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Abstract Cultural and socioeconomic differences stratify human societies and shape their genetic 
structure beyond the sole effect of geography. Despite mating being limited by sociocultural strat-
ification, most demographic models in population genetics often assume random mating. Taking 
advantage of the correlation between sociocultural stratification and the proportion of genetic 
ancestry in admixed populations, we sought to infer the former process in the Americas. To this aim, 
we define a mating model where the individual proportions of the genome inherited from Native 
American, European, and sub- Saharan African ancestral populations constrain the mating probabili-
ties through ancestry- related assortative mating and sex bias parameters. We simulate a wide range 
of admixture scenarios under this model. Then, we train a deep neural network and retrieve good 
performance in predicting mating parameters from genomic data. Our results show how popula-
tion stratification, shaped by socially constructed racial and gender hierarchies, has constrained the 
admixture processes in the Americas since the European colonization and the subsequent Atlantic 
slave trade.

Editor's evaluation
In this important study, the authors develop a neural network to investigate assortative mating and 
sex- bias in admixed populations from the Americas. Applying their method to modern- day human 
genomes, they estimate sex- biased admixture and ancestry- based assortative mating. The evidence 
supporting their claims is solid, and their results will be of interest to population geneticists, anthro-
pologists, and those interested in the history of the Americas.

Introduction
Ancestry-related assortative mating and sex bias in admixture models
Assortative mating is the phenomenon whereby mates resemble each other more than would occur 
under random mating. Through the lens of population genetics, assortative mating entails the correla-
tion of genetic variants between mates (Versluys et al., 2021). Assortative mating is often a conse-
quence of a subdivided population structure, observed in most human populations (Cavalli- Sforza 
and Feldman, 1981; Nagoshi et al., 1990; Sebro and Risch, 2012; Sebro et al., 2017). In many 
species, assortative mating is also the product of active mate choice, an adaptive behavior by which 
individuals choose a genetically similar mate by their phenotype (Merrill et al., 2019; Versluys et al., 
2021). Whether or not active mate choice significantly takes place in human populations is unclear, 
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as it is challenging to discern the effect it might have beyond that of population structure (Eshel and 
Cavalli- Sforza, 1982; Xie et al., 2015; Sebro and Risch, 2012; Abdellaoui et al., 2014; Sebro et al., 
2017).

Geography structures populations of most species, including humans. Individuals separated 
by shorter distances interact more than individuals separated by longer distances or geograph-
ical features like watercourses or mountain ranges, which imply limited mating as the geographical 
barriers increase (Wright, 1943; Malecot, 1948; Kimura and Weiss, 1964; Cavalli- Sforza et  al., 
1996; Novembre et al., 2008). The reduced gene- flow between geographical groups leads to differ-
entiated processes of genetic drift and results in distinguishable genetic profiles known as genetic 
ancestries (Mathieson and Scally, 2020; Lewis et al., 2022; Coop, 2022).

In human populations, culture also shapes the population structure. Socioeconomic and cultural 
barriers, which might have a certain permeability, limit the interaction between human groups. 
These social groups with a common language, religion, socioeconomic status, etc. define overlap-
ping subpopulations where mating takes place mostly within them (Manni, 2010; Campbell, 2015; 
Matsumae et al., 2021).

In the case of migration, two or more populations cohabit in the same location and eventually 
admix to become subpopulations of a newly admixed population. The admixture process does not 
take place randomly but it is constrained by barriers set by socioeconomic and cultural differences 
between subpopulations with their own distinguishable profile of genetic ancestries (Risch et  al., 
2009; Nagoshi et al., 1990; Sebro et al., 2017). These barriers are socially constructed and, particu-
larly in colonial contexts, their permeability is often politically restricted (McLean, 2021).

In admixed individuals, the genetic ancestry related to each source population can be tracked 
along the genome and expressed in individual- based proportions.

Therefore, in recently admixed populations, the population structure driven by culture and socio-
economic differences is associated with differences in the proportions of genetic ancestry. As a conse-
quence, the proportion of genetic ancestry between mates correlate. This phenomenon is defined 
as ancestry- related assortative mating (Burrell and Disotell, 2009; Bryc et al., 2010; Norris et al., 
2019). In addition, individuals might show a preference towards mating partners of the opposite sex 
with lower or higher ancestry proportions, which is defined as ancestry- related sex bias (Goldberg 
and Rosenberg, 2015).

In admixed populations, the length of the continuous ancestry tracts is widely used to infer the 
time since admixture under the assumption of random mating. During gametogenesis in admixed 
individuals, recombination breaks down continuous ancestry tracts inherited from each of the source 
populations of the admixture event into smaller alternate fragments at each generation. Conse-
quently, the length of the continuous ancestry tracts reflects how many generations ago the source 
populations migrated across the geographical barriers that prevented them to mate (Gravel, 2012; 
Hellenthal et al., 2014; Chintalapati et al., 2022). Herein, we argue that the tract length information 
can measure the non- randomness of mating associated with genetic ancestry and, therefore, it can 
also monitor the permeability of socioeconomic and cultural barriers between subpopulations with 
different genetic ancestries (Zaitlen et al., 2017).

Some of the methods to date admixture can discern multiple pulses of migration. Only a few of 
them have addressed complex admixture histories such as the fluctuation of unbalanced migrations 
of males and females from two source populations (Laurent et al., 2022). However, almost all these 
approaches assume random mating in the admixed population, overlooking the effect of popula-
tion stratification in the population structure. To our knowledge, few studies have modeled ancestry- 
related assortative mating during admixture, although limited to two source populations (Goldberg 
et al., 2020; Kim et al., 2021).

Beyond analytical modeling, population genetics studies have also measured ancestry- related 
assortative mating through the correlation of genetic ancestry proportions between mates (Bryc 
et al., 2010; Korunes et al., 2022; Arauna et al., 2022). Non- random mating can also be monitored 
through deviations of the observed heterozygosity from Hardy- Weinberg equilibrium expected values 
(Crow and Felsenstein, 1968). Thus, when information on genetic ancestry of mating couples is not 
available, it is still possible to infer ancestry- related assortative mating through the comparison of 
the genetic ancestry of the two homologous chromosomes of the individuals (Norris et al., 2019). 
However, these approaches can only infer the mating patterns from the last generations.

https://doi.org/10.7554/eLife.84429
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Despite these efforts, we still lack a rigorous and robust method to shed light onto the patterns of 
ancestry- related non- random mating across all generations in which the admixture process extends. 
More specifically, we are in need of a comprehensive model of ancestry- related assortative mating and 
sex bias, two parameters which have been rarely jointly modeled in population genetics.

Social stratification and population structure in the Americas
Among human populations, the admixing populations from the Americas are of special interest in 
admixture studies. We consider them as admixing populations, because their genetics is shaped by 
an ongoing admixture process of three differentiated continental ancestries that started five centuries 
ago, constrained by a strong social structure.

At the end of the 15th century, European powers initiated the colonization process in the lands 
inhabited by Native Americans. In this frame, European colonizers enslaved more than 10  million 
people brought from sub- Saharan Africa (Eltis, 2018). As a result of this historical event, the popu-
lations of the Americas are the outcome of the admixture of Native American, European, and sub- 
Saharan genetic ancestries (Salzano and Bortolini, 2005; Bedoya et al., 2006; Wang et al., 2008; 
Moreno- Estrada et al., 2013; Gravel et al., 2013; Ruiz- Linares et al., 2014; Adhikari et al., 2017; 
Adhikari et al., 2016; Ongaro et al., 2019).

After the abolition of slavery, most of these populations remained stratified based on the socioeco-
nomic status and according to hierarchical notions of racial difference. Some of them have even expe-
rienced explicit segregation policies long after the abolition that aimed to prevent mating between 
subpopulations from different origins and maintain socioeconomic stratification (Douglass, 1882; Du 
Bois, 1935; Davis, 1981).

In Latin America, in addition to segregation, European colonial powers and creole elites imple-
mented eugenicist policies under the frame of mestizaje/mestiçagem. Mestizaje/mestiçagem refers 
to the process of admixture of Native American, European, and sub- Saharan ancestries in the context 
of the European colonization. It is, therefore, associated to the mixture across hierarchical differences 
understood as ‘racial,’ differences of class, and differences of gender. Since mid- nineteenth century, 
Latin American nation- building elites have aimed to associate mestizaje/mestiçagem to an equalizing 
process, by claiming that it overcomes and blurs the socioeconomic differences related to ‘race.’ 
However, critics have argued that the mestizaje/mestiçagem’s notion of hybridity inherently entails 
the idea of its constitutive origins and the hierarchies that order those origins. In this sense, mestizaje/
mestiçagem attaches greater value to the interactions that move towards whiteness and masculinity 
and lower value to those that move towards blackness or indigeneity, and femininity (Wade, 2017; 
Wade et al., 2020; Abel, 2022).

By analyzing the impact of the European colonization in the population structure through mating, 
we aim to evaluate the stratification related to the genetic ancestry not only quantifying the popu-
lation subdivision but also measuring the genetic ancestry asymmetry between males and females 
in mating. Following this approach, we conceptualize a novel mechanistic mating model that explic-
itly integrates ancestry- related assortative mating and sex bias jointly, through an intersectional 
approach derived from the interrelated hierarchies observed in the admixture process (Crenshaw, 
1989; Crenshaw, 1991; Wade, 2017). We consider a three- way admixture scenario mirroring the 
demography of the admixing American populations. We build and train a deep neural network 
to infer non- random mating parameters using extensive synthetic data. We deploy this network 
to genomic data from admixing American populations sequenced as part of the 1000 Genomes 
Project 1000 (Auton et al., 2015) and quantify the extent of ancestry- related assortative mating 
and sex bias. Finally, we discuss racial and gender hierarchies as inferred from their footprint on 
genetic structure.

Results and discussion
We report our results in three sections: (i) the novel mating model and framework for simulations, (ii) 
the performance of the neural network, and (iii) the inference of the ancestry- related mating probabil-
ities for admixing American populations.

https://doi.org/10.7554/eLife.84429
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An ancestry-related mating model
We present an admixture model defined by the mating probabilities of all possible male and female 
couples, set by their ancestry proportion difference. For each ancestry, the ancestry- related sex bias 
(SB) and the ancestry- related assortative mating (AM) parameters determine the mating probability 
of each couple as a function of the difference in the ancestry proportion between male and female. 
We assume that the differences in the ancestry proportions within the mating couples follow a Normal 
distribution that translates into the mating probabilities (Figure 1).

The expected value of this Normal distribution defines SB, while AM is modeled as being 
inversely proportional to the variance (see Methods and materials for mathematical details). For 
a given ancestry, positive SB values indicate that couples where males have a higher proportion 
than females of this ancestry have more chances of mating, with the opposite pattern for nega-
tive SB values. Conversely, AM modulates the decay of mating probability when the difference of 
ancestry proportion within the couple moves away from the expected value set by the SB param-
eter. Therefore, when SB is close to zero and AM is high, a couple with similar ancestry proportions 
have much higher probability of mating than a couple with substantial differences in the ancestry 
proportions. If AM is low, a couple with similar ancestry proportions only have a slightly higher 
probability to mate than a couple with substantial differences in the ancestry proportions. The 
AM parameter measures the non- randomness of mating associated to a genetic ancestry. This 
includes both positive assortative mating -genetic similarity between mates- (when SB is zero) 
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Figure 1. Mating model. (A) Assortative mating (AM) and sex bias (SB) values that modulate the mating probabilities in a simulation example of 19 
generations from the colonization of America to nowadays. The mating probability for a given couple is set as a function of the differences in the 
genetic ancestry proportions for each ancestry. We assume the mating probability follow a three- dimensional normal distribution. In this normal 
distribution, SB sets the expected value and AM is inversely proportional to its variance. (B) Ancestry proportions of mating couples at generations 4 
and 7 in ternary plots (top) and barplots (bottom) based on the mating probabilities defined in A. In the top plots, each arrow represents a couple. The 
arrow tail and head coordinates in the ternary plots show the ancestry proportions of the female and the male, respectively. In the bottom, the barplots 
represent male and female ancestry proportions, linked by curved lines reflecting mating. Red, yellow, and blue correspond to ancestries 1, 2, and 3. The 
arrows in the ternary plot and the lines between barplots representing a mating couple are colored with the color corresponding to the predominant 
ancestry in both male and female, and they are depicted in black if it differs between them.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Admixture Model for One Pulse and Two Pulses.

https://doi.org/10.7554/eLife.84429
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and negative assortative mating -genetic dissimilarity between mates- (when  SB  is not zero). This 
approach allows accounting for the male- female way of negative assortative mating through SB 
parameter. Figure 1B shows how a sample of individuals in generations 4 and 7 mate based on the 
mating probabilities set by the example values of AM and SB defined in Figure 1A and Figure 1—
figure supplement 1.

We focus on the case of three- way ancestry, a model that describes the admixture of the popula-
tions of the Americas and their triple genetic ancestry: Native American, European, and sub- Saharan 
African. We define two alternative models, referred to as the One Pulse model and the Two Pulses 
model. The simpler One Pulse model assumes one migration event occurring 19 generations ago and 
includes five independent parameters: AM1, AM2, AM3, SB1, and SB2 for sub- Saharan African (1), Native 
American (2), and European (3) ancestries (Figure 1A). In the Two Pulses model, an additional param-
eter (the Gene Flow Rate 9 generations ago -GFR-) determines the fraction of the gene pool arriving 
in a second migration from each source population 9 generations ago (at generation 10) (Figure 1—
figure supplement 1). In both models we assume a continuous admixture process that starts 19 
generations ago, knowing that the populations analysed trace the first contact of Native American 
and European populations in the first half of 16th century (Sánchez- Albornoz, 1977; Thornton, 1987) 
and assuming a generation time of 26.9 years (Wang et al., 2023). In contrast with the approaches 
that aim to find an admixture date assuming random mating, we assume that the admixture process 
starts with the contact, and it is continuous and modulated with the mating parameters that we aim 
to infer.

Our goal is to predict AM and SB (and GFR for the Two Pulses model) for the admixing American 
populations sampled in the 1000 genomes project (African Caribbeans in Barbados, ACB; African 
Ancestry in South- West USA, ASW; Colombians in Medellín, CLM; Mexicans in Los Angeles, MXL; 
Peruvians in Lima, PEL; and Puerto Ricans in Puerto Rico, PUR). To do so, we aim to compare the 
continuous ancestry tract lengths profile obtained from a local ancestry analysis performed on this 
data to the tract lengths profile issued from simulated data for each population with known combina-
tions of the mating parameters.

For 10,000 random combinations of AM and SB parameters (and GFR for the Two Pulses model) 
for each population we simulate, forward- in- time, a range of admixture scenarios. The contribution 
of each genetic ancestry to the gene pool of the simulated admixed population is equivalent to the 
observed ancestry proportions after the local ancestry analysis on the real data. We simulate 22 auto-
somal chromosomes and the X chromosome for each individual at each generation, keeping track of 
the local genetic ancestry at each chromosomal region (Figure 1, Figure 2A). This approach serves a 
dual purpose: (i) to simulate the mating as a function of the genome- wide ancestry proportions of all 
males and females, based on the mating probabilities set by the AM and SB parameters of the mating 
model (Figure 1); (ii) to generate the continuous ancestry tract lengths profile as an output after the 
last simulated generation, which counts the number of fragments within each of the 22 windows 
defined by a length interval in cM, in a logarithmic scale (Figure 2B; see Materials and methods).

A deep neural network to estimate mating parameters efficiently
To infer all parameters in our model, we train a deep neural network for each population. By exploring 
the entire parameter space of AM and SB parameters (and for the Two Pulses model), we feed simu-
lated continuous ancestry tract length profiles to a deep neural network consisting of fully- connected 
layers (Figure 2C).

The network sufficiently learn the weights for all parameters without overfitting over 40 epochs, as 
shown by the decay of the loss function (mean squared error) (Figure 3—figure supplement 1). We 
observe low mean squared error on the testing set for all parameters (Figure 3). Similarly, we appre-
ciate a high correlation between true and predicted values, as shown by R2 values and the confusion 
matrices, at testing (Figure 3—figure supplement 2).

The trained network exhibits better predictions for AM parameters than for an parameters across 
all ancestries, populations, and migration models. Interestingly, the higher complexity of the Two 
Pulses migration model does not produce a higher mean squared error or lower R2 values for any 
of the tested parameters. In fact, the mean of the mean squared error for the Two Pulses model is 
only marginally higher than the mean of the mean squared error for the simpler One Pulse model 
(Figure 3, Figure 3—figure supplement 1, Figure 3—figure supplement 2).

https://doi.org/10.7554/eLife.84429
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Figure 2. Local ancestry, Contiuous ancestry tract length and Neural network. (A) Schematic view of the autosomal and sex chromosomes split into the 
continuous ancestry tracts inherited from each of the three ancestries after a local ancestry analysis with RFMix. (B) Continuous ancestry tract length 
profile displaying the number of tracts for each ancestry in each tract length bin. The break points that define the bin widths are set in a logarithmic 
scale. (C) Matrix representing the continuous ancestry tract length profile accounting for the amount of tracts in each length bin, for each ancestry in 
either autosomal or sex chromosome for each individual. The mean across individuals summarises the four- dimensional matrix in a population three- 
dimensional matrix, which is used as the input of the neural network. The neural network has four fully connected layers that split into a branch for each 
parameter, each one made of a last hidden layer connected to the output layer.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Individual proportions of sub- Saharan (red), Native American (green), and European (blue) ancestry were inferred after a Local 
Ancestry analysis with RFMix for autosomes (Aut), on the left, and X chromosome (X), on the right, for each population.

Figure supplement 2. Individual proportions of sub- Saharan (red), Native American (green), and European (blue) ancestry inferred after a Local 
Ancestry analysis with Gnomix for autosomes (Aut), on the left, and X chromosome (X), on the right, for each population.

Figure supplement 3. Distribution of individual proportions of sub- Saharan (red), Native American (green), and European (blue) ancestry inferred after 
a Local Ancestry analysis with RFMix for autosomes (Aut), on the left, and X chromosome (X), on the right, for each population. The box limits are the 
25th and 75th percentiles and the points show the outliers 1.5 times the interquartile range above the 75th percentile and below the 25th percentile.

Figure supplement 4. Distribution of individual proportions of sub- Saharan (red), Native American (green), and European (blue) ancestry inferred after 
a Local Ancestry analysis with Gnomix for autosomes (Aut), on the left, and X chromosome (X), on the right, for each population. The box limits are the 
25th and 75th percentiles and the points show the outliers 1.5 times the interquartile range above the 75th percentile and below the 25th percentile.

Figure supplement 5. Continuous ancestry tract lengths profile showing the amount of fragments in each length window for sub- Saharan (red), Native 
American (green), and European (blue) ancestry for each population, after a local ancestry analysis with RFMix.

Figure supplement 6. Continuous ancestry tract lengths profile showing the amount of fragments in each length window for sub- Saharan (red), Native 
American (green), and European (blue) ancestry for each population, after a local ancestry analysis with Gnomix.

https://doi.org/10.7554/eLife.84429
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Figure 3. Mean squared error comparing true and predicted values at testing for the assortative mating, sex bias, gene flow rate 9 generations ago 
parameters for each ancestry for both One Pulse and Two Pulses models and mean values for each model. Each color represents the values for a 
different ancestry (red, yellow, and blue for ancestries 1, 2, and 3 respectively, which correspond to sub- Saharan, Native American and European 
ancestries). The boxplot shows the distributions of values across the 1000 trained neural networks. The box limits are the 25th and 75th percentiles and 
the points show the outliers 1.5 times the interquartile range above the 75th percentile and below the 25th percentile.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Loss function at training for the assortative mating, sex bias, gene flow rate 9 generations ago parameters for each ancestry for 
both One Pulse and Two Pulses models and mean values for each model.

Figure supplement 2. Confusion matrices and R2 comparing true (x- axis) and predicted (y- axis) values at testing for assortative mating, sex bias, gene 
flow Rate 9 generations ago parameters for each ancestry for both One Pulse and Two Pulses models.

https://doi.org/10.7554/eLife.84429
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The performance of the Local Ancestry analysis might constrain the shape of the continuous 
ancestry tract length profile and the accuracy of the predictions of the mating parameters. RFMix 
has been the state- of- the- art method for Local Ancestry method during the last decade. Recently, 
Gnomix gained popularity after claiming much lower computational requirements and similar or even 
better accuracy (Hilmarsson et al., 2021). We performed a Local Ancestry analysis with Gnomix and 
we generated the continuous ancestry tract lengths profile after it. The Gnomix tract length profile 
showed higher values in the shortest tracts window than the RFMix one (Figure 2—figure supple-
ments 1–6). Gravel, 2012 alerted that short ancestry tracts are likely to have reduced accuracy rates 
in Local Ancestry inference, whereas longer tracts can be detected with increased confidence.

To evaluate possible biases introduced by the wrong assignation of isolated windows in the Local 
Ancestry inference, we tested the performance and the estimations of a Neural Network using a 
modified tract lengths profile for both RFMix and Gnomix. We modified the tract lengths profile by 
removing, or not, the window corresponding to the shortest tracts, or by dividing, or not, each value 
of the histogram by the total number of tracts in the Autosomes and in the X Chromosome. The tract 
lengths profile with All windows and Divided by total sum of tracts presents a low value of general-
ized variance (GV) between RFMix and Gnomix estimations and a low MSE value in the testing of 
the Neural Network (Tables 7 and 8, Figure 4—figure supplements 3–7). This shows that a matrix 
normalization of the tract length profile is enough to reduce the effects of the eventual biases intro-
duced by the Local Ancestry method and points that the Neural Network is able to capture relevant 
information from the profile shape.

The Native American and sub-Saharan genetic ancestries respectively 
shape the mating probabilities in Latin American and African American 
populations
We sought to test the occurrence and extent of assortative mating and sex bias in the admixing Amer-
ican populations from 1000 genomes. To predict AM and SB parameters (and GFR for the Two Pulses 
model) we deployed the trained neural network on the continuous ancestry tract length profiles of 
these populations were obtained after a local ancestry analysis.

In the One Pulse model, the Latin American populations (CLM, MXL, PEL, PUR) present a consis-
tent pattern where the Native American ancestry shapes the mating probabilities, as the AM param-
eter associated to this ancestry is the highest in all populations. Thus, the differences in the Native 
American ancestry between males and females modulate the mating in Latin American populations, 
although the Native American ancestry is not the one observed in highest proportion in all of them. 
PEL, CLM, and MXL populations show stronger AM values than PUR. The high AM values are coupled 
with negative SB for CLM and PUR populations, indicating that females of high Native American 
ancestry are more likely to mate with males of lower Native American ancestry. CLM and PUR exhibit 
significant negative sex- biased admixture while MXL and PEL do not. Conversely, ASW population 
presents the highest AM in the sub- Saharan African ancestry. Paired with a positive SB value, these 
estimates indicate that males of high sub- Saharan African ancestry are more likely to mate with females 
of lower sub- Saharan African ancestry. Finally, ACB populations show similar AM values for the three 
ancestries, with no specific ancestry modulating the mating probability (Table 3, Figure 4A).

In the Two Pulses model, we allow for an additional migration pulse 9 generations ago (at genera-
tion 10) and we let the neural network predict the gene flow rate through the GFR parameter. Under 
this new scenario, as expected, AM values are much lower than their corresponding values under a 
One Pulse model. In fact, part of the population structure that is modeled as social stratification in 
the One Pulse model is now modeled by gene flow from an additional migration event. Both models 
reflect similar admixture dynamics, where Native American and sub- Saharan African genetic compo-
nents take longer to homogenize across the individuals of Latin American and African American popu-
lations, respectively (Figure 4B).

Under both models of migration, the effect that SB has on the mating probabilities depends on the 
AM values, as lower AM values imply a lower effect of SB on the mating. In case of low AM, individuals 
are less constrained in their mating by their ancestry and, therefore, the effect of SB is less prominent.

To evaluate the similarity of the footprints left by either assortative mating or gene flow due to 
migration, we tested how a neural network trained to predict GFR could predict GFR from data with 
no gene- flow due to migration but only assortative mating. And, in parallel, we tested how a neural 

https://doi.org/10.7554/eLife.84429
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Figure 4. Mating probabilities, migration pulses and admixture dynamics. (A) Mating probabilities as a function of male and female proportions of each 
ancestry, for each population. (B) Migration pulses of each ancestry according to scenarios allowing One Pulse and Two Pulses for each population. The 
y- axis represents the cumulative increase in the ancestry- specific gene pool relative to the final ancestry proportions, at each generation. The ancestry 
proportions at generation 19 represent the observed ancestry proportions of each population in real data. The increase in the cumulative ancestry- 
specific gene pool is defined by gene flow rate (GFR), while the slope of the increase is represented inversely proportional to assortative mating (AM). 

Figure 4 continued on next page
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network trained to predict AM could predict AM from data with no assortative mating but only gene 
flow due to migration. We obtain strong correlations between simulated AM and predicted GFR, 
and between simulated GFR and predicted AM, which points that both demographic events could 
lead to similar admixture dynamics and would leave resembling genomic footprints in the population 
(Figure 4—figure supplements 1 and 2).

We next sought to test whether observed genomic data is more compatible with a One Pulse or 
Two Pulses migration model. To this aim, we calculated the composite likelihood ratio to compare the 
fit of simulated continuous ancestry tract length profile under the predicted values of AM and SB (and 
GFR for the Two Pulses model) to the empirical data. In ASW, CLM, MXL, and PEL populations the 
Two Pulses model has greater support than the One Pulse model. Results also show that, in all these 
populations, the Two Pulses model is more supported by the continuous ancestry tract length profile 
from the autosomal chromosomes than the profile from the X chromosome. (Figure 4C).

Discussion
We tackle the analysis of the ancestry- related non- random mating driven by social structure through a 
mating model, which allows us to globally evaluate the forces that modulate population structure but 
also study the effect of these population dynamics at the individual level. Our results show evidence 
of ancestry- related sex bias and assortative mating in American admixed populations. In Latin Ameri-
cans, the proportion of Native American ancestry of men and women shape the mating probabilities 
and, therefore, the genetic structure of the population. By contrast, in African Americans, the sub- 
Saharan African ancestry modulates mating. Below, we evaluate the performance of our pipeline in 
discerning between migration and assortative mating and we explore how the next steps could incor-
porate more complex admixture scenarios. Finally, we discuss the significance of these results and the 
importance of our approach in studying social stratification.

Discerning geographical barriers and social barriers
The disentanglement of social barriers from geographical barriers is a major challenge to face when 
addressing the complexity of admixture. Non- random mating patterns associated with social struc-
ture and gene- flow after multiple migration pulses might leave similar footprints on the genome of 
a population. In our analyses, the admixture dynamics are modeled either by ancestry- related assor-
tative mating (both in the One Pulse model and the Two Pulses model) or migration pulses (in the 
Two Pulses model). In both cases, the ancestry modulating the admixture dynamics takes longer to 
homogenize across the individuals of the admixing population. We have shown that an earlier admix-
ture process under higher assortative mating might be interpreted as a later migration pulse under 
random mating or lower assortative mating. This has important implications for admixture dating 

(C) Composite likelihood ratio comparing Two Pulses model vs. One Pulse model, for each ancestry for both the X chromosome and the autosomes. In 
this plot, positive values show a higher likelihood of the Two Pulses model based on the fit of the real fragment lengths in the distribution of fragment 
lengths of simulated data under the AM and sex bias (SB) parameters predicted by the neural network. Error bars define the 95% CI obtained by 
bootstrapping the tract lengths profile.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Correlation between simulated assortative mating (AM) values and predicted gene flow rate (GFR) values (Simulation only for 
PUR, due to large computational requirements).

Figure supplement 2. Correlation between simulated gene flow rate (GFR) values and predicted assortative mating (AM) values (Simulation only for 
PUR, due to large computational requirements).

Figure supplement 3. Prediction of assortative mating in the One Pulse model using the continuous ancestry tract lengths profile from Gnomix or 
RFMix.

Figure supplement 4. Prediction of sex bias in the One Pulse model using the continuous ancestry tract lengths profile from Gnomix or RFMix.

Figure supplement 5. Prediction of assortative mating in the Two Pulses model using the continuous ancestry tract lengths profile from Gnomix or 
RFMix.

Figure supplement 6. Prediction of sex bias in the Two pulses model using the continuous ancestry tract lengths profile from Gnomix or RFMix.

Figure supplement 7. Prediction of gene flow rate in the Two Pulses model using the continuous ancestry tract lengths profile from Gnomix or RFMix.

Figure 4 continued
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methods that assume random mating, which can underestimate the generations from the admixture 
event if the admixture process started earlier and took place under assortative mating.

Despite the similarity of the genomic footprint left by both demographic events the distinction 
between both scenarios has important implications for understanding social processes. The contin-
uous ancestry tract length profile issued from our mating model is different from that issued from an 
admixture model where the admixed population only receives constant gene- flow from migration of 
non- admixed source populations to model the population structure. In the latter approach, as defined 
in Goldberg and Rosenberg, 2015; Laurent et al., 2022, after migration the non- admixed source 
populations introduce full- length non- recombined chromosomes with a single ancestry in the admixed 
populations and shape an identifiable pattern. In our approach, the continuous ancestry tract length 
profile is capturing this pattern to discern between ancestry- related assortative mating and gene- flow 
due to migration. Although this pattern characterized by low or non- recombined continuous ancestry 
tracts in a few individuals could remain hidden in a population mean continuous ancestry tract length 
profile, it should be detectable with an individual- based one.

Alternatively, a population structure correlated with genetic ancestry could also be modeled with 
an island model starting from non- admixed panmictic subpopulations with migration rates between 
them split by sex. Our approach resembles this model but considers a more realistic population 
continuously structured by genetic ancestry, rather than discrete (although permeable) subpopulation 
panmictic demes. In this sense, we address population structure through a mating model, which helps 
to focus the discussion on the effect at individual level of the dynamics that stratify the population.

A versatile mating model to accommodate a wider range of admixture 
scenarios
The different patterns inferred in autosomal and X chromosomes suggest that some of the complexity 
of admixture is still not explained by our models. Inferences based on autosomal chromosomes have 
a greater support for a demographic scenario involving multiple migration events than inferences on 
the X chromosome. Taken together, these trends suggest a need to expand the model by adding 
either the possibility of sex- biased migrations or changes in SB and AM through time. In addition, 
African- American populations might have a complex genetic history involving on one hand male- 
biased sub- Saharan migration and on the other hand an admixture female- biased in the sub- Saharan 
ancestry. However, our current model can only accommodate this demographic scenario with a single 
SB parameter, and the results regarding these populations should be interpreted with caution.

The flexibility of our methodology provides the basis to disentangle more complex scenarios of 
admixture in a further approach. The plasticity of forward- in- time simulators allows for additional 
complexity in the admixture model, by modifying the AM and SB parameters through time and 
modeling multiple migration pulses and population growth.

Machine learning has the potential to infer a large number of parameters issued from complex 
models of admixture. However, this step likely implies a shift from a population- based continuous 
ancestry tract length profile to an individual- based one, which needs to be linked to a redesign of 
the architecture of the neural network. Other architectures such as convolutional neural networks and 
generative models have been recently deployed to infer introgression, structure, admixture propor-
tions, and post- admixture selection from population genomic data (Gower et al., 2021; Wang et al., 
2021; Meisner and Albrechtsen, 2022; Hamid et al., 2022). We caution that local ancestry anal-
ysis is a sensitive up- stream step to our method. Particularly, a wrong ancestry prediction in isolated 
windows that breaks up longer continuous ancestry tracts can substantially affect the tract lengths 
profile. This might happen despite a high proportion of windows with the genetic ancestry accurately 
predicted that translates to an overall good performance of the local ancestry method.

Social stratification by racial and gender hierarchies
The ultimate aim of our approach is to infer social stratification in the Americas from the analysis of the 
population genetic structure. To this end, we model ancestry- related assortative mating mediating the 
extent of the effect of ancestry- related sex bias. We infer how assortative mating and sex bias shape 
the mating dynamics of the population and we evaluate how the dimensions of inequality associated 
to these parameters impact at individual level, thanks to the mating model framework.

https://doi.org/10.7554/eLife.84429
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We have defined this model from an intersectional perspective, which understands that racial, 
gender and class hierarchies are mutually constituted (Davis, 1981; Gonzalez, 1984; Hooks, 1984; 
Crenshaw, 1989; Crenshaw, 1991; Collins, 1990; Carneiro, 1995; McCall, 2005; Hancock, 2007; 
Viveros Vigoya, 2016). Besides, from Decolonial Feminism, authors have stressed the significance 
of the frame of the European Colonization in redefining the concept of gender in America and have 
pointed to sexuality and mating as one of the contexts where racial, gender, and class inequalities 
manifest with more visibility (Stolcke, 1992; Lugones, 2007; Lugones, 2008; Viveros Vigoya, 2009; 
Viveros Vigoya, 2016). Specifically, in our approach, we consider that racial stratification intensi-
fies gender inequalities during mating. At the individual level, we conceive that the effects of these 
social hierarchies on mating depend on the relative position of the subject in racial and gender axes 
of inequality respect to the position of the other individuals of the population, and therefore on the 
context (Yuval- Davis, 2006; Anthias, 2013; Jorba and Rodó-Zárate, 2019).

In this framework, we tackle the hypotheses about the role of mestizaje/mestiçagem in the 
inequality of a society developed by Wade, 2017; Wade et  al., 2020 through a genetic study. 
Wade states that mestizaje/mestiçagem is a highly ambivalent discourse and set of practices, as it 
promotes and facilitates interactions across hierarchical differences of ‘race,’ class, and gender, but 
simultaneously reinforces those hierarchies. Studying the interaction of racial and gender hierarchies 
together, our approach allows us to investigate the dynamics of mestizaje/mestiçagem and challenge 
the oversimplified understanding that greater mixture translates into a decrease of discrimination 
and inequality. As such, high levels of mixture cannot be understood as a sign of equality or low 
discrimination if it takes place with strong gender- biased patterns. Instead, this scenario provides 
evidence for a deep interaction between racial and gender hierarchies that shapes the social struc-
ture of the population.

In the specific case of the Latin American populations considered here, the prejudices and biases 
related to gender associated with Native American ancestry constrain the dynamics within the society 
and determine the mating, shaping the population genetic structure. In CLM and PUR populations, 
females with a higher proportion of Native American ancestry tend to mate with males of lower Native 
American Ancestry. Interestingly, the populations that in the Two Pulses model present a higher migra-
tion pulse from Native American populations 9 generations ago (MXL and PEL) do not present a 
significant negative sex bias. This additional gene- flow probably took place under weaker sex- biased 
patterns and shifted the observed  SB  parameter towards non- negative values. This is consistent 
with historical records reporting an increased pressure on Native populations to culturally assimilate 
towards a white/mestizo norm starting in the 19th century, which spurred internal migrations to urban 
areas and the loss of indigenous languages in places like Mexico and Peru (Viqueira, 2010; Telles, 
2014).

Our results support the idea that Mestizaje/mestiçagem operates through racial and gender hier-
archies and it is accompanied by a gradual dilution of the sociocultural elements associated with non- 
European genetic ancestries into the admixing population.

Conclusion
To have a broader perspective of how racial and gender hierarchies operate across American 
societies, further approaches should analyze a wider dataset with more diverse, representative 
and carefully sampled populations. Specifically, the inclusion of socioeconomic variables in the 
sampling would allow us to evaluate how class hierarchies interrelate with racial and gender hier-
archies. In addition, the transition to a more complex admixture model that monitors changes in 
the AM and  SB  parameters and includes sex unbalanced migrations should provide the possibility 
to evaluate how racial and gender hierarchies have changed through history in different regions 
of the Americas.

In conclusion, an interdisciplinary approach that incorporates up- to- date insights from social 
sciences is essential to conceptualize population genetic models that aim to evaluate genetic structure 
driven by social stratification. Further studies might expand the analysis of population stratification by 
exploiting the full potential of machine learning in population genetics. An intersectional perspective 
that jointly addresses the effects of racial, gender, and class hierarchies on population structure will be 
key to understanding the genetics of the admixing populations of the Americas.

https://doi.org/10.7554/eLife.84429
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Materials and methods
Use of genetic ancestry categories
Human genetic diversity is a continuum and does not show discrete groups of individuals. Therefore, 
race is not a proxy for human genetic variation. Similarly, genetic ancestry labels are not distinct 
categories in which the genetic diversity of a population can be intrinsically grouped. Instead, the 
inference of genetic ancestry should be used in a hypotheses- driven approach framed in a specific 
time horizon (Mathieson and Scally, 2020; Coop, 2022; Lewis et al., 2022). In any case, researchers 
should disclose the process by which they selected and assigned group labels and the rationale for 
any grouping of samples (National Academies of Sciences, Engineering, and Medicine, 2023).

Here, we work with genetic ancestry categories that refer to the part of the genome inherited 
from each of the three populations involved in the admixture process in the Americas in the partic-
ular framework of the European colonization (Native American, European, and sub- Saharan African). 
We use these genetic ancestry categories because we hypothesize that they are correlated with the 
socially constructed racial and gender hierarchies that shape the population structure in the Americas.

A mating model defined by ancestry-related assortative mating and 
sex bias
We derived a mechanistic model where AM and SB parameters constrain the mating probabilities as 
a function of the difference in the ancestry proportion between male and female, for each ancestry. 
We assume that the probability of mating follows a normal distribution where SB for each ancestry 
is defined as the expected value of the difference in the ancestry proportion within mating couples, 
while  AM   is modeled as being inversely proportional to its variance (Figure 1).

Model definition
Consider an admixed finite population from  S  isolated source populations comprised of  F  females 
and  M   males. Assume that for each individual  i  we have a vector of inferred ancestry proportions  ⃗ai  

for each source population  s , so that 
 

S∑
s=1

a{s}
i = 1

 
. We consider a random variable for mating  L  as a 

realization of the event  lf,m  between a female  f   and male  m .
We calculate the probability of mating between a female  f   and male  m  as

 

P(L = l{f,m}|a⃗f, a⃗m) = 1
2

(P(lf|a⃗f) · P(l{f,m}|lf, a⃗f, a⃗m))+

+ 1
2

(P(lm|a⃗m) · P(l{f,m}|lm, a⃗f, a⃗m))
  

(1)

where  P(lf|a⃗f)  and  P(lf|a⃗m)  are the probabilities of either female or a male to start a mating event that 
will have one child as the outcome.

 P(l{f,m}|lf, a⃗f, a⃗m)  is the probability of a female to mate with a male given the ancestry proportions of 
both female and male, once the female has already been chosen to initiate the mating.

 P(l{f,m}|lm, a⃗f, a⃗m)  is, therefore, the probability of a male to mate with a female given the ancestry 
proportions of both female and male, once the male has already been chosen to initiate the mating.

Mating probability of a couple
In the most basic model, all individuals can be assumed to have the same probability to start the 
mating event independent of their ancestry:

 
P(lf|a⃗f) = 1

F  
(2)

 
P(lf|a⃗m) = 1

M   
(3)

Once either a female or a male initiates the mating, the mating probability of each possible couple 
is defined as a function of the ancestry proportions of this individual and the ancestry proportions of 
each individual of the other sex ( P(l{f,m}|lf, a⃗f, a⃗m)  or  P(l{f,m}|lm, a⃗f, a⃗m)  for respectively a male or a female 
that initiates the mating).

https://doi.org/10.7554/eLife.84429
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This probability is described by a multivariate normal distribution defined by a mean vector μ, 
related to SB, and covariance matrix  Σ , related to AM. This multivariate normal distribution consists 
of S variables defined as  a

{s}
m − a{s}

f  , related to each ancestry  s . They account for the difference of 
the ancestry proportion in each mating couple. The final mating probability for an individual and a 
possible mate is relative to the sum of all the probabilities for all the possible mates for this individual:

 
P(l{f,m}|lf, a⃗f, a⃗m) =

N (a{s}
f − a{s}

m |µ,Σ)
∑M

j=1 N (a{s}
f − a{s}

mj |µ,Σ)  
(4)

and:

 
P(l{f,m}|lm, a⃗f, a⃗m) =

N (a{s}
f − a{s}

m |µ,Σ)
∑F

i=1 N (a{s}
fi − a{s}

m |µ,Σ)  
(5)

where μ is the vector of the expected means of the ancestry proportion differences (i.e.  E(a{s}
m − a{s}

f )  
for ancestry  s ) which defines SB for each ancestry. The diagonal of  Σ  is the vector  σ

2
S , where the vari-

ance  σ2  of  (a
{s}
m − a{s}

f )  is inversely proportional to AM for each ancestry (Figure 1).

The sum of the mean vector (i.e. the sum SB parameters for all the ancestries) is zero (
 

S∑
s=1

µ{s} = 0
 
). 

In addition,  Σ  is not full rank ( |Σ| = 0 ). Consequently, the multivariate density function can be repre-

sented with  S − 1  dimensions, which has 
 
(S − 1)2 + (S − 1)

2  
 independent parameters.

The case of three ancestries, S=3
When S=3, the multivariate normal distribution is equivalent to a two- dimensional multivariate normal 
distribution, which has five independent parameters (2 in μ and 3 in  Σ ):

 

µ =


µ1

µ2



  

(6)

 

Σ =


 σ2

1 Cov1,2

Cov1,2 σ2
2



  

(7)

where  Cov1,2  can be defined by the variances of the three- dimensional multivariate normal distribu-
tion, including  σ

2
3 :

 
Cov1,2 =

σ2
3 − (σ2

1 + σ2
2)

2
,
  

(8)

The mating model for three ancestries is set by sex bias for ancestries 1 and 2 (SB1, SB2) and the 
assortative mating for ancestries 1, 2, and 3 (AM1, AM2, AM3). Therefore, SB for ancestries  s ∈ {1, 2}  
is defined as follows:

 SBs = µs  (9)

and AM for ancestries  s ∈ {1, 2, 3} :

 
AMs = 1 − log3(σ2

s ) + 4
7   

(10)

This arbitrary parameterisation has been chosen in order for the the assortative mating parameter 
AMs to cover the full spectrum of meaningful values taking values from 0 to 1 on a logarithmic scale, 
where 0 is random mating and 1 is very strong assortative mating.

Simulations
We performed 10,000 simulations per population (CLM, MXL, PEL, PUR, ACB, ASW from 1000 
genomes) following the mating model described above using SLiM (Haller et  al., 2019). In each 

https://doi.org/10.7554/eLife.84429
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simulation, AM and SB parameters (and GFR for the Two Pulses model) were independently sampled 
from a uniform distribution. We simulated the 22 autosomal chromosomes and the X chromosome for 
each individual. We tracked their real local ancestry by recording the source population from which 
each genomic fragment is inherited. At each generation, we simulated mating based on the mating 
model as a function of the genetic ancestry proportions of the individuals. After the mating of two 
individuals, we simulated recombination in the gametogenesis of the offspring and the progressive 
break down of the continuous ancestry tracts, using the local recombination probabilities from the 
genetic map provided in Delaneau et al., 2019. We ran a total of 19 generations, mirroring the time 
range from the beginning of the colonization to present day. For computational purposes, we scaled 
down by a factor of 1000 the lengths and recombination rates of the genome.

For the One Pulse demographic model, we simulated a constant population size of 1000 and we 
set initial gene- flow proportions equivalent to the observed genetic ancestry proportions for each 
population Table 1. For the Two Pulses model, we split the same size of migrant population from each 
source population in two migration waves at generation 0 and 10 as a function of the GFR parameter.

The continuous ancestry tract lengths profile
The continuous ancestry tract length profile is a statistic that is commonly used to date admixture 
events, assuming random mating. However, here we exploited the information summarised with this 
statistic to assess the gene- flow related to both migration and assortative mating. In addition, we 
included the population continuous ancestry tract length profiles of both autosomes and X chro-
mosome to provide to the neural network information that can be used to predict sex bias. While 
both sexes contribute equally to the autosomal genepool, females and males contribute 2/3 and 1/3, 
respectively, to the X chromosome genepool. This asymmetric inheritance between autosomes and X 
chromosome combined with local ancestry information is highly informative of the complexity of sex- 
biased admixture histories (Goldberg and Rosenberg, 2015).

Table 1. Average proportions percentage (and 95% CI) of genetic ancestry for each population, 
inferred after a local ancestry analysis with RFMix.

Population Ancestry Aut X

ACB AFR 88.3 (75.9, 97.4) 94 (72.6, 99.6)

ACB NAT 0.1 (0, 0.2) 0.1 (0, 1)

ACB EUR 11.8 (2.8, 24.2) 5.4 (0, 25.7)

ASW AFR 76.9 (49.9, 91.4) 77.5 (39.7, 99.6)

ASW NAT 1.5 (0, 13.2) 3.7 (0, 27.6)

ASW EUR 21.7 (8.7, 41.2) 18.3 (0, 54.2)

CLM AFR 8.2 (1.4, 23.5) 8 (0, 43.4)

CLM NAT 26.8 (10.5, 43.4) 40.1 (4.8, 81.4)

CLM EUR 65.1 (41.6, 86.8) 51.5 (12.5, 91.9)

MXL AFR 4.4 (1, 7.7) 5.2 (0, 29.7)

MXL NAT 49.3 (23.3, 87.7) 61.2 (11.4, 99.5)

MXL EUR 46.5 (11.5, 72.9) 33.2 (0, 86.4)

PEL AFR 3.2 (0.1, 14) 5.1 (0, 32.9)

PEL NAT 75.4 (50.5, 95.4) 81.9 (37.3, 99.6)

PEL EUR 21.6 (4, 43) 12.5 (0, 47.8)

PUR AFR 13.8 (4.8, 24.2) 15.4 (0.3, 56.6)

PUR NAT 14.4 (7, 21.2) 21.2 (0.4, 53.3)

PUR EUR 72 (56.1, 86.3) 63 (21.9, 88.2)

https://doi.org/10.7554/eLife.84429
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We calculated the continuous ancestry tract length profile on simulated data, for each individual, 
by counting the number of tracts for each length bin, greater than or equal to the lower threshold 
and lower than the upper threshold, defined by a vector of break points  b  in a logarithmic scale, in 

centiMorgan (cM): 
 

{
bk
}21

k=1 = 2
k+1

2

10  
. These breakpoints define a total of 22 length windows, which is a 

compromise of the RFMix resolution in the local ancestry analysis (0.1 cM) and a limited number of 

windows. Then, we obtain the continuous ancestry tract length profile for each individual. Finally, we 
perform the mean across the individuals of the same population as the permutation- invariant function 
to use it as input of he neural network. For real empirical data, we run a local ancestry analysis to split 
the genome of each individual into the fragments inherited from Native American, European, and 
sub- Saharan African ancestries to obtain the length of the continuous ancestry tracts (Figure 2A). To 
do this, we performed an RFMix analysis with RFMix v1.5.4 (Maples et al., 2013) with the following 
options: -w 0.1 G 19 -e 3. We used as target populations the six admixed populations of the Americas 
present in the 1000 genomes data (African Caribbeans in Barbados, ACB; African Ancestry in SW 
USA, ASW; Colombians in Medellín, CLM; Mexicans in Los Angeles, MXL; Peruvians in Lima, PEL; and 
Puerto Ricans in Puerto Rico, PUR) using the 30 x coverage data 1000 (Auton et al., 2015; Byrska- 
Bishop et al., 2022).

To create three reference populations we first combined 1000 genomes with HGDP genomes (Berg-
ström et al., 2020). We ran an unsupervised  k = 3  ADMIXTURE analysis (Alexander et al., 2009), from 
which we used the individuals with a proportion higher than 0.99 of one of the ancestries as reference 
populations for the RFMix analyses. For Native American ancestry (NAT): 6 Colombian, 12 Karitiana, 
13 Maya, 13 Pima, 8 Surui, 2 MXL, and 19 PEL (these PEL and MXL individuals are also included in 
the target population). For European ancestry (EUR): 23 Basque, 12 BergamoItalian, 28 French, 15 
Orcadian, 28 Sardinian, 8 Tuscan, 98 CEU, 91 GBR, 98 IBS. For Sub- Saharan African ancestry (AFR): 8 
BantuKenya, 8 BantuSouthAfrica, 22 Biaka, 21 Mandenka, 13 Mbuti, 6 San, 22 Yoruba, 3 ACB, 1 ASW, 

Table 2. Average proportions (%) of genetic ancestry for each population, inferred after a local 
ancestry analysis with Gnomix.

PopulatioAn ancestry Aut X

ACB AFR 88.5 (75.8, 97.6) 93.6 (70.9, 99.5)

ACB NAT 0.1 (0, 0.5) 0.1 (0, 0.4)

ACB EUR 11.4 (2.3, 23.7) 5.9 (0, 28.6)

ASW AFR 77 (47.7, 91.7) 76.2 (13.6, 99.5)

ASW NAT 3.8 (0, 24.2) 5.7 (0, 55.5)

ASW EUR 19.3 (6.8, 36) 17.6 (0, 65.3)

CLM AFR 7.9 (0.9, 24.4) 7.8 (0, 51.6)

CLM NAT 27.1 (10, 44.9) 39.1 (3, 84.8)

CLM EUR 65(41, 89) 52.6 (8.4, 95.9)

MXL AFR 4.2 (0.8, 8.2) 5.1 (0, 28.6)

MXL NAT 50(23, 87) 60.2 (9.1, 99.5)

MXL EUR 45.8 (11.3, 73.9) 34.1 (0, 87)

PEL AFR 3.1 (0, 13.5) 5.1 (0, 33.2)

PEL NAT 77 (52.2, 98.2) 81.6 (32.5, 99.5)

PEL EUR 19.9 (1.6, 40.6) 12.8 (0, 51.3)

PUR AFR 13.5 (4.8, 25.1) 15 (0, 56.1)

PUR NAT 14.3 (6.7, 21.5) 20.4 (0, 60.7)

PUR EUR 72.2 (57.3, 87.9) 64.1 (23.6, 93.1)

https://doi.org/10.7554/eLife.84429
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99 ESN, 102 GWD, 45 LWK, 85 MSL, 107 YRI. To avoid biases introduced by haploid X chromosomes 
of males, we only used the X chromosome RFMix output from females to generate the continuous 
ancestry tract length profile. We considered a tract the concatenation of contiguous 0.1 cM fragments 
with maximum posterior probability of being inherited from one of the three ancestries. We used the 

same break points to count the fragments in each length bin used in the simulations: 
 

{
bk
}21

k=1 = 2
k+1

2

10  
 

(in cM) to obtain the continuous ancestry tract length profile for each individual (Figure 2B). We boot-
strapped the fragment length profile of each individual by resampling 1000 times with replacement 
each ancestry histogram and assuming its mean. Then, we computed the mean across individuals of 
the same population of the continuous ancestry tract length profile to have a single matrix for each 
population equivalent to the output of simulations used to train the neural network. We obtained a 

Table 3. Estimated Mean (and 95 %CI) of the mating parameters for the One Pulse Model, using 
the continuous ancestry tract lengths profile obtained from RFMix as input to 1000 trained neural 
networks.
Population CLM MXL PEL PUR ASW ACB

AM1 0.21 (0.17, 0.26) 0.23 (0.19, 0.28) 0.28 (0.25, 0.31) 0.2 (0.13, 0.28) 0.74 (0.64, 0.81) 0.59 (0.48, 0.69)

AM2 0.7 (0.64, 0.76) 0.64 (0.55, 0.71) 0.66 (0.58, 0.74) 0.47 (0.33, 0.62) 0.24 (0.18, 0.31) 0.39 (0.35, 0.44)

AM3 0.25 (0.2, 0.31) 0.29 (0.24, 0.33) 0.31 (0.27, 0.34) 0.29 (0.21, 0.39) 0.25 (0.19, 0.32) 0.48 (0.41, 0.59)

SB1 –0.03 (- 0.28, 0.16) –0.1 (- 0.31, 0.1) –0.03 (- 0.18, 0.15) –0.47 (−0.64, –0.25) 0.7 (0.56, 0.81) 0.3 (0.2, 0.4)

SB2 –0.29 (−0.43, –0.17) –0.01 (- 0.15, 0.13) 0.07 (- 0.23, 0.26) –0.38 (−0.54, –0.23) –0.44 (−0.6, –0.31) –0.13 (−0.23, –0.02)

SB3 0.32 (0.18, 0.49) 0.11 (- 0.03, 0.25) –0.04 (- 0.17, 0.13) 0.86 (0.68, 1.01) –0.25 (−0.41, –0.1) –0.17 (−0.27, –0.08)

Table 4. Estimated Mean (and 95 %CI) of the mating parameters for the One Pulse Model, using 
the continuous ancestry tract lengths profile obtained from Gnomix as input to 1000 trained neural 
networks.
population CLM MXL PEL PUR ASW ACB

AM1 0.22 (0.18,0.26) 0.26 (0.22,0.31) 0.27 (0.24,0.31) 0.16 (0.12,0.21) 0.51 (0.33,0.65) 0.51 (0.39,0.64)

AM2 0.45 (0.32,0.6) 0.52 (0.38,0.64) 0.48 (0.33,0.62) 0.35 (0.24,0.49) 0.26 (0.23,0.3) 0.36 (0.32,0.4)

AM3 0.31 (0.24,0.44) 0.34 (0.28,0.42) 0.31 (0.27,0.37) 0.23 (0.16,0.32) 0.32 (0.26,0.39) 0.4 (0.35,0.46)

SB1 –0.01 (- 0.24,0.2) 0.17 (- 0.04,0.41) 0.12 (- 0.1,0.36) –0.08 (- 0.28,0.08) 0.01 (- 0.35,0.31) –0.08 (- 0.29,0.11)

SB2
–0.21 (−0.39,,–
0.06) –0.21 (−0.39,,–0.03) –0.36 (−0.59,,–0.06) –0.36 (−0.5,,–0.2) –0.04 (- 0.22,0.25) 0.02 (- 0.1,0.19)

SB3 0.21 (0.07,0.4) 0.04 (- 0.1,0.18) 0.23 (0.04,0.39) 0.44 (0.25,0.62) 0.03 (- 0.15,0.23) 0.05 (- 0.09,0.21)

Table 5. Estimated Mean (and 95 %CI) of the mating parameters for the Two Pulses model, using 
the continuous ancestry tract lengths profile obtained from RFMix as input to 1000 trained neural 
networks.
population CLM MXL PEL PUR ASW ACB

AM1 0.27 (0.22,0.34) 0.33 (0.23,0.42) 0.33 (0.25,0.44) 0.35 (0.26,0.44) 0.59 (0.45,0.73) 0.53 (0.42,0.63)

AM2 0.39 (0.28,0.5) 0.38 (0.28,0.48) 0.41 (0.32,0.52) 0.45 (0.32,0.6) 0.46 (0.35,0.58) 0.43 (0.36,0.52)

AM3 0.37 (0.29,0.45) 0.36 (0.25,0.47) 0.38 (0.3,0.47) 0.47 (0.38,0.56) 0.5 (0.39,0.61) 0.56 (0.43,0.7)

SB1 0 (- 0.18,0.18) –0.14 (- 0.35,0.13) –0.1 (- 0.27,0.07) –0.29 (−0.54,,–0.06) 0.27 (- 0.03,0.52) 0.3 (0.18,0.43)

SB2 –0.57 (−0.68,,–0.42) –0.08 (- 0.33,0.15) 0.03 (- 0.17,0.23) –0.42 (−0.59,,–0.26) –0.12 (- 0.36,0.15) –0.15 (- 0.33,0.06)

SB3 0.57 (0.42,0.72) 0.22 (- 0.07,0.45) 0.07 (- 0.17,0.26) 0.72 (0.5,0.93) –0.15 (- 0.42,0.17) –0.15 (- 0.32,0.05)

GFR1 0.01 (0.01,0.02) 0 (0,0.01) 0.03 (0.01,0.06) 0.02 (0.01,0.04) 0.49 (0.27,0.69) 0.5 (0.32,0.71)

GFR2 0.58 (0.44,0.7) 0.64 (0.47,0.76) 0.79 (0.7,0.87) 0.23 (0.11,0.35) 0 (0,0.01) 0.27 (0.14,0.43)

GFR3 0.06 (0.02,0.1) 0.14 (0.07,0.26) 0.22 (0.13,0.34) 0.02 (0.01,0.03) 0.11 (0.03,0.21) 0.61 (0.45,0.74)

https://doi.org/10.7554/eLife.84429
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three- dimensional matrix (22 length windows, three ancestries, two autosomal/X chromosome) that 
we use as the input to the trained neural network to predict the AM and SB parameters (and GFR for 
the Two Pulses model) (Figure 2C).

We also performed a Local Ancestry analysis with Gnomix, training a new model using the same 
reference populations as in the RFMix analysis (Hilmarsson et al., 2021). Like in the RFMix continuous 
ancestry tract length profile, we only used the X chromosome gnomix output from females. Once 
generated the tract lengths profile we estimated the mating parameters (Table 2, Tables 4 and 6, 
Figure 2—figure supplements 1–6). To evaluate possible biases in the mating paramaters estimation 
caused by errors in the Local Ancestry inference, we tested the performance of a transformed tract 
lengths profile for both RFMix and Gnomix. We modified the tract lengths profile by removing or not 
the window corresponding to the shortest tracts, or by dividing or not each value of the histogram 
by the total number of tracts in the Autosomes or in the X Chromosome. For each of the four combi-
nations of the modifications of the tract lengths profile, we trained 1000 times the Neural Network 
to predict the mating parameters from either RFMix or Gnomix tract lengths profile (Tables  3–8, 
Figure 2, Figure 4—figure supplements 3–7). We then evaluated the performance of both estima-
tions and the correlation between the results obtained from both tract lengths profiles. To do it, we 
analyzed the Generalized Variance of the bi- variate distribution, where the coordinates of each of 
the 1000 points are the predictions of a mating parameter (e.g. AM1) for one of the 1000 trained 
neural networks from both RFMix and Gnomix tract lengths profiles. The Generalized Variance is the 
determinant of the covariance matrix. Thus, it has lower values when the covariance between RFMix 

Table 6. Estimated Mean (and 95 %CI) of the mating parameters for the Two Pulses model, using 
the continuous ancestry tract lengths profile obtained from Gnomix as input to 1000 trained neural 
networks.
population CLM MXL PEL PUR ASW ACB

AM1 0.45 (0.38,0.54) 0.54 (0.47,0.63) 0.54 (0.44,0.64) 0.49 (0.39,0.57) 0.76 (0.69,0.83) 0.61 (0.48,0.71)

AM2 0.51 (0.4,0.6) 0.6 (0.51,0.68) 0.68 (0.58,0.77) 0.59 (0.48,0.71) 0.62 (0.53,0.72) 0.53 (0.42,0.65)

AM3 0.66 (0.57,0.74) 0.64 (0.55,0.72) 0.57 (0.46,0.69) 0.66 (0.58,0.76) 0.62 (0.53,0.71) 0.57 (0.48,0.65)

SB1 –0.06 (- 0.29,0.15) –0.27 (−0.44,,–0.12) –0.14 (- 0.37,0.09) –0.04 (- 0.28,0.2) 0.05 (- 0.15,0.25) –0.18 (- 0.41,0.08)

SB2 –0.21 (- 0.41,0.06) 0.04 (- 0.16,0.25) 0.01 (- 0.22,0.22) –0.33 (−0.48,,–0.13) –0.1 (- 0.32,0.13) 0.09 (- 0.09,0.33)

SB3 0.27 (0.12,0.41) 0.23 (0.02,0.44) 0.13 (- 0.18,0.46) 0.37 (0.15,0.56) 0.05 (- 0.25,0.32) 0.09 (- 0.14,0.32)

GFR1 0.09 (0.04,0.15) 0.05 (0.02,0.1) 0.1 (0.04,0.2) 0.07 (0.03,0.12) 0.33 (0.18,0.46) 0.63 (0.4,0.82)

GFR2 0.21 (0.14,0.32) 0.33 (0.22,0.44) 0.38 (0.22,0.54) 0.18 (0.09,0.29) 0.17 (0.08,0.27) 0.34 (0.22,0.49)

GFR3 0.31 (0.18,0.46) 0.21 (0.11,0.32) 0.1 (0.04,0.17) 0.25 (0.14,0.37) 0.1 (0.05,0.17) 0.11 (0.04,0.2)

Table 7. Neural Network mean MSE and RFMix- Gnomix mean generalized variance (GV) after each 
modification of the continuous ancestry tract length profile in the One Pulse model.
The tract length profile has been modified either by dividing or not each value of the histogram 
by the total number of tracts in the Autosomes or in the X Chromosome, or by either 
removing or not the window corresponding to the shortest tracts. We have evaluated GV and 
the MSE reported in Figure 3 in each case. GV is the determinant of the covariance matrix: 

 GV = var(RFMix) + var(Gnomix) − cov(RFMix, Gnomix)2
  increases its value when the correlation 

between RFMix and Gnomix estimates is high, and the variances within Gnomix and RFMix 
estimates are low Figure 4—figure supplements 5 and 6 show the scatter plots for all the mating 
parameters estimations.

Windows Scaling Mean GV Mean MSE

All windows Divided by total sum of tracts 8.34e- 06 0.0297

All windows Raw 1.07e- 04 0.0295

Without shortest tract window (<0.2 cM) Divided by total sum of tracts 4.44e- 06 0.0303

Without shortest tract window (<0.2 cM) Raw 1.03e- 05 0.0295

https://doi.org/10.7554/eLife.84429
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and Gnomix is higher and the variance within each of RFMix and Gnomix- based predictions is lower. 
Although all the mating parameters where estimated for the four modifications of the tract length 
profile, the profile with All windows and Divided by total sum of tracts was prioritized for downstream 
analysis, as it shows both low GV and low MSE values.

 GV = var(RFMix) + var(Gnomix) − cov(RFMix, Gnomix)2
  (11)

Neural network
Neural network architecture
We built a deep neural network comprised of four common fully- connected layers with 512, 256, 128, 
and 64 units, respectively, and ReLU activation functions. To avoid overfitting, we included a dropout 
layer with a rate of 0.2 after the last common layer. The network separates into five branches, each 
one for an independent parameter. Each branch forms a fully- connected layer with 32 units and ReLU 
activation functions followed by dropout with a rate of 0.2, and a final fully- connected output layer 
with a sigmoid activation function. There were five parameter branches for the One Pulse model (AM1, 
AM2, AM3, SB1, and SB2) and three extra parameter branches for the Two Pulses model (GFR1, GFR2, 
GFR3) (Figure 2C). In total the One Pulse model has 251,141 trainable weights and the Two Pulses 
model 263,819.

We used Adam as the optimizer and Mean Squared Error as the loss function. We rescale AM and 
SB from 0 to 1 to equally weight both parameters during learning. We trained the neural network for 
40 epochs, a batch size of 64 with a validation split of 0.2 from the training and validation dataset. The 
training and validation dataset was a random 0.8 sample of the dataset comprising 10,000 matrices of 
the continuous ancestry tract lengths profile and we kept the remaining 0.2 for testing. We used Keras 
in Python to design and train the neural network (Chollet, 2015).

All the code is available at GitHub (copy archived at Mas- Sandoval, 2024).
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Table 8. Neural Network mean MSE and RFMix- Gnomix mean generalized variance (GV) after each 
modification of the continuous ancestry tract length profile in the Two Pulses model.
The tract length profile has been modified either by dividing or not each value of the histogram 
by the total number of tracts in the Autosomes or in the X Chromosome, or by either 
removing or not the window corresponding to the shortest tracts. We have evaluated GV and 
the MSE reported in Figure 3 in each case. GV is the determinant of the covariance matrix: 

 GV = var(RFMix) + var(Gnomix) − cov(RFMix, Gnomix)2
  increases its value when the correlation 

between RFMix and Gnomix estimates is high, and the variances within Gnomix and RFMix 
estimates are low. Figure 4—figure supplements 5–7 show the scatter plots for all the mating 
parameters estimations.

Windows Scaling Mean GV Mean MSE

All windows Divided by total sum of tracts 1.96e- 05 0.0358

All windows Raw 2.46e- 04 0.0354

Without shortest tract window (<0.2 cM) Divided by total sum of tracts 1.10e- 05 0.0359

Without shortest tract window (<0.2 cM) Raw 5.17e- 05 0.0353
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