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Abstract Salmonella enterica serovar Enteritidis is one of the most frequent causes of Salmonel-
losis globally and is commonly transmitted from animals to humans by the consumption of contam-
inated foodstuffs. In the UK and many other countries in the Global North, a significant proportion 
of cases are caused by the consumption of imported food products or contracted during foreign 
travel, therefore, making the rapid identification of the geographical source of new infections a 
requirement for robust public health outbreak investigations. Herein, we detail the development 
and application of a hierarchical machine learning model to rapidly identify and trace the geograph-
ical source of S. Enteritidis infections from whole genome sequencing data. 2313 S. Enteritidis 
genomes, collected by the UKHSA between 2014–2019, were used to train a ‘local classifier per 
node’ hierarchical classifier to attribute isolates to four continents, 11 sub- regions, and 38 countries 
(53 classes). The highest classification accuracy was achieved at the continental level followed by 
the sub- regional and country levels (macro F1: 0.954, 0.718, 0.661, respectively). A number of coun-
tries commonly visited by UK travelers were predicted with high accuracy (hF1: >0.9). Longitudinal 
analysis and validation with publicly accessible international samples indicated that predictions were 
robust to prospective external datasets. The hierarchical machine learning framework provided 
granular geographical source prediction directly from sequencing reads in <4 min per sample, facili-
tating rapid outbreak resolution and real- time genomic epidemiology. The results suggest additional 
application to a broader range of pathogens and other geographically structured problems, such as 
antimicrobial resistance prediction, is warranted.

Editor's evaluation
This important study presents a machine learning- based classifier that can accurately determine 
the geographic origin of a Salmonella enterica sample from its whole- genome sequencing data in 
under five minutes leading to actionable public health insights. Applying the method to 2,313 whole 
genome sequences collected in the United Kingdom and several external validation datasets, the 
authors provide convincing evidence that Salmonella genomic data can be used to identify the likely 
geographic source of a food- borne outbreak and, in most cases, correctly identify the country of 
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origin of an infection acquired overseas. The work presents an excellent case for the potential utility 
of routine genomics coupled with machine learning for public health microbiology and the methods 
are likely to be applicable to other pathogens besides Salmonella enterica.

Introduction
Diarrhoeal diseases are the most common illnesses caused by contaminated food, with 550 million 
people falling ill each year, including 220 million children under the age of 5 years (WHO, 2022). High 
disease- burden foodborne pathogens represent a major public health concern, necessitating real- 
time epidemiological monitoring and follow- up. Outbreak investigations are often confounded by the 
complexity of the international food- trade networks which distribute zoonotic food- borne pathogens 
across the globe (Gould et al., 2017). Understanding the contributing factors, whether they be envi-
ronmental, geographical, or zoonotic is critical for designing public health intervention strategies to 
combat and prevent food- borne pathogen outbreaks (Pires et al., 2009).

In many developed nations, Salmonella enterica serovar Enteritidis is the most common cause of 
the diarrhoeal disease (UKHSA, 2021) and represents a significant economic and healthcare burden 
(Daniel et al., 2020). In the UK, nationwide vaccination and monitoring programs have been respon-
sible for a precipitous drop in detectable Salmonella from local animal products and a concurrent 
drop in human infection rates (Surveillance, Zoonoses, Epidemiology and Risk Food and Farming 
Group, 2007; Tam et al., 2012). However, recent studies have identified imported foodstuffs (Cowley 
et al., 2016; McLauchlin et al., 2019; Somorin et al., 2021) and foreign travel (PHE, 2017) as more 
pertinent Salmonella infection risks.

Whole genome sequencing (WGS) has become a powerful tool for untangling complex networks 
of pathogen dissemination by providing high- resolution sub- typing for transmission tracing as well as 
detailed information on antimicrobial and virulence status (Allard et al., 2018). Since 2014, the UK 
Health Security Agency (UKHSA) has routinely applied WGS to all clinically identified cases of Salmo-
nella in the UK alongside collecting detailed metadata, such as patients recent foreign travel (Ashton 
et al., 2016). This program has been instrumental in identifying various international outbreaks, such 
as the largest known salmonellosis outbreak in Europe where, between 2015 and 2018 S. Enteritidis- 
contaminated eggs resulted in 1209 reported cases across 16 countries (Dallman et  al., 2016; 
Pijnacker et al., 2019). The approach taken by the UKHSA for inferring geographical source from 
genomics data involves phylogenetic population structure analysis, the examination of the genetic 
relatedness of isolates from various relevant source populations, alongside in- depth analysis of isolates 
from recent- reported travel cases and reconstruction of domestic or international food networks (Chan 
et al., 2023; Chattaway et al., 2023; Jenkins et al., 2019). Due to the resources involved, this type 
of investigation is often only undertaken in exceptional cases representing a threat to public health. A 
range of other methodologies exist for application to source attribution of genomics data (Mughini- 
Gras et al., 2018) including population genetics approaches such as STRUCTURE (Pritchard et al., 
2000) and the asymmetric island model (Wilson et al., 2008); Bayesian methods, such as sourceR 
(Miller et al., 2017); and hybrid methodologies which can variably include additional information, 
such as exposure risk (Ravel et  al., 2017). These methodologies require significant bioinformatic 
expertise and research time, are computationally expensive, and scale poorly with the increasingly 
vast collections of bacterial genomes available for analysis.

In order to promote rapid outbreak responses, novel methods are required to translate the increasing 
volumes of pathogen genomes generated by surveillance programs into immediate and actionable 
information for epidemiologists. S. Enteritidis represents a desirable initial target for such tools due to 
its large public health burden. WGS provides high- resolution information about pathogen strain relat-
edness and, by association, contains contextualized information on geographical or host origin. In the 
case of S. Enteritidis, which has a population structure observably stratified by geographical source 
(Feasey et al., 2016; Li et al., 2021), there is potential for genomics to provide key information for 
successful epidemiological follow- up, namely the likely country of origin of an infectious strain, and an 
opportunity to rapidly enact intervention strategies. Machine learning (ML) approaches have recently 
shown utility in predicting the original host of infectious S. enterica and Escherichia coli (Lupolova 
et  al., 2017; Lupolova et  al., 2019; Wheeler et  al., 2018; Zhang et  al., 2019), S. typhimurium 
(Munck et al., 2020), Campylobacter jejuni (Arning et al., 2021), and Listeria monocytogenes (Tanui 
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et al., 2022), but has yet to be applied to the problem of geographical source attribution. Herein we 
present the first implementation of a hierarchical machine learning (hML) classifier for geographical 
source attribution of S. Enteritidis genomes. We applied this model to the UKHSA’s large and uniquely 
detailed genomic database of clinical S. Enteritidis isolates collected between January 2014- April 
2019. Using these data, we have generated a fully automated analysis pipeline with which to monitor 
imported cases of S. Enteritidis. The hML model was designed to provide a granular and multi- level 
prediction of the geographical origin of an S. Enteritidis genome in under 4 minutes directly from raw 
sequencing reads.

Results
The UKHSA genomic surveillance program consistently samples S. 
Enteritidis associated with international travel through time
Broad and unbiased surveillance by the UKHSA of all clinically reported S. Enteritidis cases in the 
UK coupled with returning traveler data has provided a large genomic dataset representative of S. 
Enteritidis infections in the UK between 2014–2019 (Figure 1). This consisted of 10,223 isolates, of 
which 3,434 had matched recently reported travel data collected as a part of the UKHSA’s ‘enhanced 
surveillance’ program.

Recent travel was reported to 122 countries across five continents. A source of potential bias, 
common to bacterial genomics analysis, is the over- representation of clonally related isolates due 
to their increased prevalence during outbreaks (Ebel et al., 2016; Feil and Spratt, 2003). A clone 
was defined as a single- linkage cluster of isolates with five or less single nucleotide polymorphisms 
(SNPs), a definition routinely- used by the UKHSA in genomic disease surveillance as part of the ‘SNP 
Address’ framework for describing clones (Chattaway et al., 2019; Dallman et al., 2018). In order to 
reduce the influence of highly related clonal outbreaks on the resulting ML model, a single, random 
representative isolate was selected for each clone per country. After quality- filtering, downsampling, 
and the removal of countries with a low- incidence of reported infections of UK tourists (<10 total 
isolates), 2,313 genomes from 38 countries from four continents were included in the final dataset for 
ML (Figure 1A).

Grouping these countries by geographic region and subregion using the UN M49 Standard for 
Regional Codes provided a framework for a granular geographical analysis and an established hier-
archy of countries/subregions/regions (Statistics Division of the United Nations Secretariat, 2020). 
Phylogenetic analysis indicated that the dataset displayed a strong phylogeographical signal, with 
large clusters of isolates from geographically related countries clustering together (Figure 1B). An 
interactive maximum likelihood phylogenetic tree is available in Microreact (Argimón et al., 2016). S. 
Enteritidis infection rates in Europe and Asia were highly seasonal, with significantly increased rates 
of infection during the summer months (Figure 1C). This was less pronounced in travel to/from the 
Americas and Africa.

An analysis of the consistency of sampling effort over time identified that some notable countries 
in the dataset were composed of samples collected predominantly during a single year, such as Sri 
Lanka, Tunisia, and Dominica, and others were missing data from one or more years (Figure  1—
figure supplement 1). However, a comparison of the UKHSA collection to a dataset of location/date- 
matched genomes from the NCBI Pathogen Detection Database identified that the UKHSA dataset 
represented a significantly more consistent sampling effort which was less influenced by sporadic 
outbreaks (Figure 1D).

The countries with the highest number of travel- associated S. Enteritidis cases were Turkey (804), 
Spain (357), Egypt (343), Cuba (190), and the Dominican Republic (117) (Figure 1A). Controlling for 
the volume of UK travelers as recorded by the Office of National Statistics over a matched time period 
allowed for the identification of countries with disproportionate low- or high- risk of S. Enteritidis 
infection after traveling (Figure  1E; Office of National Statistics, 2020). Travelers to Turkey and 
Egypt were at a disproportionately higher risk of S. Enteritidis infection during this period. Conversely, 
travelers to France and Spain, two of the more popular travel destinations for UK travelers, were very 
low- risk. This highlights that the dataset was a product of the volume of UK- travel combined with a 
variable risk of infection per country. Consequently, there was a large degree of class imbalance (i.e. 
different number of isolates per country) in the dataset used for ML, in addition to low/absent sampling 

https://doi.org/10.7554/eLife.84167
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Figure 1. Summary of S. Enteritidis isolates collected by the UKHSA from UK clinical patients who recently reported foreign travel between 2014–2019. 
(A) Geographical distribution of 2,313 S. Enteritidis isolates by reported foreign travel. Variably sized points represent the number of samples per 
country. The map is colored by region (Africa: yellow, Americas: red, Asia: purple, Europe: blue). (B) Maximum likelihood phylogenetic tree of 2,313 S. 
Enteritidis isolates with bar colored by region of origin. (C) Kernel density plot indicating sampling density per region through time. No correction was 

Figure 1 continued on next page
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coverage of some parts of the globe. However, when considering larger geographical groupings (i.e. 
subregion/region) these imbalances were less pronounced or absent.

A novel hierarchical model provides real-time geographical source 
attribution prediction directly from sequencing reads in under 4 min
Taking advantage of the hierarchical structure of geographical data, we designed a multi- level hML 
classifier following a ‘Local Classifier per Node’ framework (Silla and Freitas, 2011). This was made 
up of 16 individual multi- class classifiers, one per node (one root, four regional, 11 sub- regional). 
Multi- class classifiers allow for the classification of samples into three or more classes (i.e. Region = 
Europe, Africa, Americas, Asia), rather than making a series of binary classifiers per individual class 
(e.g. Africa/Not- Africa, Europe/Not- Europe, etc.). In total, 53 individual classes (four regions, 11 sub- 
regions, and 38 countries) were included in the model. Sample classification was performed using 
a top- down approach, where samples are first classified at the root node into ‘regions’ (e.g. Africa) 
then, if the predicted probability is greater than a minimum threshold value (0.5), samples are passed 
to the appropriate regional node to be classified into a nested subset of ‘subregions’ (e.g. Northern 
Africa) and finally passed to a subregional node where they are classified into a nested subset of 
‘countries’ (e.g. Egypt) (Figure 2A). Using this scheme no samples could be attributed to a class that 
was not a predicted class of a previous classifier (i.e. Africa→Southern Asia→France is not possible, but 
Africa→Northern Africa→Egypt is). Sample classification was exclusive, disallowing multiple classifica-
tions on the same hierarchical level for a single sample.

For rapid and minimal sample processing and to provide end- to- end sample classification directly 
from the sequencer, the model was trained on filtered unitig patterns (presence- absence) generated 
from quality- controlled genomic short- read data files. Each local classifier per node was trained using 
only data pertinent to that node (e.g. a local subregion classifier was trained only on the data from 
its constituent countries). This end- to- end process, from FASTQ to sample prediction, is available on 
GitHub (https://github.com/SionBayliss/HierarchicalML, copy archived at Bayliss and Cowley, 2023).

Due to the imbalanced nature of the real- world surveillance dataset, it was necessary to resample 
the data to generate less biased datasets for training. To this end, a range of classifier and resampler 
algorithms were compared before selecting the top- performing models (Figure 2B–C). Models were 
assessed using a range of accuracy metrics, although the F1- score (or its hierarchical alternative, hF1) 
was preferentially used. The F1- score or F- score is the harmonic mean between the precision (the 
number of true positives divided by the number of true positives plus the number of false positives) 
and recalls (the number of true positives divided by the number of true positives plus the number of 
false negatives) and allows for a partial representation of both values in a single metric. The top four 
models subsequently underwent feature selection (Figure 2D–E) followed by parameter optimization 
using the TPOT genetic algorithm (Figure 2F). The optimized hML model produced a more accurate 
classification of the test dataset than a ‘flat’ classifier applied to a similarly pre- processed dataset 
(macro F1: 0.61) (Supplementary file 1A). Based on these comparisons, the most desirable assess-
ment metrics overall (i.e. high macro F1 at the country level, Figure 2E) were from feature selection 
by a Random Forest (RF) classifier (25,000 unitig patterns) before random oversampling to correct for 
class imbalance and final classification using an optimized RF model. Assuming <100 x read coverage, 
the entire pipeline takes ~3.5 min to classify novel samples using the pre- optimized model.

made for the seasonal variation observed in international travel. (D) Comparison of the consistency of the sampling effort of the UKHSA to all publicly 
available S. Enteritidis isolates on NCBI for the same period. Isolates were resampled to control for variable sample number per year and compared to 
a uniform distribution using the Kolmogorov- Smirnov D statistic (NCBI = red, UKHSA = blue). Higher values indicate greater deviation from a uniform 
distribution. (E) Relative risk per country of acquiring S. Enteritidis infection when traveling. A risk score was generated by dividing the proportion of 
UKHSA clinical isolates per country by the proportion of all UK travelers traveling to that country as recorded by the Office of National Statistics (ONS). 
Only countries present in both datasets were used to calculate proportions.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Summary of 2,313 S. Enteritidis isolates collected by the UKHSA from UK clinical patients during 2014- 2019 who recently 
reported foreign travel to 38 individual country classes. Each panel contains a bar chart of isolate counts per year per country class.

Figure 1 continued
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https://github.com/SionBayliss/HierarchicalML


 Research article      Epidemiology and Global Health | Microbiology and Infectious Disease

Bayliss et al. eLife 2023;12:e84167. DOI: https://doi.org/10.7554/eLife.84167  6 of 21

Figure 2. Summary statistics showing model and resampling scheme selection, feature selection, and optimization of the S. Enteritidis hML source 
attribution model. (A) Example schematic of a geographical hierarchy based upon the UN M49 Standard for regional codes. (B) Table of summary 
statistics for the ten top- performing co- optimized model and resampling methods from a cohort of 36 combinations, sorted by hF1 (high- low). Training 
time is reported in the final column in seconds. A black box indicates the top four models used for feature selection. (C) Grouped bar chart comparing 

Figure 2 continued on next page
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Granular predictions are provided at a regional, subregional, and 
individual country level
Classification metrics were highest at the regional level (macro F1: 0.954), but less discriminatory 
at the sub- regional (macro F1: 0.718) and country levels (macro F1: 0.661) (Figure 3A). There was 
a moderate degree of variation in predictive accuracy between different geographical locations. 
Africa was the most consistent accurately classified region, with all country and subregional classes 
presenting a hF1 of >0.7. In The Americas, Latin American and Caribbean countries showed very high 
classification metrics (hF1: >0.8), whereas samples for the United States were consistently misclas-
sified. All Asian classes were classified at moderate to high accuracy (hF1: 0.58–0.95). Europe was 
generally well classified (hF1: >0.66), but contained two classes, France and Italy, which were classi-
fied poorly (hF1: ~0.3). Further scrutiny of poorly performing classes showed a correlation between 
a lack of training data and lower prediction accuracy (Figure 3—figure supplement 1). This did not 
fully explain the observed results as some countries with a similarly low number of samples to poorly 
predicted countries (e.g. Czech Republic, Pakistan) showed moderate classification accuracy. An anal-
ysis of genetic diversity within classes indicated that at least two of the most poorly classified coun-
tries, France and the United States, displayed both low numbers of samples and high genetic diversity 
(Figure 3B, Figure 3—figure supplement 2). Samples from recent travel to France were particularly 
diverse, arising from multiple highly divergent clades of S. enteritidis. A range of countries that were 
commonly visited by UK travelers, such as Cuba, Egypt, Indonesia, Jamaica, Malta, Spain, Thailand, 
Tunisia, and Turkey, were well predicted (hF1: >0.9).

This model allows for a separate measure of predictive confidence (i.e. the probability value 
reported by the appropriate classifier) to be reported to the end- user for each hierarchical level. 
An example of how this uncertainty maybe visualized for the end- user is available in Figure 3C and 
mirrored in the interactive Microreact project. These figures include three columns containing the 
predicted class of each sample per hierarchical level and three matched columns with the probability 
of the prediction per class as reported by the appropriate classifier. This also allows for a user to visu-
ally inspect the variable level of predictive confidence for each bacterial lineage within its particular 
phylogenetic context. For ease of interpretation, an alternative to Figure 3 has been included in the 
supplementary information (Figure 3—figure supplement 3) which displays the % of isolates of each 
class correctly assigned to that class instead of HF1.

In summary, these results suggest that the optimized model can attribute the geographical source 
of S. Enteritidis isolates with high confidence at a regional level whilst also providing more nuanced 
and granular predictions for a range of countries regularly visited by UK travelers with a very high 
degree of accuracy. The resulting measures of confidence in individual sample predictions can be 
easily communicated to end- user an a simple and easily interpretable manner.

Models demonstrate durability to future predictions with 2 years 
previous training data providing the sufficient signal for accurate 
subsequent year predictions
Bacterial population lineage composition is not expected to remain static through time, therefore, 
predictive models based on genomic data require periodic retraining. To understand the amount of 
data required for accurate prospective prediction, we compared the outcomes of four yearly window 
sizes (1, 2, 3, and 4 years) for the prediction of subsequent years (Figure 4A). Predictive accuracy 
and consistency of prediction of the subsequent year improved on increasing window size, with hF1 
beginning to asymptote after 2 years. The largest improvement was observed between 1–2 years’ 
worth of data. A minor decrease in predictive accuracy (micro F1: ~0.05 per year) was observed for 

macro F1 per hierarchical level for the ten top- performing model/resampled combinations. (D) Table of summary statistics for random forest feature 
selection applied to the four top- performing co- optimized model and resampling methods. Black boxes indicate the optimal number of features per 
combination. (E) Grouped bar chart comparing macro F1 per hierarchical level for the four top- performing co- optimied model and resampling methods 
after feature selection optimization. (F) Summary statistics for the final optimized Random Forest - Random Oversampler model (25,000 features 
selected). ML Model abbreviations: Random Forest (RF), XGBoost (XGB), Extra Trees (ET), K- Nearest Neighbours (KNN). Resampler abbreviations: No 
Resampling (NA), Random Undersampler (RUS), Random Oversampler (ROS), Balancing Mean (BM), Hierarchical Mean (HM).

Figure 2 continued

https://doi.org/10.7554/eLife.84167
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Figure 3. Plots summarizing results from hierarchical machine learning (hML) model applied to the S. Enteritidis test dataset and a measurement of the 
genetic diversity of S. Enteritidis sample collection per country. (A) Diagrammatic representation of classification metrics of the hML classifier applied 
to the test dataset. Links between classes/nodes in the hierarchy are indicated by connecting lines. Boxes represent individual classes in the Machine 
learning (ML) model and are colored by their hierarchical F1 (hF1) scores. The top panel of each class box displays the class label, the bottom left panel 

Figure 3 continued on next page
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each additional year into the future (Figure 4B). A regional breakdown of the hF1 score indicated that 
a one- year window varied in predictive accuracy per region per year (Figure 4C), but that a two- year 
window provided more consistent and accurate predictions (Figure 4D). These results indicate that 
should this model be instituted for ML- enhanced genomic surveillance, it would require retraining on 
the two previous years samples each year to provide an optimal trade- off between predictive accuracy 
and training time.

The optimized hML model provides accurate predictions in 4/5 
validation datasets
The hML model was further validated by application to a series of external, independent data-
sets (Supplementary file 1D). The initial datasets were from two UK- based, well- characterized, 
and epidemiologically- traced imported food outbreaks. Sample redundancy between validation 

indicates the total number of samples for that class before the train/test split (75%/25%) and the bottom right panel shows the class hF1 score calculated 
from the test dataset. Classes within individual ‘regions’ (continents) were contained in a colored background panel. (B) Bar plot of genomic diversity per 
country. Genomic diversity was estimated as the number of 25 single nucleotide polymorphism (SNP) single linkage clusters divided by the total number 
of samples per class. Panels (A) and bars (B) were colored according to region (Africa: yellow, Americas: red, Asia: purple, Europe: blue). (C) Maximum- 
likelihood phylogenetic tree of the UKHSA S. Enteritidis isolates from the training and test datasets. The real label and predicted label (each assigned 
a unique color) of each isolate alongside the p- value generated by the model is shown for each hierarchical class level - region, subregion and country. 
Colored tree tips represent the region class of each isolate. An interactive version of the tree and associated metadata are available in Microreact.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Scatter plots summarizing the number of samples (x- axis) vs hF1 score (y- axis) generated by the optimized hierarchical machine 
learning (hML) model.

Figure supplement 2. Scatter plots summarizing hF1 score (x- axis) vs. the number of samples/genomic diversity at SNP5/genomic diversity at SNP50 
(y- axis – top/middle/bottom).

Figure supplement 3. Diagrammatic representation of classification metrics of the hierarchical machine learning (hML) classifier applied to the S. 
Enteritidis test dataset showing % isolates correctly assigned per class.

Figure 3 continued

Figure 4. A longitudinal analysis of the predictive performance of hierarchical machine learning (hML) models on 2,313 S. Enteritidis samples. (A) The 
hF1 scores of hML Random Forest (RF) models trained on a subset of samples from a 1–4 year moving window predicting the following year. (B) The 
micro F1 scores of hML RF models trained on a subset of samples from a 1–3 year moving window predicting 1–5 years into the future. (C) Regional hF1 
scores of hML RF models trained on one- year sampling windows predicting the following year. (D) Regional hF1 scores of hierarchical models trained on 
two- year sample windows predicting the following year.

https://doi.org/10.7554/eLife.84167
https://microreact.org/project/vsy9Ctr1dbzr49Mjs53bYj-s-enteritidis-hml-classifier
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and training datasets was removed before comparison. First, a 2015 outbreak epidemiologically- 
traced to eggs imported from Spain (Inns et al., 2017) was 100% correctly attributed to a Spanish 
origin (Figure 5A). Second, a multi- country outbreak originating from Polish egg farms (Pijnacker 
et al., 2019), comprising of two distinct lineages each differing by five or fewer SNPs, was correctly 
attributed to a European origin (131/131 cases), but subsequently misattributed to a Southern Europe 
(131/131 cases), Spanish origin (103/130) (Figure 5B). This complex outbreak was a particularly diffi-
cult test case for the model, as it had been continuously causing cases in 16 European countries for 
several years (2015–2018). The outbreak cases were also phylogenetically distinct from those asso-
ciated with travel to Poland in the UKHSA dataset (Figure 5B). It was possible to identify samples 
attributed to the outbreak in our training data, this included six  samples that were present in the 
training dataset. These six samples were labeled as having been acquired from Portugal (3), Spain 
(1), Greece (1), and Turkey (1) based on recently reported travel information, despite having got their 
infection from Polish eggs. 5/6 of these were of a Southern European origin, and likely contributed to 
the misattribution of the samples from the Polish validation datasets to a Southern European origin.

The model was further tested on datasets generated by other non- UK institutions. Three countries 
from three different regions were identified from the NCBI database as having acceptable sample 
numbers (>20), falling within the time- frame of the current model (2014–2019), and having been 
sampled from a country included in the current model hierarchy (South Africa, Singapore, and Poland). 
The Polish dataset, sampled from poultry, was attributed to a European origin with high accuracy 
(34/35, 97.1%), 19 of these were subsequently attributed to an East European origin (19/35, 54.3%) 
or which 18 were attributed to Poland (18/35, 51.4%) (Figure 5C). The remaining 15 samples were 
misclassified as having a Spanish origin (15/35, 42.9%). The South African dataset of clinical cases 
(Smith et al., 2020), was correctly attributed to a South African origin with 100% accuracy (25/25) 
(Figure  5D). The Singaporean dataset of human outbreaks (Octavia et  al., 2018) was correctly 
attributed to South- East Asia (48/48) with 91.7% of samples being correctly attributed to a Singa-
porean origin (44/48) and 4 samples being attributed to Indonesia (2), Malaysia (1), and Thailand (1) 
(Figure 5E). An additional visualization of the validation datasets alongside the training and test data-
sets has been presented in Figure 5—figure supplement 1.

Application of the hML model to independent validation datasets indicated that the model 
provided highly accurate and granular predictions for single- country outbreaks which occur over short 
time- frames. A large- scale, long- term, multi- country outbreak was poorly predicted by the model, 
likely due to a small number of outbreak isolates present in the training dataset being incorrectly 
labeled as having a Southern European origin. However, the application of the hML model to a range 
of other independent validation datasets provided highly accurate and granular predictions.

Discussion
Outbreaks caused by foodborne pathogens, where rapid response times are essential for effective 
interventions, represent an epidemiological challenge for public health bodies as they arise from 
complex, interconnected global supply chains which include many potential sources of infection. 
Our optimized hML model generates accurate predictions of the geographical origin of S. Enterit-
idis genomes directly from raw read data in under 4 min per sample. The output of this pipeline is a 
predicted probability per hierarchical level (i.e. region, sub- region, and country levels) allowing for 
granular source attribution alongside an assessment of confidence in the prediction. The observed 
classification accuracy of the model was high, varying across both hierarchical levels and individual 
classes (Figures 2–3). Accuracy was highest at the regional level (macro F1: 0.954), which contained 
the largest number of samples for training and the lowest level of class imbalance, before dropping at 
the subregional (macro F1: 0.718) and country levels (macro F1: 0.661), both of which contained gener-
ally smaller and more variable numbers of samples, increasing class imbalance (Figure 3). It should 
be noted that these macro values, being an average of the F1 score across all classes, were strongly 
influenced by outliers representing a handful of classes with poor classification accuracy (e.g. United 
States, France, US, Italy). Classification accuracy was negatively associated with both low sample 
numbers and increasing within- class genetic diversity (Figure 3—figure supplement 1, Figure 3—
figure supplement 2), although this did not fully explain the variation in predictive accuracy observed 
in the model, suggesting other complex factors may be involved. Although variation in predictive 
accuracy was observed, a number of commonly visited countries were predicted with extremely high 
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Figure 5. Classification summaries of the optimised hML model applied to five additional independent validation collections of S. Enteritidis genomes. 
(A) 128 samples from an international outbreak that originated in Spain in 2015 (Inns et al., 2017). (B) 131 samples from a large- scale international 
outbreak that originated from Polish eggs between 2015–2018 (Pijnacker et al., 2019). (C) 35 samples from Poland were uploaded to the NCBI 
database between 2014–2019. (D) 25 samples from South Africa were uploaded to the NCBI database between 2014–2019 (Smith et al., 2020). (E) 48 

Figure 5 continued on next page
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predictive accuracy (e.g. Cuba, Egypt, Indonesia, Jamaica, Malta, Spain, Thailand, Tunisia, and Turkey) 
which would be of high- utility for the UK epidemiologists tracing foodborne outbreaks.

Selection and optimization of the ML classifier and resampler methods, as well as pre- classification 
feature selection, were performed in a stepwise manner to assess the impact of each step on the 
resulting model. Ensemble classifiers outperformed other classifiers (Figure 2, Supplementary file 
1B). Interestingly, considering the large variation observed in some nodes of the hierarchy, the class 
imbalance was not found to have a large impact on the resulting model. Two of the top four best- 
performing classifier/resampler combinations included no resampling. These were both ensemble 
classifiers, suggesting that these were better able to account for the high dimensionality, high collin-
earity, and variable levels of class imbalance than other classifier models. The resampling itself was 
observed to differentially impact the various hierarchical levels (Figure  2). The model required a 
sample to be classified at a higher hierarchical level before being passed on to the next nested level 
(e.g. classified as European before being classes as West/East/South European) which biased model 
selection towards favoring classifiers which improved regional and subregional predictions. It should 
be noted that each classifier/resampler/feature selection step was applied uniformly across the hier-
archy prior to parameter optimization, to allow for an assessment of individual steps on the resulting 
model. An attractive, although less informative, approach for future retraining would be to optimize 
all steps (classifier/resampler/feature selection) on a per- node basis using an AutoML method, such as 
the genetic algorithm used in the current work to optimize hyperparameters in the final hML RF model 
(Olson et al., 2016). Validation using external datasets indicated that the model robustly predicted 
the majority of novel samples, but was less effective for complex multi- country, multi- year outbreaks 
(Figure 5).

We acknowledge that this study has a number of important limitations. Whilst we have presented 
evidence that the hML model can robustly predict geographical sources for S. Enteritidis, the 
COVID- 19 pandemic has resulted in a vast disruption to international travel over the past 2 years. The 
UKHSA is already seeing a return to pre- pandemic levels of imported infection and expect the pattern 
of the seasonality of imported S. Enteritidis infections to return. However, there may be unquantified 
impacts on the global food network which could result in a reduction in the prediction accuracy of the 
current model and would likely require retraining on post- pandemic data. Furthermore, the dataset, 
collected as part of the UKHSA’s national genomic surveillance program, is a product of two factors; 
the countries to which UK residents commonly travel and the variable likelihood of S. Enteritidis 
infection whilst in these countries (Figure 1). Both factors influence the geographical distribution of 
sampling locations present in the dataset as well as the number of available samples per country. 
For example, of the 122 countries present in the initial dataset only 38 (31%) were present in suffi-
cient quantities over the surveillance period to include in the model. The second factor influencing 
the composition of the dataset is the variable risk of infection posed by the countries present in the 
dataset. Some commonly visited countries posed only a minor risk of infection (e.g. France) whilst 
others posed a disproportionately high risk of infection on visiting (e.g. Turkey) (Figure 1E). The risk 
of infection per country is likely to be a product of the overall prevalence of S. Enteritidis as well as 
the local circulation of high- virulence or low- virulence strains, infections with which is more or less 
likely to result in referral to the clinical setting. Due to the complex nature of both the global food 
supply chain and pathogen transmission dynamics, it is likely that these factors will cause misattribu-
tion in some cases; for instance, UK- travelers might travel to country A and consume contaminated 
foodstuffs imported from country B which was absent from the training data, and the model would 
then ‘correctly’ assign future cases to country A. One might also imagine that country C, which is 
only rarely visited by UK- travelers, produces a contaminated foodstuff and exports it to country D, 

samples from Singapore were uploaded to the NCBI database between 2014–2019 (Octavia et al., 2018). The number of samples assigned per class is 
indicated for classes relevant to the query dataset. Class boxes are colored by the proportion of correctly/incorrectly classified samples (correct: green, 
incorrect: red). (F) Maximum- likelihood phylogenetic tree of S. Enteritidis isolates from the training, test, and validation datasets. Validation dataset 
isolates are displayed as a colored bar alongside the p- value of the model predictions for associated region, subregion, and country class. Colored tree 
tips represent the training isolates from the four countries tested across the validation datasets.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Maximum- likelihood phylogenetic tree of S. Enteritidis isolates from the training, test, and validation datasets.

Figure 5 continued
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which is often visited by UK- travelers, causing the model to misattribute a sample from country C to 
D. In these cases, the model would provide useful information on the origin of infection but would 
not ultimately identify the true reservoir of the pathogen. Evidence of this form of misattribution has 
been presented in the Polish eggs outbreak dataset used for validation (Figure 5B). This outbreak 
represents a particularly difficult attribution problem as many of the contaminated eggs were distrib-
uted to 18 different EU countries during the sampling period used to train the model – allowing for 
the inclusion of a small number of erroneously labeled samples in the training data and resulting in 
inaccurate classification. This outbreak represents an important limitation of the current model and 
illustrates how multi- country outbreaks or long- established food network contamination pathways can 
confound accurate source attribution.

Other potential forms of mislabeling in reported travel data include the incorrect reporting of 
multi- country trips or infection of travellers during return- trip layovers. The ONS records travel desti-
nation as the primary location visited, so no estimates of the proportion of samples attributable to 
multi- country trips could be made, although they will certainly represent a minority of the data. Recent 
surveys have estimated that layovers occur on only a small proportion of flights (~15%), although 
this could potentially have a larger impact on the data due to the bias in detecting cases that occur 
towards the end of a trip, which could result in a patient being admitted to UK- based clinical care 
setting, rather than one overseas (Department for Transport, 2018; Department of Transport, 
2018). Another limitation of this work was its reliance on recently reported travel data, which was used 
as a proxy for the prevalence of infections arising from imported foodstuffs. Whilst there is evidence 
that this approach can capture highly- relevant disease strains present in foodstuffs imported to the UK 
(Chan et al., 2023; Chattaway et al., 2023; Jenkins et al., 2019), strain prevalence is likely to vary 
across national borders due to differences in national and domestic regulations and food- processed 
methods.

We have presented a conceptually simple hML model which is able to successfully predict the 
geographical source of infection for a wide range of popular destinations frequented by UK travelers. 
However, the basis of this work was a single dataset which, although exceptional in the breadth of 
sampling and metadata, compositionally reflects locations routinely visited by UK travelers. A number 
of destinations were present in the dataset for which there is little to no data present in public data-
bases during a matching time period (e.g. Malta). This demonstrates the additional utility provided 
by the collection of recent travel information as part of a national surveillance program to generate 
consistent geographical coverage for disease- sampling over a much larger geographical area. Travel- 
associated samples have recently been used to improve our understanding of the geographical distri-
bution of various S. Typhi lineages by being used as an informal substitute for sampling efforts from 
geographical regions lacking formal disease surveillance programs (Carey et al., 2022). One could 
imagine that coordination between public health bodies with complementary citizen travel prefer-
ences would allow for a small network of national genomic surveillance initiatives to provide global 
coverage of gastrointestinal diseases without the costly necessity of instituting comprehensive global 
surveillance initiatives. If this was coupled with a similar hML model to the one detailed here, then 
rapid and precise global predictions of the source of gastrointestinal disease outbreaks could be 
achieved.

The model presented herein is conceptually simple and does not incorporate temporal informa-
tion, account for seasonal fluctuations in disease incidence, allow for multiple labels to be assigned 
to samples, or incorporate animal host/food source information, which may improve the predic-
tion of multi- country outbreaks or provide additional information to further enhance epidemiolog-
ical follow- up (Lupolova et al., 2017; Lupolova et al., 2019; Wheeler et al., 2018; Zhang et al., 
2019). Furthermore, the UK was excluded as a potential geographical source in the model due to 
the extremely low prevalence of S. Enteritidis in domestic poultry flocks and a lack of clinical isolates 
linked to consumption of locally produced foodstuffs (European Food Safety Authority and Euro-
pean Centre for Disease Prevention and Control, 2017). Future studies could include samples 
collected via veterinary or food chain- based surveillance programs to provide finer- scale inference of 
causation or provide model coverage of low- prevalence geographical locations.

This study provides a framework for future hML applications in the area of pathogen genomics. 
Other geographically stratified problems which might benefit from a hierarchical approach include 
antimicrobial resistance in E. coli (Ingle et al., 2018), the transmission of Staphylococcus aureus in 
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hospital networks (Donker et al., 2017), and application to other serovars of S. enterica (Lupolova 
et al., 2017; Munck et al., 2020). This work represents the first application of hML for the automation 
of genomics- based geographical source attribution. The rapidity of predictions from raw sequencing 
data should greatly enhance epidemiologists’ ability to trace the source of gastrointestinal outbreaks 
by condensing complex genetic data into understandable and actionable outputs.

Methods
Genome collection and processing
The initial dataset consisted of 10,223 S. Enteritidis isolates collected and sequenced by UKHSA 
between 2014–2019 as a part of their routine disease monitoring program. Raw read data were down-
loaded from the Sequence Read Archive (Bioproject: PRJNA248792) (Supplementary file 1C). Reads 
were filtered using Trimmomatic 0.39, residual Illumina adapter sequences were removed, the first 
and last three base pairs in a read were trimmed, before a sliding window quality trimming of four 
bases with a quality threshold of 20 were applied, and reads of less than 36 bp (after trimming) were 
removed ( ILLUMINACLIP: PE_ All. fasta: 2: 30: 10: 2: keepBothReads SLIDINGWINDOW:4:20 LEADING:3 
TRAILING:3 MINLEN:36) (Bolger et  al., 2014). The coverage of the resulting file was estimated 
against the size of S. Enteritidis reference genome P12510 (Thomson et al., 2008) and downsampled 
to ~100 x coverage using in- house scripts. Musket 1.1 was applied for k- mer spectrum read correction 
using a k- mer size of 31 bp. Unitigs were generated directly from filtered reads using bcalm 2.2.3 with 
a k- mer size of 31 bp and a minimum k- mer abundance of six (estimated from data) (Chikhi et al., 
2016).

Reads were mapped to S. Enteritidis reference genome P12510 and variants were called using 
SNIPPY 4.6 with a minimum coverage of 10x and a mapping quality of 60 (Seemann, 2021). A reduced 
alignment of variant sites was generated using snp- sites (Page et al., 2016) and passed to IQ- Tree 
for phylogenetic reconstruction using a GTR + I + G substitution model and ultra- fast bootstrapping 
(1000 bootstraps) (Nguyen et  al., 2015). An interactive maximum likelihood phylogenetic tree is 
available in Microreact.

Isolate selection for Machine learning
Of the initial 10,223 isolates, 3,434 had matched recent reported travel data, in the form of ‘country’ 
of recent travel (within 28 days of generating symptoms), provided by the clinical laboratories on 
submission of the isolate. These isolates were selected as potential candidates for ML model construc-
tion and testing. The 3,434 initial isolates were subsequently filtered to identify samples that had 
both consistent metadata and good sequence quality. The criteria for inclusion included: (a) clear 
and uncontradictory recent travel metadata, unrecognized or invalid regions (e.g. Yugoslavia) were 
removed; (b) reads that were not genetically distant from the majority of isolates in the collection as 
measured by MASH distance; (c) reads that had >28 x coverage of S. Enteritidis reference genome 
P12510; (d) samples that did not have a total unitig length greater than 5,250,000 bp; (e) k- mers 
created from the reads that did not have a singleton frequency of >0.5. A total of 220 samples were 
excluded due to these criteria.

Further dataset reduction was performed to remove genetically identical, or near- identical, isolates 
from the collection prior to processing for ML. SNP Address was used as a proxy for genetic related-
ness and a single example of each SNP Address (SNP5) was randomly selected per country for further 
analysis. Samples were assigned to region and subregion based upon the UN M49 Standard for 
regional codes (https://unstats.un.org/unsd/methodology/m49/overview) [Accessed: 30 November 
2021]. Recent travel information which represented historically distinct subregions or autonomous 
subregions of a larger country grouping (e.g. Hong Kong), was considered a part of the larger entity 
for the purpose of classification. Any country with less than ten representative samples after filtering 
was excluded from further analysis. The final sample collection after filtering contained 2,313 samples 
(Supplementary file 1C).

The relative risk of acquiring S. Enteritidis infection when traveling was estimated using the ratio 
of the proportion of UKHSA clinical isolates reported as having recently traveled to each country over 
the proportion of all UK travelers traveling to that country as recorded by the (Office of National 
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Statistics, 2020). The data used for this comparison was the date (year) and location (country) 
matched before proportions were calculated.

The NCBI Pathogen Genome database was interrogated to identify S. Enteritidis isolates collected 
in countries present in the hML model over a matching time period [Accessed: 18 November 2021]. 
2019 was excluded as UKHSA samples were only available for a relatively short duration of the year 
(January- April). Variation in the isolate number collected each year was controlled for by resampling 
with replacement (1,000  samples). The resulting yearly sampling data was compared to a uniform 
distribution using the Kolmogorov- Smirnov D statistic to quantify deviation from a consistent sampling 
scheme for both the UKHSA and NBCI reference datasets.

Unitig processing for ML
A colored De Bruijn graph was constructed for the complete genome collection by passing the unitigs 
for individual samples to unitig caller v1.2.0 (Holley and Melsted, 2020). This identified 426,647 
unique unitigs present in the 2,313 genome collection. The resulting De Brujin graph was then queried 
to establish the presence/absence of each unitig on a per- sample basis. Unitigs present/absent in only 
a single sample were removed. Unitigs that co- occurred in the same subset of samples (i.e. perfect 
correlation) were clustered into a single feature ‘pattern’ for input into feature selection and ML 
model- building algorithms. This reduced the input from 426,647 unitig features into 94,865 pattern 
features. The dataset was split into 75–25% train- test ratio stratified by the country for downstream 
applications.

Hierarchical classifier design
A class- prediction top- down hierarchical classifier framework was developed to be compatible with 
any scikit- learn classifier which generates a per- sample predicted probability value. The framework 
followed a Local Classifier per Node (LCN) approach as detailed in Silla and Freitas, 2011, wherein a 
multi- class classifier was fitted at each node of the hierarchy to differentiate between the various child 
classes of that node. The geographical hierarchy used as the basis of the classifier was constructed 
using the three levels of geographical labels, region->subregion->country, assigned by UN M49 Stan-
dard for regional codes (Statistics Division of the United Nations Secretariat, 2020). At each node, 
samples were relabeled according to the current hierarchical level (e.g. Cuba and the United States 
would be labeled as Americas at the root/regional node) before being passed to the classifier. Only 
samples in classes relevant to the current hierarchical node classifier were included in the training 
data for each classifier (i.e. samples from countries that were not a part of the region/subregion being 
trained were excluded).

Hierarchical classification strategy
The hierarchical classifier framework allowed for the flexible assignment of samples to a single unam-
biguous class in the hierarchy (i.e. a single region/sub- region/country or unclassified). Samples were 
first classified at the root (regional) node. A classification was assigned if the predicted probabili-
ties adhered to the threshold criteria, and the maximum probability value at that node exceeds a 
threshold value (0.5). Only then would the sample be passed to the next node in the hierarchy. This is 
not permissive of multiple, conflicting classifications.

A range of hierarchical and non- hierarchical statistics was applied to aid model assessment. Stan-
dard non- hierarchical statistics were generated for each individual classifier/node (precision, recall, 
micro/macro/weighted F1) as well as their hierarchical analogs (hP, hR, hF1). These were calculated as 
described by Kiritchenko et al., 2005:
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where  Pi  is the set of predicted classes consisting of the most specific class (i.e. the lowest level of 
the hierarchy) predicted for test example i plus all parent classes and  Ti  is the set of classes consisting 
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of the most specific true class of test example i and all its ancestor classes. Summations were calcu-
lated over all test samples. Macro hF1 was calculated by taking the average F1 of all classes of interest.

Feature selection, resampling, model testing, and optimization
During model selection, various combinations of classifier, resampler and feature selection models 
were applied to the test- train dataset to assess their suitability for model building. These were 
assessed based on a combination of non- hierarchical statistics including overall micro/macro F1 and 
micro/macro F1 per hierarchical level. The implemented classifier models included K- Nearest Neigh-
bours, Support Vector, Random Forest, Gaussian Naive Bayes, XGBoost, Extra Trees. All classifier 
models were implemented using scikit- learn using a set seed value and default parameters with the 
exception of Random Forest, Extra Trees, and XGBoost classifiers which were run with n_estimators = 
1000 and SVC which was run with probability = True.

The implemented resampling schemes included downsampling (smallest class), upsampling (largest 
class), resampling to the mean count of all classes, and hierarchically aware implementation for the 
previously described samplers. Hierarchically aware resampling was developed using in- house scripts 
to iteratively apply a resampler to each of the lowest levels of the hierarchy (country) before passing 
the resampled data to higher levels in the hierarchy for further resampling.

An all- vs- all comparison of classifier vs resampler models was used to identify the most suitable 
combinations for further optimization (Supplementary file 1B). In all cases, a fixed seed value was 
used for the comparison of models and resamplers. The top four combinations of classifier- resampler 
were selected for feature selection comparison. The implemented feature selection method was 
Random Forest using varying numbers of patterns as training data (Figure 2D).

The final classifier- resampler- selection combination was passed to a genetic algorithm framework 
(TPOT) to identify an approximation of optimal parameters from a wide range of possible combina-
tions (sklearn.ensemble.RandomForestClassifier': 'n_estimators': [100, 500, 1000], 'criterion': ['gini', 
'entropy'], 'max_features':  np. array([0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 
0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1. ]), 'min_samples_split': range(2, 21), 'min_samples_leaf': range(1, 
21), 'bootstrap': [True, False]) (Olson et  al., 2016). The TPOT genetic algorithm used the macro 
F1 score per node as the optimization metric, was run for 100 generations with a population size 
of 50, and stratified threefold cross- validation of the input database and was stopped if no model 
improvement was found for 10 generations. A ‘flat’ model was also trained and tested in the same 
manner for comparison, whereby a multiclass Random Forest classifier was provided with a randomly 
oversampled dataset which only included ‘country’ class labels (i.e. region/subregion were ignored) 
(Supplementary file 1A).

Validation dataset collection and processing
Various public datasets were used as additional validation data including outbreaks described in 
previous publications (Inns et al., 2017; Octavia et al., 2018; Pijnacker et al., 2019; Smith et al., 
2020) and samples identified from the NCBI Pathogen Genome database [Accessed: 18 November 
2021]. In the case of samples taken from previous publications, accession numbers were identified 
from these manuscripts, and samples were downloaded and passed through the genome and unitig 
processing pipelines described above. Additionally, NCBI Pathogen Genome database metadata was 
downloaded [Accessed: 18 November 2021] and filtered to return only samples that had publicly 
accessible read files, and country metadata from the 38 countries and were collected between 
2014–2018. Three representative countries were chosen to trial the model on (Poland, South Africa, 
and Singapore). Read data was downloaded and passed through the unitig processing pipeline as 
described above. The presence of unitigs generated from the UKHSA collection which formed the 
basis of the hML model was ascertained using unitig-counter (Jaillard et al., 2018, Lees et al., 2018). 
The unitig features were then converted into the patterns generated from the UKHSA collection as 
described above.
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Data availability
The final optimised hierarchical model as well as a pipeline for pre- processing raw read data to 
unitigs/patterns for input and paper data is available from https://github.com/SionBayliss/Hierarchi-
calML (copy archived at Bayliss and Cowley, 2023) with a short description and tutorial for ease of 
use. This end- to- end process, from FASTQ to prediction, is open access and available to users under 
GNU GPLv2 licence . This depository also includes the preprocessed unitig datasets and resulting 
predictions. Short read sequencing data is available from the Sequence Read Archive (Bioproject: 
PRJNA248792). Please note that the sequence data has been previously deposited/published in the 
Sequence Read Archive by PHE/UKHSA and was not generated for this project.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

UKHSA 2018 Public Health England - 
Salmonella

https://www. ncbi. nlm. 
nih. gov/ data- hub/ 
genome/? bioproject= 
PRJNA248792

NCBI BioProject, 
PRJNA248792

Smith AM, Tau NP, 
Ngomane HM, 
Sekwadi P, Ramalwa 
N, Moodley K, 
Govind C, Khan S, 
Archary M, Thomas J

2020 Whole- genome 
sequencing to investigate 
two concurrent outbreaks 
of Salmonella Enteritidis in 
South Africa, 2018

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
PRJNA646325

NCBI BioProject, 
PRJNA646325

Octavia S, Ang MLT, 
La MV, Zulaina Siti, 
Tien WS, Han HK, 
Ooi PL, Cui Lin, Lin 
RTP, Zul AS

2018 Retrospective genome- 
wide comparisons of 
Salmonella enterica serovar 
Enteritidis from suspected 
outbreaks in Singapore

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
PRJNA434621

NCBI BioProject, 
PRJNA434621
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