Abstract

Mitochondrial ATP production in cardiac ventricular myocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca2+ ([Ca2+]m) and blood flow that is tuned by local ventricular myocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO2/bicarbonate. CO2 is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients that powers ATP production. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane (IMM) and produces bicarbonate (HCO3-) in a reaction accelerated by carbonic anhydrase (CA). The bicarbonate level is tracked physiologically by a bicarbonate-activated adenylyl cyclase, soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular myocytes where it generates cAMP when activated by HCO3-. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space (IMS) by activating local EPAC1 (Exchange Protein directly Activated by cAMP) which turns on Rap1 (Ras-related protein 1). Thus, mitochondrial ATP production is shown to be increased by bicarbonate-triggered sAC signaling through Rap1. Additional evidence is presented indicating that the cAMP signaling itself does not occur directly in the matrix. We also show that this third signaling process involving bicarbonate and sAC activates the cardiac mitochondrial ATP production machinery by working independently of, yet in conjunction with, [Ca2+]m-dependent ATP production to meet the energy needs of cellular activity in both health and disease. We propose that the bicarbonate and calcium signaling arms function in a resonant or complementary manner to match mitochondrial ATP production to the full range of energy consumption in cardiac ventricular myocytes in health and disease.

Data availability

The data that support the findings of this study are shown within the figures and their source numeric values are included in this publication as supplementary source data tables. Should additional information be requested it will be available from the corresponding author.

Article and author information

Author details

  1. Maura Greiser

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3197-0910
  2. Mariusz Karbowski

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aaron David Kaplan

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew Kyle Coleman

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicolas Verhoeven

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carmen A Mannella

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. W Jonathan Lederer

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Liron Boyman

    Department of Physiology, University of Maryland, Baltimore, Baltimore, United States
    For correspondence
    Lboyman@som.umaryland.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4485-680X

Funding

American Heart Association (15SDG22100002)

  • Liron Boyman

National Institutes of Health (7U19 AI090959)

  • W Jonathan Lederer
  • Liron Boyman

Frontiers in Anesthesia Research (Award from International Anesthesia Research Society)

  • W Jonathan Lederer
  • Liron Boyman

National Institutes of Health (R01 GM129584)

  • Mariusz Karbowski

University of Maryland Claude D. Pepper Center (P30 AG028747)

  • Maura Greiser

National Institutes of Health (R01 HL142290)

  • W Jonathan Lederer

National Institutes of Health (5R35GM140822)

  • W Jonathan Lederer

National Institutes of Health (U01 HL116321)

  • Carmen A Mannella
  • W Jonathan Lederer

National Institutes of Health (T32 AR007592)

  • Andrew Kyle Coleman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures and protocols involving animal use were approved by the Institutional Animal Care and Use Committee of the University of Maryland School of Medicine (IACUC # 0921015).

Copyright

© 2023, Greiser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,491
    views
  • 166
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maura Greiser
  2. Mariusz Karbowski
  3. Aaron David Kaplan
  4. Andrew Kyle Coleman
  5. Nicolas Verhoeven
  6. Carmen A Mannella
  7. W Jonathan Lederer
  8. Liron Boyman
(2023)
Calcium and bicarbonate signaling pathways have pivotal, resonating roles in matching ATP production to demand
eLife 12:e84204.
https://doi.org/10.7554/eLife.84204

Share this article

https://doi.org/10.7554/eLife.84204

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.