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Abstract 21 
 22 

Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended 23 

to estimate accumulation using either neural or behavioral data alone. Here we develop a unified 24 

framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We 25 

applied our method to choices and neural recordings from three rat brain regions — the posterior 26 

parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS) — 27 

while subjects performed a pulse-based accumulation task. Each region was best described by a 28 

distinct accumulation model, which all differed from the model that best described the animal’s 29 

choices. FOF activity was consistent with an accumulator where early evidence was favored while 30 

the ADS reflected near perfect accumulation. Neural responses within an accumulation framework 31 

unveiled a distinct association between each brain region and choice. Choices were better predicted 32 

from all regions using a comprehensive, accumulation-based framework and different brain regions 33 

were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected 34 

choice but ADS showed more instances of decision vacillation. Previous studies relating neural data 35 

to behaviorally-inferred accumulation dynamics have implicitly assumed that individual brain 36 
regions reflect the whole-animal level accumulator. Our results suggest that different brain regions 37 

represent accumulated evidence in dramatically different ways and that accumulation at the whole-38 

animal level may be constructed from a variety of neural-level accumulators. 39 

 40 

  41 
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Introduction 42 

 43 

Accumulation of evidence is a critical process underlying decision-making in complex environments 44 

where relevant information is distributed across time. Choice data from evidence accumulation 45 

tasks (e.g., Brunton et al., 2013; Raposo et al., 2012; Sanders and Kepecs, 2012) have allowed for the 46 

development of sophisticated models of animals’ accumulation strategies (e.g., Bogacz et al., 2006; 47 

Brunton et al., 2013; Genkin et al., 2021; Gold and Shadlen, 2007; Ratcliff et al., 2016; Ratcliff and 48 

McKoon, 2008; Shinn et al., 2020; Wiecki et al., 2013). In parallel, neural correlates of accumulated 49 

evidence have been found in a wide variety of brain regions (e.g., Brody and Hanks, 2016; 50 

Churchland et al., 2011; Ding and Gold, 2010; Erlich et al., 2011; Gold and Shadlen, 2007; Hanks et 51 

al., 2015; Huk and Shadlen, 2005; Kim and Shadlen, 1999; Mante et al., 2013; Ratcliff et al., 2003; 52 

Roitman and Shadlen, 2002; Shadlen and Newsome, 2001; Yartsev et al., 2018) and methods have 53 

been developed to describe the statistical relationship between neural activity and accumulated 54 

evidence (e.g., Aoi et al., 2020; Beck et al., 2008; Churchland et al., 2011; Hanks et al., 2015; Latimer 55 

et al., 2015; Latimer and Freedman, 2021; Park et al., 2014; Zoltowski et al., 2020, 2019).  56 

 57 
Obtaining a comprehensive account of how stimulus-influenced accumulated evidence underlies 58 

neural activity and subject choice remains an open problem. For example, few analysis methods 59 

which use precise spike timing information take into account the timing of stimulus information or 60 

use choice data directly (e.g., Latimer et al., 2015). Likewise few methods that use the precise 61 

timing of stimulus information to infer accumulated evidence use neural responses directly (e.g., 62 

Hanks et al., 2015). To address this gap, we developed a framework for inferring probabilistic 63 

evidence accumulation models jointly from choice data, neural activity, and precisely controlled 64 

stimuli. 65 

 66 

A complete understanding of decision-making necessitates models that can comprehensively 67 

combine stimuli, neural activity, and behavior. The evidence accumulation process inferred from 68 

behavioral data alone need not correspond to the accumulation process that best matches data 69 

from a single brain region; behavior is the result of interactions between multiple brain regions. For 70 

example, two brain regions, one favoring accumulation of early evidence (e.g., an unstable 71 

accumulator) and the other favoring accumulation of late evidence (e.g., a leaky accumulator) could 72 
together support stable behavior-level accumulation. By fitting accumulator models to neural data 73 

from multiple brain regions and to subject choice data, we gained the opportunity to probe for the 74 

first time whether different brain regions reflect the same, or different, accumulation processes and 75 

how those individual processes correspond to the animal’s overall behavior. 76 

 77 

We applied our model to choices and neural responses from three brain regions known to be 78 

involved in evidence accumulation while animals perform a pulse-based evidence accumulation 79 

task. A single variable representing accumulated evidence, shared across neurons within a brain 80 

region, accurately accounted for both neural and choice data. We identified distinct signatures of 81 

accumulation reflected in each brain region, all of which differed from the accumulation model that 82 

best described behavior, supporting the idea that whole-organism accumulation likely results from 83 

multiple accumulation processes. Prior analysis of these data found that the anterodorsal striatum 84 

(ADS) represented accumulated evidence in a graded manner (Yartsev et al., 2018) while the 85 

frontal orienting fields (FOF) represented choice more categorically (Hanks et al., 2015). Our 86 

analysis confirms the ADS as a veracious representation of accumulated evidence while offering a 87 
more nuanced view of the FOF: the accumulation model that best described FOF activity was 88 

dynamically unstable, producing neural responses that looked like a categorical representation of 89 

choice but that were in fact unstable accumulators sensitive to early stimulus information. 90 

Additionally, we analyzed recordings from the posterior parietal cortex (PPC), a brain region long 91 

https://paperpile.com/c/pTCLY7/u3i5+6Byc+uEme
https://paperpile.com/c/pTCLY7/u3i5+zp4G+iuw4+MSWt+4INe+ABI9+T824+KZ3T
https://paperpile.com/c/pTCLY7/u3i5+zp4G+iuw4+MSWt+4INe+ABI9+T824+KZ3T
https://paperpile.com/c/pTCLY7/u3i5+zp4G+iuw4+MSWt+4INe+ABI9+T824+KZ3T
https://paperpile.com/c/pTCLY7/bve5+iuw4+dhRZ+7mBr+g6pj+6StQ+7ZBq+n6Xb+twvC+oarP+Blpc+FRNl+lj7w
https://paperpile.com/c/pTCLY7/bve5+iuw4+dhRZ+7mBr+g6pj+6StQ+7ZBq+n6Xb+twvC+oarP+Blpc+FRNl+lj7w
https://paperpile.com/c/pTCLY7/bve5+iuw4+dhRZ+7mBr+g6pj+6StQ+7ZBq+n6Xb+twvC+oarP+Blpc+FRNl+lj7w
https://paperpile.com/c/pTCLY7/bve5+iuw4+dhRZ+7mBr+g6pj+6StQ+7ZBq+n6Xb+twvC+oarP+Blpc+FRNl+lj7w
https://paperpile.com/c/pTCLY7/eHJf+2ijz+lzam+vrwO+1jyz+9bWl+mCtd+oarP+dhRZ
https://paperpile.com/c/pTCLY7/eHJf+2ijz+lzam+vrwO+1jyz+9bWl+mCtd+oarP+dhRZ
https://paperpile.com/c/pTCLY7/lzam
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studied in connection to evidence accumulation (Hanks et al., 2015; Roitman and Shadlen, 2002; 92 

Shadlen and Newsome, 2001), where we identified neural correlates of graded evidence 93 

accumulation, albeit more weakly than in the ADS. 94 

 95 

Incorporating neural activity into accumulation models reduced the uncertainty in the moment-by-96 

moment value of accumulated evidence when compared to models fit only to animal choices. This 97 

reduction in uncertainty led to a more refined picture of the moment-by-moment value of 98 

accumulated evidence, which made the model more informative about what choice the animal 99 
intended to make. Our model allowed us to implement a novel analysis to examine how subject 100 

provisional choice changed during individual trials, commonly referred to as ‘changes of mind’ 101 

(Boyd-Meredith et al., 2022; Kiani et al., 2014; Peixoto et al., 2021), that revealed extensive choice 102 

vacillation reflected in ADS activity and greater choice certainty reflected in FOF activity.  103 

 104 

Broadly, our framework offers a unified, mechanistic, and probabilistic description of the moment-105 

by-moment accumulation process that underlies decision-making. Our flexible framework offers a 106 

computationally efficient method for identifying a key normative decision-making model using 107 

multiple types of data, and can easily accommodate simultaneous recordings from many neurons or 108 

recordings performed sequentially over many days. It provides a platform for quantitatively 109 

characterizing choice-related information in neural responses and can be used to understand how 110 

different brain regions implement an accumulation strategy.  111 

 112 

Results 113 

 114 

We analyzed behavioral and neural data from rats trained to perform a perceptual decision-making 115 

task (Brunton et al., 2013). Rats listened to two simultaneous series of randomly timed auditory 116 

clicks, one from a speaker on the left and one from a speaker on the  right. After the end of the click 117 

train, the rat had to orient to the side with a greater number of clicks to receive a reward (Figure 118 
1A). 119 

 120 

We analyzed behavioral choice data and electrophysiological neural recordings from 11 rats. In 121 

total, we analyzed 37,179 behavioral choices and 141 neurons from three brain areas—the 122 

posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum 123 

(ADS). Prior electrophysiological and lesions studies have shown that these brain regions play a key 124 

role in evidence accumulation (Ding and Gold, 2013, 2010; Erlich et al., 2015, 2011; Gold and 125 

Shadlen, 2007, 2000; Hanks et al., 2015; Huk and Shadlen, 2005; Kim and Shadlen, 1999; Mante et 126 

al., 2013; Roitman and Shadlen, 2002; Shadlen and Newsome, 2001; Yartsev et al., 2018). 127 

 128 

Data were collected after the animals were well-trained and exhibiting a high-level of performance 129 

(Brunton et al., 2013; Hanks et al., 2015; Yartsev et al., 2018); these data were collected as part of 130 

two earlier studies and have been previously analyzed (Hanks et al., 2015; Yartsev et al., 2018). 131 

Data were subject to a selection criterion for inclusion in our study. We selected neurons with 132 

significant tuning for choice during the stimulus period (two-sample t-test, p < 0.01) because choice 133 
tuning is a prerequisite for reflecting accumulation-like signals. Information about the data is 134 

summarized in Table 1. Once tuning significance was determined, our dataset consisted of 68 135 

neurons from FOF, with 7,382 behavioral choices recorded from five rats over 46 behavioral 136 

sessions;  25 neurons from PPC, with 9,037 behavioral choices from three rats over 24 sessions; and 137 

48 neurons from ADS, with 10,760 behavioral choices from three rats over 27 behavioral sessions.  138 

 139 

A latent variable model of behavioral choice and neural activity 140 

https://paperpile.com/c/pTCLY7/dhRZ+6StQ+bve5
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https://paperpile.com/c/pTCLY7/dhRZ+7mBr+Rie7+iuw4+bve5+n6Xb+6StQ+xSde+eTPe+g6pj+7ZBq+twvC+lj7w
https://paperpile.com/c/pTCLY7/dhRZ+7mBr+Rie7+iuw4+bve5+n6Xb+6StQ+xSde+eTPe+g6pj+7ZBq+twvC+lj7w
https://paperpile.com/c/pTCLY7/u3i5+dhRZ+7mBr
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  141 

One of the most common normative models of the internal mental processes that underlie evidence 142 

accumulation is the drift-diffusion to bound model (DDM; Figure 1B; Bogacz et al., 2006; Brunton 143 

et al., 2013; Gold and Shadlen, 2007; Ratcliff and McKoon, 2008). While previous work has tended 144 

to fit this model (either explicitly or implicitly) using either choice data (e.g., Brunton et al., 2013; 145 

Chandrasekaran and Hawkins, 2019; Gold and Shadlen, 2007; Ratcliff et al., 2016; Shinn et al., 2020; 146 

Wiecki et al., 2013; Zylberberg et al., 2016) or neural response data (e.g., Bollimunta et al., 2012; 147 

Brody and Hanks, 2016; Churchland et al., 2011; Ditterich, 2006; Genkin et al., 2021; Hanks et al., 148 
2015; Howard et al., 2018; Latimer et al., 2015; Zoltowski et al., 2020, 2019), here we seek to jointly 149 

model the relationship between accumulated evidence, choices, and neural activity. 150 

 151 

The essence of our model is to describe a DDM based accumulation process driven by sensory 152 

stimuli following (Brunton et al., 2013) and relate the latent accumulation process to both neural 153 

responses and the rat’s choice. Previous results have shown that this model is sufficiently flexible to 154 

accommodate the various behavioral strategies rats exhibit while performing this task (Brunton et 155 

al., 2013). The resulting model has a single latent variable, denoted a(t), that evolves in time and 156 

represents the current, inner mental representation of the evidence in support of a left or right 157 

choice at each moment in time. This latent variable is shared by the neurons within a region (except 158 

where explicitly noted), so that each neuron’s time-varying firing rate is a function of a(t) on each 159 

trial. The key distinction of our approach is that the accumulator variable a(t) drives both choices 160 

and neural activity, as described below. 161 

 162 

Formally, the temporal evolution of the latent evidence a(t) is governed by: 163 
 164 

                                                𝑑𝑎 =  𝜆𝑎𝑑𝑡 +  𝛥(𝑡)𝑑𝑡 +  𝜎𝑎𝑑𝑊 + 𝜎𝑠𝛴(𝑡)𝜂𝑑𝑡 ,      (Equation 1) 165 

 166 

where da is the amount a(t) changes in a time dt. 𝜆 is a leak parameter. 𝛥(𝑡) and 𝛴(𝑡) indicate the 167 

difference and sum, respectively, in the number of right and left sensory clicks at time t, after the 168 

magnitude of the clicks has been adapted based on recent stimulus history (see parameters 169 

governing adaptation below, and Methods for additional detail). 𝜎𝑎𝑑𝑊 is a diffusive Gaussian noise 170 

process (or Weiner process) with scaling 𝜎𝑎 . 𝜎𝑠𝛴(𝑡)𝜂 is additive Gaussian noise induced by each 171 

click input, where 𝜎𝑠𝛴(𝑡) is the standard deviation of the click noise and 𝜂 is a Gaussian random 172 

variable with a mean of zero and standard deviation 1.  173 

 174 

If a(t) becomes greater in magnitude than a symmetric boundary with magnitude B (Figure 1B, 175 

dotted lines), then da = 0, and accumulation ceases for the remainder of the trial. To illustrate, the 176 

blue trajectory in Figure 1B crosses the boundary B roughly one-third of the way through the trial, 177 

and thus remains constant thereafter. 178 
 179 

The four terms of Equation 1 each account for specific ways a(t) might reflect accumulated 180 

evidence. The first two terms are designed to account for deterministic (non-random) dynamics 181 

exhibited by a(t). The first term specifies how recent values of a(t) influence future values and is 182 

governed by 𝜆 that determines the timescale of this effect. Positive values of 𝜆 correspond to 183 

unstable dynamics so that a(t) grows exponentially. In this setting, early clicks have greater 184 

influence on a(t) than recent clicks, because their impact grows with time. By contrast, negative 185 

values of 𝜆 correspond to leaky dynamics. In this setting, early clicks have a weaker influence on 186 

a(t) than recent clicks because the impact of early clicks decays with time. When 𝜆 equals zero, the 187 

sensory clicks are perfectly integrated. Previous results have shown that rats exhibit a range of 188 

accumulation strategies spanning these values of 𝜆 (Brunton et al., 2013). The second term, 𝛥(𝑡)𝑑𝑡, 189 

specifies how the click stimulus is incorporated into a(t). Because the task requires reporting 190 

https://paperpile.com/c/pTCLY7/zp4G+u3i5+iuw4+ABI9
https://paperpile.com/c/pTCLY7/zp4G+u3i5+iuw4+ABI9
https://paperpile.com/c/pTCLY7/u3i5+MSWt+fm5q+4INe+iuw4+T824+B7ZT
https://paperpile.com/c/pTCLY7/u3i5+MSWt+fm5q+4INe+iuw4+T824+B7ZT
https://paperpile.com/c/pTCLY7/u3i5+MSWt+fm5q+4INe+iuw4+T824+B7ZT
https://paperpile.com/c/pTCLY7/lzam+1jyz+lU6i+mCtd+fizx+sifa+dhRZ+FRNl+oarP+KZ3T
https://paperpile.com/c/pTCLY7/lzam+1jyz+lU6i+mCtd+fizx+sifa+dhRZ+FRNl+oarP+KZ3T
https://paperpile.com/c/pTCLY7/lzam+1jyz+lU6i+mCtd+fizx+sifa+dhRZ+FRNl+oarP+KZ3T
https://paperpile.com/c/pTCLY7/u3i5
https://paperpile.com/c/pTCLY7/u3i5
https://paperpile.com/c/pTCLY7/u3i5
https://paperpile.com/c/pTCLY7/u3i5
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whether there was a greater number of left or right clicks, only the total click difference is required 191 

to correctly perform it. 192 

 193 

To account for stochasticity in the accumulation dynamics, the model also contains two forms of 194 

noise in a(t). The first noise term, 𝜎𝑎𝑑𝑊, corresponds to diffusive noise that corrupts a(t) 195 

continuously in time. The final term, 𝜎𝑠𝛴(𝑡)𝜂𝑑𝑡, introduces noise into a(t) that is proportional to the 196 

total number of clicks that occur at a given moment. The sum of clicks 𝛴(𝑡) is included so that the 197 

magnitude of the noise increases depending on the number of sensory clicks experienced at time t. 198 
Figure 1B illustrates the effects of these two noise terms: although the sensory inputs and leak are 199 

identical for both blue and black trajectories of a(t), differences in noise lead the two trajectories to 200 

diverge so that one hits the boundary +B while the other remains sub-threshold and continues to 201 

integrate the sensory stimulus. 202 

 203 

To model animal choices, we assume that the accumulation variable a(t) directly governs the 204 

animal’s choice on each trial. Specifically, we describe the probability of a rightward choice as 205 

depending on a(T), the accumulated evidence at the end of the stimulus period T, using a step 206 

function with ‘lapses’. With probability 𝛾 the animal picks one of the two sides without considering 207 

the stimulus, referred to as a ‘lapse’.  With probability (1 − 𝛾) the animal does not lapse, and makes 208 

a rightward choice if a(T) > c and a leftward choice if a(T) < c, where c denotes the choice criterion. 209 

This model can be expressed as 210 

 211 

𝑃(𝑑 = 𝑅)  =  𝛾/2 +  (1 − 𝛾)𝐻(𝑎𝑇 −  𝑐)                        (Equation 2) 212 

 213 

where 𝑑 ∈ {𝐿, 𝑅} is the decision variable and 𝐻(⋅) is the Heaviside step function. As described 214 

above, when a(t) crosses the decision bound B a choice commitment is made, either to the left or 215 

the right, and no further evidence accumulation occurs.  Previous work has found that 216 

parameterizing choice this way creates a model that is sufficiently flexible to describe animals’ 217 
choice (Brunton et al., 2013) while remaining as simple as possible. 218 

 219 

To model spike train data, we describe the time-varying firing rate of each neuron as a soft-rectified 220 

linear function of the same accumulated evidence variable a(t):  221 

 222 

,                            (Equation 3) 223 

 224 
where n indexes neurons, the softplus function (Figure 1B) is given by softplus(x) = log(1+exp(x)), 225 

and 𝜃𝑛 denotes the slope of the linear relationship between a(t) and neuron n’s firing rate. The 226 

slope parameter, 𝜃𝑛 , is fit separately for each neuron. A time-varying offset, 𝜃0
𝑛(𝑡), is included to 227 

capture time-varying changes in firing rate that do not depend on a(t) (see Methods). The spikes of 228 

each neuron are modeled as a Poisson process with a time-dependent conditional intensity function 229 

𝑓𝜃𝑛
(𝑎(𝑡)). The softplus function (smooth rectified linear function) was used to ensure the expected 230 

firing rate was positive, and was selected because it is the simplest function to achieve this goal, and 231 

also based on prior success in similar studies (e.g., Latimer et al. 2015). 232 

 233 

We refer to the set of all parameters that govern a(t), and its relationship to the neural activity and 234 

choice data as 𝛩 = {𝜎𝑖,, 𝐵, 𝜆, 𝜎𝑎 , 𝜎𝑠 , 𝜙, 𝜏𝜙 , 𝜃1:𝑁 , 𝑐, 𝛾}, where 𝜎𝑖  is the variance of a(t) at the start of the 235 

trial, and 𝜙 and 𝜏𝜙 determine how the magnitude of each click is adapted based on the timing of 236 

recent clicks (see Methods). We fit 𝛩 separately for each brain region using maximum likelihood 237 

(see Methods). Maximizing the likelihood of the data requires computing the temporal evolution of 238 

the probability distribution of a(t) over the duration of a single trial, for all trials, and computing the 239 

https://paperpile.com/c/pTCLY7/u3i5
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probability of the observed spikes and choices under this distribution. The dynamics of this 240 

probability distribution can be expressed using the Fokker-Planck equation, and previous work has 241 

developed methods for numerically solving it (Brunton et al., 2013; see Methods). We refer to the 242 

value of 𝛩 that maximizes the likelihood of the data as 𝛩̂. We verified that our method was able to 243 
recover the parameters that generated synthetic physiologically-relevant spiking and choices data ( 244 

Figure 1 — figure supplement 1), and that parameter recovery was robust across a range of 245 

parameter values (Figure 1 — figure supplement 2) .  246 

 247 

Shared accumulator model captures neural responses and choices 248 

 249 

We fit the model separately to data from each brain region. To verify model fits were consistent 250 

with data, we compared the peri-stimulus time histograms (PSTHs; Figure 2A & B) and 251 

psychometric curves (Figure 2C) of the empirical data to synthetic data simulated from the fitted 252 

model for each brain region. The PSTH of most neurons showed a characteristic choice preference 253 

that increased over time, consistent with accumulation. The model was able to capture this (Figure 254 
2A). The model provided an accurate account of mean responses in all three brain areas (Figure 255 

2B), with a median R2 of 0.91, 0.68, and 0.87 for the FOF, PPC, and ADS respectively (Figure 2B, 256 

colored lines). Figure 2C shows a comparison between true psychometric curves and the 257 

psychometric curve of the fitted model, confirming that the model also accounted for 258 

psychophysical choice behavior. (R2: 0.99 - FOF; 0.99 - PPC; ADS - 0.97; see Methods for details). 259 

These analyses confirm that a shared accumulator model for each brain region is sufficient to 260 

capture the animals’ choice sensitivity to the stimulus and strength of accumulated evidence 261 

reflected in each neuron’s response.  262 

 263 

Different regions reflect different accumulator models, which all differ from model 264 

describing behavior 265 

 266 

The primary motivation of our study was to learn accumulator models that incorporate precise 267 

stimulus timing information and describe the animal’s choices and temporally structured neural 268 

activity. Previous efforts only modeled choices using stimulus-timing information (Brunton et al., 269 
2013) or modeled neural activity without choices for tasks without detailed stimulus-timing 270 

information (Latimer et al., 2015; Zoltowski et al., 2019). We refer to our model that describes both 271 

neural activity and choices as the ‘joint neural-behavioral model’ or the ‘joint model’. We compared 272 

the joint neural-behavioral model to a model where only the stimulus is used to model the animal’s 273 

choice (i.e., neural activity is not used). To fit such a ‘choice-only’ accumulator model we fit the 274 

same latent variable model using only choice data (see Methods). 275 

 276 

Figure 3A shows the maximum likelihood parameters for the joint and choice-only accumulator 277 

models for each brain region. Neural data was not used for the choice model so brain region 278 

designates the cohort of animals from which the choice data was taken. We stress that because of 279 

this, each fitted choice model uses different behavioral choice data, and thus the fitted parameters 280 

vary from fitted model to fitted model.  Both fitted models exhibited strong adaptation (𝜙 <<  1) 281 

consistent with prior work fitting choice accumulator models (Brunton et al., 2013). This indicates 282 

that a stimulus pulse that occurs in rapid succession following other pulses has a smaller effect on 283 

a(t) than an isolated pulse. Each model was impacted by different forms of noise: choice models 284 
exhibited small diffusive noise (𝜎𝑎 ≈ 0) and large stimulus noise (𝜎𝑠 >>  1), consistent with earlier 285 

findings, while joint models exhibited large diffusive noise (𝜎𝑎 > 0) and large initial variability in 286 

a(t) (𝜎𝑖 >> 0). The effect of these different parameters can be seen in Figure 3B: choice models 287 

have smaller initial variance and more variability when clicks arrive, while joint accumulator 288 

models have larger initial variance and diffusive noise. Large initial variance in the joint model 289 

https://paperpile.com/c/pTCLY7/u3i5
https://paperpile.com/c/pTCLY7/u3i5
https://paperpile.com/c/pTCLY7/u3i5
https://paperpile.com/c/pTCLY7/lzam+1jyz
https://paperpile.com/c/pTCLY7/u3i5
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likely reflects variability in neural responses prior to stimulus onset (Churchland et al., 2010). 290 

Strong accumulation noise in the joint model was also found when the negative binomial 291 

distribution, a more flexible observation model, was used, suggesting that this finding was not 292 

sensitive to the Poisson observation model (Figure 3 — figure supplement 1). Differences in 293 

diffusive noise between the joint and choice-only models suggest that accumulation dynamics 294 

underlying neural activity is impacted by noise that is resolved at the level of a behavioral 295 

accumulator model. 296 

 297 
We also compared the best-fit parameters across the three, separately fit, brain regions (Figure 298 

3A). We focus on one of the most salient differences — the leak or instability parameter 𝜆. Although 299 

there was no significant difference in the value of 𝜆 across the cohorts of animals in the choice-only 300 

model, we found substantial differences across brain regions in the joint model fits (Figure 3A). 301 

The PPC and ADS data were best fit by leaky accumulator models (𝜆 < 0). Surprisingly however, the 302 

FOF data was best described by a model with unstable accumulation dynamics (𝜆 > 0) meaning 303 

that the model’s accumulator (and thus firing rates) are more strongly affected by early stimulus 304 

clicks. The stronger weighting of earlier clicks was compounded further by the low accumulation 305 

bound of the model that best described FOF data. Such a low bound, in conjunction with unstable 306 

accumulation, causes a(t) to stop evolving early in the trial (Figure 3B). This results in a 307 

phenomenon known as ‘primacy encoding’, in which early  308 

 309 

clicks more strongly impact the animal’s choice while later clicks are ignored. We confirmed this 310 

finding in the FOF using a generalized linear model (GLM; see Methods &Figure 3 — figure 311 

supplement 2). This result is consistent with previous work suggesting that the FOF has a 312 
categorical representation of a(t) (Hanks et al., 2015). We expand on these findings in light of other 313 

studies of the FOF in the Discussion. Collectively, these results indicate that all three brain regions 314 

were best described by accumulator models that differed in their best fitting parameters (and thus 315 

exhibit dramatically different accumulation dynamics) and that each region’s data was likewise best 316 

described by a model that differed from that which best described accumulation at the level of the 317 

animal’s choice.  318 

 319 

ADS is better described by multiple, independent accumulators 320 

 321 

Our model describes the spiking activity of a population of simultaneously recorded neurons as 322 

relying on a single shared latent variable. To assess whether this is indeed the best description of 323 

the data, we compared it to an ‘independent noise accumulator model’ where each neuron is driven 324 

by an accumulator with its own independent noise (Figure 4A; Methods). It is worth emphasizing 325 

that the independent noise model is identical to the shared noise model in the way it is 326 

parameterized (i.e. number and form of the model parameters) but only differs in the structure of 327 
the latent accumulation noise. If trial-to-trial spiking covariation is produced by temporal 328 

covariation in the accumulator due to noise, the independent noise model (which does not share 329 

this covariation) should not account for the data as well, suggesting that correlations in the data can 330 

be attributed to correlated diffusive noise reflected in the shared model. We fit the parameters of 331 

the independent noise model using the same optimization method but with a different log-332 

likelihood function (see Methods). Because the independent noise model contained multiple 333 

accumulators (one for each neuron),  the animal’s choice was modeled differently than for the 334 

shared noise model (see Methods). We focused on the FOF and ADS datasets because they 335 

contained a sufficient number of simultaneously recorded neurons to make this comparison (Table 336 

1). The maximum likelihood parameters for the two models for both regions were similar (Figure 4 337 

— figure supplement 1), except for the initial accumulator variance parameter which differed 338 

significantly.  339 

https://paperpile.com/c/pTCLY7/PCGp
https://paperpile.com/c/pTCLY7/dhRZ
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 340 

We used 5-fold cross-validation to determine which model better described each data set. 341 

Comparing cross-validated log-likelihood, we found that the independent noise model provided a 342 

better description of choices and neural activity from ADS, while the shared noise model provided a 343 

slightly better description of FOF data (Figure 4B). This finding supports the conclusion that neural 344 

responses within the ADS reflect independent accumulation processes, while neurons in the FOF 345 

reflect a single latent accumulator. Although ADS datasets with 4 or more neurons provided the 346 

primary contribution to these results Figure 4 — figure supplement 2 A), when the number of 347 
neurons in ADS datasets were subsampled to match the maximum number of neurons in FOF 348 

sessions (3 neurons), the ADS recordings still favored an independent noise accumulator model 349 

(Figure 4 — figure supplement 2 B). We fit the shared noise and independent noise model to 350 

neural data only (excluding choice data) and found consistent results (Figure 4 — figure 351 

supplement 2 D) suggesting this difference is not due to contributions from the animal’s choice, 352 

which was modeled differently in each model (see above).  353 

 354 

To further examine this result, we computed the ‘shuffle corrected’ cross-correlation function 355 

(Methods; Perkel et al., 1967; Smith and Kohn, 2008) for all pairs of simultaneously recorded 356 

neurons to examine spiking covariation in the empirical data and synthetic data from the fit models 357 

(Figure 4C & D). To shuffle-correct, we took the raw cross-correlation and subtracted the cross-358 

correlation of the PSTHs of two neurons (for left and for right trials separately). This provides a 359 

measure of the neurons’ correlation beyond what is to be expected from the PSTHs (i.e., Figure 2A).  360 

 361 

Synthetic data of both models captured trends in the shuffle-corrected cross-correlation function at 362 
slower time scales but failed to capture fluctuations on short time scales. Across all pairs of 363 

simultaneously recorded neurons (70 pairs in total), we found that the shared and independent 364 

noise accumulator models provided approximately equally accurate fits to the shuffle corrected 365 

cross-correlations (mean r of 0.55 for shared model and 0.57 for independent noise model for FOF; 366 

0.63 for shared model and 0.60 for independent noise model for ADS). This shows that both models 367 

capture correlations in trial-to-trial neural responses beyond those accounted for by the PSTH. 368 

These correlations likely arise from trial-to-trial differences in the exact sequence of clicks, which 369 

are not reflected in the PSTH for left- or right-choice trials. Although FOF weakly favored a shared-370 

noise model and ADS favored an independent-noise model (Figure 4B) the comparable ability for 371 

each model to capture the shuffle-corrected cross-correlation function for each region suggests that 372 

these correlations are primarily stimulus-induced and not a manifestation of non-stimulus induced 373 

(i.e., ‘noise’) correlations, which are weak if present at all. Although these results suggest that each 374 

model fits the data equally well, the results of Figure 4B suggest that the independent noise model 375 

may be accounting for intricate features of the ADS data not reflected in the shuffle-corrected cross-376 

correlation function.  377 
 378 

To validate that neural responses in the ADS weakly covary, as suggested by an independent noise 379 

model, we computed a measure of response dimensionality known as the participation ratio 380 

(Litwin-Kumar et al., 2017). The participation ratio is computed using the eigenvalues of the 381 

covariance matrix of firing rates (Methods). If all firing rates are independent the eigenvalues will 382 

all be equal and the participation ratio will equal the number of neurons. If the firing rates are 383 

correlated such that some eigenvalues are small (or perhaps zero) the participation ratio will 384 

reflect this and the dimensionality of the data will be less than the number of neurons. Consistent 385 

with our modeling results, we found that responses in ADS had higher dimensionality than in FOF 386 

(i.e., ADS exhibited less firing rate covariation) and that ADS sessions with greater dimensionality 387 

were those that favored the independent noise model (Figure 4 — figure supplement 2 C).   388 

 389 

https://paperpile.com/c/pTCLY7/ZJfv+hhdO
https://paperpile.com/c/pTCLY7/RHt3
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Neural data provides more information about accumulated evidence than choice 390 
 391 
Next we examined how neural data affected inferences about accumulated evidence. We computed 392 

the posterior distribution over the accumulator variable a(t) for the joint model, given choice data 393 

only, or given neural and choice data. The posterior distribution combines information from 394 

multiple sources — stimulus, choice, and neural activity — to offer a concise window into the 395 

animal’s internal state of evidence accumulation. Figure 5A shows the posterior distribution for 396 

three example trials (one for each brain region) when only choice data was included and when both 397 

choice and neural data were included. The choice data posterior was broad; a large set of a(t) 398 

trajectories were all consistent with the animal’s choice. However, when we considered both choice 399 

and neural spiking activity, we obtained a substantially narrower distribution over a(t), meaning 400 

including neural data in the joint model offers greater confidence in the precise value of 401 

accumulated evidence at each moment within a trial.  402 

To quantify this difference, we computed the standard deviation of the two posteriors (Figure 5B). 403 

For all brain regions, the median posterior standard deviation given neural data and choice was 404 
substantially smaller than when conditioning only on choice (Figure 5B; median difference FOF: 405 

0.46; PPC: 0.72; ADS: 2.23). This reduction in the posterior width increased with the number of 406 

neurons (Figure 5C). The increased certainty about a(t) provided by neural activity makes intuitive 407 

sense: temporally specific spiking activity (e.g., in the middle of a trial) allows one to infer that a(t) 408 

has increased in favor of a choice, whereas choice information can only offer certainty about the 409 

range of a(t) at the end of the trial.  410 

 411 

Joint neural-behavioral model improves choice decoding 412 

 413 

We designed our joint model with the expectation that combining choice data, neural responses, 414 

and stimulus information within an accumulation framework would lead to greater insight into 415 

decision-making than models that lacked these features. We tested this expectation by comparing 416 

choice decoding accuracy of the joint model on single trials to models that used stimulus 417 

information and only choice data or only neural data (see Methods). We found that choices could be 418 

predicted more accurately under the joint model, which took into account the stimulus, neural 419 
activity, and choices, than under the choice model, which used stimulus information and choices 420 

alone. We quantified this improvement in test log-likelihood and percent correct (Figure 6A). The 421 

joint model had higher test log-likelihood for choice data and choice prediction accuracy for all 422 

three brain regions, with the joint model of FOF data showing an almost 50% improvement in test 423 

log likelihood and a 6% increase in prediction accuracy. The posterior mean of the joint model and 424 

the posterior mean of the choice model is shown in Figure 6B for three example trials. In all 425 

examples, the joint model correctly predicted the choice the animal made (indicated by the arrow), 426 

whereas the choice-only model failed because its prediction was based on the stimulus. This 427 

increased performance derives from the choice-informative spiking information contained in the 428 

posterior (Figure 5)that the choice model lacks. 429 
 430 
If neural activity is highly correlated with the motor report (for example, activity from motor 431 

neurons controlling orientation), we would expect the neural activity to be a good predictor of the 432 

animal’s choice. In such a case, a model that predicted choice without the framework of the DDM 433 

accumulator but using neural activity, would have high accuracy. We compared our accumulator-434 

based joint model to a logistic regression model (i.e., Bernoulli generalized linear model, GLM) 435 

which used the final accumulated click difference and the trial-summed spike count for each neuron 436 

as regressors (Methods). Decoding under the joint accumulator model significantly outperformed 437 

logistic regression (Figure 6A, GLM). The performance of the GLM did not depend strongly on the 438 

time window considered: decoding of choice using spikes from the last 50 ms (Figure 6A, GLM 50 439 
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ms), 100 ms, 150 ms, 200 ms and 250 ms before a decision all performed similarly (Figure 6 — 440 

figure supplement 1). This shows that the joint accumulation framework and the fine timescale 441 

dynamics of the joint model captures features of the spike trains that are useful for predicting the 442 

animal’s choice, above and beyond the information carried by spike counts in particular time 443 

windows before the choice. 444 

 445 

Putative changes of mind are common in ADS, rare in FOF 446 

 447 
The previous analysis illustrated how the joint accumulation framework, combined with temporally 448 

precise neural responses, can accurately predict animal choices. Numerous studies have shown that 449 

subjects making decisions based on noisy stimuli will vacillate before reporting a decision 450 

(Kaufman et al., 2015; Kiani et al., 2014; Resulaj et al., 2009). Switches of a subject’s provisional 451 

decision have been referred to as ‘changes of mind’ (Boyd-Meredith et al., 2022; Peixoto et al., 452 

2021). We used our joint accumulator model to identify putative changes of mind from our neural 453 

recordings, to examine how decision commitment is manifested in different brain regions. We 454 

examined the temporal dynamics of the joint model posterior, conditioned on neural activity only, 455 

to find putative changes of mind: moments when posterior mean crossed from one side of the 456 

decision threshold to the other. We required that the conditioned posterior mean remained on one 457 

side of the decision threshold for at least 50 ms before and after the crossing and achieved an 458 

absolute magnitude greater than 2 during that 100 ms window (see Methods).  459 
 460 
Figure 6C shows three example putative change of mind trials. We also plot the posterior mean of 461 

the choice model (black) and the cumulative click difference (gray) for comparison. In all three 462 

examples, the joint model posterior mean crossed the decision threshold, ending on the side 463 

corresponding to the animal’s choice. Sign changes in the cumulative click difference were rare, as 464 

were putative change of mind events under the choice-only model, both of which could only be 465 

caused by the stimulus (Figure 6D). In contrast, putative change of mind events were observed 466 

frequently under the joint model for all three brain regions (Figure 6D). This shows that putative 467 

change of mind events reflect information about the accumulator carried in neural activity. Putative 468 

change of mind events were observed least frequently in the FOF and most frequently in the ADS 469 
(Figure 6D); compounded by our initial finding, that different brain regions are best fit by different 470 

accumulator models (Figure 3), these results further support the view that the decision making 471 

dynamics in each brain region are fundamentally and consequentially different.  472 

 473 

The animal’s performance improved on putative change of mind event trials (fraction correct: FOF: 474 

0.88 vs. 0.74; PPC: 0.87 vs. 0.74; ADS: 0.85 vs. 0.76; Figure 6 — figure supplement 2 A) and the 475 

choice prediction of the joint model was also more accurate (fraction correct: FOF: 0.92 vs. 0.80; 476 

PPC: 0.88 vs. 0.77; ADS: 0.88 vs. 0.78; Figure 6 — figure supplement 2 B), suggesting that the 477 

decision making dynamics that give rise to these events primarily correct incorrect decision-478 

making dynamics early within a trial. Initial variability in the accumulation dynamics, as reflected in 479 

neural responses, was found to be greater in both PPC and ADS (Figure 3A), regions for which 480 

putative changes of mind were more likely (Figure 6D), consistent with this assumption. 481 

Furthermore, putative change of mind events were more likely to occur at later moments in the 482 

trial, usually not long before the stimulus ended (Figure 6E), consistent with the assumption that 483 

they generally correct incorrect early-trial dynamics. To more firmly connect putative change of 484 
mind events to the animal’s behavior, we performed linear regression to compare the time of the 485 

event relative to the end of the stimulus to the response latency (Figure 6F). We found a 486 

statistically significant effect for the PPC and the ADS (PPC: p < 0.003; ADS: p < 0.0008; two-sided t-487 

test), which both showed a slower response time when a change of mind event occurred closer to 488 

the end of the stimulus. These results illustrate the potential of our framework for uncovering 489 

https://paperpile.com/c/pTCLY7/Ey3R+7Uxi+YpYD
https://paperpile.com/c/pTCLY7/Twn2+lUZo
https://paperpile.com/c/pTCLY7/Twn2+lUZo
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putative covert changes of mind within neural activity, and demonstrate the varying way in which 490 

decision-making dynamics — both prior to stimulus onset and during the stimulus period — differ 491 

in different brain regions.  492 

 493 

Discussion 494 

 495 

We developed a probabilistic latent process model to simultaneously describe neural activity and 496 

choices during an evidence accumulation decision-making task. We fit the model to data from three 497 

brain regions and found that the dynamics of accumulation that best fit choices and neural data 498 
from each brain region differed significantly across brain regions, and from the accumulation model 499 

that best described the animal’s choices. We found that including neural activity in the model 500 

provided rich, moment-by-moment information about the animal’s choice. The inferred 501 

accumulation model could be used to examine estimates of the animal’s moment-by-moment 502 

provisional choice, and by doing so, we found differing choice-related dynamics in each brain 503 

region, dynamics that meaningfully related to other measures of behavior such as reaction time. 504 

Collectively, our results argue for the existence of very different accumulation dynamics in different 505 

brain regions, dynamics which each differ greatly from the dynamics giving rise to behavior. An 506 

exciting future application of our modeling framework is to model multiple, independent 507 

accumulators in several brain regions which collectively give rise to the animal’s behavior. Such a 508 

model would provide incredible insight into how the brain collectively gives rise to behavioral 509 

choices.  510 

 511 

There has been substantial work relating neural activity to evidence accumulation. The logic 512 

underlying this work (e.g., Churchland et al., 2011; Gold and Shadlen, 2007; Hanks et al., 2015; 513 
Mante et al., 2013; Ratcliff et al., 2003; Yartsev et al., 2018) is that behavior is well approximated by 514 

gradual evidence accumulation (Ratcliff and McKoon, 2008). Numerous studies have probed 515 

whether neurons in any given brain are involved in encoding or computing a correlate of this 516 

behavior-level evidence accumulation. A rarely emphasized assumption is that the accumulation 517 

process, at the level of individual brain regions, will be similar to the accumulation process at the 518 

level of the organism’s behavior. This assumption need not be correct. As in the example mentioned 519 

in the Introduction, two brain regions, one representing a leaky accumulator from which recent 520 

evidence is best decoded, and another representing an unstable accumulator from which the 521 

earliest evidence is best decoded, could combine to generate behavior that is well-described by 522 

stable evidence accumulation, in which evidence from throughout behavioral trials is weighted 523 

approximately equally. One should not conclude that neural activity best explained by a leaky or by 524 

an unstable accumulator is unrelated to behavior that is best explained by stable accumulation. 525 

Other properties, in addition to leakiness/instability, may also differ across contributing brain 526 

regions. Developing a formal approach to fit the parameters of evidence accumulation models from 527 

neural data as well as from choices provided us with the opportunity to probe this assumption. Our 528 
results suggest that it is not correct. Elucidating the neural basis of evidence accumulation for 529 

decision-making may require understanding how brain regions with neural activity that appears 530 

driven by accumulators with potentially very different properties combine, and perhaps 531 

counterbalance each other, so as to produce the organism’s behavior. 532 

 533 

Our approach extends and complements existing approaches that construct formal mathematical 534 

models of decision making which combine both behavioral data and neural data. These models 535 

leverage both neural and behavioral observations to jointly infer decision making parameters, as 536 

we’ve done here (see Turner et al., 2019 for a comprehensive overview). However, the majority of 537 

these approaches have tended to emerge from the field of cognitive neuroscience, and as such, have 538 

predominantly focused on models for application to neural data acquired by other methods, such as 539 

https://paperpile.com/c/pTCLY7/oarP+iuw4+Blpc+n6Xb+dhRZ+7mBr
https://paperpile.com/c/pTCLY7/oarP+iuw4+Blpc+n6Xb+dhRZ+7mBr
https://paperpile.com/c/pTCLY7/zp4G
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EEG, fMRI, etc. (e.g., Turner et al. 2015; but also see Frank et al., 2015). Our approach adds to these 540 

efforts by offering a method that can combine fine timescale single unit recordings with behavioral 541 

measurements specifically during pulse-based evidence accumulation tasks, thereby offering a 542 

moment-by-moment picture into the latent dynamics that underlies cognition. Continued 543 

development of joint models such as our and existing approaches in the field of cognitive 544 

neuroscience are critical to quantitatively understand the latent processes underlying cognition.  545 

 546 

One of our most surprising discoveries was that neural data from the FOF was best modeled by an 547 
accumulator consistent with a ‘primacy’ strategy in which early stimulus clicks have an out-size 548 

impact on neural activity and choice compared to later clicks. Coupled with the low accumulation 549 

bound of the model fit to the FOF, our analysis suggests a model of FOF accumulation where a 550 

subject prematurely commits to a decision based on early sensory evidence. Previous analysis of 551 

these data did not find that FOF activity was described by an unstable accumulator because the 552 

accumulator model was not learned from neural activity, only choices (Hanks et al., 2015). This 553 

prior analysis identified an alternative interpretation of FOF activity: FOF activity exhibited a step-554 

like encoding of accumulated evidence that was unbounded, consistent with the FOF encoding a 555 

categorical representation of choice (Hanks et al., 2015). At a strategic level, this interpretation is 556 

consistent with the model of FOF activity we identified. Noting that, in this task, the stimulus will 557 

rarely cause the accumulator to switch sign (Fig 6D), a step-like encoding of an unbounded 558 

accumulator that does not switch sign will appear very much like an bounded accumulator: for 559 

either model, the accumulator will quickly jump to its largest value and remain there. Additional 560 

experiments and modeling are required to differentiate these two models.  561 

 562 
A primacy encoding model of the FOF is supported by our change of mind analysis. Putative change 563 

of mind events identified from neural activity occurred less frequently in the FOF than other 564 

regions (p < 4.5694e-82 FOF vs. PPC; p <  3.4585e-323 FOF vs. ADS; Fisher’s exact test) consistent 565 

with an early-commitment strategy in the FOF. A recent study of the FOF during an accumulation 566 

task in which evidence dynamically changed throughout a trial found that FOF activity reflected 567 

evidence across stimulus-induced ‘overt’ changes of mind, and that these events were common in 568 

the FOF (Boyd-Meredith et al., 2022). It's important to note that we likewise found that FOF reflects 569 

evidence across changes of mind, but we identified rarely-occurring non-stimulus-induced ‘covert’ 570 

changes of mind during a task in which the evidence was static, and thus our results do not conflict 571 

with those findings.  572 

 573 

A primacy encoding model of the FOF is also both supported by and offers context to prior FOF 574 

inactivation studies (Erlich et al., 2015). Behavioral modeling of choices in conjunction with 575 

bilateral pharmacological inactivation found that FOF inactivation led to leakier accumulation when 576 

producing choices (Erlich et al., 2015). Leakier accumulation at the level of choice also implies that 577 
later stimulus information disproportionately impacts choice, precisely the impact predicted if an 578 

early stimulus favoring brain region, such as the FOF, was silenced. A more complete model relating 579 

accumulation dynamics in multiple brain regions to choice-related accumulation dynamics at the 580 

level of behavior would aid in understanding how silencing individual brain regions, with their 581 

region specific accumulation dynamics, impacts accumulation at the level of behavior.   582 

 583 

Our novel change of mind analysis identified both the ADS and PPC as regions that showed frequent 584 

instances of choice vacillation during this task. Prior studies in related tasks found that neural 585 

responses in one of these regions, the PPC, (or its primate homolog), reflect information related to 586 

already experienced trials (Akrami et al., 2018; Purcell and Kiani, 2016), consistent with our 587 

interpretation of prestimulus neural responses being suboptimally tuned for the upcoming trial and 588 

thus requiring mid-trial correction. Given the large initial accumulator variance of ADS and the 589 

https://paperpile.com/c/pTCLY7/dhRZ
https://paperpile.com/c/pTCLY7/dhRZ
https://paperpile.com/c/pTCLY7/Twn2
https://paperpile.com/c/pTCLY7/xSde
https://paperpile.com/c/pTCLY7/xSde
https://paperpile.com/c/pTCLY7/mxvk+8t2t
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presence of frequent putative change of mind events in this region, activity in ADS seems poised to 590 

also reflect these types of trial-history dependent responses as well. Future experiments and 591 

analysis are required to determine this.  592 

 593 

Previous studies that fit this model to only choices developed specific interpretations of the 594 

accumulation strategy used by animals (Brunton et al., 2013). One difference between choice 595 

accumulator models and joint neural-behavior models is the differential impact of accumulator 596 

noise versus stimulus noise. Choice-only models have typically indicated that stimulus noise is the 597 
primary cause of systematic behavioral uncertainty (Brunton et al., 2013), whereas our joint 598 

models suggest that this impact is weaker than diffusion noise. One interpretation of this difference 599 

is that at the level of a single neural population, diffusive noise plays a stronger role in producing 600 

uncertainty in a(t) than stimulus noise, whereas at the level of the entire brain's encoding of 601 

accumulated evidence, this diffusive noise ‘averages out’ and residual stimulus noise remains. 602 

Understanding how multiple brain regions work together to produce a model of accumulated 603 

evidence at the level of behavior is an important future direction of this work.  604 

 605 

Several extensions of our framework are readily apparent. Increasing the number of recorded 606 

neurons led to an improved estimate of a(t). As the density of neural recordings increases (Luo et 607 

al., 2020), the explanatory power of our model will increase. Although we have extended the 608 

evidence accumulation model to include neural responses and choice, we could extend it further to 609 

describe additional physiological or behavioral variables (e.g., from annotated video data, pupil-610 

dilation measurements, response time, etc.). Including these additional behavioral measures would 611 

further inform the inferred accumulator model, providing a clearer window into the internal factors 612 
governing choices. Although we considered a specific evidence accumulation model due to its 613 

normative interpretation, our framework can readily accept modifications and extensions of its 614 

dynamical equations (e.g., Genkin et al., 2021). More sophisticated (e.g., nonlinear) dynamics of 615 

accumulated evidence or more refined models of accumulation noise are two examples. Our 616 

framework can also accommodate more elaborate and/or appropriate relationships between 617 

accumulated evidence and neural responses, as we briefly explored by considering the negative 618 

binomial distribution (Figure 3 — figure supplement 1). Changing this relationship would open 619 

the door to using this approach with other types of data, such as imaging data. Although our 620 

framework was developed with the specific application to a pulsed-based accumulation task in 621 

mind, it is not confined to this. Our framework can be adapted to any task where noisy temporal 622 

accumulation of evidence is thought to play a role, and for which neural recordings and behavioral 623 

choices reflect this process (International Brain Laboratory et al., 2021). Finally, while a major 624 

motivation of our approach was to develop a framework for identifying a specific normative and 625 

mechanistic accumulation model, its rigidity makes it difficult to capture varying features present in 626 

the data. Extending the model to include additional latent processes alongside a rigid accumulation 627 
model (Zoltowski et al., 2020) would enable the model to simultaneously account for currently 628 

unexplained variance in the data while preserving the model’s ability to account for variance with 629 

an accumulation model. Doing so may offer a clearer picture of the evidence accumulation process 630 

by sweeping away unrelated variance with a more flexible, but less interpretable, latent process 631 

model.  632 
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 642 

Methods 643 

 644 

Latent variable model 645 

 646 

We model accumulated evidence as a one-dimensional drift diffusion model (DDM) with a 647 

symmetric absorbing boundary (Brunton et al., 2013). On a single behavioral trial, the evolution of 648 

the accumulated evidence, a(t), is governed by  649 

 650 

𝑑𝑎 = 𝜆𝑎𝑑𝑡 +  𝜎𝑎𝑑𝑊 + 𝜎𝑠𝑑𝑡 (𝜂′𝛿𝑡,𝑡𝑅
𝐶𝑅(𝑡) − 𝜂′𝛿𝑡,𝑡𝐿

𝐶𝐿(𝑡)).                                           (Equation 4) 651 

 652 

𝜆 is the inverse of the drift time constant. 𝜎𝑎𝑑𝑊 is a Wiener process with scaling 𝜎𝑎 . 𝜎𝑠𝜂′are 653 

Gaussian variables with variance 𝜎𝑠
2 and mean 1. 𝛿𝑡,𝑡𝐿

 and 𝛿𝑡,𝑡𝑅
 are the timing of left and right 654 

pulses respectively, and 𝐶𝐿(𝑡) and 𝐶𝑅(𝑡) are the magnitude that each left or right click, respectively, 655 

has at time t. The impact of each click is modulated by sensory adaptation, based on the following 656 

equation: 657 

 658 
𝑑𝐶𝛼

𝑑𝑡
=

1−𝐶𝛼

𝜏𝜙
+ (𝜙 − 1)(𝐶𝛼𝛿𝑡,𝑡𝛼

),            (Equation 5) 659 

 660 

where 𝛼 = {𝐿, 𝑅}. We define the difference of the adapted click magnitude at time t as 𝛥(𝑡)  =661 
 𝛿𝑡,𝑡𝑅

𝐶𝑅(𝑡) − 𝛿𝑡,𝑡𝐿
𝐶𝐿(𝑡) and the sum of the adapted click magnitude at time t as 𝛴(𝑡)  =  𝛿𝑡,𝑡𝑅

𝐶𝑅(𝑡) +662 

𝛿𝑡,𝑡𝐿
𝐶𝐿(𝑡). By doing so, we can express Equation 4 as, 663 

 664 

𝑑𝑎 = 𝜆𝑎𝑑𝑡 + 𝛥(𝑡)𝑑𝑡 +  𝜎𝑎𝑑𝑊 + 𝜎𝑠𝛴(𝑡)𝜂𝑑𝑡,           (Equation 6) 665 

 666 

where 𝜂 is a standard Normal. An absorbing boundary, B, if crossed, prevents a(t) from evolving 667 

further (i.e. da = 0 if a(t) > B). The initial state of a(t) is distributed normally with mean of 0 and 668 

variance of 𝜎𝑖
2. We refer to all parameters that govern the dynamics of a(t) as 669 

𝜃𝑎 = {𝜎𝑖 , 𝜆, 𝐵, 𝜎𝑎, 𝜎𝑠, 𝜙, 𝜏𝜙}. 670 

 671 

Computing the distribution of the latent state 672 
 673 

The temporal dynamics of the probability distribution of a(t), P(a(t)), can be expressed as a Fokker-674 

Planck equation, 675 

 676 
𝜕𝑃(𝑎(𝑡))

𝜕𝑡
=

𝜎𝑎
2+𝜎𝑠

2𝛴(𝑡)

2

𝜕2𝑃

𝜕𝑎2 −
𝜕((𝜆𝑎+𝛥(𝑡))𝑃)

𝜕𝑎
.       (Equation 7) 677 

 678 

We numerically compute the solution to Equation 7 by dividing P(a(t)) into a set of n discrete 679 

spatial bins, and determine how mass moves after a discrete temporal interval, 𝛥𝑡. The discrete 680 

time dynamics of 𝑃(𝑎𝑡) are Markov, and obey the following equation, 681 

 682 

𝑃(𝑎𝑡) = 𝑀(𝜃𝑎, 𝛿𝑡)𝑃(𝑎𝑡−1),        (Equation 8) 683 

 684 

where 𝛿𝑡 is the collection of left and right clicks at time t. The transition matrix 𝑀(𝜃𝑎 , 𝛿𝑡) is 685 

determined using methods established in Brunton et al., 2013. Briefly, for each spatial bin, the 686 

deterministic effect of the dynamics on the probability mass is computed, and this is convolved with 687 

https://paperpile.com/c/pTCLY7/u3i5
https://paperpile.com/c/pTCLY7/u3i5
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a discrete approximation to a Gaussian distribution with the appropriate variance and a finer 688 

spatial resolution than the initial spatial resolution described above, to determine the various 689 

locations of that probability mass at the next time bin. Because the location of each bin of mass after 690 

the Gaussian convolution is not likely to correspond to the spatial grid defined for 𝑃(𝑎𝑡), the mass is 691 

‘settled’ into appropriate bins based on the distance of each bit of mass and the nearest two bins. 692 

Mass located in the first and last bin, corresponding to mass that has been captured by the 693 

boundary, cannot change locations, and the entries of 𝑀(𝜃𝑎 , 𝛿𝑡) that determines how the mass in 694 

these bins moves, reflects this. n = 53 and 𝛥𝑡 = 10 ms for all results presented here. 695 
 696 

Relating a(t) to spikes and choices 697 

 698 

On a single behavioral trial, the observed spike count of the 𝑛𝑡ℎ neuron at time t, 𝑦𝑛,𝑡 , is a Poisson 699 

random variable, 700 
 701 

𝑃(𝑦𝑛,𝑡|𝑎𝑡 , 𝜃𝑛) = (𝑓𝜃𝑛
(𝑎𝑡))𝛥𝑡𝑦𝑛,𝑡𝑒𝑥𝑝(−𝑓𝜃𝑛

(𝑎𝑡)𝛥𝑡),             (Equation 9) 702 

 703 

where 𝜃𝑛 defines the expected firing rate function f for the 𝑛𝑡ℎ neuron. We choose 𝑓𝜃𝑛
to be a 704 

softplus function, i.e., softplus(x) = log(1+exp(x)). Each neuron has their own parameter 𝜃𝑛 that 705 

relates 𝑓𝜃𝑛
to 𝑎𝑡 . 𝜃𝑦 = {𝜃1, 𝜃2, . . . 𝜃𝑁} is the collection of all neural parameters for the population of N 706 

neurons.  707 

 708 

We define 𝑓𝜃𝑛
(𝑎𝑡) as 709 

 710 

𝑓𝜃𝑛
(𝑎𝑡) = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝜃𝑛𝑎𝑡 + 𝜃0

𝑛,𝑡),        (Equation 10) 711 

 712 

where 𝜃0
𝑛,𝑡 accounts for the time-varying trial-average (i.e., invariant to a(t)) firing rate of the 𝑛𝑡ℎ 713 

neuron. 𝜃0
𝑛,𝑡 is learned prior to fitting the full model, i.e., before learning 𝜃𝑎 and 𝜃𝑦 . We 714 

approximate 𝜃0
𝑛,𝑡 with a set of six Gaussian radial basis functions 715 

 716 

𝜃0
𝑛,𝑡 = ∑6

𝑖 𝑤𝑖,𝑛
𝑅𝐵𝐹𝑁(𝜇𝑖 , 𝜎2

𝑅𝐵𝐹).       717 

 (Equation 11) 718 

 719 

The mean of the functions, 𝜇𝑖  are spaced uniformly from time 0 to the maximum trial length for 720 

each respective neuron. The variance of the functions, 𝜎2
𝑅𝐵𝐹 , is equal to the distance between the 721 

function means. We learn 𝑤𝑖,𝑛
𝑅𝐵𝐹  by assuming that 𝑦𝑛,𝑡 is distributed Poisson with an intensity 722 

function 𝜃0
𝑛,𝑡 and maximize the likelihood. In other words, for the 𝑛𝑡ℎ neuron we define the 723 

likelihood of the observed spikes for a trial of duration T, 𝑦𝑛, assuming a time-varying intensity 724 

function 𝜃0
𝑛,𝑡 725 

 726 

𝑃(𝑦𝑛|𝜃0
𝑛) = ∏𝑇

𝑡=1 (𝜃0
𝑛,𝑡𝛥𝑡)𝑦𝑛,𝑡𝑒𝑥𝑝(−𝜃0

𝑛,𝑡𝛥𝑡),      727 

 (Equation 12) 728 

 729 

and maximize this likelihood across K trials with respect to the parameters 𝑤𝑖,𝑛
𝑅𝐵𝐹 . 730 

 731 

Although both 𝜃𝑛𝑎(𝑡) and 𝜃0
𝑛(𝑡) vary in time to define each neuron’s expected firing rate, they are 732 

uniquely identifiable, because 𝜃𝑛𝑎(𝑡) varies from trial to trial depending on the stimulus while 733 

𝜃0
𝑛(𝑡) does not. We verified through numerical experimentation and parameter recovery using  734 

synthetic data that each process can be identified.  735 
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 736 

On a single behavioral trial, with a probability 1 − 𝛾 the subject's choice, d, is a deterministic 737 

function of a(t) at the end of the trial (time T), (Brunton et al., 2013); with probability 𝛾 the choice 738 

is made without considering a(t). 𝛾 captures “lapses” in the subject's performance. For choices that 739 

depend on a(t), if a(T) is greater than a cutoff value c, d = 1, otherwise d = 0. Thus, the probability of 740 

the choice, given a(t) and 𝜃𝑑 can be written as, 741 

 742 

𝑷(𝒅|𝒂𝑻, 𝜽𝒅)  =  (
𝜸

𝟐
+ (𝟏 − 𝜸)𝑯(𝒂𝑻 − 𝒄))𝒅(

𝜸

𝟐
+ (𝟏 − 𝜸)(𝟏 − 𝑯(𝒂𝑻 − 𝒄)))𝟏−𝒅,  743 

 744 

(Equation 13) 745 

 746 

where 𝑯(⋅) is the Heaviside function. We refer to the parameters relating a(t) to the likelihood of a 747 

subject’s choice as 𝜃𝑑 = {𝑐, 𝛾}. 748 
 749 

Relative binning of clicks and spikes 750 

 751 

A minor but key implementation detail concerns defining the start and end times of the temporal 752 

bin edges that are used to bin the click inputs and the spikes trains. Through numerical 753 
experimentation, we identified that our numerical procedure produces a systematic error in 754 

estimating the model parameters when the temporal bins for the clicks are aligned with the 755 

temporal bins for the spikes. To circumvent this issue, we offset the bins for the spikes by 𝛥𝑡/2, so 756 

that the bin edges for spikes at time t surround the forward bin edge of the clicks by +/- 𝛥𝑡/2. This 757 

procedure is similar to the central difference formulation of a finite difference approximation to a 758 

differential equation.  759 

 760 

Inferring model parameters with maximum likelihood 761 

 762 

We refer to the set of all parameters for models fit to spikes and choices as 𝛩 = {𝜃𝑎 , 𝜃𝑦 , 𝜃𝑑}. Given 763 

the Markov dynamics described above, the relationship between a(t) and the observed data, and 764 

the model parameters, we can write out the likelihood of the spike train data Y from N neurons for 765 

T time bins, the behavioral choice d, and the latent variable a for T time bins as  766 

 767 

𝑃(𝑎, 𝑌, 𝑑|𝛩) = 𝑃(𝑎0|𝜃𝑎) ∏𝑇
𝑡=1 𝑃(𝑎𝑡|𝑎𝑡−1, 𝜃𝑎 , 𝛿𝑡) ∏𝑁

𝑛=1 𝑃(𝑦𝑛,𝑡|𝑎𝑡 , 𝜃𝑛)𝑃(𝑑|𝑎𝑇 , 𝜃𝑑)  768 

 (Equation 14) 769 

 770 

We compute the likelihood of the data by integrating over a 771 

 772 

𝑃(𝑌, 𝑑|𝛩) = ∑𝑎 𝑃(𝑎, 𝑌, 𝑑|𝛩).       773 
 (Equation 15) 774 

 775 

Because of the way in which we compute 𝑃(𝑎𝑡|𝑎𝑡−1, 𝜃𝑎 , 𝛿𝑡) (see above) computing the log-776 

likelihood of the data can be done with a single forward pass over the data using the ‘forward-777 

backward’ algorithm method for Hidden Markov models (Bishop, 2006). We maximize the sum 778 

over K behavioral trials of the logarithm of this quantity with respect to 𝛩 via gradient ascent. To 779 

compute the gradient of ∑𝐾 𝑙𝑜𝑔 𝑃(𝑌𝑘 , 𝑑𝑘|𝛩) with respect to 𝛩 we use a standard automatic 780 

differentiation package (Revels et al., 2016). We refer to the set of parameters that maximizes the 781 

likelihood as 𝛩̂. 782 

 783 

https://paperpile.com/c/pTCLY7/u3i5
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We note that all K trials for many of the models we fit were not recorded on the same behavioral 784 

session, and therefore, all N neurons are not recorded for every trial. For example, neurons 1-3 785 

might be recorded on trials 1-500, while neurons 4-6 might be recorded on trials 501-1000. 786 

Although our notation does not reflect this in order to keep the notation simple, only neurons 787 

recorded on a trial contribute to the likelihood on that trial. 788 

 789 

Bounded optimization 790 

 791 
Several model parameters are only defined within a restricted domain; for example, all variances 792 

parameters, such as 𝜎𝑎
2, are only defined on the positive real axis. Alternatively, other parameters, 793 

although defined on a more expansive domain, have values that correspond to models that are not 794 

very likely; for example, although B is defined on the positive real axis, values much greater than 40 795 

are not likely to be exhibited in the data, given the specifics of the stimulus, where greater than 40 796 

clicks were rare. For these reasons, we define the following domain over which parameter 797 

optimization was performed: 798 

 799 

●  1𝑒−3 ≤ 𝜎𝑎
2 ≤ 100 800 

●  8 ≤ 𝐵 ≤ 40 801 

●  −5 ≤ 𝜆 ≤ 5 802 

●  1𝑒−3 ≤ 𝜎𝑎
2 ≤ 400 803 

●  1𝑒−3 ≤ 𝜎𝑠
2 ≤ 10 804 

●  1𝑒−3 ≤ 𝜙 ≤ 1.2 805 

●  5𝑒−3 ≤ 𝜏𝜙 ≤ 1 806 

●  −10 ≤ 𝑐 ≤ 10 807 

●  0 ≤ 𝛾 ≤ 1 808 
●  −10 ≤ 𝜃𝑛 ≤ 10 ∀ 𝑛 809 

 810 

The occurrence of parameters hitting the bound can be seen in Figure 3 & Figure 3 — figure 811 

supplement 4. The most common boundary hitting situation was a variance parameter (𝜎𝑖 , 𝜎𝑎 , 𝜎𝑠) 812 

hitting the lower boundary of zero, which means that the model did not support noise of that kind 813 

in the model fit. 𝜎𝑖  and 𝜎𝑎 were found to do this for the choice only model, consistent with the 814 

results of Brunton et al. The other bound that was frequently hit was the upper bound for the 815 

accumulation bound parameter B, a result also consistent with the results of Brunton et al. The log-816 

likelihood surface as B grows very large becomes very flat, because it becomes increasingly unlikely 817 

that probability mass P(a(t)) crosses the boundary. Thus, the model fits do not change appreciably 818 

if this optimization boundary is relaxed. 819 

 820 

Confidence intervals for maximum likelihood parameters 821 

 822 

To compute confidence bounds of estimated parameters (as in Figure 3 and Figure 1 — figure 823 
supplement 1, Figure 4 — figure supplement 1, Figure 3 — figure supplement 3, Figure 3 — figure 824 

supplement 4), we use the Laplace approximation to the log-likelihood. Using automatic 825 

differentiation, we compute the Hessian (the matrix of second derivatives) of the log-likelihood at 826 

the maximum likelihood parameters. The diagonal entries of the Hessian's inverse quantify the 827 

sharpness of the curvature of the log-likelihood surface, and therefore the uncertainty of the 828 

estimate of each parameter. We define the confidence bound as +/- two times the square root of 829 

each diagonal entry; approximating the log-likelihood surface as Gaussian, this describes the range 830 

of parameters that would fall within approximately 95% of the log-likelihood volume.  831 

 832 
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For some sets of maximum likelihood parameters, further consideration was necessary. In cases 833 

where confidence bounds extend beyond an optimization bound that corresponds to a strict 834 

boundary on the domain of a parameter (e.g., variance parameters being strictly positive), we 835 

truncate these intervals at the bound. In some cases, we found that Hessian was not positive semi-836 

definite, a necessary condition to invert it. This most often occurred when a maximum likelihood 837 

parameter encroached upon a strict parameter boundary (e.g., variance parameters being strictly 838 

positive). We dealt with these scenarios in two ways. In some cases, numerical line search along any 839 

Hessian eigenvector with negative eigenvalue confirmed the convexity of the log-likelihood was 840 
local whereas more globally the log-likelihood was concave. In light of this, we numerically 841 

computed the global concavity of the log-likelihood with a numerical line search and approximated 842 

this curve with a quadratic function. We replaced the negative eigenvalue of the Hessian with two 843 

times the coefficient of this quadratic approximation (the multiplier two is used because the 844 

Hessian is two times the second-order approximation of the log-likelihood via Taylor series 845 

approximation, where the second-order term contains a 1/2 prefactor). In other cases, computing 846 

the Hessian in a transformed space (e.g., log space) where troublesome parameters were free to 847 

take on any value, rectified the non-concavity (Yartsev et al., 2018). After computing confidence 848 

intervals in the transformed space, we mapped these values back into the standard space by the 849 

inverse transform. 850 

 851 

Data selection 852 

 853 

Details regarding behavioral data collection and neural recordings and spike sorting can be found 854 

in (Hanks et al., 2015) and (Yartsev et al., 2018). To select which neurons were used, a firing rate 855 
for each neuron was computed by summing spikes over the duration of the stimulus period and 856 

dividing this by the length of the stimulus period. A two-sided t-test was applied, comparing the 857 

firing rate distribution on trials when the animal chose left and when the animal chose right. 858 

Neurons with a p-value less than 0.01 were included for analysis. 859 

 860 

Data grouping 861 

 862 

We grouped together rats that had neural recordings from the same brain region (five FOF rats, 863 

three PPC rats, three ADS rats; see Table 1 for information about the data) to improve our 864 

estimation of the model parameters for each region. For the PPC and ADS recordings, the majority 865 

of recorded neurons came from a single rat (Table 1). Although individual FOF rats had enough 866 

neurons to support fitting each rat alone, the maximum likelihood parameters for FOF rats fit 867 

individually were qualitatively similar (Figure 3 — figure supplement 3). 868 

 869 

Response latency 870 
 871 

Previous analyses have identified a response latency between the stimulus and the neural 872 

responses, and that this latency can be different in different brain regions (Hanks et al., 2015). To 873 

account for this, we shifted the time of the neural responses relative to the clicks based on these 874 

prior results. FOF and ADS responses had a latency of 60 ms, while PPC responses had a latency of 875 

120 ms. 876 

 877 

Specifics of data selection for each analyses 878 

 879 

Our reports of the maximum likelihood parameters for each model are for models fit to the entire 880 

dataset. Each model was also fit using cross-validation (i.e., training on a subset of the data, while 881 

reserving data for testing) but the maximum likelihood parameters did not qualitatively change 882 

https://paperpile.com/c/pTCLY7/7mBr
https://paperpile.com/c/pTCLY7/dhRZ
https://paperpile.com/c/pTCLY7/7mBr
https://paperpile.com/c/pTCLY7/dhRZ


 

20 

from those identified using the entire dataset, and the log-likelihood computed on test data using 883 

parameters identified with training data did not differ appreciably from the log-likelihood 884 

computed on those same trials using parameters identified with the entire dataset (Figure 3 — 885 

figure supplement 4 ). This consistency is likely due to the modest number of model parameters.  886 

 887 

When we compute various quantities related to the data, such as peri-stimulus time histograms 888 

(PSTHs), cross-correlation functions, and psychometric functions, we likewise use the entire 889 

dataset. We did not find that we could accurately estimate the PSTH when only using a small subset 890 
of the data (i.e., test data) due to the fact that our task lacks repeated stimulus conditions. 891 

Additionally, when we simulate data from a fit model (e.g.,  Figure 2A), we used the maximum 892 

likelihood parameters derived from model fits to the entire dataset, and used the stimuli of the 893 

entire dataset to generate these data. Again, because the maximum likelihood parameters did not 894 

qualitatively change when the model was fit to a subset of the data, we found it easier to focus our 895 

analyses on a single model. The above statements apply to analyses in the following figures: Figure 896 

2, Figure 3, Figure 4C &  D, Figure 5, Figure 6 B-F, andFigure 3 — figure supplement 2, Figure 4 897 

— figure supplement 1, Figure 6 — figure supplement 2,Figure 3 — figure supplement 3.  898 

 899 

When comparing performance across models, cross-validation is necessary, and we did so in those 900 

cases (e.g. Figure 4B, Figure 6A, andFigure 4 — figure supplement 2, Figure 6 — figure 901 

supplement 1, Figure 3 — figure supplement 4 B). In these cases, we performed five-fold cross-902 

validation by dividing the dataset into a training set that consisted of 80% of the data and a test set 903 

that consisted of 20% of the data. We fit each model using the training data of each fold, and 904 

computed the test log-likelihood using the test data and the parameters derived from the training 905 
data. Test performance was averaged across the five folds. Again, we stress that the test 906 

performance on cross-validated data did not appreciably differ from that computed using a model 907 

trained to the entire dataset (Figure 3 — figure supplement 4 ). We note, however, that even in 908 

cases when we performed cross-validation, we still computed an approximation to each neuron's 909 

trial-averaged firing rates, 𝜃0
𝑛,𝑡 , using all available data, prior to fitting the full model. 910 

 911 

Because most of our models were fit simultaneously to data from multiple experimental sessions 912 

(in which different neurons are recorded), to perform cross-validation, we randomly divided trials 913 

within each session into a train and test set, and trained and tested the model collectively on those 914 

groups of trials. Testing the model in this way will determine parameter robustness across all 915 

sessions (for model parameters that are shared across all sessions) and individual parameter 916 
robustness within a session (for parameters that are specific to an individual session). This 917 

procedure also worked for the ‘independent noise model’, for which model parameters were shared 918 

across all sessions, but individual neuron parameters were session specific. 919 

 920 

Other fit models 921 

 922 

Independent noise accumulator models 923 

 924 

We refer to the set of all parameters for the model with independent accumulator noise per neuron 925 

as 𝛩𝑖𝑛𝑑 . The likelihood of the spike train data from the 𝑛𝑡ℎ neuron 𝑌𝑛 for T time bins is 926 
 927 

𝑃(𝑌𝑛|𝛩𝑖𝑛𝑑) = ∑𝑎𝑛
𝑃(𝑎0,𝑛|𝜃𝑎) ∏𝑇

𝑡=1 𝑃(𝑎𝑛,𝑡|𝑎𝑛,𝑡−1, 𝜃𝑎 , 𝛿𝑡)𝑃(𝑦𝑛,𝑡|𝑎𝑛,𝑡 , 𝜃𝑛).  928 

 (Equation 16) 929 

 930 
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The joint likelihood for the spike train data from all neurons is the product of the likelihood for each 931 

neuron: 𝑃(𝑌|𝛩𝑖𝑛𝑑) = ∏𝑁
𝑛=1 𝑃(𝑌𝑛|𝛩𝑖𝑛𝑑). Our primary interest in this analysis was capturing the 932 

neural responses, so we considered a simple model of choice for this model: on each trial, choice is 933 

determined by randomly selecting one of the accumulators. The likelihood of the choice d under 934 

such a model is the average of the the n accumulators at time T: 935 

 936 

𝑃(𝑑|𝛩𝑖𝑛𝑑) =
1

𝑁
∑𝑁

𝑛=1 𝑃(𝑑|𝑎𝑛,𝑇𝜃𝑑).       (Equation 17) 937 

 938 

The full likelihood is the product of these terms: 𝑃(𝑌, 𝑑|𝛩𝑖𝑛𝑑) = 𝑃(𝑑|𝛩𝑖𝑛𝑑)𝑃(𝑌|𝛩𝑖𝑛𝑑). 939 

 940 

Choice-only model 941 

 942 

We refer to the set of all parameters for the model fit to choices only as 𝛩𝑑 = {𝜃𝑎, 𝜃𝑑}. The 943 
likelihood of the behavioral choice d is  944 

 945 

𝑃(𝑑|𝛩𝑑) = ∑𝑎 𝑃(𝑎0|𝜃𝑎) ∏𝑇
𝑡=1 𝑃(𝑎𝑡|𝑎𝑡−1, 𝜃𝑎, 𝛿𝑡)𝑃(𝑑|𝑎𝑇 , 𝜃𝑑)    946 

 (Equation 18) 947 

 948 

Bernoulli GLM 949 

 950 

To benchmark our method's ability to predict the animal's choice, we considered a basic logistic 951 

regression model (i.e., Bernoulli GLM) that included stimulus information and neural activity (e.g. 952 

Figure 6A andFigure 6 — figure supplement 1). For each trial, we computed the total number of 953 

spikes each neuron produced during the specified temporal window and the final cumulative click 954 

difference, and used them as regressors in a standard Bernoulli generalized linear model to predict 955 

the animal's choice.  A constant bias was also included, as well as a single lapse parameter that 956 

scaled the minimum and maximum values of the logistic inverse link function. Cross-validation was 957 

performed on this model as described above. 958 
 959 

Null choice model 960 

 961 

In Figure 6A, we assess how well each of our fitted models can predict choice. We compare all 962 

models against a baseline model where each choice is a Bernoulli random variable with probability 963 

of making a right choice equal to the empirical fraction of choices made to the right. 964 

 965 

Null joint model 966 

 967 

To compare the improvement of the joint model in absolute terms (i.e., when not comparing two 968 

fitted models) we compute a null model of the spiking activity and choices (Figure 3 — figure 969 

supplement 4 B). The null likelihood of the choice data is as described above. The null likelihood of 970 

the spike train data assumes that the time-varying expected firing rate of each neuron is equal to its 971 

estimated time-varying trial-average firing rate, i.e., 𝑓𝜃𝑛
(𝑡) = 𝜃0

𝑛,𝑡 . 972 

 973 

The improved performance (i.e. cross-validated log likelihood) of our joint model over the null 974 

model shown in Figure 3 — figure supplement 4 further confirms that  𝜃𝑛𝑎(𝑡) and 𝜃0
𝑛(𝑡) are 975 

uniquely identifiable, and that they are not redundant (i.e. the joint model is not 976 
overparameterized). 977 

 978 

Poisson GLM 979 
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 980 

To validate the maximum likelihood parameters derived from the joint model, we fit a variant of a 981 

Poisson GLM to the spiking responses (Figure 3 — figure supplement 2). As a regressor, we used 982 

the adapted, exponentially filtered click inputs, 983 

 984 

𝑑𝑎 = 𝜆𝑎𝑑𝑡 + 𝑑𝑡𝛥(𝑡),         (Equation 19) 985 

 986 

where 𝛥(𝑡) is defined as above. The expected firing rate of each neuron is defined as in the full 987 
model, by Equation 10. For the bounded Poisson GLM model, the dynamics of a(t) follow Equation 988 

19, except that if a(t) crosses B, a(t) stops evolving (i.e. da = 0 if a(t) > B). The parameters 𝜆, B, 𝜙, 𝜏𝜙, 989 

and 𝜃𝑦 that maximize the likelihood of the spike data were learned using gradient ascent. The null 990 

model described in Figure 3 — figure supplement 2 is the null joint model, described above. 991 

 992 

Negative binomial 993 

 994 

InFigure 3 — figure supplement 1, we compare a Poisson observation model to a negative 995 

binomial model. To do this, we model the spikes as 996 

 997 

𝑃(𝑦𝑛,𝑡|𝑎𝑡 , 𝜃𝑛) = 𝑁𝐵(𝜃𝑛
𝑁𝐵 ,

𝜃𝑛
𝑁𝐵

𝑓𝜃𝑛(𝑎𝑡)𝛥𝑡+𝜃𝑛
𝑁𝐵)       (Equation 20) 998 

 999 

where 𝑁𝐵(⋅,⋅) is the negative binomial distribution, and 𝜃𝑛
𝑁𝐵 controls the variance of the 1000 

distribution for each neuron and can take values between 0 and positive infinity. When 𝜃𝑛
𝑁𝐵 1001 

becomes large the negative binomial distribution approaches the Poisson distribution. 𝜃𝑛
𝑁𝐵 was fit 1002 

for each neuron using gradient ascent, as described above.  1003 

 1004 

Quantifying model fit 1005 

 1006 

Computing PSTHs and cross-correlation functions on empirical data 1007 

 1008 

We computed a ‘single-trial’ firing rate for each neuron by convolving its binned spikes with a 1009 

Gaussian kernel of standard deviation 50 ms. We call this single-trial rate 𝑟𝑡,𝑘,𝑛 for the 𝑛𝑡ℎ neuron 1010 

on the 𝑘𝑡ℎ trial at time t. We divide all the trials into two equally-sized groups based on the 1011 

cumulative click difference at the end of the trial and average 𝑟𝑡,𝑘,𝑛 based on these groupings. 1012 

Because trials are not of equal duration, at time t we use whichever trials have data at that time. We 1013 

refer to this average as 𝑟̄𝑐,𝑛,𝑡 where the index c runs from 1 to 2. 1014 

 1015 

We used the empirical binned spikes counts to compute cross-correlation functions. Raw cross-1016 

correlation functions were normalized by the (across time) mean firing rates of the two neurons 1017 

being used so they provided a measure of excess spike rate. The equation for the raw cross-1018 

correlation function was, 1019 

 1020 

𝑅𝑚,𝑛(𝜏) =
1

𝑚𝑚
(

1

𝐾
∑𝑘

1

𝑁𝑘(𝜏)
∑𝑡

𝑦𝑛,𝑘,𝑡

𝛥𝑡

𝑦𝑚,𝑘,𝑡−𝜏

𝛥𝑡
) − 𝑚𝑛 ,      (Equation 21) 1021 

 1022 

where t is over all bins for the 𝑘𝑡ℎ  trial, 𝑦𝑛,𝑘,𝑡 and 𝑦𝑚,𝑘,𝑡−𝜏 are the binned spike train of neuron n 1023 

and m at time t and 𝑡 − 𝜏 respectively, and 𝑁𝑘(𝜏) is the number of bins such that both 𝑦𝑛,𝑘,𝑡 and 1024 

𝑦𝑚,𝑘,𝑡−𝜏 are valid. 𝑚𝑛 and 𝑚𝑚 are the mean firing rates of the 𝑛𝑡ℎ and 𝑚𝑡ℎ neuron respectively, 1025 

computed by taking the average spike count across all times. 1026 
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 1027 

To compute the shuffled corrected cross-correlation, we computed the cross-correlation of the 1028 

expected firing rate of each neuron provided by the PSTH, i.e. 𝑟̄𝑛,𝑐,𝑡 , 1029 

 1030 

𝑅𝑃𝑆𝑇𝐻
𝑚,𝑛(𝜏) =

1

𝑚𝑚
(

1

𝐶
∑𝑐

1

𝑁𝑐(𝜏)
∑𝑡 𝑟̄𝑛,𝑐,𝑡𝑟̄𝑚,𝑐,𝑡−𝜏) − 𝑚𝑛,    1031 

 (Equation 22) 1032 

 1033 

where C=2 is the number of conditions used to define the PSTH, 𝑁𝑐(𝜏) is defined similarly as above, 1034 

and 𝑚𝑛 and 𝑚𝑚 are as defined above. The shuffle corrected cross correlation is the raw cross 1035 

correlation minus the cross-correlation of the expected firing rate: 𝑅𝑚,𝑛(𝜏) − 𝑅𝑃𝑆𝑇𝐻
𝑚,𝑛

(𝜏). 1036 

 1037 
Computing PSTHs and cross-correlation functions on synthetic data 1038 

 1039 

We generated synthetic data from a model by using the maximum likelihood parameters to 1040 

generate the expected firing rate of each neuron on each trial, i.e. 𝑓𝑡,𝑘,𝑛. We averaged this expected 1041 

rate for each neuron on each trial over 20 different realizations of the latent noise to reduce 1042 

variation due to the latent process. We then grouped and averaged these average expected rates, as 1043 

described above, to generate a synthetic PSTH, which we denote by 𝑓̄𝑛,𝑐,𝑡 , as used in Figure 2 1044 

andFigure 1 — figure supplement 1. 1045 

 1046 

We used the synthetic expected firing rate, 𝑓𝑡,𝑘,𝑛, to compute cross-correlation function for 1047 

synthetic data, 1048 

 1049 

𝑅𝑠𝑦𝑛
𝑚,𝑛(𝜏) =

1

𝑚𝑚
(

1

𝐾
∑𝑘

1

𝑁𝑘(𝜏)
∑𝑡 𝑓𝑛,𝑘,𝑡𝑓𝑚,𝑘,𝑡−𝜏) − 𝑚𝑛,     1050 

 (Equation 23) 1051 

 1052 

where K, 𝑁𝑘(𝜏), 𝑚𝑛 and 𝑚𝑚 are as defined above. The shuffle corrected cross correlation function 1053 

of synthetic data is the raw cross correlation function minus the cross correlation function of the 1054 

expected synthetic firing rate provided by the synthetic PSTH, 𝑓̄𝑛,𝑐,𝑡. 1055 

 1056 

Goodness-of-fit metrics 1057 

 1058 

To compare empirical and synthetic PSTHs, we computed the coefficient of determination. Because 1059 

fewer and fewer trials were included in computing the PSTH at large time values (because trials of 1060 

great length were rare) we included PSTH values 200 ms before the stimulus onset up until 500 ms 1061 

after stimulus onset in this calculation. Based on the definitions of the empirical and synthetic 1062 

PSTHs, the coefficient of determination is defined as: 1063 

 1064 

𝑅2
𝑛 = 1 −

∑𝑐 ∑𝑡 (𝑟̄𝑛,𝑐,𝑡− 𝑓𝑛,𝑐,𝑡)2

∑𝑐 ∑𝑡 (𝑟̄𝑛,𝑐,𝑡− <𝑟̄𝑛,𝑐,𝑡>𝑐,𝑡)2
,       1065 

 (Equation 24) 1066 

 1067 

where < 𝑟̄𝑛,𝑐,𝑡 >𝑐𝑡 is the mean of 𝑟̄𝑛,𝑐,𝑡 over trial groupings and times. Pearson correlation (r) was 1068 

used to compare empirical and synthetic cross-correlation functions. When computing r we 1069 

considered values of 𝜏 between -800 and 800 ms. 1070 

 1071 

Psychometric functions 1072 

 1073 
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We used a Bernoulli GLM (i.e. logistic regression) to compute psychometric functions for empirical 1074 

and synthetic data. We generated synthetic data from a model by using the maximum likelihood 1075 

parameters to generate the probability of a choice, and sampled the choice from a Bernoulli 1076 

distribution. For the Bernoulli GLM, for each trial, we computed the final click difference and used it 1077 

as a regressor to predict the animal's choice. A constant bias was also included, as well as a single 1078 

lapse parameter that scaled the minimum and maximum values of the logistic inverse link function. 1079 

𝑅2 values comparing empirical and synthetic psychometric functions were defined as above, but 1080 
using the psychometric functions whose domain was from the minimum final cumulative click 1081 

difference to the maximum final cumulative click difference. 1082 

 1083 
Choice decoding 1084 

 1085 

We used two metrics to determine how well choice could be decoded from various models: choice 1086 

prediction accuracy and test log likelihood. Test likelihood was reported in bits per trial, i.e. 1087 

 1088 

𝛥𝐿𝐿 =
𝐿𝐿𝑚𝑜𝑑𝑒𝑙 − 𝐿𝐿𝑛𝑢𝑙𝑙

𝑙𝑜𝑔2(𝐾)
         (Equation 25) 1089 

 1090 

where K is the number of trials in the test set and 𝐿𝐿𝑛𝑢𝑙𝑙  is the appropriate null model, as described 1091 

above, or a second model with which to test against. Five-fold cross validation was performed, as 1092 

described above. Accuracy was determined, depending on the model, by computing the probability 1093 

that the model predicted a right choice, given all available data (i.e., inputs and spikes in a model 1094 

that includes spikes). If the model had a greater than 0.5 probability of choosing right, we 1095 

considered that a prediction of a rightward choice. Accuracy is the fraction of correct choice 1096 

predictions. 1097 

 1098 

Identifying putative changes of mind 1099 

 1100 

Based on a recent study (Peixoto et al., 2021) we defined putative changes in mind in the following 1101 

way. For each model and each trial, we computed the posterior distribution of a(t) given all 1102 

available data except for the choice. In the case of the choice only model, this means using only the 1103 

stimulus, and is equivalent to the forward pass of the model. In the case of the joint model, this is 1104 
equivalent to the posterior distribution of a(t) given the spikes on that trial. We computed the 1105 

expected value of the posterior distribution for each trial and identified moments when it crossed 1106 

the decision threshold as determined for each model (i.e., the c parameter of the choice likelihood). 1107 

We required that the expected value remain on one side of the threshold for 50 ms, remain on the 1108 

other side following the crossing for 50 ms, and achieve an absolute magnitude greater or equal to 1109 

2 at some point during that 100 ms window.   1110 

 1111 

To relate putative change of mind events to the animal's behavior we performed linear regression 1112 

between the time of the event relative to the end of the stimulus (i.e., how close to a decision the 1113 

event occurred) and a measure of the animal's reaction time. In this task, the animal is required to 1114 

fixate in the center poke for the duration of the stimulus, so it does not exhibit a true reaction time 1115 

in the standard sense of the term. However, following the end of the stimulus, it does take the 1116 

animal time to withdraw from the center port to make its choice (see Figure 1A, bottom, upper two 1117 

lines). We refer to the difference between the end of the stimulus and when the animal withdrew 1118 

from the center port as the animal's reaction time, which we used in our analysis. 1119 
 1120 

Estimating dimension 1121 

 1122 

https://paperpile.com/c/pTCLY7/Twn2+lUZo
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To estimate the effective dimension of groups of simultaneously recorded neurons, we computed 1123 

the ‘participation ratio’ (Litwin-Kumar et al., 2017). Single-trial firing rates were computed by 1124 

convolving the spike trains with a Gaussian kernel (std=50 ms), and the covariance matrix of these 1125 

rates was computed. The participation ratio is 1126 

 1127 
(∑𝑁

𝑛 𝜆𝑛)2

∑𝑁
𝑛 (𝜆𝑛)2,          1128 

 (Equation 26) 1129 

 1130 

where 𝜆 are the eigenvalues of the covariance matrix. If the firing rates are independent, the 1131 

eigenvalues will all be equal and the participation ratio will equal the number of neurons. If the 1132 

firing rates are correlated such that some eigenvalues are small (or perhaps even zero) the 1133 

participation ratio will be less than the number of neurons. 1134 

 1135 

Code availability 1136 

 1137 

All code was written in the Julia programming language. The core codebase for fitting the models 1138 

described in this manuscript can be found here: https://github.com/Brody-Lab/PulseInputDDM. 1139 

Code and data for performing the analyses described in this manuscript can be found here: 1140 

https://github.com/Brody-Lab/DePasquale-eLife-2023.  1141 

 1142 

Figure Legends 1143 

 1144 

Figure 1: Accumulating evidence task and latent variable model. (A) Rats performed a pulsed-1145 

based evidence accumulation task. A central LED illuminates, indicating that the rat can begin a trial 1146 

by poking its nose in a central port. After a delay of random duration, an auditory stimulus of 1147 

variable duration is delivered—a series of brief auditory pulses played from a left and a right 1148 

speaker. Upon cessation of the stimulus, the rat must orient to the direction of the greater number 1149 

of pulses to receive a water reward. (B) The model relates the click-based sensory stimulus to two 1150 

types of observations—the animal’s choice and neural activity observed during the task. The latent 1151 

variable model is a bounded accumulator. Left and right clicks (green and red arrows, respectively) 1152 

push the variable to one side or the other; if the accumulator variable reaches the bound B (dotted 1153 

line) accumulation ceases. Seven parameters govern the dynamics of a(t) (see main text). Two 1154 

different hypothetical trajectories of a(t) are illustrated (black and blue) for the same click 1155 

stimulus; the two trajectories differ due to the diffusive and stimulus noise in the model. a(t) relates 1156 

to the animal’s choice by a Heaviside step function and to neural activity by way of a softplus 1157 

nonlinearity and a Poisson distribution. a(t) is common for all simultaneously recorded neurons 1158 

and each neuron has its own parameters that determine its tuning curve. 1159 

 1160 

Figure 1 — figure supplement 1: Recovering the parameters of synthetic data. Synthetic data 1161 

was generated with parameters 𝜎𝑖 =  5, B=15, 𝜆 = −0.5, 𝜎𝑎 =  100, 𝜎𝑠 = 20, 𝜙 =  0.4, 𝜏𝜙 =  0.02. 1162 

Two synthetic ‘sessions’ were generated, with 400 trials and 3 neurons each. Softplus gain 1163 

parameters were randomly generated between -2 and 2. c = 1, 𝛾 = 0.05. (A) PSTHs for two example 1164 

neurons for synthetic data and simulated data after modeling fitting. (B) Psychometric curves for 1165 

synthetic data and simulated data after modeling fitting. (C) Optimization was initialized at a 1166 

random set of parameters (‘initial’). Maximum likelihood parameters (‘final’) converged to within 1167 

two standard deviations (error bars computed by Laplace approximation) of the parameters used 1168 

https://paperpile.com/c/pTCLY7/RHt3
https://github.com/Brody-Lab/PulseInputDDM
https://github.com/Brody-Lab/DePasquale-eLife-2023
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to generate the data (dotted lines). 𝜃𝑖𝑗 refers to the neuron parameters for the jth neuron from the 1169 

ith session. 1170 

 1171 
Figure 1 — figure supplement 2: Recovering the parameters of synthetic data for multiple datasets. 1172 

Four synthetic datasets (red, cyan, green, blue) were generated as in Figure 1 — figure supplement 1173 

1 (two sessions per dataset, with three neurons in each session). Dotted lines in each panel indicate 1174 

the generative parameters. Optimization was initialized at a random set of parameters (‘init.’). 1175 

Maximum likelihood parameters (‘final’) almost always converge to within two standard deviations 1176 

(error bars computed by Laplace approximation) of the parameters used to generate the data. 𝜃𝑖𝑗 1177 

refers to the neuron parameters for the jth neuron from the ith session. 1178 

 1179 

Figure 2: A shared accumulator model captures neural response and choice for each brain 1180 

region. (A) Peri-stimulus time histograms (PSTHs) of three example neurons for each brain region 1181 
(each row;  FOF: red/green, PPC: blue/orange, ADS: purple/yellow). Spike trains were binned, 1182 

filtered with a Gaussian kernel (std = 50 ms), grouped based on the strength of evidence, and 1183 

averaged. Transparent shaded regions are +/- 1 standard error of the mean for the empirical data 1184 

for each grouping. Colored curves are the mean of synthetic data simulated from the model with the 1185 

parameters that maximize the likelihood of the data, grouped in a similar fashion. The black curve 1186 

shows the trial-averaged firing rate, for all evidence strengths. Gray vertical lines indicate the 1187 

average delay between the stimulus and the response for each brain region (see Methods). (B) 1188 

Coefficient of determination (R2) between empirical PSTH and synthetic data PSTH, for each neuron 1189 

in each brain region. The data are plotted as a function of average firing rate. The median across the 1190 

population is shown as a line. Points indicated with a ‘star’ refer to the data plotted in (A). (C) 1191 

Probability of making a rightward choice as a function of cumulative difference in the number of 1192 

clicks (psychometric curves) for empirical data (black lines) and data simulated from the model 1193 

with the best fitting parameters (colored curves; FOF: red, PPC: blue, ADS: purple). Each curve is 1194 

the curve of best fit, as computed by logistic regression.  1195 

 1196 

Figure 3: Data from different regions is best fit by different accumulator models. (A) 1197 

Maximum likelihood parameters that govern a(t) for the joint neural-behavioral model and the 1198 

choice-only model. Error bars, computed by the Laplace approximation (Methods), are +/- 2 1199 

standard deviations. Parameters are 𝜎i: initial variance, B: accumulation bound, λ: drift, 𝜎a: 1200 

accumulation noise variance, 𝜎s: click noise variance, ɸ: adaptation strength, 𝜏ɸ: adaptation 1201 

timescale. (B) 10 example trajectories with different noise instantiations for one trial for the choice 1202 

model (top) and the joint model (middle) model for each brain region, and cumulative sum of the 1203 

click stimulus for each trial (bottom). The dotted black lines (top and middle) indicate the 1204 

accumulation boundary value for each model. 1205 

 1206 

Figure 3 — figure supplement 1: Model comparison using Poisson or negative binomial 1207 

observation model. (A) Parameters are 𝜎𝑖: initial variance, B: accumulation bound, 𝜆: drift, 𝜎𝑎: 1208 

accumulation noise variance, 𝜎𝑠: click noise variance, 𝜙: adaptation strength, 𝜏𝜙: adaptation 1209 

timescale. Each point is a data fold (1 of 5). Maximum likelihood parameters were similar for the 1210 

two observation models. Cross-validated log-likelihood was statistically indistinguishable (FOF: 1211 

p=0.99; PPC:0.93; ADS:0.98) and the average difference in cross-validated log-likelihood was small 1212 

(FOF: 1.11e-5; PPC: -0.036; ADS: -0.035). (B) Histogram of the negative binomial dispersion 1213 

parameter (r) across all neurons for each region. For large values of r, as seen here, the negative 1214 

binomial approaches the Poisson distribution.   1215 
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 1216 

 Figure 3 — figure supplement 2: GLM analysis of individual sessions. (A) Poisson GLM with a 1217 

softplus nonlinearity was fit with exponentially filtered clicks as the regressors (see Methods), 1218 

using the same data as in Figure 2 and Figure 3. Each dot is the maximum likelihood drift (𝜆) 1219 

parameter for a session. Sessions are ordered (from left to right) based on the fraction of the 1220 

cumulative sum (across all sessions for a brain region) of the change in log likelihood (LL) over the 1221 

null model (see Methods for null model). For example, the leftmost dot for each brain region is the 1222 

session with the largest change in LL. Dots on the right were from sessions with the smallest change 1223 

in LL over the null. The colored lines are the cumulative mean of 𝜆weighted by that session's 1224 

normalized change in LL. Dots on the far right have little change in LL and thus contribute to this 1225 

mean only weakly. (B) GLM as in (A) but fit with a boundary, such that if the filtered clicks crossed a 1226 

boundary B, the value of the regressors remained equal to B henceforth in a trial (see Methods). In 1227 
each plot, the dashed colored lines are the values of 𝜆 from the full model fit (as in Figure 2 and 1228 

Figure 3). 1229 

 1230 

 Figure 3 — figure supplement 3: Maximum likelihood parameters of joint model for each 1231 

FOF rat individually. Error bars, computed by the Laplace approximation (Methods), are +/- 2 1232 

standard deviations. Parameters are 𝜎𝑖: initial variance, B: accumulation bound, 𝜆: drift, 𝜎𝑎: 1233 

accumulation noise variance, 𝜎𝑠: click noise variance, 𝜙: adaptation strength, 𝜏𝜙: adaptation 1234 

timescale. 1235 

 1236 

 Figure 3 — figure supplement 4: Comparison of maximum likelihood parameters for three 1237 

models: joint (neural/choice) model, choice-only model, and independent noise joint model, 1238 
when fit to all data, or using cross-validation data. (A) Circles with error bars are for models fit 1239 

to all data. Error bars for models fit to full data computed by the Laplace approximation (Methods) 1240 

are +/- 2 standard deviations. ‘Diamond ’ marks are models (5 for each model type) fit to cross-1241 

validation data (5-fold). Parameters are 𝜎𝑖: initial variance, B: accumulation bound, 𝜆: drift, 𝜎𝑎: 1242 

accumulation noise variance, 𝜎𝑠: click noise variance, 𝜙: adaptation strength, 𝜏𝜙: adaptation 1243 

timescale. (B) Test log likelihood for models fit to all data (i.e., using trials reserved as testing trials 1244 

when cross-validation is done) plotted against test log likelihood for cross validation models, for 1245 

each model type (joint, choice, joint (ind.)), for all three brain regions. 1246 

 1247 

Figure 4: ADS is better described by independent accumulators. (A) For the shared noise 1248 

accumulator model (top), a set of parameters defines the dynamics of a single accumulator, which 1249 

drives the spiking activity of the entire population. In the independent noise accumulator model, a 1250 

set of parameters defines the dynamics of an ensemble of independent accumulator models, which 1251 

each individually determine the spiking of a single neuron. (B) Difference in test log-likelihood 1252 

(bits/trial) for the shared noise versus independent noise accumulator models. (C) Empirical (red) 1253 

and synthetic (shared: black; independent; gray) shuffle-corrected cross-correlation function for 1254 

three simultaneously recorded neurons from the FOF. Corresponding PSTHs are shown below for 1255 

reference. (D) Same as (C) for three (of five) simultaneously recorded neurons from the ADS. 1256 

 1257 

 Figure 4 — figure supplement 1: Maximum likelihood parameters for the joint 1258 

(neural/choice, i.e., shared noise) model and independent (‘ind.’) noise joint model. Error 1259 

bars, computed by the Laplace approximation (Methods), are +/- 2 standard deviations. Parameters 1260 

are 𝜎𝑖: initial variance, B: accumulation bound, 𝜆: drift, 𝜎𝑎: accumulation noise variance, 𝜎𝑠: click 1261 

noise variance, 𝜙: adaptation strength, 𝜏𝜙: adaptation timescale. 1262 
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 1263 

 Figure 4 — figure supplement 2: 𝛥𝑳𝑳 between the shared-noise and independent-noise 1264 

accumulator model. (A) Difference in log likelihood for each session for FOF and ADS data plotted 1265 

as a function of the number of neurons in each session. (B) When the number of neurons in each 1266 

session for the ADS dataset was subsampled to match the maximum number of neurons in a FOF 1267 

session (3 neurons) the ADS was still favored by an independent noise accumulator model (purple, 1268 

no fill; averaged across 2 subsample permutations of the ADS recordings). (C) Same as (A) but 1269 

plotted as a function of dimension, as computed by the participation ratio (see Methods). Sessions 1270 
in the ADS with higher dimension favored the independent noise accumulator model, leading to the 1271 

net effect seen in Figure 4B. (D) The difference in log likelihood was similar when the choice data 1272 

was omitted from both models.  1273 

 1274 

Figure 5: Neural data provides more information about accumulated evidence on single 1275 

trials than choice alone. (A) Posterior distribution of a(t) under the joint model (excluding 1276 

captured mass at the boundary) given only the choice (top row) and given spike times and choice 1277 

(bottom row), for a single example trial. Columns show example trials for different brain regions. 1278 

(B) Histogram of joint model posterior standard deviations given choice data (black) or both neural 1279 

and choice data (colors) for all three brain regions. (C) Difference in choice-conditioned joint 1280 

posterior standard deviation and neural- and choice-conditioned joint posterior standard deviation 1281 

as a function of the number of simultaneously recorded neurons. Each point is the difference in the 1282 

average posterior standard deviation for a session. Negative values indicate that the neural- and 1283 

choice-conditioned posterior had smaller average standard deviation than the choice-conditioned 1284 

posterior. 1285 

 1286 

Figure 6: Joint neural-behavioral model improves choice decoding. (A) Choice-prediction 1287 
accuracy, quantified with log-likelihood (left) and percent correct (right) on test choice data for 4 1288 

models: joint neural-behavioral model, choice-only model, and two logistic regression models 1289 

(Methods). Values greater than zero indicate that the model can predict choices better than a 1290 

baseline model that only knows the marginal probability of a rightward choice. (B) Posterior mean 1291 

of a(t) conditioned on the neural activity for the joint model (colors), the distribution of a(t) for the 1292 

choice only model (black), and the cumulative click difference (gray) for three example trials (one 1293 

for each brain region). ‘animal’s choice’ arrow indicates the choice (left or right) the animal made 1294 

on that trial. (C) Putative change of mind events, where the posterior mean of the joint model 1295 

crossed the decision threshold. The corresponding distribution of a(t) for the choice only model 1296 

(black) and the cumulative click difference (gray) for the same trial are shown for comparison. 1297 

‘animal's choice’ arrow indicates the choice (left or right) the animal made on that trial. (D) Fraction 1298 

of trials that contain at least one putative change of mind event for the cumulative click difference, 1299 

the choice model, and the joint model, for each brain region. (E) Fraction of trials for which a 1300 

putative change of mind event occurs at the specified time relative to the end of the stimulus for the 1301 

joint model (color) and the cumulative click difference (black) for each brain region. (F) Choice 1302 
response latency as a function of timing of putative change of mind events relative to stimulus 1303 

offset for each brain region. Bar plots show the 25-75 percentiles of the choice response latency for 1304 

putative change of mind events occurring at similar times. The colored lines indicate the line of best 1305 

fit for each brain region computed by linear regression. 1306 

 1307 

 Figure 6 — figure supplement 1: GLM choice decoding (as in Figure 6A) using spikes in different 1308 

time windows relative to stimulus offset. 1309 

 1310 
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 Figure 6 — figure supplement 2: Accuracy on putative change of mind event trials and non-1311 

event trials. (A) Accuracy of the rat for data from each brain region for putative change of mind 1312 

event trials and trials that lacked events (‘no event’). (B) Same as (A) but for accuracy of the joint 1313 

model for each brain region. 1314 

 1315 
 1316 

Rat Region Sessions Neurons Trials Sessions 
with greater 
than 1 
neuron 

Max. # of 
simultaneously 
recorded neurons 

B068 FOF 11 13 5859 2 2 

T034 FOF 9 10 4138 1 2 

T036 FOF 8 12 3026 4 2 

T063 FOF 17 32 4002 9 3 

T030 FOF 1 1 357 0 1 

T035 PPC 15 16 5919 1 2 

T011 PPC 7 7 2235 0 1 

B053 PPC 2 2 883 0 1 

T080 ADS 5 6 1731 1 2 

T103 ADS 19 38 8332 9 5 

E021 ADS 3 4 697 1 2 

 1317 

Table 1: Number of neurons, sessions and trials for each rat.  1318 
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