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Abstract Norepinephrine (NE) neurons in the locus coeruleus (LC) make long-range projections 
throughout the central nervous system, playing critical roles in arousal and mood, as well as various 
components of cognition including attention, learning, and memory. The LC-NE system is also 
implicated in multiple neurological and neuropsychiatric disorders. Importantly, LC-NE neurons are 
highly sensitive to degeneration in both Alzheimer’s and Parkinson’s disease. Despite the clinical 
importance of the brain region and the prominent role of LC-NE neurons in a variety of brain and 
behavioral functions, a detailed molecular characterization of the LC is lacking. Here, we used a 
combination of spatially-resolved transcriptomics and single-nucleus RNA-sequencing to charac-
terize the molecular landscape of the LC region and the transcriptomic profile of LC-NE neurons in 
the human brain. We provide a freely accessible resource of these data in web-accessible and down-
loadable formats.

eLife assessment
This is an important initial study of cell type and spatially resolved gene expression in and around 
the locus coeruleus, the primary source of the neuromodulator norepinephrine in the human brain. 
The data are generated with cutting-edge techniques, and the work lays the foundation for future 
descriptive and experimental approaches to understand the contribution of the locus coeruleus 
to healthy brain function and disease. The empirical support for the main conclusions is solid. This 
paper, and the associated web application, will be of great interest to neuroscientists working on 
arousal-based behaviors and neurological and neuropsychiatric phenotypes.
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Introduction
The LC is a small bilateral nucleus located in the dorsal pons of the brainstem, which serves as the 
brain’s primary site for the production of the neuromodulator NE. NE-producing neurons in the LC 
project widely to many regions of the central nervous system to modulate a variety of highly diver-
gent functions including attention, arousal, pain, mood, and the response to stress (Poe et al., 2020; 
Chandler et al., 2019; Sara, 2009; Morris et al., 2020; Suárez-Pereira et al., 2022; Ross and Van 
Bockstaele, 2020). The LC, translated as ‘blue spot’ (in recognition of its characteristic presence of 
neuromelanin pigment), comprises merely 3000 NE neurons in the rodent (~1500–1600 on each side 
of the brainstem) (Poe et al., 2020), and estimates in the human LC range from 19,000 to 46,000 
total NE neurons (German et al., 1988). Despite its prominent involvement in a number of critical 
brain functions and its distinctive capacity to synthesize NE, the LC’s small size and deep positioning 
within the brainstem have rendered it relatively intractable to a comprehensive cellular, molecular, and 
physiological characterization.

The LC plays important roles in core behavioral and physiological brain function across the lifespan 
and in disease. Consistent with these roles, the LC-NE system is implicated in many neurodegenera-
tive, neuropsychiatric, and neurological disorders (Morris et al., 2020; Weinshenker, 2018). The LC is 
one of the earliest sites of degeneration in both Alzheimer’s disease (AD) and Parkinson’s disease (PD), 
and profound loss of LC-NE neurons is evident with disease progression (Weinshenker, 2018; Mather 
and Harley, 2016; Chalermpalanupap et  al., 2017). Moreover, maintaining the neural density of 
LC-NE neurons prevents cognitive decline during aging (Wilson et al., 2013). In addition, primary 
neuropathologies for AD (hyperphosphorylated tau) and PD (alpha-synuclein) can be detected in the 
LC prior to other brain regions (Grudzien et al., 2007; Andrés-Benito et al., 2017; Braak and Del 
Tredici, 2012; Del Tredici and Braak, 2013). However, the molecular mechanisms rendering LC-NE 
neurons particularly vulnerable to neurodegeneration are not well-understood. In addition to its role 
in neurodegenerative disorders, the LC-NE system is implicated in a number of other complex brain 
disorders. Noradrenergic signaling controls many cognitive functions, including sustained attention, 
and its dysregulation is associated with attention-deficit hyperactivity disorder (ADHD) (Asherson 
et al., 2016; Biederman and Spencer, 1999). Related to these findings, the NE reuptake inhibitor 
atomoxetine is the first non-stimulant medication that is FDA-approved for treating ADHD (Bouret 
and Sara, 2004; Bymaster et al., 2002; Newman et al., 2008). Disruption of noradrenergic signaling 
is also associated with anxiety, addiction, and responses to stress and trauma, and drugs that modu-
late noradrenergic signaling have been used in the treatment of post-traumatic stress disorder (PTSD), 
major depressive disorder (MDD), anxiety, and opioid withdrawal (Morris et  al., 2020; Dell’Osso 
et al., 2011; Weinshenker and Schroeder, 2007; Berridge and Waterhouse, 2003; Urits et al., 
2020; Paiva et al., 2021). Given the wide range of functions that are modulated by the LC-NE system, 
an improved understanding of the gene expression landscape of the LC and the surrounding region 
and delineating the molecular profile of LC-NE neurons in the human brain could facilitate the ability 
to target these neurons for disease prevention or manipulate their function for treatment in a variety 
of disorders.

The recent development of single-nucleus RNA-sequencing (snRNA-seq) and spatially-resolved 
transcriptomics (SRT) technological platforms provides an opportunity to investigate transcriptome-
wide gene expression at cellular and spatial resolution (Kamath et al., 2022; Maynard et al., 2021). 
SRT has recently been used to characterize transcriptome-wide gene expression within defined neuro-
anatomy of cortical regions in the postmortem human brain (Maynard et al., 2021), while snRNA-seq 
has been used to investigate specialized cell types in a number of postmortem human brain regions 
including medium spiny neurons in the nucleus accumbens and dopaminergic neurons in the midbrain 
(Kamath et al., 2022; Tran et al., 2021). Importantly, snRNA-seq and SRT provide complementary 
views: snRNA-seq identifies transcriptome-wide gene expression within individual nuclei, while SRT 
captures transcriptome-wide gene expression in all cellular compartments (including the nucleus, 
cytoplasm, and cell processes) while retaining the spatial coordinates of these measurements. While 
not all SRT platforms achieve single-cell resolution, depending on the technological platform and 
tissue cell density, spatial gene expression has been resolved at, for example, ~1–10 cells per spatial 
measurement location with a diameter of 55 μm in the human brain (Maynard et al., 2021). These 
platforms have been successfully used in tandem to spatially map single-nucleus gene expression 
in several regions of both neurotypical and pathological tissues in the human brain including the 

https://doi.org/10.7554/eLife.84628
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dorsolateral prefrontal cortex (Maynard et al., 2021) and the dopaminergic substantia nigra (Kamath 
et al., 2022).

In this report, we characterize the gene expression signature of the LC and surrounding region at 
spatial resolution, and identify and characterize a population of NE neurons at single-nucleus reso-
lution in the neurotypical adult human brain. In addition to NE neurons, we identify a population of 
5-hydroxytryptamine (5-HT, serotonin) neurons, which have not previously been characterized at the 
molecular level in human brain samples (Okaty et al., 2019). We observe the expression of cholinergic 
marker genes within NE neurons, a finding which we confirm using multiplexed single-molecule fluo-
rescence in situ hybridization (smFISH) with high-resolution imaging at cellular resolution. We compare 
our findings from the human LC and adjacent region to molecular profiles of LC and peri-LC neurons 
that were previously characterized in rodents using alternative technological platforms (Mulvey et al., 
2018; Grimm et al., 2004; Luskin et al., 2023), and observe partial conservation of LC-associated 
genes across these species.

Results
Experimental design and study overview of postmortem human LC
We selected five neurotypical adult human brain donors to characterize transcriptome-wide gene 
expression within the LC at spatial and single-nucleus resolution using the 10x Genomics Visium SRT 
(10x Genomics, 2022a) and 10x Genomics Chromium snRNA-seq (10x Genomics, 2022b) plat-
forms (see Supplementary file 1 for donor demographic details). After all quality control (QC) steps 
(described below), the final SRT and snRNA-seq datasets used for analyses consisted of samples from 
4 and 3 donors, respectively. In each tissue sample, the LC was first visually identified by neuroana-
tomical landmarks and the presence of the pigment neuromelanin on transverse slabs of the pons 
(Figure 1A). Prior to SRT and snRNA-seq assays, we ensured that the tissue blocks encompassed 
the LC by probing for known NE neuron marker genes (Counts and Mufson, 2012). Specifically, 
we cut 10 μm cryosections from tissue blocks from each donor and probed for the presence of a 
pan-neuronal marker gene (SNAP25) and two NE neuron-specific marker genes (TH and SLC6A2) by 
multiplexed single-molecule fluorescence in situ hybridization (smFISH) using RNAscope (Maynard 
et al., 2020; Wang et al., 2012; Figure 1B). Robust mRNA signal from these markers, visualized as 
puncta on imaged tissue sections, was used as a quality control measure in all tissue blocks prior to 
proceeding with inclusion in the study and performing SRT and snRNA-seq assays.

For tissue blocks included in the study, we cut additional 10 μm tissue sections, which were used 
for gene expression profiling at spatial resolution using the 10x Genomics Visium SRT platform (10x 
Genomics, 2022a; Figure 1C). Fresh-frozen tissue sections were placed onto each of four capture 
areas per Visium slide, where each capture area contains approximately 5000 expression spots (spatial 
measurement locations with diameter 55  μm and 100  μm center-to-center, where transcripts are 
captured) laid out in a honeycomb pattern. Spatial barcodes unique to each spot are incorporated 
during reverse transcription, thus allowing the spatial coordinates of the gene expression measure-
ments to be identified (10x Genomics, 2022a). Visium slides were stained with hematoxylin and eosin 
(H&E), followed by high-resolution acquisition of histology images prior to on-slide cDNA synthesis, 
completion of the Visium assay, and sequencing. For our study, 10 μm tissue sections from the LC-con-
taining tissue blocks were collected from the five brain donors, with assays completed on 2–4 tissue 
sections per donor. Given the small size of the LC compared to the area of the array, tissue blocks were 
scored to fit 2–3 tissue sections from the same donor onto a single capture area to maximize the use 
of the Visium slides, resulting in a total of n=9 Visium capture areas (hereafter referred to as samples).

For 3 of the 5 donors, we cut additional 100 μm sections from the same tissue blocks to profile 
transcriptome-wide gene expression at single-nucleus resolution with the 10x Genomics Chromium 
single cell 3’ gene expression platform (10x Genomics, 2022b; Figure 1C). Prior to collecting tissue 
sections, the tissue blocks were scored to enrich for NE neuron-containing regions. Neuronal enrich-
ment was employed with fluorescence-activated nuclear sorting (FANS) prior to library preparation 
to enhance the capture of neuronal population diversity, and snRNA-seq assays were subsequently 
completed. Supplementary file 1 provides a summary of SRT and snRNA-seq sample information and 
demographic characteristics of the donors.

https://doi.org/10.7554/eLife.84628
https://sciwheel.com/work/citation?ids=13408886&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13408889&pre=&suf=&sa=0
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Figure 1. Experimental design to measure the landscape of gene expression in the postmortem human locus coeruleus (LC) using spatially-resolved 
transcriptomics (SRT) and single-nucleus RNA-sequencing (snRNA-seq). (A) Brainstem dissections at the level of the LC were conducted to collect 
tissue blocks from five neurotypical adult human brain donors. (B) Inclusion of the LC within the tissue sample block was validated using RNAscope 
(Maynard et al., 2020; Wang et al., 2012) for a pan-neuronal marker gene (SNAP25) and two norepinephrine (NE) neuron-specific marker genes (TH 
and SLC6A2). High-resolution hematoxylin and eosin (H&E) stained histology images were acquired prior to SRT and snRNA-seq assays (scale bars: 
2 mm in H&E stained image; 20 μm in RNAscope images). (C) Prior to collecting tissue sections for SRT and snRNA-seq assays, tissue blocks were scored 
to enrich for the NE neuron-containing regions. For each sample, the LC region was manually annotated by visually identifying NE neurons in the H&E 
stained tissue sections. 100 μm tissue sections from three of the same donors were used for snRNA-seq assays, which included FANS-based neuronal 
enrichment prior to library preparation to enrich for neuronal populations. After all quality control (QC) steps, the final SRT and snRNA-seq datasets 
used for analyses consisted of samples from 4 and 3 donors, respectively.

https://doi.org/10.7554/eLife.84628
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Spatial gene expression in the human LC
After applying the 10x Genomics Visium SRT platform (10x Genomics, 2022a), we executed several 
analyses to characterize transcriptome-wide gene expression at spatial resolution within the human 
LC. First, we manually annotated spots within regions identified as containing LC-NE neurons, based 
on pigmentation, cell size, and morphology from the H&E stained histology images (Figure 2A and 
Figure 2—figure supplement 1). Analysis of cell segmentations of the H&E images (Figure 2—figure 
supplement 2A) revealed that the median number of cells per spot within the LC regions ranged 
from 2 to 5 per sample (Figure 2—figure supplement 2B). Next, we performed additional sample-
level QC on the initial n=9 Visium capture areas (hereafter referred to as samples) by visualizing the 
expression of two NE neuron-specific marker genes (TH and SLC6A2) (Figure 2B), which identified 
one sample (Br5459_LC_round2) without clear expression of these markers (Figure 2—figure supple-
ment 3A–B). This sample was excluded from subsequent analyses, leaving n=8 samples from 4 out of 
the 5 donors. For the n=8 Visium samples, the annotated regions were highly enriched in the expres-
sion of the NE neuron marker genes (TH and SLC6A2) (Figure 2C and Figure 2—figure supplement 
3C), confirming that these samples captured dense regions of LC-NE neurons within the annotated 
regions. We performed spot-level QC to remove low-quality spots based on QC metrics previously 
applied to SRT data (Maynard et al., 2021; Amezquita et al., 2020; Lun et al., 2016) (Methods). Due 
to the large differences in read depth between samples (Figure 2—figure supplement 4A, Supple-
mentary file 1, Methods), we performed spot-level QC independently within each sample. After 
filtering low-expressed genes (Methods), this resulted in a total of 12,827 genes and 20,380 spots 
across the n=8 samples used for downstream analyses (Figure 2—figure supplement 4B).

To investigate whether the LC regions could be annotated in a data-driven manner, we applied a 
spatially-aware unsupervised clustering algorithm (BayesSpace, Zhao et al., 2021) after applying a 
batch integration tool (Harmony, Korsunsky et al., 2019) to remove sample-specific technical varia-
tion in the molecular measurements (Figure 2—figure supplement 5). The spatially-aware clustering 
using k=5 clusters (across eight samples) identified one cluster that overlapped with the manually 
annotated LC regions in several samples. However, the proportion of overlapping spots between the 
manually annotated LC region and this data-driven cluster (cluster 4, colored red in Figure 2—figure 
supplement 6A) was relatively low and varied across samples. We quantitatively evaluated the clus-
tering performance by calculating the precision, recall, F1 score, and adjusted Rand index (ARI) for 
this cluster in each sample (see Methods for definitions). We found that while precision was >0.8 in 
3 out of 8 samples, recall was <0.4 in all samples, the F1 score was <0.6 in all samples, and the ARI 
was <0.5 in all samples (Figure 2—figure supplement 6B). Therefore, we judged that the data-driven 
spatial domains identified from BayesSpace were not sufficiently reliable to use for the downstream 
analyses, and instead proceeded with the histology-driven manual annotations for all further analyses. 
In addition, we note that using the manual annotations avoids potential issues due to inflated false 
discoveries resulting from circularity when performing differential gene expression testing between 
sets of cells or spots defined by unsupervised clustering, when the same genes are used for both 
clustering and differential testing (Gao et al., 2022). Next, in addition to the manually annotated 
LC regions, we also manually annotated a set of individual spots that overlapped with NE neuron 
cell bodies identified within the LC regions, based on pigmentation, cell size, and morphology from 
the H&E histology images (Figure 2—figure supplement 7A). However, we observed relatively low 
overlap between spots with expression of NE neuron marker genes and this second set of annotated 
individual spots. For example, out of 706 annotated spots, only 331 spots had ≥2 observed UMI 
counts of TH (Figure 2—figure supplement 7B). We hypothesize that this may be due to technical 
factors including sampling variability in the gene expression measurements, partial overlap between 
spots and cell bodies, potential diffusion of mRNA molecules between spots, as well as biological 
variability in the expression of these marker genes. Therefore, we instead used the LC region-level 
manual annotations for all further analyses.

Next, to identify expressed genes associated with the LC regions, we performed DE testing 
between the manually annotated LC and non-LC regions by pseudobulking spots, defined as aggre-
gating UMI counts from the combined spots within the annotated LC and non-LC regions in each 
sample (Maynard et al., 2021). This analysis identified 32 highly significant genes at a false discovery 
rate (FDR) threshold of 10–3 and expression FC threshold of 3 (Figure  2D and Figure  2—figure 
supplement 8A). This includes known NE neuron marker genes including DBH (the top-ranked gene 

https://doi.org/10.7554/eLife.84628
https://sciwheel.com/work/citation?ids=7878504,2064903,10438163&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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Figure 2. Spatial gene expression in the human locus coeruleus (LC) using spatially-resolved transcriptomics (SRT). (A) Spots within manually annotated 
LC regions containing norepinephrine (NE) neurons (red) and non-LC regions (gray), which were identified based on pigmentation, cell size, and 
morphology from the H&E stained histology images, from donors Br2701 (top row) and Br8079 (bottom row). (B) Expression of two NE neuron-specific 
marker genes (TH and SLC6A2). Color scale indicates unique molecular identifier (UMI) counts per spot. Additional samples corresponding to A and 
B are shown in Figure 2—figure supplements 1 and 3A, B. (C) Boxplots illustrating the enrichment in expression of two NE neuron-specific marker 
genes (TH and SLC6A2) in manually annotated LC regions compared to non-LC regions in the n=8 Visium samples. Values show mean log-transformed 
normalized counts (logcounts) per spot within the regions per sample. Additional details are shown in Figure 2—figure supplement 3C. (D) Volcano 
plot resulting from differential expression (DE) testing between the pseudobulked manually annotated LC and non-LC regions, which identified 32 
highly significant genes (red) at a false discovery rate (FDR) significance threshold of 10–3 and expression fold-change (FC) threshold of 3 (dashed blue 
lines). Horizontal axis is shown on log2 scale and vertical axis on log10 scale. Additional details and results for 437 statistically significant genes identified 
at an FDR threshold of 0.05 and an FC threshold of 2 are shown in Figure 2—figure supplement 8 and Supplementary file 2A. (E) Average expression 
in manually annotated LC and non-LC regions for the 32 genes from D. Color scale shows logcounts in the pseudobulked LC and non-LC regions 
averaged across n=8 Visium samples. Genes are ordered in descending order by FDR (Supplementary file 2A). (F–G) Cross-species comparison 
showing expression of human ortholog genes for LC-associated genes identified in the rodent LC (Mulvey et al., 2018; Grimm et al., 2004) using 
alternative experimental technologies. Boxplots show mean logcounts per spot in the manually annotated LC and non-LC regions per sample in the 
human data.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Spot-plot visualizations of manually annotated Visium spots within regions identified as containing LC-NE neurons in SRT data.

Figure supplement 2. H&E stained histology images and number of cells per spot for SRT data.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.84628
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by FDR within this set), SLC6A2 (ranked 6th), TH (ranked 7th), and SLC18A2 (ranked 14th). Out of the 
32 genes, 31 were elevated in expression within the LC regions, while one (MCM5) was depleted. The 
set includes one long noncoding RNA (LINC00682), while the remaining 31 genes are protein-coding 
genes (Figure 2E and Supplementary file 2A). Alternatively, using standard significance thresholds of 
FDR <0.05 and expression FC >2, we identified a total of 437 statistically significant genes (Figure 2—
figure supplement 8B and Supplementary file 2A).

As a second approach to identify genes associated with LC-NE neurons in an unsupervised manner, 
we applied a method to identify spatially variable genes (SVGs), nnSVG (Weber et al., 2023c). This 
method ranks genes in terms of the strength in the spatial correlation in their expression patterns 
across the tissue areas. We ran nnSVG within each contiguous tissue area containing an annotated LC 
region for the n=8 Visium samples (a total of 13 tissue areas, where each Visium sample contains 1–3 
tissue areas) and combined the lists of top-ranked SVGs for the multiple tissue areas by averaging the 
ranks per gene. In this analysis, we found that a subset of the top-ranked SVGs (11 out of the top 50) 
were highly-ranked in samples from only one donor (Br8079), which we determined was due to the 
inclusion of a section of the choroid plexus adjacent to the LC in these samples (based on expression 
of choroid plexus marker genes including CAPS and CRLF1) (Figure 2—figure supplement 9A–C). In 
order to focus on LC-associated SVGs that were replicated across samples, we excluded the choroid 
plexus-associated genes by calculating an overall average ranking of SVGs that were each included 
within the top 100 SVGs in at least 10 out of the 13 tissue areas, which identified a list of 32 highly-
ranked, replicated LC-associated SVGs. These genes included known NE neuron marker genes (DBH, 
TH, SLC6A2, and SLC18A2) as well as mitochondrial genes (Figure 2—figure supplement 9D and 
Supplementary file 2B).

We also compared the expression of LC-associated genes previously identified in the rodent LC 
from two separate studies. The first study used translating ribosomal affinity purification sequencing 
(TRAP-seq) using an SLC6A2 bacTRAP mouse line to identify gene expression profiles of the trans-
latome of LC neurons (Mulvey et  al., 2018). The second study used microarrays to assess gene 
expression patterns from laser-capture microdissections of individual cells in tissue sections of the rat 
LC (Grimm et al., 2004). We converted the lists of rodent LC-associated genes from these studies to 
human orthologs and calculated the average expression for each gene within the manually annotated 
LC and non-LC regions. A small number of genes from both studies were highly associated with the 
manually annotated LC regions in the human data, including DBH, TH, and SLC6A2 from Mulvey 
et  al., 2018, and DBH and GNAS from Grimm et  al., 2004. However, the majority of the genes 
from both studies were expressed at low levels in the human data, which may reflect species-specific 
differences in the biological function of these genes as well as differences due to the experimental 
technologies employed (Figure 2F–G).

Single-nucleus gene expression of NE neurons in the human LC
To add cellular resolution to our spatial analyses, we characterized gene expression in the human LC 
and the surrounding region at single-nucleus resolution using the 10x Genomics Chromium single 
cell 3’ gene expression platform (10x Genomics, 2022b) in 3 of the same neurotypical adult donors 
from the SRT analyses. Samples were enriched for NE neurons by scoring tissue blocks for the LC 
region and performing FANS to enhance the capture of neurons. After raw data processing, doublet 
removal using scDblFinder (Germain et  al., 2021), and standard QC and filtering, we obtained a 
total of 20,191 nuclei across the three samples (7957, 3015, and 9219 nuclei respectively from donors 
Br2701, Br6522, and Br8079) (see Supplementary file 1 for additional details). For nucleus-level 

Figure supplement 3. Spatial expression of two NE neuron-specific marker genes in Visium samples for quality control (QC) in SRT data.

Figure supplement 4. Spot-level quality control (QC) data visualizations for Visium samples in SRT data.

Figure supplement 5. Dimensionality reduction embeddings before and after batch integration across Visium samples in SRT data.

Figure supplement 6. Identifying LC and non-LC regions in a data-driven manner by spatially-aware unsupervised clustering in SRT data.

Figure supplement 7. Comparison of spot-level and region-level manual annotations in SRT data.

Figure supplement 8. Results from differential expression (DE) analysis to identify expressed genes associated with LC regions in SRT data.

Figure supplement 9. Results from applying nnSVG to identify spatially variable genes (SVGs) in SRT data.

Figure 2 continued

https://doi.org/10.7554/eLife.84628
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QC processing, we used standard QC metrics including the sum of UMI counts and detected genes 
(Amezquita et al., 2020) (see Methods for additional details). We observed an unexpectedly high 
proportion of mitochondrial reads in nuclei with expression of NE neuron marker genes (DBH, TH, 
and SLC6A2), which represented our rare population of interest, and hence we did not remove nuclei 
based on the proportion of mitochondrial reads (Figure 3—figure supplement 1, Figure 3—figure 
supplement 2 and Figure 3—figure supplement 3, additional details described below).

We identified NE neuron nuclei in the snRNA-seq data by applying an unsupervised clustering 
workflow adapted from workflows used for snRNA-seq data in the human brain (Tran et al., 2021), 
using a two-stage clustering algorithm consisting of high-resolution k-means and graph-based clus-
tering that provides sensitivity to identify rare cell populations (Amezquita et al., 2020). The unsu-
pervised clustering workflow identified 30 clusters, including clusters representing major neuronal 
and non-neuronal cell populations, which we labeled based on the expression of known marker genes 
(Figure 3A–B). This included a cluster of NE neurons consisting of 295 nuclei (168, 4, and 123 nuclei 
from donors Br2701, Br6522, and Br8079, respectively), which we identified based on the expression 
of NE neuron marker genes (DBH, TH, and SLC6A2). In addition to the NE neuron cluster, we iden-
tified clusters representing excitatory neurons, inhibitory neurons, astrocytes, endothelial and mural 
cells, macrophages and microglia, oligodendrocytes, and oligodendrocyte precursor cells (OPCs), 
as well as several clusters with ambiguous expression profiles including pan-neuronal marker genes 
(SNAP25 and SYT1) without clear expression of excitatory or inhibitory neuronal markers, which may 
represent damaged neuronal nuclei and debris (Figure 3A–B and Figure 3—figure supplement 1). 
Further evaluation of QC metrics revealed that standard QC metrics (sum of UMI counts and detected 
genes) for the NE neuron cluster fell within the ranges of values observed for the other neuronal and 
non-neuronal clusters (Figure 3—figure supplement 2A, B), and that the ambiguous neuronal cate-
gory included a clear subset of measurements with the overall highest mitochondrial proportions and 
lowest number of detected genes (likely damaged nuclei and/or debris), which remained separate 
from the NE neuron cluster (Figure 3—figure supplement 2C, D), thus providing additional confi-
dence that the high mitochondrial proportions observed for the NE neuron cluster were not due to 
mis-classified damaged nuclei and/or debris.

To validate the unsupervised clustering, we also applied a supervised strategy to identify NE neuron 
nuclei by simply thresholding on expression of NE neuron marker genes (selecting nuclei with ≥1 UMI 
counts of both DBH and TH). As described above, we noted a higher than expected proportion of 
mitochondrial reads in nuclei with expression of DBH and TH, and did not filter on this parameter 
during QC processing, in order to retain these nuclei (Figure 3—figure supplement 3A, B). This 
supervised approach identified 332 NE neuron nuclei (173, 4, and 155 nuclei from donors Br2701, 
Br6522, and Br8079, respectively), including 188 out of the 295 NE neuron nuclei identified by unsu-
pervised clustering (Figure 3—figure supplement 3C). We hypothesized that the differences in nuclei 
that did not agree between the two approaches were due to sampling variability in the snRNA-seq 
measurements for these two marker genes. To confirm this, we used an alternative method (smFISH 
RNAscope, Wang et al., 2012) to assess co-localization of three NE neuron marker genes (DBH, TH, 
and SLC6A2) within individual cells on additional tissue sections from one additional independent 
donor (Br8689). Visualization of high-magnification confocal images demonstrated clear co-localiza-
tion of these three marker genes within individual cells (Figure 3—figure supplement 4). Since the 
unsupervised clustering is based on the expression of a large number of genes and is, therefore, less 
sensitive to sampling variability for individual genes, we used the unsupervised clustering results for 
all further downstream analyses.

We performed DE testing between the neuronal clusters and identified 327 statistically significant 
genes with elevated expression in the NE neuron cluster, compared to all other neuronal clusters 
(excluding ambiguous) captured in this region, at an FDR threshold of 0.05 and FC threshold of 2. 
These genes include known NE neuron marker genes (DBH, TH, SLC6A2, and SLC18A2) as well as the 
13 protein-coding mitochondrial genes, which are highly expressed in large, metabolically active NE 
neurons (Figure 3C, Figure 3—figure supplement 5A, and Supplementary file 2C). Compared to 
the LC-associated genes identified in the SRT samples, differences are expected since the snRNA-seq 
data contains measurements from nuclei at single-nucleus resolution, while the SRT samples contain 
reads from nuclei, cytoplasm, and cell processes from multiple cell populations within the annotated 
LC regions.

https://doi.org/10.7554/eLife.84628
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Figure 3. Single-nucleus gene expression in the human locus coeruleus (LC) using single-nucleus RNA-sequencing (snRNA-seq). We applied an 
unsupervised clustering workflow to identify cell populations in the snRNA-seq data. (A) Unsupervised clustering identified 30 clusters representing 
populations including norepinephrine (NE) neurons (red), 5-HT neurons (purple), and other major neuronal and non-neuronal cell populations 
(additional colors). Marker genes (columns) were used to identify clusters (rows). Cluster IDs are shown in labels on the right, and the numbers of nuclei 
per cluster are shown in horizontal bars on the right. Percentages of nuclei per cluster are also shown in Figure 3—figure supplement 1D. Heatmap 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.84628
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To compare with the spatial data, we also performed DE testing between the NE neuron cluster 
and all other clusters (neuronal and non-neuronal, excluding ambiguous) in the snRNA-seq data, 
which identified 427 statistically significant genes with elevated expression in the NE neuron cluster 
at an FDR threshold of 0.05 and FC threshold of 2, including all of the 327 genes above (Figure 3—
figure supplement 6 and Supplementary file 2D). We then compared these genes with the set of 
437 statistically significant DE genes from the pseudobulked analyses (LC vs. non-LC regions) in the 
SRT data, which generated a list of 51 genes that were identified as statistically significant DE genes 
in both the SRT and snRNA-seq datasets. These 51 genes included known NE neuron marker genes 
(DBH, TH, SLC6A2, and SLC18A2) with high FC in both datasets (Figure 3—figure supplement 7 and 
Supplementary file 2E).

To compare with previous results in rodents, we evaluated the expression of the rodent LC marker 
genes from Mulvey et  al., 2018 and Grimm et  al., 2004 in the NE neuron cluster compared to 
all other neuronal clusters in the human snRNA-seq data (Figure  3D–E). Consistent with the SRT 
samples, we observed that several genes were conserved across species. However, compared to the 
SRT samples, we observed relatively higher expression of the conserved genes within the NE neuron 

values represent mean logcounts per cluster. (B) UMAP representation of nuclei, with colors matching cell populations from heatmap. (C) Differential 
expression (DE) testing between neuronal clusters identified a total of 327 statistically significant genes with elevated expression in the NE neuron 
cluster, at a false discovery rate (FDR) threshold of 0.05 and fold-change (FC) threshold of 2. Heatmap displays the top 70 genes, ranked in descending 
order by FDR, excluding mitochondrial genes, with NE neuron marker genes described in text highlighted in red. The full list of 327 genes including 
mitochondrial genes is provided in Supplementary file 2C. Heatmap values represent mean logcounts in the NE neuron cluster and mean logcounts 
per cluster averaged across all other neuronal clusters (excluding ambiguous). (D–E) Cross-species comparison showing expression of human ortholog 
genes for LC-associated genes identified in the rodent LC (Mulvey et al., 2018; Grimm et al., 2004) using alternative experimental technologies. 
Boxplots show logcounts per nucleus in the NE neuron cluster and all other neuronal clusters. Boxplot whiskers extend to 1.5 times the interquartile 
range, and outliers are not shown. (F) DE testing between neuronal clusters identified a total of 361 statistically significant genes with elevated 
expression in the 5-HT neuron cluster, at an FDR threshold of 0.05 and FC threshold of 2. Heatmap displays the top 70 genes, ranked in descending 
order by FDR, with 5-HT neuron marker genes described in text highlighted in red. The full list of 361 genes is provided in Supplementary file 2F.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distribution of nucleus-level quality control (QC) metrics across unsupervised clusters in snRNA-seq data.

Figure supplement 2. Additional quality control (QC) evaluations for NE neuron cluster in snRNA-seq data.

Figure supplement 3. Supervised identification of NE neuron nuclei by thresholding on expression of NE neuron marker genes in snRNA-seq data.

Figure supplement 4. Expression of NE neuron marker genes in individual cells using RNAscope and high-magnification confocal imaging.

Figure supplement 5. DE testing results between neuronal clusters in the LC and surrounding region in snRNA-seq data.

Figure supplement 6. DE testing results between NE neuron cluster and all other clusters in snRNA-seq data.

Figure supplement 7. Overlap and comparison between DE genes identified in SRT and snRNA-seq data.

Figure supplement 8. Unsupervised clustering results showing additional inhibitory neuronal, miscellaneous, dopaminergic, and cholinergic marker 
genes in snRNA-seq data.

Figure supplement 9. Spatial expression and enrichment analysis of 5-HT neuron marker genes in Visium SRT samples.

Figure supplement 10. Spatial expression of additional marker genes for 5-HT neurons in Visium SRT samples.

Figure supplement 11. Expression of NE neuron and 5-HT neuron marker genes using RNAscope.

Figure supplement 12. Expression of 5-HT neuron marker genes using RNAscope.

Figure supplement 13. Inhibitory neuronal subpopulations identified by secondary unsupervised clustering on inhibitory neurons in snRNA-seq data.

Figure supplement 14. Spot-level deconvolution to map the spatial coordinates of snRNA-seq populations within the Visium SRT samples.

Figure supplement 15. Spatial expression of dopamine (DA) neuron marker genes in Visium SRT samples.

Figure supplement 16. Expression of NE neuron marker genes, 5-HT neuron marker gene, and DA neuron marker gene in individual cells using 
RNAscope and high-magnification confocal imaging.

Figure supplement 17. High-resolution images demonstrating co-expression of cholinergic marker gene within NE neurons.

Figure supplement 18. Spatial expression of cholinergic marker genes in Visium SRT samples.

Figure supplement 19. Overview of interactive web-accessible data resources.

Figure supplement 20. Instructions to display individual genes in Visium SRT data app.

Figure supplement 21. Instructions to display individual genes in snRNA-seq data app.

Figure 3 continued

https://doi.org/10.7554/eLife.84628
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cluster, which is expected since the NE neuron cluster contains reads from individual nuclei from this 
population only, while the SRT data may contain reads from nuclei, cytoplasm, and cell processes from 
up to multiple cell populations per spot.

We note that a recent publication using snRNA-seq in mice found that LC-NE neurons were highly 
enriched for Calca, Cartpt, Gal, and Calcr in addition to canonical NE neuron marker genes (Luskin 
et al., 2023). In the human data, we noted significant enrichment of GAL and CARTPT in DE testing 
between the manually annotated LC and non-LC regions in the SRT samples (Supplementary file 2A). 
While visualization of the snRNA-seq clustering suggests that CARTPT is expressed in the NE neuron 
cluster in the snRNA-seq data (Figure 3—figure supplement 8), it was not identified as statistically 
significant in the DE testing between the NE cluster compared to all other neuronal clusters (Supple-
mentary file 2C). For CALCA and CALCR, we observed no enrichment in the annotated LC regions 
in the SRT samples, nor in the NE neuron cluster in the snRNA-seq data (Supplementary file 2A and 
2C and Figure 3—figure supplement 8).

Identification of 5-HT neurons and diversity of inhibitory neuron 
subpopulations in single-nucleus data
In addition to NE neurons, we identified a cluster of potential 5-hydroxytryptamine (5-HT, serotonin) 
neurons in the unsupervised clustering analyses of the snRNA-seq data (Figure 3A–B) based on the 
expression of 5-HT neuron marker genes (TPH2 and SLC6A4) (Ren et al., 2019). This cluster consisted 
of 186 nuclei (145, 28, and 13 nuclei from donors Br2701, Br6522, and Br8079, respectively). DE 
testing between the neuronal clusters identified 361 statistically significant genes with elevated 
expression in the 5-HT neuron cluster, compared to all other neuronal clusters captured in this region, 
at an FDR threshold of 0.05 and FC threshold of 2. These genes included the 5-HT neuron marker 
genes TPH2 and SLC6A4 (Figure 3F, Figure 3—figure supplement 5B, and Supplementary file 2F). 
To investigate the spatial distribution of this population, we visualized the spatial expression of the 
5-HT neuron marker genes TPH2 and SLC6A4 in the n=9 initial Visium samples, which showed that this 
population was distributed across both the LC and non-LC regions (Figure 3—figure supplement 9A, 
B). Similarly, we did not observe significant spatial enrichment of TPH2 and SLC6A4 expression within 
the manually annotated LC regions in the n=8 Visium samples that passed QC (Figure 3—figure 
supplement 9C). Further analysis confirmed expression of additional marker genes for 5-HT neurons 
(SLC18A2, FEV) within the same regions as TPH2 and SLC6A4 in the Visium samples and within the 
5-HT neuron cluster in the snRNA-seq data, but we did not observe consistent expression signals 
for SLC6A18, 5-HT autoreceptors (HTR1A, HTR1B), or previously identified marker genes for 5-HT 
neuron subpopulations within the dorsal and median raphe nuclei in mice (Ren et al., 2019) -- with 
the possible exception of the neuropeptide receptor gene HCRTR2 (Figure 3—figure supplements 8 
and 10). To further confirm this finding, we applied RNAscope (Wang et al., 2012) to visualize expres-
sion of an NE neuron marker gene (TH) and 5-HT neuron marker genes (TPH2 and SLC6A4) within 
additional tissue sections from donor Br6522, which demonstrated that the NE and 5-HT marker 
genes were expressed within distinct cells and these neuronal populations were not localized within 
the same regions (Figure 3—figure supplement 11), and the 5-HT neuron marker genes (TPH2 and 
SLC6A4) were co-expressed within individual cells (Figure 3—figure supplement 12).

We also investigated the diversity of inhibitory neuronal subpopulations within the snRNA-seq 
data from the human LC and the surrounding region by applying a secondary round of unsupervised 
clustering to the inhibitory neuron nuclei identified in the first round of clustering. This identified 14 
clusters representing inhibitory neuronal subpopulations, which varied in their expression of several 
inhibitory neuronal marker genes including CALB1, CALB2, TAC1, CNR1, and VIP (additional marker 
genes shown in Figure 3—figure supplements 8 and 13A). In addition, similar to results from a recent 
publication using snRNA-seq in mice (Luskin et al., 2023), we found that expression of neuropep-
tides PNOC, TAC1, and PENK varied across the individual inhibitory neuronal populations (Figure 3—
figure supplement 8). We also investigated a set of GABAergic neuron marker genes from this study 
(Luskin et al., 2023) within our secondary clustering of inhibitory neurons, and observed some cluster-
specific expression of several genes, including CCK, PCSK1, PCSK2, PCSK1N, PENK, PNOC, SST, and 
TAC1 (Figure 3—figure supplement 13B).

In order to integrate the single-nucleus and spatial data, we also applied a spot-level deconvolu-
tion algorithm, cell2location (Kleshchevnikov et al., 2022), to map the spatial coordinates of NE and 

https://doi.org/10.7554/eLife.84628
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5-HT neurons within the Visium samples. This algorithm integrates the snRNA-seq and SRT data by 
estimating the cell abundance of the snRNA-seq populations, which are used as reference populations 
at cellular resolution, at each spatial location (spot) in the Visium samples. We found that this approach 
mapped cells from the NE neuron population to the manually annotated LC regions, and cells from 
the 5-HT neuron population to the regions where this population was previously identified based 
on the expression of marker genes, although the overall mapping performance was relatively poor 
(Figure 3—figure supplement 14). In particular, we observed that cells from these neuronal popu-
lations were also mapped outside the expected regions in the Visium samples, and the estimated 
absolute cell abundances per spot were higher than expected. We note that these are relatively rare 
populations, with relatively subtle expression differences compared to other neuronal populations, 
and NE neurons are characterized by large size and high transcriptional activity, which may have 
affected the performance of the algorithm. Due to the relatively low performance, we did not rely on 
these results for further downstream analyses.

Investigation of dopamine (DA) marker genes
TH is the rate-limiting enzyme in the synthesis of DA, which is used as a precursor in the synthesis of 
NE. Hence, expression of the TH gene is also used as a marker for neurons that synthesize DA, and 
release of DA from LC projection neurons has been observed in the rodent (Kempadoo et al., 2016; 
Devoto and Flore, 2006; Devoto et al., 2005). To evaluate whether TH expression in these human 
LC samples labels cells that produce DA or co-express DA and NE, we also investigated the expres-
sion of other genes involved in the synthesis and transport of DA. We observed minimal expression 
of DA neuron marker genes including SLC6A3 (encoding the dopamine transporter), ALDH1A1, and 
SLC26A7 within the Visium samples (Figure 3—figure supplement 15) and within the NE neuron 
cluster in the snRNA-seq data (Figure 3—figure supplement 8). To further validate this finding, we 
generated additional high-resolution RNAscope smFISH (Wang et al., 2012) images at 40 x magnifi-
cation visualizing the expression of DBH and TH (NE neuron marker genes), TPH2 (5-HT neuron marker 
gene), and SLC6A3 (DA neuron marker gene) within individual cells in regions within the LC in samples 
from three independent donors (Br8689, Br5529, and Br5426). Expression of SLC6A3 within individual 
NE neurons (identified by co-expression of DBH and TH) (Figure 3—figure supplement 16) was not 
apparent in these RNAscope images. Together with the RNAscope images showing co-expression of 
DBH, TH, and SLC6A2 within individual NE neurons (Figure 3—figure supplement 4), these results 
strengthen the conclusion that the observed TH+ cells in the LC are NE-producing neurons.

Co-expression of cholinergic marker genes within NE neurons
We observed the expression of cholinergic marker genes, including SLC5A7, which encodes the 
high-affinity choline transporter, and ACHE, within the NE neuron cluster in the snRNA-seq data 
(Figure 3—figure supplement 8). Because this result was unexpected, we experimentally confirmed 
co-expression of SLC5A7 transcripts with transcripts for NE neuron marker genes in individual cells 
using RNAscope (Wang et al., 2012) on independent tissue sections from donors Br6522 and Br8079. 
We used RNAscope probes for SLC5A7 and TH (NE neuron marker), and imaged stained sections at 
63 x magnification to generate high-resolution images, which allowed us to definitively localize the 
expression of individual transcripts within cell bodies. This confirmed co-expression of SLC5A7 and TH 

Table 1. Summary of data resources providing access to datasets described in this manuscript.
All datasets described in this manuscript are freely accessible in the form of interactive web apps and downloadable R/Bioconductor 
objects.

Resource Data Format Link

Shiny (Chang et al., 2019) web 
app Visium SRT Interactive web app https://libd.shinyapps.io/locus-c_Visium/

iSEE (Rue-Albrecht et al., 2018) 
web app snRNA-seq Interactive web app

https://libd.shinyapps.io/locus-c_snRNA-
seq/

R/Bioconductor ExperimentHub 
data package

Visium SRT and 
snRNA-seq

Downloadable R/Bioconductor objects in 
SpatialExperiment (Righelli et al., 2022) and 
SingleCellExperiment (Amezquita et al., 2020) 
formats

https://bioconductor.org/packages/
WeberDivechaLCdata

https://doi.org/10.7554/eLife.84628
https://libd.shinyapps.io/locus-c_Visium/
https://libd.shinyapps.io/locus-c_snRNA-seq/
https://libd.shinyapps.io/locus-c_snRNA-seq/
https://bioconductor.org/packages/WeberDivechaLCdata
https://bioconductor.org/packages/WeberDivechaLCdata
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in individual cells in a tissue section from donor Br8079 (Figure 3—figure supplement 17), validating 
that these transcripts are expressed within the same cells. To further investigate the spatial distribu-
tion of the cholinergic marker genes, we visualized the expression of SLC5A7 and ACHE in the Visium 
samples, which showed that these genes were expressed both within and outside the annotated LC 
regions (Figure 3—figure supplement 18).

Interactive and accessible data resources
We provide freely accessible data resources containing all datasets described in this manuscript, in 
the form of both interactive web-accessible and downloadable resources (Table 1). The interactive 
resources can be explored in a web browser via a Shiny (Chang et al., 2019) app for the Visium SRT 
data and an iSEE (Rue-Albrecht et al., 2018) app for the snRNA-seq data (Figure 3—figure supple-
ments 19–21). The data resources are also available from an R/Bioconductor ExperimentHub data 
package as downloadable objects in the SpatialExperiment (Righelli et al., 2022) and SingleCellEx-
periment (Amezquita et al., 2020) formats, which can be loaded in an R session and contain meta-
data including manual annotation labels and cluster labels.

Discussion
Due to the small size and inaccessibility of the LC within the brainstem, this region has been rela-
tively understudied in the human brain, despite its involvement in numerous functions and disease 
mechanisms. Our dataset provides the first transcriptome-wide characterization of the gene expres-
sion landscape of the human LC using spatially-resolved transcriptomics (SRT) and single-nucleus 
RNA-sequencing (snRNA-seq). Analysis of these data identified a population of norepinephrine (NE) 
neurons as well as a population of 5-hydroxytryptamine (5-HT, serotonin) neurons, and spatially local-
ized them within the LC and surrounding region. We evaluated the expression of previously known 
marker genes for these populations and identified novel sets of significant differentially expressed 
(DE) genes, and assessed how their expression varies in space across the neuroanatomy of the region. 
We evaluated the expression of dopamine (DA) marker genes to confirm that the observed TH expres-
sion likely maps to NE-synthesizing, as opposed to DA-synthesizing neurons. We compared our find-
ings from the human LC to molecular profiles of LC and peri-LC neurons in rodents, and confirmed 
partial conservation of LC-associated genes across these species. However, we note caution in inter-
preting these results given differences in technological platforms and experimental approaches across 
studies. Finally, we validated key results with smFISH RNAscope by assessing co-localization of genes 
of interest with established marker genes on independent tissue sections.

Identifying genes whose expression is enriched in NE neurons is important because the LC-NE 
system is implicated in multiple neuropsychiatric and neurological disorders (Morris et  al., 2020; 
Weinshenker, 2018), and prominent loss of NE cells in the LC occurs in neurodegenerative disor-
ders (Weinshenker, 2018; Mather and Harley, 2016; Chalermpalanupap et al., 2017). Untargeted, 
transcriptome-wide analysis of the snRNA-seq and SRT data identified a number of genes that are 
enriched in the human LC region and in LC-NE neurons themselves. As expected, these analyses 
validated the enrichment of genes involved in NE synthesis and packaging (TH, SLC18A2, DBH) as 
well as NE reuptake (SLC6A2). We also noted expression selectively in LC-NE neurons of a number of 
genes whose expression is altered in animal models or in human disease in the LC (SSTR2, PHOX2A, 
PHOX2B) (Fan et al., 2018; Ádori et al., 2015). We identified LC enrichment of a number of genes 
that have been associated at the cellular level with apoptosis, cell loss, or pathology in the context 
of neurodegeneration (RND3, P2RY1) (Pietrowski et al., 2021; Moore et al., 2000; Cueto-Ureña 
et al., 2022; Dong et al., 2021). We also noted enrichment of NT5DC2 in the LC, a gene which has 
been associated with ADHD and regulates catecholamine synthesis in vitro (van Hulzen et al., 2017; 
Nakashima et al., 2019). Localization of these genes to the LC in humans, and LC-NE neurons in 
particular, may provide important biological insights about the physiological function of these neurons 
and provide context about underlying mechanistic links between these genes and disease risk. Future 
work using the transcriptome-wide molecular expression profiles of NE neurons at single-nucleus 
resolution and the LC region at spatial resolution generated here could investigate associations with 
individual genes and gene sets from genome-wide association studies (GWAS) for these disorders as 
well as genes more generally associated with aging-related processes.

https://doi.org/10.7554/eLife.84628
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Our study has several limitations. The SRT data using the 10x Genomics Visium platform captured 
a median of 2–5 cells per measurement location within the LC regions per sample, and future studies 
could apply higher-resolution platforms to characterize expression at single-cell or sub-cellular spatial 
resolution. These estimates of cell density could also be used to estimate the expected yield of nuclei in 
single-nucleus data in future studies. In the single-nucleus data, we identified a relatively small number 
of NE neurons, which may be related to technical factors that affected the recovery of this population 
due to their relatively large size and fragility or contributed to damage and loss of NE neuron nuclei. 
For example, we opted to use fluorescence-activated nuclei sorting (FANS) to enrich for neurons 
based on our previous success with this approach to identify relatively rare neuronal populations in 
other brain regions including the nucleus accumbens and amygdala (Tran et al., 2021). This and other 
technical factors may have also contributed to the unexpectedly high proportion of mitochondrial 
reads that we observed in NE neurons in the snRNA-seq data. While mitochondrial reads are not 
expected in the nuclear compartment, recent studies reported contamination of nuclear preparations 
in snRNA-seq data with ambient mRNAs from abundant cellular transcripts (Caglayan et al., 2022). 
Given the relatively elevated energy demand and increased metabolic activity of NE neurons, higher 
than expected mitochondrial contamination in the nuclear preparation of LC tissue may be plausible. 
Because NE neurons were the population of highest interest to profile in this dataset, we opted not 
to perform QC filtering on the proportion of mitochondrial reads, in order to retain this population. 
Further optimizing technical procedures for cell sorting and cryosectioning to avoid cellular damage, 
as well as for optimal isolation of larger cell sizes, could enhance recovery of this population for future, 
larger-scale snRNA-seq studies in this brain region.

Since the identification of potential 5-HT neurons in the single-nucleus data was an unexpected 
finding, the experimental procedures were not designed to optimally recover this population, and the 
precise anatomical origin of the 5-HT neurons recovered in this dataset is not entirely clear. While our 
dissection strategy in this initial study precluded the ability to keep track of the exact orientation of 
the tissue sections, we have now developed a number of specialized technical and logistical strategies 
for keeping track of the orientation of dissections and mounting serial sections from the same tissue 
block onto a single array, which will make it possible to address these, and other important questions 
in the future. For example, interrogating spatial gradients across the rostral-caudal gradient of the LC 
will be important given the differential association with vulnerability to neurodegeneration across this 
axis (Beardmore et al., 2021; Theofilas et al., 2017). It is possible that the identified 5-HT neurons 
were close to the borders of the LC dissections, residing within the dorsal raphe nucleus, which is 
neuroanatomically adjacent to the LC. Supporting this hypothesis, RNAscope data in Figure  3—
figure supplement 11 from an independent tissue section shows that TPH2 and SLC6A4 expression 
appears to be distinct from the LC region, which is densely packed with NE cells. However, there is 
some evidence for the expression of serotonergic markers within the LC region in rodents (Grimm 
et al., 2004; Iijima, 1993; Iijima, 1989), and our SRT data does support this possibility in the human 
brain, although further characterization is needed. Comprehensively understanding the full molecular 
diversity of 5-HT neurons in the human brain would require dissections that systematically sample 
across the extent of the dorsal raphe nucleus across the rostral-caudal axis of the brainstem.

Similarly, the identification of cholinergic marker gene expression, particularly the robust expres-
sion of SLC5A7 and ACHE within NE neurons, was unexpected. While previous studies have iden-
tified small populations of cholinergic interneurons within or adjacent to the LC in rodents (Luskin 
et al., 2023), analysis of our data did not classify any of the other neuronal populations as cholinergic 
per se. However, both the SRT and RNAscope data (Figure 3—figure supplement 15) support the 
hypothesis that expression of cholinergic markers occurs in NE cells themselves, as well as in sparse 
populations of cholinergic neurons adjacent to the LC region that do not express NE marker genes. 
We were surprised by the expression of SLC5A7 and ACHE in the LC regions (Visium data) and within 
the LC-NE neuron cluster (snRNA-seq data), coupled with the absence of other typical cholinergic 
marker genes (e.g. CHAT, SLC18A3). However, previous work suggested non-cholinergic actions 
of ACHE, particularly in other catecholaminergic neuron populations (e.g. dopaminergic neurons in 
the substantia nigra) (Halliday and Greenfield, 2012; Greenfield, 1991), raising the possibility of 
a similar mechanism in the LC-NE catecholaminergic population. We note that our snRNA-seq data 
may be underpowered to fully identify and classify these sparse populations, and future experiments 
designed to specifically investigate this finding in more detail could lead to a better understanding 

https://doi.org/10.7554/eLife.84628
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of cholinergic signaling within the LC of the human brain. Similarly, our snRNA-seq may be under-
powered to perform gene set enrichment studies (De Leeuw et al., 2015) to identify whether the 
NE and 5-HT neurons harbor aggregated genetic risk for psychiatric disorders, but these data could 
be aggregated with future snRNA-seq data generated from the LC to address this question. To facil-
itate further exploration of these data, we provide a freely accessible data resource that includes the 
snRNA-seq and SRT data in both web-based and R-based formats, as well as reproducible code for 
the computational analysis workflows for the snRNA-seq and SRT data.

Materials and methods
Postmortem human brain tissue samples for RNAscope, SRT, and 
snRNA-seq assays
Brain donations in the Lieber Institute for Brain Development (LIBD) Human Brain Repository (HBR) 
were collected with audiotaped witnessed informed consent with legal next-of-kin from the Office 
of the Chief Medical Examiner of the State of Maryland under the Maryland Department of Health’s 
IRB protocol #12–24, and from the Western Michigan University Homer Stryker MD School of Medi-
cine, Department of Pathology, and the Department of Pathology, University of North Dakota School 
of Medicine and Health Sciences, both under WCG IRB protocol #20111080. Clinical characteriza-
tion, diagnoses, and macro- and microscopic neuropathological examinations were performed on 
all samples using a standardized paradigm, and subjects with evidence of macro- or microscopic 
neuropathology were excluded. Details of tissue acquisition, handling, processing, dissection, clin-
ical characterization, diagnoses, neuropathological examinations, RNA extraction, and quality control 
measures have been described previously (Lipska et  al., 2006; Zandi et  al., 2022). We obtained 
tissue blocks from five male neurotypical brain donors of European ancestry. To select tissue blocks for 
study inclusion, we identified the LC in transverse slabs of the pons from the fresh-frozen human brain. 
The LC was identified through visual inspection of the slab, based on neuroanatomical landmarks and 
the presence of neuromelanin pigmentation. For each donor, a tissue block was dissected from the 
dorsal aspect of the pons, centered around the LC, using a dental drill. The tissue block was taken at 
the level of the motor trigeminal nucleus and superior cerebellar peduncle. Tissue blocks were kept at 
–80 °C until sectioning for experiments. We cut 10 μm tissue sections for performing SRT assays using 
the 10x Genomics Visium SRT platform (10x Genomics, 2022a). High-resolution images of the H&E 
stained histology were acquired prior to on-slide cDNA synthesis and completing the Visium assays. 
Assays were performed on 2–4 tissue sections collected from each of the five donors, and the tissue 
blocks were scored to fit 2–3 tissue sections from the same donor onto a single Visium capture area to 
maximize the use of the Visium slides. This resulted in a total of n=9 Visium capture areas (hereafter 
referred to as samples) in the SRT dataset. For 3 of the 5 donors, we cut additional 100 μm cryosec-
tions for snRNA-seq assays using the 10x Genomics Chromium snRNA-seq platform (10x Genomics, 
2022b). Supplementary file 1 provides information on brain donor demographics as well as sample 
information for the SRT and snRNA-seq datasets.

Multiplexed smFISH using RNAscope
For RNAscope experiments, tissue blocks were sectioned at 10 μm and single-molecule fluorescent 
in situ hybridization assays were performed with RNAscope technology (Wang et al., 2012) using the 
Fluorescent Multiplex Kit v.2 and 4-plex Ancillary Kit (catalog no. 323100, 323120 ACD) according to 
the manufacturer’s instructions. Briefly, 10 μm tissue sections (2–4 sections per donor) were fixed with 
10% neutral buffered formalin solution (catalog no. HT501128, Sigma-Aldrich) for 30 min at room 
temperature, series dehydrated in increasing concentrations of ethanol (50%, 70%, 100%, and 100%), 
pretreated with hydrogen peroxide for 10 min at room temperature and treated with protease IV for 
30 min. For QC experiments to confirm LC inclusion in the tissue block (Figure 1B showing example 
for additional independent donor Br8689), tissue sections were incubated with three different probes 
(two LC-NE neuron markers and one pan-neuronal marker): SLC6A2 (catalog no. 526801-C1, Advanced 
Cell Diagnostics) encoding the norepinephrine transporter, TH (catalog no. 441651-C2, Advanced 
Cell Diagnostics) encoding tyrosine hydroxylase, and SNAP25 (catalog no. 518851-C3, Advanced Cell 
Diagnostics). To confirm co-expression of LC-NE marker genes within individual cells (Figure 3—figure 
supplement 4), we used SLC6A2 (catalog no. 526801-C1, Advanced Cell Diagnostics), TH (catalog 
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no. 441651-C2, Advanced Cell Diagnostics), and DBH (catalog no. 545791-C3, Advanced Cell Diag-
nostics) encoding dopamine beta-hydroxylase. To localize serotonergic and cholinergic markers within 
the LC (Figure 3—figure supplement 11), we used TH (catalog no. 441651-C2, Advanced Cell Diag-
nostics) encoding tyrosine hydroxylase, TPH2 (catalog no. 471451-C1, Advanced Cell Diagnostics) 
encoding tryptophan hydroxylase 2, SLC6A4 (catalog no. 604741-C3, Advanced Cell Diagnostics) 
encoding the serotonin transporter, and SLC5A7 (catalog no. 564671-C4, Advanced Cell Diagnostics) 
encoding the high-affinity choline transporter. After probe labeling, sections were stored overnight 
in 4 x saline-sodium citrate buffer (catalog no. 10128–690, VWR). After amplification steps (AMP1-
3), probes were fluorescently labeled with Opal Dyes 520, 570, and 690 (catalog no. FP1487001KT, 
FP1488001KT, and FP1497001KT, Akoya Biosciences; 1:500 dilutions for all the dyes) and counter-
stained with DAPI (4′,6-diamidino-2-phenylindole) to label cell nuclei. Lambda stacks were acquired in 
z-series using a Zeiss LSM780 confocal microscope equipped with 20 x, 0.8 numerical aperture (NA) 
and 63 x, 1.4 NA objectives, a GaAsP spectral detector, and 405-, 488-, 561- and 633 nm lasers. All 
lambda stacks were acquired with the same imaging settings and laser power intensities. After image 
acquisition, lambda stacks in z-series were linearly unmixed using Zen Black (weighted; no autoscale) 
using reference emission spectral profiles previously created in Zen for the dotdotdot software (git 
hash v.4e1350b) (Maynard et al., 2020), stitched, maximum intensity projected, and saved as Carl 
Zeiss Image (.czi) files.

Visium SRT with H&E staining data generation and sequencing
Tissue blocks were embedded in an OCT medium and cryosectioned at 10 μm on a cryostat (Leica 
Biosystems). Briefly, Visium Gene Expression Slides were cooled inside the cryostat, and tissue sections 
were then adhered to the slides. Tissue sections were fixed with methanol and then stained with H&E 
according to the manufacturer’s staining and imaging instructions (User guide CG000160 Rev C). 
Images of the H&E stained slides were acquired using a CS2 slide scanner (Leica Biosystems) equipped 
with a color camera and a 20 x, 0.75 NA objective and saved as a Tagged Image File (.tif). Following 
H&E staining and acquisition of images, slides were processed for the Visium assay according to the 
manufacturer’s reagent instructions (Visium Gene Expression protocol User guide CG000239, Rev 
D) as previously described (Maynard et al., 2021). In brief, the workflow includes permeabilization 
of the tissue to allow access to mRNA, followed by reverse transcription, removal of cDNA from the 
slide, and library construction. Tissue permeabilization experiments were conducted on a single LC 
sample used in the study and an optimal permeabilization time of 18 min was identified and used for 
all sections across donors. Sequencing libraries were quality-controlled and then sequenced on the 
MiSeq, NextSeq, or NovaSeq Illumina platforms. Sequencing details and summary statistics for each 
sample are reported in Supplementary file 1.

Number of cells per spot in Visium SRT data
We applied cell segmentation software (VistoSeg, Tippani et al., 2023) to the H&E stained histology 
images to estimate the number of cells per spot in the Visium SRT data, and calculated summary 
statistics for the annotated LC regions per sample, for 6 out of the 9 Visium SRT samples (Figure 2—
figure supplement 2B). For the remaining three samples, the H&E stained histology images were of 
insufficient quality to reliably estimate the number of cells per spot. We applied VistoSeg to count cell 
bodies based on the identification of nuclei using pixel-based counting (with a minimum size threshold 
of 100 pixels and watershed segmentation algorithm) (Tippani et al., 2023).

snRNA-seq data generation and sequencing
Following SRT data collection, three tissue blocks (Br6522, Br8079, and Br2701) were used for 
snRNA-seq. Prior to tissue collection for snRNA-seq assays, tissue blocks were further scored based 
on the RNAscope and SRT data to enrich tissue collection to the localized site of LC-NE neurons. 
After scoring the tissue blocks, samples were sectioned at 100 μm and collected in cryotubes. The 
sample collected for Br6522 contained 10 sections, weighing 51 mg, and the samples from Br8079 
and Br2701 each contained 15 sections, weighing 60.9 mg and 78.9 mg, respectively. These samples 
were processed following a modified version of the ‘Frankenstein’ nuclei isolation protocol as previ-
ously described (Tran et al., 2021). Specifically, chilled EZ lysis buffer (MilliporeSigma) was added 
to the LoBind microcentrifuge tube (Eppendorf) containing cryosections, and the tissue was gently 
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broken up, on ice, via pipetting. This lysate was transferred to a chilled dounce, rinsing the tube with 
additional EZ lysis buffer. The tissue was then homogenized using part A and B pestles, respectively, 
for ~10 strokes, each, and the homogenate was strained through a 70 µm cell strainer. After lysis, the 
samples were centrifuged at 500 g at 4 °C for 5 min, the supernatant was removed, then the sample 
was resuspended in EZ lysis buffer. Following a 5 min incubation, samples were centrifuged again. 
After supernatant removal, wash/resuspension buffer (PBS, 1% BSA, and 0.2 U/uL RNasin), was gently 
added to the pellet for buffer interchange. After a 5 min incubation, each pellet was again washed, 
resuspended, and centrifuged three times.

For staining, each pellet was resuspended in a wash/resuspension buffer with 3% BSA, and stained 
with AF488-conjugated anti-NeuN antibody (MiliporeSigma, catalog no. MAB377X), for 30 min on ice 
with frequent, gentle mixing. After incubation, these samples were washed with 1 mL wash/resuspen-
sion buffer, then centrifuged, and after the supernatant was aspirated, the pellet was resuspended in 
wash/resuspension buffer with propidium iodide (PI), then strained through a 35 µm cell filter attached 
to a FACS tube. Each sample was then sorted on a Bio-Rad S3e Cell Sorter on ‘Purity’ mode into a 
10x Genomics reverse transcription mix, without enzyme. A range of 5637–9000 nuclei were sorted 
for each sample, aiming for an enrichment of ~60% singlet, NeuN+ nuclei. Then the 10x Chromium 
reaction was completed following the Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual 
Index) revision A protocol, provided by the manufacturer (10x Genomics) to generate libraries for 
sequencing. The number of sequencing reads and platforms used per sample are shown in Supple-
mentary file 1.

Analysis of Visium SRT data
This section describes additional details on the computational analyses of the Visium SRT data that are 
not included in the main text.

Manual alignment of the H&E stained histology images to the expression spot grid was performed 
using the 10x Genomics Loupe Browser software (v. 5.1.0). The raw sequencing data files (FASTQ files) 
for the sequenced library samples were processed using the 10x Genomics Space Ranger software 
(v. 1.3.0) (10x Genomics, 2022c) using the human genome reference transcriptome version GRCh38 
2020-A (July 7, 2020) provided by 10x Genomics. Sequencing summary statistics for each sample are 
provided in Supplementary file 1.

For spot-level QC filtering, we removed outlier spots that were more than three median absolute 
deviations (MADs) above or below the median sum of UMI counts or the median number of detected 
genes per spot (Amezquita et al., 2020). We did not use the proportion of mitochondrial reads per 
spot for spot-level QC filtering, since we observed a high proportion of mitochondrial reads in the NE 
nuclei in the snRNA-seq data (for more details, see Results and Figure 3—figure supplement 1), so 
using this QC metric would risk removing the rare population of NE nuclei of interest in the snRNA-seq 
data. Therefore, for consistency with the snRNA-seq analyses, we did not use the proportion of mito-
chondrial reads for spot-level QC filtering in the SRT data. Due to the large differences in read depth 
between samples (e.g. median sum of UMI counts ranged from 118 for sample Br6522_LC_2_round1 
to 2,252 for sample Br6522_LC_round3; see Figure 2—figure supplement 4A and Supplementary 
file 1 for additional details), we performed spot-level QC independently within each sample. The 
spot-level QC filtering identified a total of 287 low-quality spots (1.4% out of 20,667 total spots) from 
the n=8 Visium samples that passed sample-level QC. These spots were removed from subsequent 
analyses (Figure 2—figure supplement 4B). For gene-level QC filtering, we removed low-expressed 
genes with a total of less than 80 UMI counts summed across the n=8 Visium samples.

For the evaluation of the spatially-aware clustering with BayesSpace (Zhao et al., 2021) to identify 
the LC regions in a data-driven manner, precision is defined as the proportion of spots in the selected 
cluster that are from the true annotated LC region, recall is defined as the proportion of spots in the 
true annotated LC region that are in the selected cluster, F1 score is defined as the harmonic mean 
of precision and recall (values ranging from 0 to 1, with 1 representing perfect accuracy), and the 
adjusted Rand index is defined as the percentage of correct assignments, adjusted for chance (values 
ranging from 0 for random assignment to 1 for perfect assignment).

For the pseudobulked DE testing, we aggregated the reads within the LC and non-LC regions 
using the scater package (McCarthy et al., 2017), and then used the limma package (Ritchie et al., 
2015) to calculate empirical Bayes moderated DE tests.

https://doi.org/10.7554/eLife.84628
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Analysis of snRNA-seq data
This section describes additional details on the computational analyses of the snRNA-seq data that 
are not included in the main text.

We aligned sequencing reads using the 10x Genomics Cell Ranger software (10x Genomics, 
2022d) (version 6.1.1, cellranger count, with option --include-introns), using the human genome refer-
ence transcriptome version GRCh38 2020-A (July 7, 2020) provided by 10x Genomics. We called 
nuclei (distinguishing barcodes containing nuclei from empty droplets) using Cell Ranger (‘filtered’ 
outputs), which recovered 8979, 3220, and 10,585 barcodes for donors Br2701, Br6522, and Br8079, 
respectively. We applied scDblFinder (Germain et al., 2021) using default parameters to computa-
tionally identify and remove doublets, which removed 1022, 205, and 1366 barcodes identified as 
doublets for donors Br2701, Br6522, and Br8079, respectively.

We performed nucleus-level QC processing by defining low-quality nuclei as nuclei with outlier 
values more than three MADs above or below the median sum of UMI counts or the median number 
of detected genes (Amezquita et al., 2020), which did not identify any low-quality nuclei, so all nuclei 
were retained. We did not use the proportion of mitochondrial reads for QC processing, since we 
observed a high proportion of mitochondrial reads in nuclei with expression of NE neuron markers 
(DBH and TH) (for more details, see Results and Figure 3—figure supplement 3). Therefore, QC 
filtering on the proportion of mitochondrial reads would risk removing the rare population of NE 
neuron nuclei of interest. We performed gene-level QC filtering by removing low-expressed genes 
with less than 30 UMI counts summed across all nuclei. After doublet removal and QC processing, we 
obtained a total of 7957, 3015, and 9219 nuclei from donors Br2701, Br6522, and Br8079, respectively.

For the unsupervised clustering, we used a two-stage clustering algorithm consisting of high-
resolution k-means and graph-based clustering that provides sensitivity to identify rare cell populations 
(Amezquita et al., 2020). For the first round of clustering (results in Figure 3A–B, Figure 3—figure 
supplement 8), we used 2000 clusters for the k-means step, and 10 nearest neighbors and Walktrap 
clustering for the graph-based step. For the secondary clustering of inhibitory neurons (Figure 3—
figure supplement 13), we used 1000 clusters for the k-means step, and 10 nearest neighbors and 
Walktrap clustering for the graph-based step. We did not perform any batch integration prior to 
clustering, since batch integration algorithms may strongly affect rare populations but these algo-
rithms have not yet been independently evaluated on datasets with rare populations (<1% of cells). 
We calculated highly variable genes, log-transformed normalized counts (logcounts), and performed 
dimensionality reduction using the scater and scran packages (Lun et al., 2016; McCarthy et al., 
2017).

For the DE testing, we performed pairwise DE testing between all neuronal clusters, using the 
findMarkers() function from the scran package (Lun et al., 2016). We tested for genes with log2-fold-
changes (log2FC) significantly greater than 1 (lfc = 1, direction = ‘up’) to identify genes with elevated 
expression in any of the neuronal clusters compared to all other neuronal clusters.

For the spot-level deconvolution using cell2location (Kleshchevnikov et al., 2022), we used the 
following parameters for human brain data from the Visium platform: detection_alpha = 20, N_cells_
per_location = 3.

Code availability
Code scripts to reproduce all analyses and figures in this manuscript, including the computational 
analysis workflows for the snRNA-seq and SRT data, are available from GitHub at https://github.com/​
lmweber/locus-c (Weber, 2023a). We used R version 4.2 and Bioconductor version 3.15 packages for 
analyses in R.
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Data availability
The datasets described in this manuscript are freely accessible in web-based formats from https://libd.​
shinyapps.io/locus-c_Visium/ (Shiny app containing Visium SRT data; Chang et al., 2019) and https://​
libd.shinyapps.io/locus-c_snRNA-seq/ (iSEE app containing snRNA-seq data; Rue-Albrecht et  al., 
2018), and in R/Bioconductor formats from https://bioconductor.org/packages/WeberDivechaLC-
data (R/Bioconductor ExperimentHub data package containing Visium SRT data in SpatialExperiment 
(Righelli et al., 2022) format and snRNA-seq data in SingleCellExperiment format [Amezquita et al., 
2020])(Weber and Divecha, 2023b). All data accessible through the web apps is also included in the 
R/Bioconductor data package (Weber and Divecha, 2023b). The R/Bioconductor data package is 
available in Bioconductor version 3.16 onwards. Instructions to install and access the R/Bioconductor 
data package are also available from GitHub at https://github.com/lmweber/WeberDivechaLCdata 
(Weber and Divecha, 2023b). Raw data files (FASTQ sequencing data files and high-resolution TIF 
image files) are available via Globus from the WeberDivecha2023_locus_coeruleus data collection 
from the jhpce#globus01 Globus endpoint, which is also listed at http://research.libd.org/globus/. 
The Globus repository is not publicly accessible due to individually identifiable donor genetic vari-
ants in the FASTQ files. Users may request access to the Globus repository by submitting an email 
request to the corresponding authors outlining the proposed use of the data. Access will be granted 
for research purposes, including academic and commercial. All code used to analyze the data in the 
Globus repository is included in the code repository described in Code Availability. Deidentified data 
that may be accessed without restrictions is included in the R/Bioconductor data package described 
above. A combined PDF file containing copies of all supplementary figures is provided in Supplemen-
tary file 3.
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