Statistical modelling based on structured surveys of Australian native possum excreta harbouring Mycobacterium ulcerans predicts Buruli ulcer occurrence in humans

  1. Koen Vandelannoote  Is a corresponding author
  2. Andrew H Buultjens
  3. Jessica L Porter
  4. Anita Velink
  5. John R Wallace
  6. Kim R Blasdell
  7. Michael Dunn
  8. Victoria Boyd
  9. Janet AM Fyfe
  10. Ee Laine Tay
  11. Paul DR Johnson
  12. Saras M Windecker
  13. Nick Golding
  14. Timothy P Stinear  Is a corresponding author
  1. University of Melbourne, Australia
  2. Millersville University, United States
  3. CSIRO Health and Biosecurity, Australia
  4. Victorian Infectious Diseases Reference Laboratory, Australia
  5. Department of Healt, Australia
  6. Austin Health, Australia
  7. Curtin University, Australia

Abstract

Background: Buruli ulcer (BU) is a neglected tropical disease caused by infection of subcutaneous tissue with Mycobacterium ulcerans. BU is commonly reported across rural regions of Central and West Africa but has been increasing dramatically in temperate southeast Australia around the major metropolitan city of Melbourne, with most disease transmission occurring in the summer months. Previous research has shown that Australian native possums are reservoirs of M. ulcerans and that they shed the bacteria in their fecal material (excreta). Field surveys show that locales where possums harbor M. ulcerans overlap with human cases of BU, raising the possibility of using possum excreta surveys to predict the risk of disease occurrence in humans.

Methods: We thus established a highly structured 12-month possum excreta surveillance program across an area of 350 km2 in the Mornington Peninsula area 70 km south of Melbourne, Australia. The primary objective of our study was to assess using statistical modelling if M. ulcerans surveillance of possum excreta provided useful information for predicting future human BU case locations.

Results: Over two sampling campaigns in summer and winter, we collected 2282 possum excreta specimens of which 11% were PCR positive for M. ulcerans-specific DNA. Using the spatial scanning statistical tool SaTScan, we observed non-random, co-correlated clustering of both M. ulcerans positive possum excreta and human BU cases. We next trained a statistical model with the Mornington Peninsula excreta survey data to predict the future likelihood of human BU cases occurring in the region. By observing where human BU cases subsequently occurred, we show that the excreta model performance was superior to a null model trained using the previous year's human BU case incidence data (AUC 0.66 vs 0.55). We then used data unseen by the excreta-informed model from a new survey of 661 possum excreta specimens in Geelong, a geographically separate BU endemic area to the southwest of Melbourne, to prospectively predict the location of human BU cases in that region. As for the Mornington Peninsula, the excreta-based BU prediction model outperformed the null model (AUC 0.75 vs 0.50) and pinpointed specific locations in Geelong where interventions could be deployed to interrupt disease spread.

Conclusions: This study highlights the One Health nature of BU by confirming a quantitative relationship between possum excreta shedding of M. ulcerans and humans developing BU. The excreta survey-informed modeling we have described will be a powerful tool for efficient targeting of public health responses to stop BU.

Funding: This research was supported by the National Health and Medical Research Council of Australia and the Victorian Government Department of Health (GNT1152807 and GNT1196396).

Data availability

The computer code and source data used in this study are available here: https://github.com/abuultjens/Possum_scat_survey_predict_human_BU.

Article and author information

Author details

  1. Koen Vandelannoote

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    For correspondence
    kvandelannoote@pasteur-kh.org
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew H Buultjens

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5984-1328
  3. Jessica L Porter

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Velink

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. John R Wallace

    Department of Biology, Millersville University, Millersville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kim R Blasdell

    CSIRO Health and Biosecurity, Geelong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Dunn

    CSIRO Health and Biosecurity, Geelong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Victoria Boyd

    CSIRO Health and Biosecurity, Geelong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Janet AM Fyfe

    Doherty Institute for Infection and Immunity, Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Ee Laine Tay

    Health Protection branch, Department of Healt, Victoria, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul DR Johnson

    North Eastern Public Health Unit, Austin Health, Heidelberg, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Saras M Windecker

    School of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4870-8353
  13. Nick Golding

    Spatial Ecology and Epidemiology Group, Curtin University, Bentley, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8916-5570
  14. Timothy P Stinear

    Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
    For correspondence
    tstinear@unimelb.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0150-123X

Funding

National Health and Medical Research Council (GNT1152807)

  • Timothy P Stinear

National Health and Medical Research Council (GNT1196396)

  • Timothy P Stinear

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical approval for the use in this study of de-identified human BU case location, aggregated at mesh block level, was obtained from the Victorian Government Department of Health Human Ethics Committee under HREC/54166/DHHS-2019-179235(v3), "Spatial risk map of Buruli ulcer infection in Victoria".

Copyright

© 2023, Vandelannoote et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,235
    views
  • 134
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Koen Vandelannoote
  2. Andrew H Buultjens
  3. Jessica L Porter
  4. Anita Velink
  5. John R Wallace
  6. Kim R Blasdell
  7. Michael Dunn
  8. Victoria Boyd
  9. Janet AM Fyfe
  10. Ee Laine Tay
  11. Paul DR Johnson
  12. Saras M Windecker
  13. Nick Golding
  14. Timothy P Stinear
(2023)
Statistical modelling based on structured surveys of Australian native possum excreta harbouring Mycobacterium ulcerans predicts Buruli ulcer occurrence in humans
eLife 12:e84983.
https://doi.org/10.7554/eLife.84983

Share this article

https://doi.org/10.7554/eLife.84983

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Amanda C Perofsky, John Huddleston ... Cécile Viboud
    Research Article

    Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Rashmi Sukumaran, Achuthsankar S Nair, Moinak Banerjee
    Research Article

    Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.