Abstract

Mitochondrial ATP production in cardiac ventricular myocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca2+ ([Ca2+]m) and blood flow that is tuned by local ventricular myocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO2/bicarbonate. CO2 is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients that powers ATP production. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane (IMM) and produces bicarbonate (HCO3-) in a reaction accelerated by carbonic anhydrase (CA). The bicarbonate level is tracked physiologically by a bicarbonate-activated adenylyl cyclase, soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular myocytes where it generates cAMP when activated by HCO3-. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space (IMS) by activating local EPAC1 (Exchange Protein directly Activated by cAMP) which turns on Rap1 (Ras-related protein 1). Thus, mitochondrial ATP production is shown to be increased by bicarbonate-triggered sAC signaling through Rap1. Additional evidence is presented indicating that the cAMP signaling itself does not occur directly in the matrix. We also show that this third signaling process involving bicarbonate and sAC activates the cardiac mitochondrial ATP production machinery by working independently of, yet in conjunction with, [Ca2+]m-dependent ATP production to meet the energy needs of cellular activity in both health and disease. We propose that the bicarbonate and calcium signaling arms function in a resonant or complementary manner to match mitochondrial ATP production to the full range of energy consumption in cardiac ventricular myocytes in health and disease.

Data availability

The data that support the findings of this study are shown within the figures and their source numeric values are included in this publication as supplementary source data tables. Should additional information be requested it will be available from the corresponding author.

Article and author information

Author details

  1. Maura Greiser

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3197-0910
  2. Mariusz Karbowski

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aaron David Kaplan

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew Kyle Coleman

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicolas Verhoeven

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carmen A Mannella

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. W Jonathan Lederer

    Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Liron Boyman

    Department of Physiology, University of Maryland, Baltimore, Baltimore, United States
    For correspondence
    Lboyman@som.umaryland.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4485-680X

Funding

American Heart Association (15SDG22100002)

  • Liron Boyman

National Institutes of Health (7U19 AI090959)

  • W Jonathan Lederer
  • Liron Boyman

Frontiers in Anesthesia Research (Award from International Anesthesia Research Society)

  • W Jonathan Lederer
  • Liron Boyman

National Institutes of Health (R01 GM129584)

  • Mariusz Karbowski

University of Maryland Claude D. Pepper Center (P30 AG028747)

  • Maura Greiser

National Institutes of Health (R01 HL142290)

  • W Jonathan Lederer

National Institutes of Health (5R35GM140822)

  • W Jonathan Lederer

National Institutes of Health (U01 HL116321)

  • Carmen A Mannella
  • W Jonathan Lederer

National Institutes of Health (T32 AR007592)

  • Andrew Kyle Coleman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures and protocols involving animal use were approved by the Institutional Animal Care and Use Committee of the University of Maryland School of Medicine (IACUC # 0921015).

Copyright

© 2023, Greiser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,525
    views
  • 173
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maura Greiser
  2. Mariusz Karbowski
  3. Aaron David Kaplan
  4. Andrew Kyle Coleman
  5. Nicolas Verhoeven
  6. Carmen A Mannella
  7. W Jonathan Lederer
  8. Liron Boyman
(2023)
Calcium and bicarbonate signaling pathways have pivotal, resonating roles in matching ATP production to demand
eLife 12:e84204.
https://doi.org/10.7554/eLife.84204

Share this article

https://doi.org/10.7554/eLife.84204

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.