOpn3, 
470 nm for PufTMT, and 405 nm for LamPP) for 1  s. We applied light stimuli to each larva as six 
trials at intervals of 10  min and analyzed four Tg and control larvae for each type of rhodopsin. 
Videos of heartbeats (HBs) before and after light stimulation were recorded (Figure 4—video 1 for 
MosOpn3, Figure 4—video 2 for PufTMT, Figure 4—video 3 for LamPP). HBs were analyzed and 
heart rates were calculated (Figure 4B and C). Cardiac arrest rate, latency to cardiac arrest, and time 
to resumption of HB were determined (Figure 4D, E and F). Activation of the Gi/o-coupled rhodop-
sins MosOpn3, PufTMT, and LamPP in the heart led to cardiac arrest within approximately 1 s in all Tg 
larvae examined (812±198 ms for MosOpn3, 955±230 ms for PufTMT, and 905±153 ms for LamPP), 
but not in control sibling larvae (Figure 4B, C, D and E, Figure 4—videos 1–3). The first HB occurred 
about 10 s after cardiac arrest (8.83±5.13 s for MosOpn3, 5.67±2.49 s for PufTMT, and 12.1±1.48 s 
for LamPP, Figure 4F), but HBs gradually recovered and took at least 1 min (sometimes a few minutes) 
to return to normal (Figure 4B and C, Figure 4—videos 1–3). In trials 1 and 6, there was no signifi-
cantly change in cardiac arrest following photoactivation by MosOp3 and LamPP, while a slight but 
significant difference was observed for PufTMT (Figure 4—figure supplement 1). These data suggest 
that MosOpn3, PufTMT, and LamPP are efficient optogenetic tools to control the function of cardio-
myocytes in zebrafish.

To analyze how Gi/o-coupled rhodopsin induces cardiac arrest, we compared the effect of photo-
activation of MosOpn3, anion channelrhodopsin GtACR1, and cation channelrhodopsin ChrimsonR on 
heart contraction (Figure 4G, Figure 4—video 4). GtACR1a and ChrimsonR can induce hyperpolar-
ization and depolarization, respectively, in neurons (Antinucci et al., 2020; Govorunova et al., 2015; 
Klapoetke et al., 2014). Photoactivation of GtACR1 and ChrimsonR in cardiomyocytes for 5 s resulted 
in an increase and decrease, respectively of heart size. Photoactivation of MosOpn3 led to an increase 
in heart size, similar to GtACR1, suggesting that photoactivation of MosOpn3 suppresses heart 
contraction and induces cardiac arrest (Figure 4G, Figure 4—video 4). To analyze the photosensitivity 
of Gi/o-coupled rhodopsins, we applied light of various intensities for 1 s and examined the effect 
on HBs (Figure 4H, Figure 4—figure supplement 2). Cardiac arrest was induced and HB frequency 
remained low for over 20 s after 0.05 mW/mm2 light stimulation of MosOpn3 for 1 s. Photoactivation 
of PufTMT and LamPP at lower light intensities (0.2 or 0.05 mW/mm2) resulted in cardiac arrest at 
lower rates, but faster HB recovery than stimulation with 0.5 mW/mm2 light (Figure 4H, Figure 4—
figure supplement 2). These data indicate that MosOpn3 more photosensitively suppressed HBs than 
PufTMT and LamPP in the zebrafish heart. We further examined atrial-ventricular (AV) conductivity by 
measuring the time difference between atrial and ventricular contractions before and after light stim-
ulation when HBs had slightly recovered. There was no significant difference in AV conductivity before 
and after light stimulation (Figure 4—figure supplement 3).

Photoactivation of ZPP1 in the heart induced cardiac arrest for several seconds, while light stimulus-
dependent cardiac arrest was not observed unless the time interval between stimuli exceeded 2–3 hr 
(Figure 4—figure supplement 4, Table 1). Photoactivation of SpiRh1 or SpiRh1[S186F] in cardiomyo-
cytes did not induce cardiac arrythmia or arrest (Table 1).

Switchable control of heartbeats by Gi/o-coupled rhodopsins
Bistable rhodopsins convert to active states upon light stimulation, and then revert to the original 
inactive dark state by subsequent light absorption. Thus, the activity of these rhodopsins can be 
switched off by light stimulation after activation. The activation and inactivation wavelengths are close 
to each other for MosOpn3 and PufTMT, but apart for LamPP (Table 1). We assessed inactivation of 
the Gi/o-coupled rhodopsins by sustained light stimulation. We expressed MosOpn3, PufTMT, or 

https://doi.org/10.7554/eLife.83974
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Figure 4. Inhibition of cardiomyocytes by Gi/o-coupled bistable rhodopsins. (A) Expression of Gi/o-coupled rhodopsins MosOpn3, PufTMT, and LamPP 
in zebrafish cardiomyocytes. 4-dpf Tg(myl7:GAL4FF);Tg(UAS:opto-tool-Flag-P2A-TagCFP, myl7:mCherry) larvae were fixed and stained with anti-Flag 
(green) and anti-DsRed (mCherry: magenta). (B, C) Heartbeat (HB) monitoring by change in luminosity (AU: arbitrary units) (B) and the average relative 
HB frequency (C) of four larvae expressing MosOpn3, PufTMT, and LamPP in cardiomyocytes. The heart area of larvae expressing MosOpn3, PufTMT, 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.83974
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LamPP together with GCaMP6s in cardiomyocytes, and simultaneously monitored intracellular Ca2+ 
and HBs. Continuous stimulation of MosOpn3 with 0.5 mW/mm2 light (470–495 nm) initially led to 
cardiac arrest and a reduction in intracellular Ca2+ concentration in both the atrium and ventricle of the 
heart within 20 s. However, HBs resumed and intracellular Ca2+ gradually increased around 40 s during 
light stimulation, and the HBs returned to a steady state at around 70 s (Figure 5A, Figure 5—video 
1). Continuous light stimulation (0.5 mW/mm2, 470–495 nm) of PufTMT in the heart caused cardiac 
arrest and a reduction in intracellular Ca2+ concentration within about 5 s, followed by resumption of 
HBs in 5–10 s, and the return to a steady state at around 20 s (Figure 5B). These data suggest that 
sustained light stimulation can activate and subsequently inactivate MosOpn3 and PufTMT due to 
light adaptation. Stimulation of LamPP with 405 nm light in the heart led to cardiac arrest and a reduc-
tion in Ca2+, while subsequent sustained stimulation with 470–495 nm light recovered both heart rate 
and Ca2+ concentration (Figure 5C, D and E, Figure 5—videos 2 and 3). Therefore, the activity of 
LamPP can be turned on and off by using light of different wavelengths in the zebrafish heart.

Furthermore, we analyzed the light adaptation of Gi/o-coupled rhodopsins by repeating prolonged 
stimulation with light of a wavelength that only activates bistable rhodopsin. The hearts of Tg larvae 
expressing MosOpn3 or LamPP were irradiated with 0.5 mW/mm2 light of 520  nm for MosOpn3 
or 0.4 mW/mm2 light of 405 nm for LamPP for 80 s in all three trials at 20 min intervals. During the 
photoactivation of MosOpn3, HBs recovered slightly after about 40  s in all trials. In contrast, HBs 
gradually recovered during the photoactivation of LamPP (Figure 5—figure supplement 1). Thus, 

and LamPP in cardiomyocytes that were stimulated with 520, 470, and 405 nm light (0.5 mW/mm2), respectively, for 1 s. Six consecutive stimulus trials 
were analyzed for four rhodopsin-expressing larvae of each Tg line. The entire heart was manually set as the region of interest (ROI), and luminosity in 
the ROI was measured. The change in luminosity reflects the HB. The relative HB frequency was calculated from the HB data during 1 s before and after 
each time point. Six consecutive stimulus trials were analyzed for four rhodopsin-expressing larvae and four control larvae of each Tg line (MosOpn3, 
PufTMT, and LamPP). Typical HB data are shown in (B) and the average HB frequency for 24 trials are shown in (C). Gray shade indicates SEM. 
(D) Cardiac arrest rates. Wilcoxon rank sum test (MosOpn3, PufTMT, and LamPP, p=0.0131). (E, F) Latency to cardiac arrest (E), and time to resumption 
of HBs (F) with MosOpn3, PufTMT, and LamPP by light stimulation. One-way ANOVA followed by Tukey’s post hoc test was used for statistical analyses. 
(G) Heart size after activation of MosOpn3, GtACR1, and ChrimsonR in the heart. The heart area in the Tg larvae expressing MosOpn3, GtACR1-EYFP, 
or ChrimsonR-tdTomato was irradiated by a fluorescence detection filter (excitation 530–550 nm) for 5 s. The size of the entire heart area was measured, 
and the ratio to the size at the onset of cardiac arrest (t=0) was calculated and plotted in a graph. Five trials from two larvae for each condition were 
analyzed. The linear mixed effects model with Bonferroni-adjusted pairwise comparisons were used for statistical analyses. (H) Cardiac arrest rates 
induced by MosOpn3, PufTMT, and LamPP with light of various intensities. For MosOpn3 and PufTMT, one trial for 0.5 mW/mm2 and six consecutive 
trials for 0.2 or 0.05 W/mm2 were analyzed. For LamPP, one trial for 0.4 mW/mm2 and six consecutive trials for 0.2 and 0.05 W/mm2 were analyzed. One-
way ANOVA with Tukey’s post hoc test (PufTMT 0.5 mW/mm2 vs 0.05 mW/mm2, p=0.00386; 0.5 mW/mm2 vs 0.2 mW/mm2, p=0.0239; LamPP 0.4 mW/
mm2 vs 0.05 mW/mm2, p=0.0332). * p<0.05, ** p<0.01, *** p<0.001, ns: not significant. Means and SEMs are shown. Scale bar = 50 µm in (A).

The online version of this article includes the following video, source data, and figure supplement(s) for figure 4:

Source data 1. Data for Figure 4, inhibition of cardiomyocytes by Gi/o-coupled rhodopsins.

Figure supplement 1. Effect of trial number on heartbeats (HBs).

Figure supplement 1—source data 1. Data for Figure 4—figure supplement 1, effect of trial number on HBs.

Figure supplement 2. Change in heartbeats (HBs) after stimulation with light of various intensities.

Figure supplement 2—source data 1. Data for Figure 4—figure supplement 2, change in HBs after stimulation of light of various intensities.

Figure supplement 3. Time difference between atrial and ventricular contractions.

Figure supplement 3—source data 1. Data for Figure 4—figure supplement 3, time difference between atrial and ventricular contractions.

Figure supplement 4. Expression of ZPP1 and ZPP2 in cardiomyocytes.

Figure 4—video 1. Heartbeats in a larva expressing MosOpn3 in cardiomyocytes.

https://elifesciences.org/articles/83974/figures#fig4video1

Figure 4—video 2. Heartbeats in a larva expressing PufTMT in cardiomyocytes.

https://elifesciences.org/articles/83974/figures#fig4video2

Figure 4—video 3. Heartbeats in a larva expressing LamPP in cardiomyocytes.

https://elifesciences.org/articles/83974/figures#fig4video3

Figure 4—video 4. Changes in heart size caused by activation of MosOpn3, GtACR1, and ChrimsonR in cardiomyocytes.

https://elifesciences.org/articles/83974/figures#fig4video4

Figure 4 continued

https://doi.org/10.7554/eLife.83974
https://elifesciences.org/articles/83974/figures#fig4video1
https://elifesciences.org/articles/83974/figures#fig4video2
https://elifesciences.org/articles/83974/figures#fig4video3
https://elifesciences.org/articles/83974/figures#fig4video4
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during prolonged light stimulation, MosOpn3 maintained its active state for a relatively long period 
while LamPP transitioned to an inactive state more rapidly.

Gi/o-coupled rhodopsins suppress the heart’s function through GIRKs
To examine whether the optogenetic activity of MosOpn3, PufTMT, and LamPP depends on the acti-
vation of a Gi/o-type G protein, we treated the Tg fish expressing these rhodopsins with pertussis 

Figure 5. Switchable control of heartbeats by Gi/o-coupled bistable rhodopsins. (A, B) Average changes in fluorescence of GCaMP6s (ΔF/F) of 4-dpf 
larvae expressing MosOpn3 (A) or PufTMT (B), and GCaMP6s in cardiomyocytes. The heart area was irradiated with a fluorescence detection filter 
(excitation 470–495 nm, emission 510–550 nm) for the indicated period (n=2 for MosOpn3, n=4 for PufTMT). ΔF/F was calculated as a ratio to the 
fluorescence intensity of GCaMP6s at the start of stimulation. (C, D) HB monitoring by luminosity (AU) change (C) and average of relative HB frequency 
(n=2) (D) of 4-dpf larvae expressing LamPP in cardiomyocytes. The heart area was irradiated with 405 nm light (0.5 mW/mm2) for 1 s and then with a 
fluorescence detection filter (470–495 nm light) for the indicated period. Gray shading indicates SEMs (A, B, D). (E) Changes in ΔF/F of GCaMP6s of a 
larva expressing LamPP and GCaMP6s in the heart. The heart area was irradiated with 405 nm light (0.5 mW/mm2) for 1 s and then with a fluorescence 
detection filter (470–495 nm light) for the indicated period. GCaMP6s fluorescence was detected after light stimulation and filter conversion (5 s, shown 
in gray shading). ΔF/F was calculated as the ratio to the fluorescence intensity of GCaMP6s at the steady state (after the resumption of HBs). Blue and 
red lines indicate ΔF/F in the ventricle and atrium, respectively (A, B, E).

The online version of this article includes the following video, source data, and figure supplement(s) for figure 5:

Source data 1. Data for Figure 5, switchable control of HBs by Gi/o-coupled rhodopsins.

Figure 5—video 1. Ca2+ imaging in the heart of a larva expressing MosOpn3 and GCaMP6s.

https://elifesciences.org/articles/83974/figures#fig5video1

Figure 5—video 2. Changes in heartbeat (HB) following stimulation with light of different wavelengths in a larva expressing LamPP in cardiomyocytes.

https://elifesciences.org/articles/83974/figures#fig5video2

Figure 5—video 3. Changes in heartbeat (HB) following light stimulation of LamPP in cardiomyocytes.

https://elifesciences.org/articles/83974/figures#fig5video3

Figure supplement 1. Average relative heartbeat frequency during prolonged irradiation.

Figure supplement 1—source data 1. Data for Figure 5—figure supplement 1, average relative heartbeat frequency during prolonged irradiation.

https://doi.org/10.7554/eLife.83974
https://elifesciences.org/articles/83974/figures#fig5video1
https://elifesciences.org/articles/83974/figures#fig5video2
https://elifesciences.org/articles/83974/figures#fig5video3
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toxin (PTX), which induces ADP-ribosylation of Gαi and inhibits Gαi activity. For each Tg line, four 
PTX-treated and four non-treated control larvae were analyzed. We compared cardiac arrest time 
between PTX-treated fish and non-PTX-treated fish. Light-dependent activation of MosOpn3, PufTMT, 
or LamPP induced cardiac arrest. Cardiac arrest of these Gi/o-coupled rhodopsins was significantly 
suppressed by PTX treatment (Figure 6A, B, C and D, Figure 6—video 1), suggesting that optoge-
netic activity of these Gi/o-coupled rhodopsins requires the activation of the Gαi/o subunit.

Gi/o-coupled GPCRs are known to suppress adenylyl cyclase (AC) and reduce intracellular cAMP. 
They are also known to hyperpolarize cells by increasing K+ efflux through GIRKs (Hilger et  al., 
2018; Pierce et al., 2002; Rockman et al., 2002; Rosenbaum et al., 2009). To distinguish these 
two mechanisms, we treated Tg fish with BaCl2, an inhibitor of GIRKs, and compared cardiac arrest 
time between incubation with BaCl2 and water (control). For each Tg line, four BaCl2-treated and four 
non-treated control larvae were analyzed for each Tg line. The light stimulus-dependent cardiac arrest 
by MosOpn3, PufTMT, and LamPP was suppressed by incubation with BaCl2 (Figure 6E, F, G and H, 
Figure 6—video 2). The data suggest that the optogenetic activity of these Gi/o-coupled rhodopsins 
in the heart is dependent on GIRKs.

Discussion
Availability of animal bistable rhodopsins
We examined the optogenetic activities of G-protein-coupled bistable rhodopsins derived from various 
vertebrate and invertebrate animals in zebrafish neurons and cardiomyocytes. We found that Gq-cou-
pled SpiRh1 and its derivative SpiRh[S186F] could activate Gq-mediated signaling in reticulospinal 
V2a neurons. Gi/o-coupled MosOpn3, PufTMT, and LamPP inhibited heart function when stimulated 
by light stimulation. Given that these bistable rhodopsins are sensitive to stimulating light of diverse 
wavelengths, they may be useful for manipulating various cell and tissue functions in vivo using light of 
different wavelengths. Animal bistable rhodopsins are endogenously expressed in various regions of 
the brain including photoreceptive tissues such as pineal and parapineal organs (Kawano-Yamashita 
et al., 2011; Kawano-Yamashita et al., 2020; Kawano-Yamashita et al., 2015; Kawano-Yamashita 
et al., 2007; Koyanagi et al., 2004; Koyanagi et al., 2015; Shen et al., 2021; Wada et al., 2012; 
Wada et al., 2021; Wada et al., 2018). If a wide area of the brain of Tg zebrafish is irradiated with 
white light, it may also activate endogenous bistable rhodopsins in addition to transgene-expressed 
rhodopsins and affect the functions of neurons or other tissues. It is, therefore, important to compare 
the effects of light stimulation between Tg and non-Tg control fish. In this study, patterned illumi-
nation of a specific area of the brain or heart with light of selected wavelength lights enabled us to 
control the functions of target cells in Tg but not in non-Tg fish (Figures 3A and 4D).

The bistable rhodopsins used in this study were photosensitive and functional without the addi-
tion of retinal derivatives in vivo. The bistable rhodopsins that bind to 11-cis retinal convert into an 
active state having all-trans retinal upon light absorption, and revert to the original inactive state by 
subsequent light absorption (Koyanagi et al., 2021; Koyanagi and Terakita, 2014; Terakita, 2005; 
Terakita et al., 2015). This bleach-resistant property confers activity to these bistable rhodopsins in 
non-photoreceptor cells. MosOpn3 was reported to bind to 13-cis retinal (Koyanagi et al., 2013). 
The 13-cis retinal-binding property of MosOpn3 assisted it to function in extraocular tissues since 
13-cis retinal is generated in thermal equilibrium with the all-trans form, so 13-cis retinal is ubiquitously 
present (Terakita et al., 2015). In any case, our findings support that the bistable rhodopsins can be 
activated by light in various types of cells other than retinal cells.

Light-dependent activation with Gq-coupled rhodopsins
We observed robust neuronal activation and an increase in Ca2+ in reticulospinal V2a neurons 
expressing Gq-coupled SpiRh1 and SpiRh1[S186F] (Figure 3). PLCβ mediates Gq-coupled signaling 
and produces IP3 and DAG from PIP2, which subsequently induces the release of Ca2+ from the ER and 
activates PKC and calmodulin kinases (CaMKs) (Hilger et al., 2018; Pierce et al., 2002; Rockman 
et al., 2002). It has been reported that binding of acetylcholine to a Gq-coupled muscarinic receptor 
(M1) activates non-selective cation channels and inhibits M-type K+ channels, inducing depolariza-
tion for a long period (Fisahn et  al., 2002; Fraser and MacVicar, 1996; Hofmann and Frazier, 
2010; McQuiston and Madison, 1999; Yue and Yaari, 2004). The inhibition of M-type K+ channels 

https://doi.org/10.7554/eLife.83974
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Figure 6. Gi/o and inward-rectifier K+ channel-dependent cardiac arrest by Gi/o-coupled bistable rhodopsins. (A) Time course of light application 
and treatment with pertussis toxin (PTX) (min, minutes). 4-dpf Tg larvae expressing MosOpn3, PufTMT, or LamPP in cardiomyocytes were used. After 
three trials of light stimulation of the heart area in larvae embedded in agarose, the larvae were treated with PTX for 3 min and embedded in agarose 
again and subjected to three subsequent light stimulation trials. In each trial, the heart area was irradiated with light (520 nm for MosOpn3, 470 nm for 
PufTMT, and 405 nm for LamPP) at an intensity of 0.5 mW/mm2 for 1 s, and cardiac arrest time was measured. The ratio to cardiac arrest time during 
the first trial was calculated (arrest time ratio). (B, C, D) Effect of PTX treatment on cardiac arrest induced by MosOpn3 (B), PufTMT (C), and LamPP 
(D). Average arrest time ratio of larvae expressing MosOpn3 (B), PufTMT (C), or LamPP (D) is shown in graphs. Larvae that were not treated with PTX 
were used as controls. Four treated and four non-treated control larvae were analyzed for each opto-tool. Wilcoxon rank sum test (MosOpn3 PTX vs 
control at 15 min, p=0.0294; PufTMT PTX vs control at 5 and 15 min, p=0.0265 and 0.0210; LamPP PTX vs control at 5 min, p=0.0285). (E) Time course of 
light application and treatment with BaCl2. After two trials of light stimulation of the heart area in larvae embedded in agarose, the larvae were treated 
with BaCl2 (or water) and subjected to three subsequent light stimulation trials. In each trial, the heart area was irradiated with light at an intensity of 0.5 
mW/mm2 for 1 s. Cardiac arrest time was measured and the arrest time ratio was calculated. (F, G, H) Effect of BaCl2 treatment on cardiac arrest induced 
by MosOpn3 (F), PufTMT (G), and LamPP (H). Average arrest time ratio of larvae expressing MosOpn3 (F), PufTMT (G), or LamPP (H) is shown in graphs. 
Larvae that were not treated with BaCl2 were used as controls. Four treated and four non-treated control larvae were analyzed for each opto-tool. 

Figure 6 continued on next page
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is considered to involve the PLCβ-mediated reduction of PIP2 (Brown, 2010). The same mechanism 
might be involved in neural activation, i.e. depolarization and generating action potentials, by SpiRh1 
and SpiRh1[S186F]. It is also plausible that when Ca2+ increased, activated PKC and CaMKs phosphor-
ylate cation channels, including neurotransmitter receptors, and this may also contribute to neural 
depolarization. This depolarization further leads to the activation of voltage-dependent calcium chan-
nels. Consistent with this event, a burst in Ca2+ was observed upon generation of action potentials 
after stimulation with SpiRh1 and SpiRh1[S186F] (Figure 3, Figure 3—videos 1 and 2). Although 
Gq-coupled PLCβ-mediated signaling takes more time than channelrhodopsin-mediated signaling to 
activate neurons, this feedforward mechanism likely contributes to robust and long-lasting neuronal 
activation.

Two types of rhodopsins, channelrhodopsin and Gq-coupled rhodopsins, were shown to activate 
reticulospinal V2a neurons (Figures 2 and 3; Kimura et al., 2013). Whereas photoactivation of chan-
nelrhodopsins immediately induced depolarization following cation influx, photoactivation of Gq-cou-
pled rhodopsins induced a delayed increase in Ca2+ and neuronal activation. Similar neural activation 
takes place by binding of neurotransmitters to their receptors. For example, binding of glutamate to 
ion channel-type AMPA receptors and GPCR-type metabotropic receptors (mGluRs), which are often 
present on the same postsynaptic membrane, likely induces immediate depolarization and a delayed 
Ca2+/depolarization pathway. While the depolarization signal directly participates in the information 
transmission of neural circuits, the increase in intracellular Ca2+ may regulate changes in synaptic 
transmission efficiency by modifying neurotransmitter receptors and/or channels and controlling their 
function and localization. Given that the two signals have different roles in neural circuit function, 
SpiRh1 and SpiRh1[S186F], together with channelrhodopsins, may be helpful in distinguishing the 
roles of these two signals in neural circuit function.

Optogenetic activation of Gq-coupled neuropsin was shown to increase heart rate in mice (Wagdi 
et al., 2022). However, light stimulation with SpiRh1 in zebrafish cardiomyocytes did not apparently 
affect heart function (Table 1). It is unknown why activation of SpiRh1 in the heart did not lead to 
an increase in heart rate. The contraction of heart muscles and the control of heart rate requires an 
increase in intracellular Ca2+. It remains elusive whether SpiRh1 activation does not induce a sufficient 
increase in Ca2+ to affect heart function, or whether cooperation of action potentials together with an 
increase in Ca2+ is required for optic control of heart function in zebrafish. Future studies with calcium 
and voltage imaging and/or optogenetic activation of multiple pathways may clarify this issue.

Optogenetic control of zebrafish heart with Gi/o-coupled bistable 
rhodopsins
Light stimulation of Gi/o-coupled rhodopsins MosOpn3, PufTMT, and LamPP in the heart-induced 
cardiac arrest (Figure 4). The effect of short-term activation of these Gi/o-coupled rhodopsins on 
cardiac function was persistent. The effect of trial number was minimal, although there were some 
differences among the rhodopsins (Figure 4—figure supplement 1). In addition, a dependence on 
stimulus light intensities was observed (Figure  4). Therefore, these Gi/o-coupled rhodospins are 
controllable and robust optogenetic tools for studying zebrafish cardiac function. Several physio-
logical mechanisms could be considered for inducing cardiac arrest through the activation of Gi/o--
coupled rhodopsins, including changes in myocardial contractility, conduction velocity in the AV node, 
and HB rhythm (pacemaker). In this study, rhodopsins were expressed in all cardiomyocytes, although 
detailed mechanisms have not been fully elucidated. Nonetheless, we carried out some additional 

Wilcoxon rank sum test (MosOpn3 BaCl2 vs control at 15 and 35 min, p=0.0285 and 0.0265; PufTMT BaCl2 vs control at 25 and 35 min, p=0.0210 and 
0.0210; LamPP BaCl2 vs control at 15, 25, and 35 min, p=0.0285, 0.0265, and 0.0210). * p<0.05. Means and SEMs are shown.

The online version of this article includes the following video and source data for figure 6:

Source data 1. Data for Figure 6, GIRK-dependent cardiac arrest by Gi/o-coupled bistable rhodopsins.

Figure 6—video 1. Effect of pertussis toxin (PTX) treatment on cardiac arrest induced by PufTMT activation.

https://elifesciences.org/articles/83974/figures#fig6video1

Figure 6—video 2. Effect on BaCl2 treatment on cardiac arrest induced by LamPP activation.

https://elifesciences.org/articles/83974/figures#fig6video2

Figure 6 continued

https://doi.org/10.7554/eLife.83974
https://elifesciences.org/articles/83974/figures#fig6video1
https://elifesciences.org/articles/83974/figures#fig6video2


 Tools and resources﻿﻿﻿﻿﻿﻿ Cell Biology | Neuroscience

Hagio, Koyama et al. eLife 2023;12:e83974. DOI: https://doi.org/10.7554/eLife.83974 � 17 of 30

experiments to offer greater clarity. First, the state of cardiac contraction induced by activation 
of MosOpn3 was compared to the states of a relaxed heart mediated by anion channelrhodopsin 
GtACR1 and a contracted heart mediated by cation channelrhodopsin ChrimsonR (Figure 4). Those 
results revealed that hearts experiencing cardiac arrest following activation of MosOpn3 were in a 
relaxed state. This is consistent with the concept that Gi/o-couple rhosopsins induce hyperpolariza-
tion of cardiomyocytes through GIRKs (see below).

MosOpn3 gradually restored normal HBs following light stimulus (Figure 4), indicating a transition 
to an inactive state during this process. AV conductivity was examined in two conditions: during the 
transition phase of MosOpn3’s partial activation (during recovery) and in the absence of MosOpn3 
activation. However, no significant difference was observed between these two conditions. This 
suggests that conductivity in the AV node might not be affected. However, it is necessary to inves-
tigate the expression of MosOpn3 in the AV node and the effects of localized irradiation on the AV 
node in Tg fish. The influence on cardiac rhythm was not assessed in this study. Future studies using 
electrocardiograms and electrophysiological analyses using zebrafish Tg fish will clarify what aspects 
of heart functions can be controlled by Gi/o-coupled rhodopsins.

Mechanisms of Gi/o-coupled rhodopsin-mediated heart control
The effect of Gi/o-coupled rhodopsins on cardiac arrest was inhibited by treatment with PTX and 
BaCl2 (Figure  6), suggesting that the Gi/o-coupled rhodopsins suppress neuronal activity by K+ 
channel-mediated hyperpolarization, which is mediated by the Gβγ subunit. It was previously reported 
that MosOpn3 and LamPP decreased neuronal excitability by coupling to GIRKs, but they also 
suppressed neurotransmitter release by inhibiting voltage-dependent Ca2+ channels at presynaptic 
terminals (Copits et al., 2021; Mahn et al., 2021). It is possible that the PTX and BaCl2 treatments 
might have affected the functional expression of endogenous Gi/o-coupled GPCRs and indirectly 
affected the activity of the Gi/o-coupled rhodopsins. However, considering the complete suppres-
sion of light-induced cardiac arrest (Figure 6), these Gi/o-coupled rhodopsins likely suppressed the 
heart’s function through GIRKs in cardiomyocytes. As Gi/o-coupled GPCRs also regulate intracellular 
cAMP level via AC regulation, light stimulation of MosOpn3, PufTMT, LamPP, or ZPP1 reduced cAMP 
levels in HEK293S cells (Figure 1). The Gi/o-mediated control of cell functions may depend on cell 
type and subcellular location. We expressed MosOpn3, PufTMT, and LamPP in reticulospinal V2a 
neurons, although light activation of these Gi-coupled rhodopsins did not suppress spontaneous tail 
movements (Table 1). The inability to suppress tail movements may be due to slow activation of Gi/
Go-mediated signaling by these bistable rhodopsins or the lack of other components in V2a neurons. 
Optimization of these tools and stimulation methods may be necessary, depending on cell type.

Bistable nature of G-coupled rhodopsins
A short duration of light stimulation (1 s) of the heart expressing MosOpn3 or PufTMT induced cardiac 
arrest, resumed HBs after 10 s, and returned to a steady state after a few minutes (Figure 4), while 
prolonged light application returned HBs to a steady state in a shorter time after cardiac arrest than 
short light application (Figure 5). As the wavelengths of light effective for activation and inactivation 
were close for MosOpn3 and PufTMT, light application likely induced both activation and inhibition of 
these Gi-coupled bistable rhodopsins. In contrast, the light wavelengths for activation and inactivation 
were apart for LamPP, which is switchable between these two states (Copits et al., 2021; Koyanagi 
et al., 2004; Rodgers et al., 2021). Consistent with this, cardiac arrest was induced by 405 nm light 
with LamPP, while irradiation of around 470 nm light resumed HBs (Figure 5C, D and E), suggesting 
that LamPP can be turned on and off by different wavelengths of light in the zebrafish heart. Like 
LamPP, ZPP1 has different light wavelengths for activation and inactivation (Table 1). However, photo-
activation of ZPP1 resulted in only a short period of cardiac arrest and its photosensitivity did not 
recover for a few hours. The photoproduct (active form) of ZPP1 might not be stable (i.e. it might 
release the chromophore easily) compared to that of MosOpn3, PufTMT, and LamPP in zebrafish 
cardiomyocytes.

Since Gq-coupled SpiRh1, and Gi-coupled MosOpn3, PufTMT, and LamPP are bistable rhodop-
sins, their photoproducts, which activate G protein-mediated signaling, are considered to be stable 
unless they receive inactivating light. The tail movements stopped several seconds after stimulation 
with SpiRh1 and SpiRh1[S186F], and HBs resumed a few minutes after stimulation with MosOpn3, 

https://doi.org/10.7554/eLife.83974
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PufTMT, and LamPP (Figures  2–4), suggesting that activity of the bistable rhodopsins gradually 
reduced after transient stimulation. During prolonged stimulation with light, MosOpn3 maintained 
cardiac arrest for about 40 s, while LamPP exhibited gradual recovery of HB frequency (Figure 5—
figure supplement 1). This observation suggests that MosOpn3 exhibits only slight light adaptation 
while LamPP is more susceptible to inactivation due to light adaptation. Therefore, despite differ-
ences among these bistable rhodopsins, there are likely intrinsic light adaptation mechanisms that 
inactivate bistable rhodopsins other than the photo-dependent reversal from an active to an inactive 
form. These mechanisms might not involve the release of all-trans retinal, but instead involve the 
phosphorylation-dependent binding of β-arrestin to rhodopsins and the β-arrestin-mediated inter-
nalization of rhodopsins (Kawano-Yamashita et al., 2011). In any case, by using G-protein-coupled 
bistable rhodopsins with different properties (activating/inactivating light wavelengths, stability, etc.), 
the functions of cells and tissues can be finely controlled by light stimulation.

Utility of bistable rhodopsin to study cell and tissue functions
Optogenetic tools that are proven to be useful in mammals are also effective in zebrafish, and vice 
versa. The bistable rhodopsin tools that we designed are effective in zebrafish, but are also active 
in human HEK293S cells (Table 1). Bistable rhodopsins were shown to be expressed in mammalian 
tissues and used to optogenetically manipulate GPCR signaling in vivo (Copits et al., 2021; Dai et al., 
2022; Mahn et al., 2021; Makowka et al., 2019; Rodgers et al., 2021; Wagdi et al., 2022). In this 
study, the expression plasmids for bistable rhodopsins were constructed to express tagged rhodopsin 
and P2A-TagCFP by the Gal4-UAS system in specific types of zebrafish cells. As small epitope-tagged 
bistable rhodopsins were more active than fluorescent protein-fused rhodopsins (Figure 1), they could 
also be more active in cells of other species, including mammals.

In this study, zebrafish larvae were used to study the role of GPCR signaling in cardiac function. 
Differences in heart structure and function were found between larvae and adult zebrafish. As a 
zebrafish grows, blood pressure increases and the heart becomes more complex, developing valves 
and ventricular trabeculae (Hu et al., 2000). Therefore, GPCR signaling, which regulates heart struc-
ture and function, may differ between juvenile and adult fish. Optogenetic manipulation of the heart’s 
function in adult zebrafish using bistable opsins should clarify this issue.

The genome of a single vertebrate species contains hundreds of GPCR genes. Many GPCRs func-
tion as receptors for sensations (e.g. odorant and taste receptors), and some function as receptors of 
some endogenous ligands (Pierce et al., 2002). There are also many GPCR signals whose role in vivo 
is not yet known. In the nervous system, GPCRs function as metabotropic receptors for neurotransmit-
ters and neuromodulators, and are involved in neuronal functions such as synaptic plasticity, involving 
long-term potentiation (LTP) or depression (LTD) in neural circuits (Reiner and Levitz, 2018). Optoge-
netic manipulation of individual GPCR signaling should lead to a better understanding of their roles 
in synaptic plasticity and neural circuits. GPCRs also play important roles in regulating the function of 
internal organs (de Lucia et al., 2018; Pierce et al., 2002; Rockman et al., 2002). Certain GPCRs that 
share ligands are known to activate multiple signaling pathways and confer diverse cellular responses. 
They can interact with multiple types of G proteins. For example, there are three types of adrenergic 
receptors (ARs), α1, α2, and β, which bind to Gq, Gi/o, and Gs, respectively (β2 and β3 also bind to 
Gi), and activate different downstream signaling pathways (Hilger et al., 2018; Pierce et al., 2002; 
Rockman et al., 2002; Rosenbaum et al., 2009). Using optogenetic techniques, it may be possible to 
distinguish the in vivo roles of these adrenergic receptors and other GPCRs. The G-coupled bistable 
rhodopsins analyzed in this study may be useful tools for the optogenetic control of various cell and 
tissue functions.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Gene
(Chlamydomonas reinhardtii) ChRWR-EGFP Umeda et al., 2013

https://doi.org/10.7554/eLife.83974
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Gene
(Hasarius adansoni) Spider Rh1 (SpiRh1)

Koyanagi et al., 2008; 
Nagata et al., 2012

GenBank: AB251846
Human codon optimized

Gene
(Hasarius adansoni) Spider Rh1[S186F] (SpiRh1[S186F]) Nagata et al., 2019

GenBank: AB251846
S186F mutation is introduced

Gene
(Apis cerana) Honeybee UV opsin (beeUVOP) Terakita et al., 2008 Genbank: AB355816

Gene
(Apis cerana) Honeybee blue opsin (beeBLOP) Terakita et al., 2008 Genbank: AB355817

Gene
(Papilio xuthus) Butterfly PxRh3 Saito et al., 2019 Genbank: AB007425

Gene
(Anopheles stephensi) Mosquito Opn3 (MosOpn3) Koyanagi et al., 2013

Genbank: AB753162
Carboxy terminal truncated

Gene
(Takifugu rubripes) Pufferfish TMT opsin (PufTMT) Koyanagi et al., 2013 Genbank: AF402774

Gene
(Lethenteron camtschaticum) 
parapinopsin Lamprey (LamPP) Koyanagi et al., 2004 Genbank: AB116380

Gene
(Danio rerio) Zebrafish parapinopsin 1 (ZPP1) Koyanagi et al., 2015 Genbank: AB626966

Gene
(Danio rerio) Zebrafish parapinopsin 2 (ZPP2) Koyanagi et al., 2015 Genbank: AB626967

Gene
(porcine teschovirus-1) Porcine teschovirus 2 A (P2A) Tanabe et al., 2010

Genetic reagent
(Danio rerio) mitfaw2/w2 Lister et al., 1999 RRID:ZFIN_ZDB-GENO-070501-2

Genetic reagent
(Danio rerio) TgBAC(vsx2:GAL4FF) Kimura et al., 2013 TgBAC(vsx2:GAL4FF) nns18Tg

Genetic reagent
(Danio rerio) Tg(myl7:GAL4FF) This paper Tg(myl7:GAL4FF)nub38Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio) Tg(UAS:ChRWR-EGFP) Kimura et al., 2013 Tg(UAS:ChRWR-EGFP)js3Tg

Genetic reagent
(Danio rerio)

Tg(UAS-hsp70l:SpiRh1-Flag-P2A-
TagCFP) This paper

Tg(5xUAS-hsp70l:Had.Rh1-Flag-P2A-TagCFP, 
myl7:mCherry)nub39Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio)

Tg(UAS-hsp70l:SpiRh1[S186F]-Flag-P2A-
TagCFP) This paper

Tg(5xUAS-hsp70l:Had.Rh1[S186F]-Flag-P2A-
TagCFP, myl7:mCherry)nub40Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio)

Tg(UAS-hsp70l:beeUVOP-Flag-P2A-
TagCFP) This paper

Tg(5xUAS-hsp70l: Ace.UVOP-Flag-P2A-
TagCFP, myl7:mCherry)nub41Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio)

Tg(UAS-hsp70l:beeBLOP-Flag-P2A-
TagCFP) This paper

Tg(5xUAS-hsp70l:Ace.BLOP-Flag-P2A-
TagCFP, myl7:mCherry)nub42Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio) Tg(UAS-hsp70l:PxRh3-Flag-P2A-TagCFP) This paper

Tg(5xUAS-hsp70l:Pxu.Rh3-Flag-P2A-TagCFP; 
myl7:mCherry)nub43Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio)

Tg(UAS-hsp70l:MosOpn3-Flag-P2A-
TagCFP) This paper

Tg(5xUAS-hsp70l:Ast.Opn3-Flag-P2A-TagCFP, 
myl7:mCherry)nub44Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio)

Tg(UAS-hsp70l:PufTMT-Flag-P2A-
TagCFP) This paper

Tg(5xUAS-hsp70l:Tru.TMT-Flag-P2A-TagCFP, 
myl7:mCherry)nub45Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio)

Tg(UAS-hsp70l:LamPP-Flag-P2A-
TagCFP) This paper

Tg(5xUAS-hsp70l:Lca.PP-Flag-P2A-TagCFP, 
myl7:mCherry)nub46Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio) Tg(UAS-hsp70l:ZPP1-Flag-P2A-TagCFP) This paper

Tg(5xUAS-hsp70l:parapinopsina-Flag-P2A-
TagCFP, myl7:mCherry)nub47Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio) Tg(UAS-hsp70l:ZPP2-Flag-P2A-TagCFP) This paper

Tg(5xUAS-hsp70l:parapinopsinb-Flag-P2A-
TagCFP, myl7:mCherry)nub48Tg Available from M. Hibi lab

 Continued on next page
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Genetic reagent
(Danio rerio) Tg(UAS-hsp70l:GCaMP6s) Muto et al., 2017

Tg(5xUAS-hsp70l:GCaMP6s) 
nkUAShspzGCaMP6s13aTg

Genetic reagent
(Danio rerio) Tg(UAS-hsp70l:GtACR1-EYFP) This paper

Tg(5xUAS-hsp70l:GtACR1-EYFP, 
myl7:mCherry)nub53Tg Available from M. Hibi lab

Genetic reagent
(Danio rerio) Tg(UAS-hsp70l:ChrimsonR-tdTomato) This paper

Tg(5xUAS-hsp70l:ChrimsonR-tdTomato)
nub119Tg Available from M. Hibi Lab

Cell line
(Homo sapiens)

Human embryonic kidney 293 S 
(HEK293S) Terakita et al., 2008

Recombinant DNA reagent pCS2 +SpiRh1-Flag-P2A-TagCFP This paper

Mammalian expression 
plasmid, available from M. 
Hibi lab

Recombinant DNA reagent pCS2 +SpiRh1[S186F]-Flag-P2A-TagCFP This paper

Mammalian expression 
plasmid, available from M. 
Hibi lab

Recombinant DNA reagent pCS2 +MosOpn3-Flag-P2A-TagCFP This paper

Mammalian expression 
plasmid, available from M. 
Hibi lab

Recombinant DNA reagent pCS2 +PufTMT-Flag-P2A-TagCFP This paper

Mammalian expression 
plasmid, available from M. 
Hibi lab

Recombinant DNA reagent pCS2 +LamPP-Flag-P2A-TagCFP This paper

Mammalian expression 
plasmid, available from M. 
Hibi lab

Recombinant DNA reagent pCS2 +ZPP1-Flag-P2A-TagCFP This paper

Mammalian expression 
plasmid, available from M. 
Hibi lab

Recombinant DNA reagent pGloSesor-20F cAMP Promega GeneBank: EU770615.1

Recombinant DNA reagent pcDNA3.1+/mit-2mutAEQ Addgene #45539

Recombinant DNA reagent pT2ALR-Dest Dohaku et al., 2019
Tol2 Gateway plasmid, 
available from M. Hibi lab

Recombinant DNA reagent pBH-R1-R2 This paper

Tol2
Gateway
Plasmid, available from M. 
Hibi lab

Recombinant DNA reagent pENTR L1-5xUAS-hsp70l-R5 This paper
Gateway entry clone, 
available from M. Hibi lab

Recombinant DNA reagent
pENTR L5-SpiRh1-Flag-P2A-TagCFP-
SV40pAS-L2 This paper

Gateway entry clone, 
available from M. Hibi lab

Recombinant DNA reagent
pENTR L5-SpiRh1[S186F] -Flag-P2A-
TagCFP-SV40pAS -L2 This paper

Gateway entry clone, 
available from M. Hibi lab

Recombinant DNA reagent
pENTR L5-beeUVOP-Flag-P2A-TagCFP-
SV40pAS-L2 This paper

Gateway entry clone, 
available from M. Hibi lab

Recombinant DNA reagent
pENTR L5-beeBlueOP-Flag-P2A-
TagCFP-SV40pAS-L2 This paper

Gateway entry clone, 
available from M. Hibi lab

Recombinant DNA reagent
pENTR L5-PxRh3-Flag-P2A-TagCFP-
SV40pAS-L2 This paper

Gateway entry clone, 
available from M. Hibi lab

Recombinant DNA reagent
pENTR L5-MosOpn3-Flag-P2A-TagCFP-
SV40pAS-L2 This paper

Gateway entry clone, 
available from M. Hibi lab

Recombinant DNA reagent
pENTR L5-PufTMT-Flag-P2A-TagCFP-
SV40pAS-L2 This paper

Gateway entry clone, 
available from M. Hibi lab

Recombinant DNA reagent
pENTR L5-LamPP-Flag-P2A-TagCFP-
SV40pAS-L2 This paper

Gateway entry clone, 
available from M. Hibi lab
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Recombinant DNA reagent
pENTR L5-ZPP1-Flag-P2A-TagCFP-
SV40pAS-L2 This paper

Gateway entry clone, 
available from M. Hibi lab

Recombinant DNA reagent
pENTR L5-ZPP2-Flag-P2A-TagCFP-
SV40pAS-L2 This paper

Gateway entry clone, 
available from M. Hibi lab

Antibody Mouse monoclonal anti-Flag antibody Sigma-Aldrich Cat# F3165; RRID:AB_259529 Dilution 1:500

Antibody
Mouse monoclonal anti-Myc tag 
antibody

Santa Cruz 
Biotechnology Cat# sc-40; RRID:AB_627268 Dilution 1:500

Antibody Rat monoclonal anti-GFP antibody Nacalai Tesque, Inc Cat# 04404–84; RRID:AB_10013361 Dilution 1:500

Antibody Rabbit polyclonal anti-DsRed antibody Takara Bio Cat# 632496; RRID:AB_10013483 Dilution 1:500

Antibody Goat CF488A anti-mouse IgG antibody Biotium Inc Cat# 20018; RRID:AB_10557263 Dilution 1:500

Antibody Goat CF488A anti-rat IgG antibody Biotium, Inc Cat# 20023; RRID:AB_10557403 Dilution 1:500

Antibody Goat CF568 anti-rabbit IgG antibody Biotium Inc Cat# 20103; RRID:AB_10558012 Dilution 1:500

Chemical compound, drug 
YM-254890

Fujifilm Wako Pure 
Chemical Corp. 257–00631

Chemical compound, drug low gelling temperature Type VII-A Sigma-Aldrich A0701

Chemical compound, drug tricaine methanesulfonate Nacalai Tesque, Inc Cat# 886-86-2

Chemical compound, drug pentylenetetrazol Sigma-Aldrich Cat# P6500

Chemical compound, drug Pertussis toxin
FUJIFILM Wako Pure 
Chemical Corp. Cat# 168–22471

Chemical compound, drug BaCl2
FUJIFILM Wako Pure 
Chemical Corp. Cat# 025–00172

Software, algorithm PolyScan2 Mightex

Software, algorithm StreamPix7 NorPix Inc

Software, algorithm LabVIEW National Instruments 2015
https://www.ni.com/ja-jp.​
html

Software, algorithm GraphPad Prism5 GraphPad Software https://www.mdf-soft.com/

Software, algorithm VSDC Free Video Editor 6.4.7.155 FLASH-INTEGRO LLC
https://www.videosoftdev.​
com/jp

Software, algorithm Microsoft Movies & TV Microsoft Corp.

https://apps.microsoft.​
com/store/detail/movies-​
tv/9WZDNCRFJ3P2

Software, algorithm QuickTime player 10.5 Apple Inc
https://quicktime.softonic.​
jp/

Software, algorithm Fiji / ImageJ
National Institutes of 
Health (NIH) http://fiji.sc/

Software, algorithm R 3.6.1 and 4.2.1  �  https://www.r-project.org/

Software, algorithm ggplot2 3.2.0 of R  �
https://ggplot2.tidyverse.​
org/

Software, algorithm nlme 3.1–162 of R  �

https://cran.r-project.org/​
web/packages/nlme/index.​
html

Software, algorithm Bonsai Lopes et al., 2015
https://open-ephys.org/​
bonsai

Software, algorithm Python 3.5.6
Python Software 
Foundation https://www.python.org/

Software, algorithm
Tracker Video Analysis and Modeling 
Tool for Physics Education 5.1.5  �

https://physlets.org/​
tracker/

Software, algorithm Microsoft Excel for Mac, ver. 16.74 Microsoft
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm ​HB_​frequency.​py This paper Source code file

Software, algorithm ​HB_​frequency_​plot.​py This paper Source code file

Software, algorithm ​AV_​conductivity_​plot.​py This paper Source code file

Software, algorithm ​AV_​conductivity.​py This paper Source code file

 Continued

Bioluminescent reporter assays for Ca2+ and cAMP
The intracellular cAMP and Ca2+ levels in rhodopsin-expressing HEK293S cells (human embryonic 
kidney 293  S cells, provided by Dr. Jeremy Nathans of Johns Hopkins University) were measured 
using the GloSensor cAMP assay and the aequorin assay, respectively, as described previously (Bailes 
and Lucas, 2013). HEK293S cells have been confirmed to be free from mycoplasma contamination. 
The identity of HEK293S cells was confirmed by similarity to HEK293 and HEK293T cells through 
STR profiling, and by morphological observation of the cells. The pGloSensor-20F cAMP plasmid 
(Promega) was used for the GloSensor cAMP assay. The wild type aequorin obtained by introducing 
two reverse mutations into the plasmid [pcDNA3.1+/mit-2mutAEQ] (Addgene #45539) (de la Fuente 
et al., 2012) was used for the aequorin assay. The rhodopsin expression plasmids were constructed 
based on pCS2+ (see the Zebrafish section) and used for transfection. For Gαq inhibition, YM-254890 
(FUJIFILM Wako Pure Chemical Corp., 257–00631, Osaka, Japan) was added (1 μM) 5 min before the 
measurement. Green (500 nm) and violet (410 nm) LED lights were applied for 5 s in the GloSensor 
cAMP assay and for 1 s in the aequorin assay as light stimuli. Dual Head LED Light 505 nm (GB Life 
Science) and SPL-25-CC (REVOX, Inc) were used for green and violet LED light stimulation, respectively.

Zebrafish
All transgenic zebrafish lines in this study were generated using the mitfaw2/w2 mutant (also known as 
nacre) line, which lacks melanophores (Lister et al., 1999). To generate plasmids for transgenesis 
expressing optogenetic tools, the open reading frames (ORFs) of jumping spider (Hasarius adansoni) 
Rh1 (SpiRh1) (Koyanagi et  al., 2008; Nagata et  al., 2012), SpiRh1 S186F (Nagata et  al., 2019), 
mosquito (Anopheles stephensi) Opn3 (Koyanagi et al., 2013), pufferfish (Takifugu rubripes) TMT 
opsin (Koyanagi et al., 2013), lamprey (Lethenteron camtschaticum) parapinopsin (Koyanagi et al., 
2004), zebrafish (Darnio rerio) parapinopsin 1 and 2 (parapinopsina and parapinopsinb in ZFIN: 
https://zfin.org) (Koyanagi et al., 2015), honeybee (Apis cerana) UV and blue opsins (Terakita et al., 
2008) or butterfly (Papilio xuthus) PxRh3 (Saito et al., 2019) were amplified by PCR and subcloned 
to pCS2+ (pCS2 +opto tool) containing a Flag tag sequence, a 2 A peptide sequence (P2A) from 
porcine teschovirus (PTV-1) (Provost et al., 2007; Tanabe et al., 2010), and TagCFP (Everon). For 
GtACR1 and ChrimsonR, GtACR-EYFP and ChrimsonR-tdTomato cDNAs were amplified from pTol1-
UAS:ChrimsonR-tdTomato (Antinucci et al., 2020) and pFUGW-hGtACR1-EYFP (Govorunova et al., 
2015), respectively, and subcloned to pCS2+. pENTR L1-R5 entry vectors containing five repeats of 
the upstream activation sequence (UAS) and the hsp70l promoter (Muto et al., 2017), and pENTR 
L5-L2 vectors containing the ORF of the optogenetic tools and the polyadenylation site of SV40 
(SV40pAS) from pCS2 +were generated by the BP reaction of the Gateway system. The UAS-hsp70l 
promoter (Muto et al., 2017) and optogenetic tool expression cassettes were subcloned to the Tol2 
donor vector pBleeding Heart (pBH)-R1-R2 (Dohaku et al., 2019), which was modified from pBH-
R4-R2 and contains mCherry cDNA and SV40 pAS under the myosin, light chain 7, regulatory (myl7) 
promoter (van Ham et al., 2010) by the LR reaction of the Gateway system. To make the Tol2 vector to 
express GAL4FF (a modified form of the yeast transcription factor GAL4) in the heart, an about 900 bp 
fragment of the promoter and a 5′ untranslated region (UTR) of myl7 (from pKHR7) (Hoshijima et al., 
2016), GAL4FF cDNA (Asakawa et al., 2008), and SV40pAS were subcloned to a Tol2 vector pT2ALR-
Dest (Dohaku et al., 2019) by the Gateway system. To make Tg fish, 25 pg of the Tol2 plasmids and 
25 pg of transposase-capped and polyadenylated RNA were injected into one-cell-stage embryos. 
The Tg(UAS:opto-tool) fish that expressed the optogenetic tools in a GAL4-dependent manner 
were crossed with TgBAC(vsx2:GAL4FF);Tg(UAS:RFP) (Kimura et  al., 2013), Tg(myl7:GAL4FF), or 
Tg(elavl3:GAL4-VP16) (Kimura et  al., 2013) to express the tools in hindbrain reticulospinal V2a 

https://doi.org/10.7554/eLife.83974
https://zfin.org
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neurons, cardiomyocytes, and all postmitotic neurons, respectively. Tg(UAS:ChRWR-EGFP) was used 
as a positive control (Kimura et  al., 2013). For Ca2+ imaging, Tg(5xUAS-hsp70l:GCaMP6s) (Muto 
et al., 2017) was used. Adult zebrafish were raised at 28.5 °C with a 14 h light and 10 hr dark cycle. 
Individual larvae used for behavioral experiments were kept in the dark except for the observation of 
fluorescence and light exposure experiments.

Immunostaining
For immunostaining, anti-Flag antibody (1:500, mouse, Sigma-Aldrich, St. Louis, MO, USA, Cat# 
F3165; RRID:AB_259529), anti-Myc tag (MT) antibody (1:500, mouse, Santa Cruz Biotechnology, 
Dallas, TX, USA, Cat# sc-40; RRID:AB_627268), anti-GFP (1:500, rat, Nacalai Tesque, Inc, Kyoto, 
Japan, Cat# 04404–84; RRID:AB_10013361), and anti-DsRed (1:500, rabbit, Takara Bio, Shiga, Japan, 
Cat# 632496; RRID:AB_10013483) antibodies were used as primary antibodies. CF488A anti-mouse 
IgG (1:500, H+L, Biotium, Inc, Fremont, CA, USA, Cat# 20018; RRID:AB_10557263), CF488A anti-rat 
IgG (1:500, H+L, Biotium, Inc, Cat# 20023; RRID:AB_10557403) and CF568 anti-rabbit IgG (1:500, 
H+L, Biotium, Inc, Cat# 20103; RRID:AB_10558012) antibodies were used as secondary antibodies. 
Individual fish were placed in 1.5 mL Eppendorf tubes and fixed in 4% paraformaldehyde in PBS at 
4 °C for 1 hr. The fixed samples were washed three times with PBST, treated with acetone for 12 min 
at room temperature, washed again three times with PBST and twice with PBS-DT. The solution was 
replaced with 5% goat serum in PBS-DT and was kept at room temperature for 1 hr for blocking. 
Primary antibody was added to 5% goat serum in PBS-DT to achieve the dilution factor described 
above and incubated overnight at 4 °C. The samples were washed with PBS-DT six times for 15 min 
each wash. The incubation in secondary antibody solution, 5% goat serum in PBS-DT with the above-
mentioned dilution factor, was performed overnight at 4 °C in the dark. After six washes of 15 min 
each in PBS-DT, the larvae were embedded in 1.5% agarose (low gelling temperature Type VII-A 
A0701, Sigma-Aldrich). Images were acquired using a confocal laser inverted microscope LSM700 
(Carl Zeiss, Oberkochen, Germany). When acquiring images, the laser intensity was not changed by 
more than a factor of 2.

Locomotion assay
3-dpf Tg larvae were quickly anesthetized with about 0.04% tricaine methanesulfonate (Nacalai 
Tesque, Inc, Kyoto, Japan, Cat# 01916–32) and embedded in 2.5% agarose in 1/10 Evans solution 
(134 mM NaCl, 2.9 mM KCl, 2.1 mM CaCl2, 1.2 mM MgCl2, and 10 mM Hepes; pH 7.8). The tail was 
set free by cutting the agarose around it. The agarose containing the embedded individual fish was 
placed in a 90 mm Petri dish filled with rearing water and kept under the microscope for 20 min to 
recover from anesthesia and to get used to the experimental environment which was followed by the 
first light exposure. For light stimulation, a patterned LED illuminator system LEOPARD (OPTO-LINE, 
Inc, Saitama, Japan) and the control software PolyScan2 (Mightex, Toronto, Canada) was used. LEDs 
with wavelengths of 405, 470, 520, and 620 nm, which are the closest values to the maximum absorp-
tion wavelength of each optogenetic tool, were used. The irradiation area was 0.30 mm × 0.34 mm 
in the hindbrain (Figure 2A). Tail movements were captured by an infrared CMOS camera (67 fps, 
GZL-C1L-41C6M-C, Teledyne FLIR LLC, Wilsonville, USA) mounted under the stage and StreamPix7 
software (NorPix, Inc, Montreal, Canada) and analyzed by Tracker Video Analysis and Modeling Tool 
for Physics Education version 5.1.5. The timing of tail movement capture and light application of the 
reticulospinal V2a neurons was controlled by a USB DAQ device (USB-6008, National Instruments, 
Austin, TX, USA) and programming software (LabVIEW, 2015, National Instruments). The irradiation 
stimulation was repeated six times every 10 or 20 min for 1 s for G-protein-coupled rhodopsins, or 100 
ms or 1 s for ChRWR with a minimum of eight individuals for each strain. The start and end times of tail 
movements were measured visually by StreamPix7 after the end of each trial. Trials in which swimming 
behavior was induced within 8 s after light stimulation were defined as induced trials. The percentage 
of induced trials was defined as locomotion rate, excluding trials in which swimming behavior was elic-
ited before light stimulation. The time from the start of light application to the first tail movement was 
defined as latency, and the time from the start of the first tail movement to the end of that movement 
was defined as duration. The maximum distance the tail moved from the midline divided by the body 
length was defined as strength. To examine the tools’ activity in the inhibition of locomotion, 4-dpf Tg 
larvae were pretreated with 15 mM pentylenetetrazol (Sigma-Aldrich, Cat# P6500) and spontaneous 
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tail movements were induced by white LED light (peak 640  nm; Kingbright Electronic Co., Ltd., New 
Taipei City, Taiwan) powered by a DC power supply (E3631A; Agilent Technologies, Santa Clara, CA, 
USA) for 5 s. After 500 ms from the onset of white LED light, hindbrain reticulospinal V2a was stimu-
lated with the patterned LED illuminator. Trials in which swimming behavior stopped within 1 s after 
light stimulation were defined as locomotion-inhibition trials. The percentage of locomotion-inhibition 
trials was calculated and indicated in Table 1. Graphs were created with GraphPad Prism5 software 
(GraphPad Software, San Diego, CA, USA). All movies were created with VSDC Free Video Editor soft-
ware version 6.4.7.155 (FLASH-INTEGRO LLC, Moscow, Russia) and Microsoft Movies & TV (Microsoft 
Corp., Redmond, WA, USA).

Heartbeat experiments and heart size measurements
4-dpf Tg larvae were quickly anesthetized with about 0.2% tricaine methanesulfonate and embedded 
in 4% agarose in 1/10 Evans solution. Larvae embedded in agarose were placed in a 90 mm Petri dish 
filled with water and kept under a microscope for 20 min for recovery from anesthesia. Light stimula-
tion was performed as described in the section of the locomotion assay. The area of irradiation was 
0.17 mm × 0.25 mm, including the heart. The heart area in the Tg fish expressing MosOpn3, PufTMT, 
or LamPP was irradiated for 1 s with light wavelength of 520, 470, and 405 nm, respectively, which are 
the closest values to the maximum absorption wavelength of each optogenetic tool. The HBs of larvae 
were captured by an infrared CMOS camera (67 fps) and recorded with StreamPix7, as described 
above. The irradiation trial was repeated six times every 10 min for one fish and a total of four larvae 
were analyzed for each strain. The video recordings of HBs were observed using QuickTime player 
version 10.5 (Apple Inc, Cupertino, CA, USA). After opening videos with Fiji/ImageJ (National Insti-
tutes of Health, Bethesda, MD, USA) or Bonsai (Lopes et al., 2015), the entire heart was manually set 
as the region of interest (ROI), the luminosity (AU: arbitrary units) data in the ROI was used to create 
graphs of HBs using ggplot2 version 3.2.0 of R. As previously reported (Matsuda et al., 2017), the 
change in luminosity reflects the HB. To calculate the relative HB frequency, temporal changes in 
luminosity were obtained from the video using Bosai (Lopes et al., 2015) and the frames where HBs 
occurred were identified by the code (​HB_​frequency.​py) created in Python ver. 3.5.6 (Python Software 
Foundation, Wilmington, DE, USA). The relative HB frequency was calculated from the HB frame data, 
500 ms before and after each time point using Excel (Microsoft). Graphs of the average of relative HB 
frequency were created by ggplot2 in R or the code (​HB_​frequency_​plot.​py) in Python. The latency to 
cardiac arrest and the time to first resumption of HB were also measured. Graphs were created with 
GraphPad Prism5 software. All movies were created with VSDC Free Video Editor software. Simple HB 
experiments were also performed using a light source equipped with an MZ16 FA microscope and CFP 
(excitation light: 426–446 nm), GFP (460–500 nm), YFP (490–510 nm), and DSR filters (530–560 nm, 
Leica, Wetzlar, Germany), as indicated in Table 1. To measure the size of the heart, image data of the 
heart region was captured from videos in Fiji/ImageJ. The entire heart was manually identified, and 
its area was measured. For stimulation of MosOpn3, GtACR1-EYFP and ChrimsonR-tdTomato, a fluo-
rescence detection filter (excitation 530–550 nm, emission 575IF nm, U-MWIG3, Olympus) was used.

Analysis of time difference between atrial and ventricular contractions
The video recordings of HBs were analyzed by Bonsai (Lopes et al., 2015). Arbitrary positions of the 
atrium and ventricle were set as the ROIs. The luminosity data extracted from these ROIs was used 
to create graphs of HBs for both the atrium and ventricle using the code (​AV_​conductivity_​plot.​py) 
created in Python. The time difference between atrial and ventricular contractions was computed as 
the interval between the peak of the atrial HB and the corresponding peak of the ventricular HB using 
the code (​AV_​conductivity.​py) in Python. HBs were considered undetected and thus excluded if the 
difference in AV contraction exceeded 0.5 s.

Treatment with pertussis toxin (PTX) or BaCl2
For PTX treatment, after the irradiation trial was repeated three times, the larvae were removed from 
agarose then immersed in a solution containing PTX (0.2 µg/mL, Fujifilm Wako Pure Chemical Corp., 
Cat# 168–22471) for 3 min. After PTX treatment, larvae were embedded in agarose and placed on 
a Petri dish filled with deionized water. After larvae were kept in the Petri dish for 5 min, the heart 
area was irradiated three times every 10 min for 1 s (Figure 6). For control experiments of the PTX 
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treatment, larvae were immersed in water instead of PTX solution for 3 min. For the BaCl2 treatment, 
4-dpf larvae were embedded in agarose and placed in a Petri dish filled with water. After the irradia-
tion trial was repeated twice, the water in the Petri dish was replaced with 1 mM BaCl2 (Fujifilm Wako 
Pure Chemical Corp., Cat# 025–00172) solution. After larvae were kept in this solution for 15 min, the 
heart area was irradiated three times every 10 min for 1 s (Figure 6). For control experiments of the 
BaCl2 treatment, larvae were kept in water instead of BaCl2. After opening videos with QuickTime 
Player, cardiac arrest time was measured. Cardiac arrest ratio was calculated as the ratio to cardiac 
arrest time in trial 1, and plotted as a graph using ggplot2 of R.

Ca2+ live imaging
Tg larvae expressing GCaMP6s with or without the opto-tool in reticulospinal V2a neurons or cardio-
myocytes were quickly anesthetized with 0.04% tricaine methanesulfonate and embedded in 4% 
agarose in 1/10 Evans solution. A 130 W light source (U-HGLGPS, Olympus, Tokyo, Japan) with a 
fluorescence detection filter (excitation 470–495 nm, emission 510–550 nm, U-MNIBA3, Olympus) 
was used to observe the fluorescence of GCaMP6s. The same filter set was used to stimulate SpiRh1, 
MosOpn3, PufTMT, and LamPP. For Tg larvae expressing SpiRh1[S186F] or LamPP, the reticulospinal 
V2a neurons or the heart area were irradiated with 405 nm for 1 s with the patterned LED illuminator 
system. A CCD camera (ORCA-R2, Hamamatsu Photonics, Shizuoka, Japan) attached to the micro-
scope was used to capture the GCaMP6s fluorescence images at 9 fps. After image acquisition of V2a 
neurons, the high intensity region from the hindbrain to the spinal cord was set as the ROI using Fiji/
ImageJ, and fluorescence intensity was measured. The relative change in fluorescence intensity (ΔF/F) 
was calculated by dividing the fluorescence intensity at each time point by the fluorescence intensity 
at the start of light stimulation for SpiRh1 or before stimulation (base line) for SpiRh1[S186F]. Graphs 
were created with GraphPad Prism5 software. After image acquisition for cardiomyocytes, videos of 
the heart were opened with Fiji/ImageJ, ROIs for the ventricle and atrium were set, and luminosity 
data were acquired. ΔF/F was calculated by dividing the fluorescence intensity at each time point by 
fluorescence intensity at the start of light stimulation for MosOpn3 and PufTMT, or by fluorescence 
intensity at the steady state (after HB resumption) for LamPP.

Statistical analysis
Data were analyzed using R software package (versions 3.6.1 and 4.2.1). Statistical tests were applied 
as indicated in figure legends. A p-value of 0.05 or higher indicated a non-significant result. All data 
in the text and figures are expressed as the mean ± standard error of the mean (SEM). Linear mixed-
effects model was applied using R package ‘nlme’ version 1.3–162.
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