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Abstract The voltage- gated sodium (NaV) channel NaV1.7 has been identified as a poten-
tial novel analgesic target due to its involvement in human pain syndromes. However, clinically 
available NaV channel- blocking drugs are not selective among the nine NaV channel subtypes, 
NaV1.1–NaV1.9. Moreover, the two currently known classes of NaV1.7 subtype- selective inhibitors 
(aryl- and acylsulfonamides) have undesirable characteristics that may limit their development. 
To this point understanding of the structure–activity relationships of the acylsulfonamide class 
of NaV1.7 inhibitors, exemplified by the clinical development candidate GDC- 0310, has been 
based solely on a single co- crystal structure of an arylsulfonamide inhibitor bound to voltage- 
sensing domain 4 (VSD4). To advance inhibitor design targeting the NaV1.7 channel, we pursued 
high- resolution ligand- bound NaV1.7- VSD4 structures using cryogenic electron microscopy (cryo- 
EM). Here, we report that GDC- 0310 engages the NaV1.7- VSD4 through an unexpected binding 
mode orthogonal to the arylsulfonamide inhibitor class binding pose, which identifies a previ-
ously unknown ligand binding site in NaV channels. This finding enabled the design of a novel 
hybrid inhibitor series that bridges the aryl- and acylsulfonamide binding pockets and allows for 
the generation of molecules with substantially differentiated structures and properties. Overall, 
our study highlights the power of cryo- EM methods to pursue challenging drug targets using 
iterative and high- resolution structure- guided inhibitor design. This work also underscores an 
important role of the membrane bilayer in the optimization of selective NaV channel modulators 
targeting VSD4.
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Introduction
Voltage- gated sodium (NaV) channels initiate and propagate action potentials in excitable cells and 
play important roles in health and disease (Catterall et al., 2005; Ahern et al., 2016). The NaV1.7 
channel is expressed predominantly in the peripheral nervous system, and genetic studies have 
identified compelling loss- of- function and gain- of- function phenotypes in human pain syndromes, 
prompting significant efforts to develop NaV1.7- selective inhibitors as potential novel analgesic drugs 
(Dib- Hajj et al., 2013; Payandeh and Hackos, 2018; McKerrall and Sutherlin, 2018). NaV channels 
contain 24- transmembrane segments linked in four homologous domains (DI- DIV), where four periph-
eral voltage- sensor domains (VSD1- 4) surround a central ion- conducting pore module that houses 
the ion selectivity filter and key ligand and toxin binding sites. Traditionally, all clinically available 
NaV channel inhibitors lack significant molecular selectivity among the NaV1.1–1.9 subtypes owing to 
the high sequence conservation found at the ligand binding site within the central cavity of the ion- 
conducting pore module (McKerrall and Sutherlin, 2018; de Lera Ruiz and Kraus, 2015).

A breakthrough study in 2013 by McCormack and colleagues reported the discovery of an aryl-
sulfonamide antagonist, PF- 04856264, that bound to an unprecedented receptor site in VSD4 with 
demonstrated molecular selectivity for human NaV1.7 over other subtypes (McCormack et al., 2013). 
However, the related development candidate PF- 05089771 did not meet clinical endpoints in human 
subjects with painful diabetic peripheral neuropathy, possibly due to poor target coverage and the 
intolerable doses required to achieve efficacy (Swain et al., 2017; McDonnell et al., 2018; Siebenga 
et al., 2020). Additionally, an alternate acylsulfonamide inhibitor that also targeted the VSD4 receptor 
site in NaV1.7, GDC- 0276, was halted in phase I clinical trials due to safety concerns and potential 
off- target effects likely attributed to the high lipophilicity of the compound (Rothenberg et al., 2019; 
Safina et al., 2021). To date, selective NaV1.7 inhibitors with an improved therapeutic index relative to 
these clinical- stage compounds have not yet been identified, and this absence underscores the need 
to optimize such molecules using modern, structure- guided design approaches.

The inherent complexity and dynamic nature of human NaV channels have historically presented 
significant barriers to obtaining high- resolution experimental structural information, especially of 
inhibitor- bound complexes (Noreng et al., 2021). Using an engineered human VSD4 NaV1.7- NaVAb 
bacterial channel chimera and X- ray crystallography, the binding mode of the GX- 936 arylsulfonamide 
inhibitor revealed that the anionic sulfonamide group engages the fourth arginine gating charge (R4) 
to trap VSD4 in an activated conformation, which in turn stabilizes a non- conductive, inactivated 
state of the channel (Ahuja et al., 2015). While determinants of subtype selectivity and structure–ac-
tivity relationships (SAR) of the arylsulfonamide inhibitor class could be rationalized by the GX- 936 
co- crystal structure, additional ligand- bound structures of suitable resolution were not returned by 
the NaV1.7- NaVAb chimeric channel crystallography system. This shortcoming led molecular docking 
studies to presume that the acylsulfonamide inhibitors also bound VSD4 in an analogous manner, 
despite points of inexplicable SAR (Sun et al., 2019). The overall paucity of direct structural informa-
tion has made the optimization of NaV1.7 inhibitors challenging, with many questions about the deter-
minants of potency, selectivity, and the relationship between the acylsulfonamide and arylsulfonamide 
inhibitor classes remaining unanswered.

Over the last three decades, protein crystallography and structure- based drug design (SBDD) have 
become gold standards across the pharmaceutical industry for the identification of ligand binding 
pockets and the optimization of drug candidates for clinical development. While SBDD has proven 
successful for many important targets, including G protein- coupled receptors (GPCRs) (Congreve 
et al., 2014), its applicability to several membrane protein targets, such as NaV channels, has been 
limited due to the extreme difficulties with their iterative crystallization and structure determination 
(Noreng et al., 2021). Cryogenic electron microscopy (cryo- EM) has recently emerged as a trans-
formative technique to determine the high- resolution structures of diverse protein targets and has 
proven particularly effective for membrane proteins that are recalcitrant to crystallization (Cheng, 
2018). Despite this breakthrough, cryo- EM structure determination of membrane targets in complex 
with small or large molecule therapeutics frequently remains retrospective and is often enabled after 
the advancement of key molecules into the clinic (Balestrini et al., 2021; Rougé et al., 2020). Slow 
turnaround times and modest resolutions typically offered by cryo- EM have limited its application for 
real- time SBDD efforts. Here, we describe a system for the iterative determination of high- resolution 
NaV1.7- VSD4 small molecule co- structures via cryo- EM that has led to the development of a novel 
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class of inhibitors. Critical to this advancement has been the establishment of a robust protocol for 
sample preparation and structure determination and the first structure of an acylsulfonamide bound 
to NaV1.7- VSD4, revealing a previously unknown inhibitor binding pocket between the S3 and S4 
helices. Consequently, a novel hybrid inhibitor series bridging the aryl and acylsulfonamide pockets 
was designed and validated. Our work exemplifies the deployment of cryo- EM as a workhorse struc-
tural biology tool in an active medicinal chemistry campaign and thus represents an important mile-
stone toward NaV channel drug discovery.

Results
Structure of the GNE-3565-VSD4 NaV1.7-NaVPas channel complex in 
lipid nanodiscs
Our approach to establish an iterative, high- resolution system to enable NaV1.7 SBDD was ultimately 
guided by three observations: our repeated failure to generate well- diffracting crystals of the NaV1.7- 
NaVAb bacterial channel chimera system (Ahuja et al., 2015), our difficulty of reproducibly expressing 
a suitable amount of full- length human NaV1.7 channel (Xu et al., 2019; Clairfeuille, 2019), and the 
very limited local resolution observed at VSD4 in all available human Nav1.7 cryo- EM structures (Shen 
et al., 2019; Huang et al., 2022). Thus, we sought to exploit an engineered human VSD4- NaV1.7- 
NaVPas cockroach channel chimeric construct that had been previously shown to complex with small 
molecule inhibitors and peptide toxins known to target VSD4 (Clairfeuille, 2019). The recovered 
protein yields following expression and purification (50 µg/L) allowed us to readily pursue reconsti-
tution of the VSD4- NaV1.7- NaVPas channel into lipid nanodiscs (Figure 1, Figure 1—figure supple-
ment 1). Small molecule inhibitors were added prior to sample vitrification, followed by cryo- EM data 
collection and processing procedures, which allowed us to routinely obtain 3D- reconstructions in the 
2.2–3.0Å resolution range around the VSD4 inhibitor binding site (Figure 1).

The VSD4- NaV1.7- NaVPas chimera displays the expected domain- swapped arrangement with 
numerous densities assigned as phospholipids bound to the channel, confirming the maintenance of 
a native membrane- like environment (Figure 1). As seen in previous NaVPas structures (Clairfeuille, 
2019; Shen et al., 2017; Shen et al., 2018), the ion- conducting pore module of the VSD4- NaV1.7- 
NaVPas chimeric channel is closed, consistent with a nonconductive or inactivated state. The quality 
and resolution of our structure allowed us to assign 111 water molecules for the highest resolution 
structure (Figure 1E, Video 1). The visualization of many well- resolved water molecules bound within 
the VSDs and coordinated within the ion selectivity filter provides new insights into the interactions 
that might occur during gating charge transfer and ion conduction, respectively.

Although we were able to determine the crystal structure of VSD4- NaVAb bound to the arylsulfon-
amide inhibitor GX- 936 (Ahuja et al., 2015), no well- diffracting crystals were obtained for any other 
arylsulfonamide compounds despite years of continued effort. Arylsulfonamide GNE- 3565 is repre-
sentative of an advanced series of arylsulfonamide class NaV1.7 inhibitors that demonstrates channel 
blockage at subnanomolar concentrations with mixed subtype selectivity (Figure 2A). We complexed 
GNE- 3565 with the VSD4 NaV1.7- NaVPas channel- nanodisc system and employed cryo- EM to assess 
its overall binding pose (Figure 2B and C). The 2.9 Å resolution cryo- EM map revealed that the S1- S2 
and S3- S4 helices from VSD4 form a clamshell- like structure that closes over GNE- 3565 (Figure 2D and 
E, Figure 2—figure supplement 1, Figure 2—figure supplement 2, Supplementary file 1A), similar 
to the binding pose reported for GX- 936 (Ahuja et al., 2015). Specifically, the ionized arylsulfonamide 
group of GNE- 3565 (measured pKa = 5.8) bisects VSD4 to salt- bridge directly to R4 on the S4 helix, 
while the central phenyl ring extends perpendicular between the S2 and S3 helices to directly contact 
established subtype- selectivity determinants Tyr1537 and Trp1538 on the S2 helix (Figure 2A–D). As 
for GX- 936, the GNE- 3565, arylsulfonamide VSD4 receptor binding site can be divided into three 
regions: an anion- binding pocket, a selectivity pocket, and a lipid- exposed pocket (Figure 2D). The 
root- mean- square deviation (RMSD) between the GNE- 3565- VSD4 and the GX- 936- VSD4 structures 
(Ahuja et al., 2015) is 0.667 (714–714 atoms) (Figure 2—figure supplement 2), supporting long- held 
assumptions by medicinal chemistry teams that all structurally related arylsulfonamides should be 
expected to complex to VSD4 through similar determinants (Swain et al., 2017; Weiss et al., 2017; 
Graceffa et al., 2017; McKerrall et al., 2019; Roecker et al., 2021; Focken et al., 2016; Wu et al., 
2017).
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Structure of the acylsulfonamide GDC-0310 in complex with the VSD4 
NaV1.7-NaVPas channel
To investigate the binding pose of a representative NaV1.7- selective acylsulfonamide, GDC- 0310 
(Figure 3A) was complexed with the VSD4 NaV1.7- NaVPas channel in nanodiscs and a cryo- EM struc-
ture was determined to 2.5 Å resolution (Figure 3B–D, Figure 3—figure supplement 1, Supplemen-
tary file 1A). Remarkably, the binding mode of GDC- 0310 revealed an unexpected and previously 
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Figure 1. Structure of VSD4- NaV1.7- NaVPas. (A) Schematic of the VSD4- NaV1.7- NaVPas channel. The portions 
humanized to the NaV1.7 sequence are shown in green. N- terminal domain (NTD) and CTD are indicated. (B) Side 
view of the single- particle cryogenic electron microscopy (cryo- EM) reconstruction of VSD4- NaV1.7- NaVPas channel. 
(C, D) Cartoon representations of the top and side views of VSD4- NaV1.7- NaVPas channel. Individual VSD domains 
are indicated. VSD4 is highlighted in green. (E) Localization of water molecules (in red) in the VSD4- NaV1.7- NaVPas 
channel structure. VSD4 is highlighted in green.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Purification of VSD4- NaV1.7- NaVPas channel.

Figure supplement 1—source data 1. Source data of VSD4- NaV1.7- NaVPas purification.

https://doi.org/10.7554/eLife.84151
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unknown pocket that formed between the S3 and 
S4 helices (Figure 3B–E). While the aryl and acyl 
moieties of GDC- 0310 and GNE- 3565 bind in the 
same region, the remainder of the acyl receptor 
site is orthogonal to the corresponding binding 
domain reported for the aryl class (Figure 3B–D). 
In detail, the anionic acylsulfonamide of GDC- 
0310 participates in salt- bridge bonding inter-
actions with R4 and R3 through the carbonyl 
and sulfonamide oxygen atoms, respectively 
(Figure 3F). Moreover, the aryl ring of the GDC- 
0310 splits the S3 and S4 helices to occupy a 
lipophilic pocket, displacing the S3 helix laterally 
by  ~3  Å relative to the GNE- 3565- VSD4 struc-
ture (Figure 3G). Our cryo- EM structures serve to 
highlight a dynamic environment in VSD4 where 
the S1- S4 helixes can be differentially separated 
by the binding of distinct small molecule inhibi-

tors (Figure 2D and Figure 3D).
It is notable that the cyclopropyl substituent of GDC- 0310 makes effective van der Waals inter-

actions with I1574 and I1588 from S3 and I1601 and I1604 on S4 (Figure  3G), while the alpha- 
methylbenzylamine ‘tail’ region sits almost entirely within the lipid bilayer (Figure 3A and C), where 

Video 1. Movie illustrating the quality of VSD4- NaV1.7- 
NaVPas channel bound to GNE- 1305. Several water 
molecules can be observed.

https://elifesciences.org/articles/84151/figures#video1
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Figure 2. Structure of GNE- 3565 bound to VSD4- NaV1.7- NaVPas. (A) Chemical structure of arylsulfonamide GNE- 3565. (B, C) Top and side views of 
VSD4- NaV1.7- NaVPas channel bound to GNE- 3565. VSD4 is highlighted in green, GNE- 3565 in magenta. (D) Extracellular view of VSD4- NaV1.7- NaVPas 
arylsulfonamide receptor site is shown with select side chains rendered as sticks. (E) The cryogenic electron microscopy (cryo- EM) map surrounding the 
ligand GNE- 3565 is shown in mesh representation. (F) View toward the membrane highlighting key interactions with the GNE- 3565 anionic group. (G) 
View from the membrane highlighting key interactions with the GNE- 3565 central phenyl ring.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Cryo- EM processing workflow of GNE- 3565 and GNE- 9296.

Figure supplement 2. Comparison of VSD4- NaV1.7 bound to the arylsulfonamides GNE- 3565 and GX- 936 (PDB:5EK0).

https://doi.org/10.7554/eLife.84151
https://elifesciences.org/articles/84151/figures#video1
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density for this portion of the inhibitor is only poorly resolved (Figure 3E). Considering the relative 
depth of the  GDC- 0310 binding site in relation to the membrane- water interface (~8 Å), our struc-
ture suggests a membrane access pathway for acylsulfonamides to the VSD4 receptor site, which 
has important implications for understanding the pharmacology, SAR, and potential development 
liabilities of the inhibitor series (Payandeh and Volgraf, 2021). Notably, this structure also reveals that 
the Tyr1537 side chain on S2 exists in a down rotamer conformation and does not contact GDC- 0310 
directly, which provides the first direct structural rationale for why the selectivity profiles between the 
acyl and arylsulfonamide classes differ substantially (Figure 3D, vide infra; Bankar et al., 2018).

Structure-based rational design of hybrid NaV1.7 inhibitors
Upon inspection of the superimposed GNE- 3565- aryl and GDC- 0310- acyl structures, we could 
immediately envision a novel class of hybrid inhibitors that would simultaneously occupy both the 
aryl- and acylsulfonamide binding pockets (Figure  4A and B). Such an enlarged hybrid binding 
pocket would offer unique opportunities to gain potency directly from ligand–protein interactions, 
which might enable removal of the hydrophobic lipid- facing tail groups seen in all previous gener-
ations of VSD4- targeting NaV channel inhibitors. These groups have typically been critical for main-
taining potency, but use of the plasma membrane to drive membrane- bound target occupancy is 
largely nonspecific, and potentially introduces off- target liabilities that can contribute to toxicity. 
However, it was unclear whether this hybrid conformation of the VSD4 domain could accommodate 
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Figure 3. Structure of GDC- 0310 bound to VSD4- NaV1.7- NaVPas. (A) Chemical structure of acylsulfonamide GDC- 0310. (B) Top and side views of 
VSD4- NaV1.7- NaVPas channel bound to GDC- 0310. VSD4 is highlighted in green, GDC- 0310 in magenta. (D) Extracellular view of VSD4- NaV1.7- NaVPas 
acylsulfonamide receptor site is shown with select side chains rendered as sticks. (E) The cryogenic electron microscopy (cryo- EM) map surrounding the 
ligand GDC- 0310 is shown in mesh representation. (F) View toward the membrane highlighting key interactions with the GDC- 0310 warhead. (G) View 
from the membrane highlighting van der Waals interactions with the GDC- 0310 cyclopropyl substituent. The alpha- methylbenzylamine tail region sits 
almost entirely within the lipid bilayer.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. CyroEM processing workflow for GNE- 1305 and GDC- 0310.
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Figure 4. Structure- based design of potent hybrid inhibitors of NaV1.7. (A) Illustration of hybrid molecule design approach. (B) Arylsulfonamide, 
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highlighting key interactions with the anionic group. (F) View from the membrane highlighting the lack of a stacking interaction between Y1537 and the 
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the described inhibitors and/or whether it was accessible during any stage of NaV1.7 channel gating. 
We therefore set out to demonstrate a proof of concept that appropriately designed small mole-
cules could induce this hypothesized binding site while inhibiting channel function with meaningful 
potency.

GDC- 0310 was a relatively unattractive starting point for hybridization because of its high molec-
ular weight (543  g/mol) and lipophilicity (cLogP = 5.2). Accordingly, re- evaluation of potency and 
physicochemical property data available for previously synthesized NaV1.7 inhibitors identified progen-
itor compound 1, which offers reasonable potency against NaV1.7 (IC50 = 25 nM, n = 8; Figure 4C, 
Figure 4—figure supplement 1) and reduced molecular weight (350 g/mol) and lipophilicity (cLogP 
= 2.7). Seeking to leverage existing knowledge of the arylsulfonamide binding pocket, GNE- 9296 
(compound 2) was synthesized in an attempt to directly graft on a significant portion of the GNE- 3565 
scaffold. Gratifyingly, this molecule retained substantial potency, affording channel blockade at an IC50 
of 47 nM (n = 8).

A cryo- EM structure of GNE- 9296 bound to the VSD4 NaV1.7- NaVPas channel confirmed that the 
molecule adopts the desired hybrid binding mode (Figure 4D, Figure 4—figure supplement 2A). 
Here, the anionic group of the novel hybrid compound binds in the same position as in the aryl 
and acyl poses, interacting closely with R4, as seen for the aryl- like binding (Figure 4E). The aryl- 
and acylsulfonamide- derived structural motifs of GNE- 9296 occupy their expected positions in the 
pockets formed between S2/S3 and S3/S4, respectively. Notably, in this hybrid configuration, Y1537 
adopts a similar arrangement as observed for the arylsulfonamides (Figure 4F).

Encouraged by this result, we hoped to draw on previously established knowledge of acylsulfon-
amide SAR to improve the potency of this compound. Established SAR within the acylsulfonamide 
series suggested that replacement of the chloro substituent on the benzamide fragment of the mole-
cule with a cyclopropane would typically improve potency. This SAR proved translatable to the hybrid 
class molecules, resulting in inhibitor 3 (IC50 = 16nM, n = 12; Figure 4C, Figure 4—figure supplement 
1, Figure 4—figure supplement 2A).

Further analysis of the cryo- EM structure of GNE- 9296 revealed that the aryl ring in the S2/S3 
binding pocket was shifted ~1 Å away from the VSD4 core compared to arylsulfonamides such as 
GNE- 3565 (data not shown). The aryl ring in the S3/S4 pocket exhibited better overlap with the anal-
ogous substituents in the GDC- 0310 structure. We hypothesized that the acylsulfonamide moiety of 
GNE- 9296, which places the two aryl substituents 4.7 Å apart, might not be fully optimized for use 
in hybrid inhibitors. In comparison, an arylsulfonamide moiety would position these two groups at a 
distance of ~3.3 Å. On this basis, we designed N- benzothiazolyl sulfonamide GNE- 1305 (compound 
4), which demonstrated potent NaV1.7 inhibition (IC50 = 9nM, n = 8, Figure 4C, Figure 4—figure 
supplement 1, Figure 4—figure supplement 2B).

Our last hypothesis was again validated with a cryo- EM co- structure of GNE- 1305 bound to the 
VSD4 NaV1.7- NaVPas channel (Figure 4G, Figure 4—figure supplement 2B). Here, we observed the 
typical face- on pi- stacking orientation of the S2/S3 substituent with Y1537 while maintaining efficient 
space filling in the S3/S4 pocket. Moreover, the efficient occupation of the non- membrane exposed 
regions of the binding pocket permitted the removal of the lipophilic tail of the molecule in 5, where a 
CF3 group replaces the cyclopentylmethyl substituent. Although this molecule shows reduced potency 
(IC50 = 74 nM, n = 8), lack of substantial small molecule contact with the lipid bilayer is an uncommon 
feature in all other known NaV1.7 VSD4 domain inhibitors. These molecules serve as a key proof of 
concept, highlighting the power of cryo- EM to yield new structural insights that can inspire the design 
of novel, structurally differentiated small molecule NaV channel inhibitors.

phenyl ring. (G) Extracellular view of VSD4- NaV1.7- NaVPas bound to the hybrid molecule 4 (GNE- 1305). (H) View toward the membrane highlighting key 
interactions with the anionic group. (I) View from the membrane highlighting the p- stacking interaction between Y1537 and the phenyl ring.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Biophysical and pharmacological characterization of human Nav1.7 channel by using Syncropatch384.

Figure supplement 2. Density maps of GNE- 9296 and GNE- 1305.

Figure supplement 3. Multiple sequence alignment of human VSD4 NaV1.

Figure 4 continued
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Discussion
Iterative structure- based design is among the most powerful techniques to facilitate the development 
of small molecule drug candidates. Although a variety of technologies are capable of providing infor-
mation about small molecule ligand–protein interactions, SBDD has traditionally been synonymous 
with the use of X- ray crystallography, with other techniques failing to rival its high resolution and 
fast cycle times. Here, we have demonstrated that a robust cryo- EM structure pipeline is capable of 
quickly providing co- structures at resolutions suitable for use in an active medicinal chemistry opti-
mization campaign. Moreover, we have highlighted the power of structural methods, and cryo- EM 
in particular, to provide new and important insights into inhibitor design through the discovery of a 
previously unknown binding mode for acylsulfonamide NaV1.7 inhibitors. We further note that our use 
of an engineered VSD4- NaV1.7- NaVPas chimeric channel construct was essential to produce sufficient 
yields of recombinant protein capable of routinely returning multiple cryo- EM samples per prepara-
tion. This system repeatedly delivered high- resolution depictions of the VSD4 inhibitor binding site 
and thus contrasts with prior accounts of VSD4 in cryo- EM structures of full- length human NaV1.7 
channels (Shen et al., 2019; Huang et al., 2022) Importantly, high- quality cryo- EM maps of VSD4 in 
complex with ICA121431 have recently been reported from full- length human NaV1.3 channel protein 
(Li et al., 2022), indicating that SBDD efforts targeting a particular NaV channel subtype would likely 
benefit from exploring both engineered and native channel sample options at early project stages.

The co- structure of GDC- 0310 was critical to contextualize historical differences between aryl- 
and acylsulfonamide NaV1.7 inhibitors, which include divergent SAR in the linker phenyl ring and tail 
regions, disparate NaV family selectivity patterns, and differences in on- rates and off- rates (Safina 
et al., 2021; Sun et al., 2019; Bankar et al., 2018; Luo et al., 2019; DiMauro et al., 2016; Focken 
et al., 2018). Previous efforts to model acylsulfonamide binding have attempted to dock molecules 
into the GX- 936 co- structure and have proposed subtle changes in molecular register and/or pose to 
explain the non- translatable SAR (Sun et al., 2019; Kotla et al., 2019). Here, we demonstrate that 
the molecular features of aryl- and acylsulfonamide inhibitors diverge because they occupy distinct, 
but overlapping, pockets within the VSD4 domain.

The selectivity determinants of arylsulfonamide NaV1.7 inhibitors have been well studied. Mutation 
of key non- conserved residues proximal to the binding pocket observed in the GX- 936 co- structure 
has been shown to alter NaV1.7 potency consistent with selectivity patterns observed for other NaV 
family members (Ahuja et  al., 2015; Figure  4—figure supplement 3). Typically, arylsulfonamides 
have shown high levels of selectivity against NaV1.5, NaV1.1, and NaV1.4, but lower selectivity against 
NaV1.2 and NaV1.6. In comparison, several acylsulfonamides have been characterized with very high 
selectivity over NaV1.2 and NaV1.6 (Bankar et al., 2018). Interestingly, residues forming the contours 
of the acylsulfonamide binding pocket show high sequence homology across NaV isoforms, suggesting 
that selectivity for this class is likely an allosteric phenomenon. Nonetheless, the disparate binding 
pockets for these two inhibitor classes provide a clear rationale for their historically divergent patterns 
of selectivity.

Our structure of GDC- 0310 provides a structural rationale for the relative slow dissociation kinetics 
of acylsulfonamide inhibitors compared to arylsulfonamides (Bankar et al., 2018). Specifically, the 
acylsulfonamide pocket is buried more deeply into the plasma membrane than the arylsulfonamide 
pocket, and may only be available through a membrane- access pathway that first involves partitioning 
of the molecule into the hydrophobic core of the membrane. In comparison, the arylsulfonamide 
pocket is more open to the outer membrane leaflet–aqueous interface, potentially offering access 
or egress directly from (or to) the solvent compartment. It is increasingly recognized that slow disso-
ciation kinetics may be associated with membrane- access pathways for small molecules binding to 
transmembrane proteins (Payandeh and Volgraf, 2021; Mason et al., 1991; Coleman et al., 1996; 
Anderson et al., 1994; Masureel et al., 2018; Austin et al., 2003; Rhodes et al., 1992; Sykes et al., 
2014; Dickson et al., 2016).

In addition to offering valuable information for retrospective analysis of historical NaV1.7 VSD4 
domain inhibitors, the structure of GDC- 0310 inspired the development of a class of structurally 
differentiated inhibitors that trap a novel conformation of VSD4. These hybrid molecules bridge both 
the S2/S3 and S3/S4 helical gaps, with the anionic moiety situated centrally, interacting with the 
arginine gating charge network within the core of the domain. We have demonstrated that potent 
hybrid inhibitors can be designed with fewer membrane- associated elements than prior generation 
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NaV1.7 inhibitors, and anticipate that this will offer opportunities to develop molecules with improved 
lipophilic ligand efficiency and/or differentiated pharmacokinetic profiles. Hybrid inhibitors can also 
access selectivity determinants from both the S2/S3 and S3/S4 pockets simultaneously, offering a 
tantalizing opportunity to develop exquisite selectivity over other NaV isoforms. Although selectivity 
was not a key endpoint of our proof- of- concept studies described here, hybrid molecules 2–5 are 
selective for NaV1.7 over the cardiac channel NaV1.5. Further discussion of selectivity patterns in the 
hybrid series is included in Supplementary file 1B.

Beyond the scope of NaV channel inhibitors, our experiences may also offer lessons translatable to 
small molecule modulators of other transmembrane proteins. Specifically, it is noteworthy to observe 
that both aryl- and acylsulfonamide inhibitors have access to inducible pockets that are not observ-
able in the parent small molecule co- structures. Designing small molecules to ‘push’ on a structural 
protein element is a common strategy in medicinal chemistry, but it is often challenging to predict 
when such efforts will afford new, well- defined binding pockets. As such, these designs are often met 
with failure and quickly abandoned. However, some scenarios exist in which an inducible pocket is 
more likely to be found. In these cases, medicinal chemists are more often emboldened to continue 
experimenting with designs that push into new areas of a protein binding pocket, even when met with 
initial failure. For example, type II kinase inhibitors can be rationally designed starting from a type I 
inhibitor structure by appending groups that push into the hydrophobic back pocket (Zhao et al., 
2014). This pocket is not visible from the type I inhibitor structure, but knowledge of the protein 
dynamics associated with the DFG- in/DFG- out transition provides a rationale for exploring these 
designs. We speculate that transmembrane proteins, particularly intrinsically dynamic ones including 
ion channels, transporters, and GPCRs, may commonly present privileged structural motifs that are 
rich with opportunities for the discovery of novel druggable pockets.

In summary, we have developed a robust pipeline for high- resolution structural determination 
of small- molecules bound to NaV1.7- VSD4 suitable for use in iterative structure- based drug design 
campaigns. We also report the first co- structure of an acylsulfonamide inhibitor bound to the VSD4 
domain of NaV1.7, revealing an unexpected and unique binding mode. This finding provides clear 
rationale for previously unexplainable divergence in the in vitro pharmacological behavior between 
inhibitor classes, and inspired the development of hybrid inhibitors that engages VSD4 in a novel 
conformation. Our findings highlight the power of cryo- EM as an enabling drug discovery technology 
and offer insights into ion channel structural dynamics that are potentially applicable to related targets 
and other target classes.

Materials and methods
Generation of VSD4-NaV1.7-NaVPas channel constructs
VSD4- NaV1.7- NaVPas chimeric constructs were used as described previously (Clairfeuille, 2019). In 
brief, optimized coding DNA for NaV1.7 VSD4- NaVPaS chimeras with N- terminal tandem StrepII and 
FLAG tag was cloned into a pRK vector with CMV promoter. HEK293 cells in suspension were cultured 
in SMM 293T- I medium under 5% CO2 at 37°C and transfected using PEI when the cell density reached 
4 × 106 cells per mL. Transfected cells were harvested 48 hr after transfection. The Dc1a toxin coding 
DNA from Diguetia canities was cloned into a modified pAcGP67A vector downstream of the poly-
hedron promoter and an N- terminal 6x HIS tag. Recombinant baculovirus was generated using the 
Baculogold system (BD Biosciences) and Trichoplusia ni cells were infected for protein production. The 
supernatant was harvested 48 hr post- infection.

Protein expression and purification
In total, 150 g of cell pellet was resuspended in 500 mL of 25 mM HEPES pH 7.5, 200 mM NaCl, 1 ug/
mL benzonase, 1 mM PMSF, and Roche protease inhibitor tablets. Cells were lysed by dounce homog-
enization. Proteins were solubilized by addition of 2% GDN (Avanti) with 0.3% cholesteryl hemisucci-
nate (Avanti) for 2 hr at 4°C. Cell debris was separated by ultracentrifugation at 40,000 rpm at 4°C. 
Affinity purification using anti- Flag resin was performed by batch binding for 1 hr at 4°C. The resin 
was washed with 5CV Purification Buffer (25 mM HEPES pH 7.5, 200 mM NaCl, 0.01% GDN). Another 
5CV wash was performed using Purification Buffer supplemented with 5 mM ATP and 10 mM MgCl2. 
Proteins were eluted in 6CV Purification Buffer with 300 ug/mL Flag peptide. Proteins were subjected 
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to another round of affinity purification using StrepTactin resin (IBA). Proteins were eluted and concen-
trated to  ~5  mg/mL. For the compound 2 containing sample, instead of nanodisc reconstitution 
VSD4- NaV1.7- NaVPas was incubated overnight with Dc1a toxin at a 2:1 molar ration of toxin:VSD4- 
NaV1.7- NaVPas. The eluted sample was concentrated to 100 uL and separated on Superose 6 3.2/300.

For nanodisc reconstitution used for the samples containing GNE- 3565, GDC- 0310, and compound 
4, a 200- molar excess of lipid mix (3POPC:1POPE:1POPG resuspended in 50  mM HEPES pH7.5, 
100 mM NaCl, 5 mM MgCl2, 1% CHAPS) was added to detergent- solubilized protein and incubated 
on ice for 30  min. A four- molar excess of scaffold protein (MSP1E3D1, Sigma) was added to the 
protein- lipid mix and incubated on ice for another 30 min. To remove detergent, BioBeads (Bio- Rad) 
were added to 0.25 mg/mL and incubated overnight at 4°C. To remove the empty nanodiscs, the 
sample was subjected to a round of affinity purification using Strep- Tactin (IBA). The eluted sample 
was concentrated to 100 uL and separated on Superose 6 3.2/300. Peak fractions were combined and 
split into four samples. Then, 50 uM of the small molecule of interest was added to each sample and 
incubated at 22°C for 10 min. Samples were crosslinked with 0.05% glutaraldehyde (Electron Micros-
copy Sciences) then quenched with 1 M Tris pH 7.0. Samples at 2 mg/mL were used for grid freezing.

Cryo-EM sample preparation and data acquisition
Cryo- EM grids for the small molecule VSD4- NaV1.7- NaVPas chimeric complexes shown in this study 
were prepared as follows: for the GDC- 0310 and compound 4 VSD4- NaV1.7- NaVPas complexes, holey 
carbon grids (Ultrafoil 25  nM Au R 0.6/1 300 mesh; Quantifoil) were incubated with a thiol reac-
tive, self- assembling reaction mixture of 4 mM monothiolalkane(C11)PEG6- OH (11- mercaptoundecyl) 
hexaethyleneglycol (SPT- 0011P6, SensoPath Technologies, Inc, Bozeman, MT). Grids were incubated 
with this self- assembled monolayer (SAM) solution for 24 hr and afterward rinsed with EtOH. 3 μL 
of the sample was applied to the grid and blotted with Vitrobot Mark IV (Thermo Fisher) using 3.5 s 
blotting time with 100% humidity and plunge- frozen in liquid ethane cooled by liquid nitrogen. The 
GNE- 3565 VSD4- NaV1.7- NaVPas complex was, similarly as described above, applied to a holey carbon 
grid (Ultrafoil 25 nM Au R 1.2/1,3 300 mesh; Quantifoil) pretreated with SAM solution. The grid was 
blotted single- sided with a Leica EM GP (Leica) using 3  s blotting time with 100% humidity and 
plunge- frozen in liquid ethane cooled by liquid nitrogen. For compound 2 VSD4- NaV1.7- NaVPas- DC1a 
complex, holey carbon grids (Ultrafoil 25 nM Au R 2/2 200 mesh; Quantifoil) were glow- discharged for 
10 s using the Solarus plasma cleaner (Gatan). 3 μL of the sample was applied to the grid and blotted 
with Vitrobot Mark IV (Thermo Fisher) using 2.5 s blotting time with 100% humidity and plunge- frozen 
in liquid ethane cooled by liquid nitrogen.

Movie stacks for compound 2 VSD4- NaV1.7- NaVPas- DC1a complex were collected using SerialEM 
(Mastronarde, 2005) on a Titan Krios operated at 300 keV with bioquantum energy filter equipped 
with a K2 Summit direct electron detector camera (Gatan). Images were recorded at ×165,000 magni-
fication corresponding to 0.824 Å per pixel using a 20 eV energy slit. Each image stack contains 50 
frames recorded every 0.2 s for an accumulated dose of ~50 e Å−2 and a total exposure time of 10 s. 
Images were recorded with a set defocus range of 0.5–1.5 μm.

Movie stacks for GNE- 3565, GDC- 0310, and compound 4 VSD4- NaV1.7- NaVPas complexes were 
collected using SerialEM on a Titan Krios G3i (Thermo Fisher Scientific, Waltham, MA) operated at 300 
keV with bioquantum energy filter equipped with a K3 Summit direct electron detector camera (Gatan 
Inc, Pleasanton, CA). Images were recorded in EFTEM mode at ×105,000 magnification corresponding 
to 0.838 Å per pixel, using a 20 eV energy slit. Each image stack contains 60 frames recorded every 
0.05 s for an accumulated dose of ~60 e Å−2 and a total exposure time of 3 s. Images were recorded 
with a set defocus range of 0.5–1.5 μm.

Cryo-EM data processing
Cryo- EM data were processed using a combination of the RELION (Scheres, 2012) and cisTEM (Grant 
et al., 2018) software packages, similarly as described previously (Kschonsak et al., 2022) and as 
illustrated in Figure 2—figure supplement 1 and Figure 3—figure supplement 1.

Movies were corrected for frame motion using the MotionCor2 (Zheng et al., 2017) implemen-
tation in RELION, and contrast- transfer function parameters were fit using the 30–4.5 Å band of the 
spectrum with CTFFIND- 4 (Rohou and Grigorieff, 2015). CTF- fitted images were filtered on the basis 
of the detected fit resolution better than 6–10 Å. Particles were picked by template- matching with 
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Gautomatch using a 30 Å low- pass filtered apo VSD4- NaV1.7- NaVPas reference structure. Particles 
were sorted during RELION 2D classification, and selected particles were imported into cisTEM for 
3D refinements. 3D reconstructions were obtained after auto- refine and manual refinements with a 
mask around the channel (excluding the detergent micelle) and by applying low- pass filter outside the 
mask (filter resolution 20 Å) and a score threshold of 0.10–0.30, so that only the best- scoring 10–30% 
of particle images would be included in the 3D reconstruction at each cycle. The weight outside of 
the mask was set to 0.8. No data beyond 3.0 Å for compound 4, 3.4 Å for GDC- 0310, 3.7 Å GNE- 
3565, and 4.0 Å for compound 2 were used in the refinements. Phenix ResolveCryoEM (Terwilliger 
et al., 2020) density modification was applied to each of the reconstructions to obtained the final map 
used for model building. Local resolution was determined in cisTEM using a reimplementation of the 
blocres algorithm.

Model building and structure analysis
The previously determined VSD4- NaV1.7- NaVPas model (PDB: 6NT3; Clairfeuille, 2019) was fit as a 
rigid body into the cryo- EM map. After manual adjustments, multiple rounds of real space refinement 
using the phenix.real_space_refinement tool (Afonine et al., 2018b) were used to correct structural 
differences between the initial model and the map. The small molecule coordinates were generated 
with eLBOW (Moriarty et al., 2009), placed and manually adjusted in Coot (Emsley et al., 2010), 
energy minimized with MOE (Chemical Computing Group ULC), and refined with real space refine-
ments in Phenix (Afonine et al., 2018b). The model was validated using phenix.validation_cryoem 
(Afonine et al., 2018a) with built- in MolProbity scoring (Williams et al., 2018). Figures were made 
using PyMOL (The PyMOL Molecular Graphics System, v.2.07 Schrödinger, LLC), UCSF Chimera 
(Pettersen et al., 2004), and UCSF ChimeraX (Goddard et al., 2018).

Chemical synthesis
The synthesis of GNE- 3565, GDC- 0310, and compound 1 has been previously reported (Safina et al., 
2021; Sun et al., 2019; Sutherlin, 2021). The synthesis and characterization of compounds 2–5 are 
described in the supporting information.

NaV1.7 biophysical and pharmacological characterization of Nav1.7 
channel using Syncropatch electrophysiology
cDNA for NaV1.7 (NM_002977) were stably expressed in Chinese Hamster Ovary (CHO) cells. Sodium 
currents were measured in the whole- cell configuration using Syncropatch 384PE (NanIon Technolo-
gies, Germany). 1NPC–384 chips with custom medium resistance and single hole mode were used. 
Internal solution consisted of (in mM) 110 CsCl, 10 CsCl, 20 EGTA, and 10 HEPES (pH adjusted to 
7.2); and external solution contains (in mM) 60 NMDG, 80 NaCl, 4 KCl, 1 MgCl2, 2 CaCl2, 2 D- glucose 
monohydrate, and 10 HEPES (pH adjusted to 7.4 with NaOH). To assess voltage- dependent activa-
tion of Nav1.7, currents were elicited by 20 ms test pulses (−80 to 20 mV in 5 mV increments) from a 
holding potential at –120 mV. To determine voltage- dependent inactivation, peak currents at 0 mV 
were obtained after 500 ms conditioning pre- pulses varying from –120–15 mV.

After system flushing, testing compounds were dissolved in external solution containing 0.1% 
Pluronic F- 127. 10  µL cells were added to the chip from a cell hotel, and a negative pressure of 
−50 mBar was applied to form a seal. Following treatment with seal enhancer solution and wash- off 
with external solution, negative pressure of −250 mbar was applied for 1 s to achieve the whole- cell 
configuration, followed by three washing steps in external solution. 20 µL of compounds were added 
to 40 µL in each well (1:3 dilution of compounds), and after mixing, 20 µL was removed so the volume 
was retained at 40 uL. After approximately 13 min recording, 20 µL/well of 2 uM TTX was added to 
achieve full block.

For pharmacological characterization, a holding potential of –50 mV was applied during the whole 
experiment. A depolarizing step was applied to –10 mV for 10 ms, followed by a hyperpolarization 
step to –150 mV for 20 ms to allow channel recovery from inactivation. A second depolarizing step 
was applied from –150 mV to –10 mV for 10 ms, where currents were measured to derive blocking 
effects of compounds. Inhibition was determined based on 7.5 min of compound incubation.

For all recordings, currents were sampled at 10 kHz and filtered with Bessel filter. Seal resistance 
(Rseal) was calculated using built- in protocols; and series resistance was compensated at 80%. 
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Several parameters were applied for quality control, including: cell catching (>10 MU), seal resistance 
(>500 MΩ), series resistances (<10 MΩ), and baseline current amplitude (>500 pA and <5 nA). Data 
were further examined by manual inspection.

Biophysical and pharmacological characterizations, including voltage- dependent activation, 
voltage- dependent inactivation, pharmacological protocol, a sample trace, IC50 values, and individual 
dose responses are shown in Figure 4—figure supplement 1.
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