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Abstract In this work, we expand the normative model repository introduced in Rutherford et 
al., 2022a to include normative models charting lifespan trajectories of structural surface area and 
brain functional connectivity, measured using two unique resting-state network atlases (Yeo-17 and 
Smith-10), and an updated online platform for transferring these models to new data sources. We 
showcase the value of these models with a head-to-head comparison between the features output 
by normative modeling and raw data features in several benchmarking tasks: mass univariate group 
difference testing (schizophrenia versus control), classification (schizophrenia versus control), and 
regression (predicting general cognitive ability). Across all benchmarks, we show the advantage of 
using normative modeling features, with the strongest statistically significant results demonstrated 
in the group difference testing and classification tasks. We intend for these accessible resources to 
facilitate the wider adoption of normative modeling across the neuroimaging community.

Editor's evaluation
This is a rigorous and compelling extension of previous normative modeling work. The current study 
demonstrates that normative models incorporating lifespan trajectories of structural and functional 
connectivity provide a strong basis for brain imaging studies across a range of tasks including, 
univariate group difference assessment, classification, and building regression models. The work is 
important, rigorous and a valuable contribution to the field.

Introduction
Normative modeling is a framework for mapping population-level trajectories of the relation-
ships between health-related variables while simultaneously preserving individual-level informa-
tion (Marquand et al., 2016a; Marquand et al., 2016b; Rutherford et al., 2022b). Health-related 
variables is an intentionally inclusive and broad definition that may involve demographics (i.e. age 
and gender), simple (i.e. height and weight), or complex (i.e. brain structure and function, genetics) 
biological measures, environmental factors (i.e. urbanicity, pollution), self-report measures (i.e. social 
satisfaction, emotional experiences), or behavioral tests (i.e. cognitive ability, spatial reasoning). 
Charting the relationships, as mappings between a covariate (e.g. age) and response variable (e.g. 

RESEARCH ADVANCE

*For correspondence: 
saige.rutherford@donders.ru.nl
†These authors contributed 
equally to this work

Competing interest: See page 
14

Funding: See page 14

Preprinted: 15 November 2022
Received: 28 November 2022
Accepted: 10 March 2023
Published: 13 March 2023

Reviewing Editor: Chris I Baker, 
National Institute of Mental 
Health, United States

‍ ‍ Copyright Rutherford et al. 
This article is distributed under 
the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.85082
mailto:saige.rutherford@donders.ru.nl
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Rutherford et al. eLife 2023;12:e85082. DOI: https://​doi.​org/​10.​7554/​eLife.​85082 � 2 of 24

brain measure) in a reference population creates a coordinate system that defines the units in which 
humans vary. Placing individuals into this coordinate system creates the opportunity to characterize 
their profiles of deviation. While this is an important aspect of normative modeling, it is usually just the 
first step, i.e., you are often interested in using the outputs of normative models in downstream anal-
yses to detect case-control differences, stratification, or individual statistics. This framework provides 
a platform for such analyses as it effectively translates diverse data to a consistent scale, defined with 
respect to population norms.

Normative modeling has seen widespread use spanning diverse disciplines. The most well-known 
example can be found in pediatric medicine, where conventional growth charts are used to map 
the height, weight, and head circumference trajectories of children (Borghi et al., 2006). Under the 
neuroscience umbrella, generalizations of this approach have been applied in the fields of psychiatry 
(Floris et al., 2021; Madre et al., 2020; Wolfers et al., 2015; Wolfers et al., 2017; Wolfers et al., 
2018; Wolfers et al., 2020; Wolfers et al., 2021; Zabihi et al., 2019; Zabihi et al., 2020), neurology 
(Itälinna et al., 2022; Verdi et al., 2021), developmental psychology (Holz et al., 2022; Kjelkenes 
et al., 2022), and cognitive neuroscience (Marquand et al., 2017). Throughout these numerous appli-
cations, normative models have exposed the shortcomings of prior case-control frameworks, i.e., 
that they rely heavily on the assumption, there is within-group homogeneity. This case versus control 
assumption is often an oversimplification, particularly in psychiatric diagnostic categories, where the 
clinical labels used to place individuals into group categories are often unreliable, poorly measured, 
and may not map cleanly onto underlying biological mechanisms (Cai et al., 2020; Cuthbert and 
Insel, 2013; Flake and Fried, 2020; Insel et al., 2010; Linden, 2012; Loth et al., 2021; Michelini 
et al., 2021; Moriarity et al., 2022; Moriarity and Alloy, 2021; Nour et al., 2022; Sanislow, 2020; 
Zhang et al., 2021). Correspondingly, traditional analysis techniques for modeling case versus control 
effects have often led to null findings (Winter et al., 2022) or significant but very small clinically mean-
ingless differences. These effects are furthermore frequently aspecific to an illness or disorder (Baker 
et al., 2019; Goodkind et al., 2015; McTeague et al., 2017; Sprooten et al., 2017) and inconsis-
tent or contradictory (Filip et al., 2022; Lee et al., 2007; Pereira-Sanchez and Castellanos, 2021) 
yielding questionable clinical utility (Etkin, 2019; Mottron and Bzdok, 2022).

In addition to the applications of normative modeling, there is also active technical development 
(Dinga et al., 2021; Fraza et al., 2022; Fraza et al., 2021; Kia et al., 2020; Kia et al., 2021; Kia and 
Marquand, 2018; Kumar, 2021). Due to the growing popularity of normative modeling and in recog-
nition of the interdisciplinary requirements using and developing this technology (clinical domain 
knowledge, statistical expertise, data management, and computational demands), research interests 
have been centered on open science, and inclusive, values (Gau et al., 2021; Levitis et al., 2021) that 
support this type of interdisciplinary scientific work. These values encompass open-source software, 
sharing pre-trained big data models (Rutherford et al., 2022a), online platforms for communication 
and collaboration, extensive documentation, code tutorials, and protocol-style publications (Ruther-
ford et al., 2022b).

The central contribution of this paper is to, first, augment the models in Rutherford et al., 2022a, 
with additional normative models for surface area and functional connectivity, which are made open 
and accessible to the community. Second, we comprehensively evaluate the utility of normative models 
for a range of downstream analyses, including (1) mass univariate group difference testing (schizo-
phrenia versus controls), (2) multivariate prediction – classification (using support vector machines 
to distinguish schizophrenia from controls), and (3) multivariate prediction – regression (using prin-
cipal component regression (PCR) to predict general cognitive ability) (Figure 1). Within these bench-
marking tasks, we show the benefit of using normative modeling features compared to using raw 
features. We aim for these benchmarking results, along with our publicly available resources (code, 
documentation, tutorials, protocols, community forum, and website for running models without using 
any code). Combined this provides practical utility as well as scientific evidence for embracing norma-
tive modeling.

https://doi.org/10.7554/eLife.85082
https://gitter.im/predictive-clinical-neuroscience/community
https://pcntoolkit.readthedocs.io/en/latest/
https://pcntoolkit.readthedocs.io/en/latest/pages/BLR_normativemodel_protocol.html
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Methods
Dataset selection and scanner parameters
Datasets used for training the functional normative models closely match the sample included in 
Rutherford et al., 2022a, apart from sites that did not collect or were unable to share functional data. 
Evaluation of the functional normative models was performed in a test set (20% of the training set) and 
in two transfer sets that are comprised of scanning sites not seen by the model during training (clinical 
and healthy controls). The full details of the data included in the functional normative model training 
can be found in Appendix 1 and Supplementary file 1. We leverage several datasets for the bench-
marking tasks, the Human Connectome Project Young Adult study (HCP) (Van Essen et al., 2013), 
The Center for Biomedical Research Excellence (COBRE) (Aine et al., 2017; Sui et al., 2018), and 
the University of Michigan SchizGaze (UMich) (Tso et al., 2021; Table 1). The HCP data was chosen 
because it is widely used by the neuroscience community, especially for prediction studies. Also, prior 
studies using HCP data have shown promising results for predicting general cognitive ability (Sripada 

Figure 1. Overview of workflow.  (A) Datasets included the Human Connectome Project (young adult) study, the University of Michigan schizophrenia 
study, and the Center for Biomedical Research Excellence (COBRE) schizophrenia study. (B) Openly shared, pre-trained on big data, normative models 
were estimated for large-scale resting-state functional brain networks and cortical thickness. (C) Deviation (Z) scores and raw data, for both functional 
and structural data, were input into three benchmarking tasks: 1. group difference testing, 2. support vector machine (SVM) classification, and 3. 
regression (predicting cognition). (D) Evaluation metrics were calculated for each benchmarking task. These metrics were calculated for the raw data 
models and the deviation score models. The difference between each models’ performance was calculated for both functional and structural modalities.

Table 1. Dataset inclusion and sample overview.

Cortical Thickness Functional Networks

Study Benchmark Task N
Age

(m, s.d.) F, M (%) N
Age

(m, s.d.) F, M (%)

HCP Regression – predicting cognition 529 28.8, 3.6 53.4, 46.6 499 28.9, 3.6 54.3, 45.6

COBRE Classification & Group Difference 124 37.0, 12.7 24.2, 75.8 121 35.4, 12.4 23.1, 76.9

UMich Classification & Group Difference 89 32.6, 9.6 50.6, 49.3 87 33.0, 10.1 50.6, 49.3

https://doi.org/10.7554/eLife.85082
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et al., 2020a). The HCP data was used in the prediction – regression benchmarking task. The COBRE 
and UMich datasets are used in the classification and group difference testing benchmarking tasks. 
Inclusion criteria across all the datasets were that the participant has necessary behavioral and demo-
graphic variables, as well as high-quality MRI data. High-quality was defined for structural images as 
in our prior work (Rutherford et al., 2022a), namely as the lack of any artifacts such as ghosting or 
ringing, that Freesurfer surface reconstruction was able to run successfully, and that the Euler number 
calculated from Freesurfer (Klapwijk et al., 2019), which is a proxy metric for scan quality, was below 
a chosen threshold (rescaled Euler  <10) (Kia et  al., 2022). High-quality functional data followed 
recommended practices (Siegel et  al., 2017) and was defined as having a high-quality structural 
MRI (required for co-registration and normalization) and at least 5 min of low motion data (framewise 
displacement <0.5 mm). The HCP, COBRE, and UMich functional and structural data were manually 
inspected for quality at several tasks during preprocessing (after co-registration of functional and 
structural data and after normalization of functional data to MNI template space).

All subjects provided informed consent. Subject recruitment procedures and informed consent 
forms, including consent to share de-identified data, were approved by the corresponding univer-
sity institutional review board where data were collected. The scanning acquisition parameters were 
similar but varied slightly across the studies, details in Appendix 1.

Demographic, cognition, and clinical diagnosis variables
Demographic variables included age, sex, and MRI scanner site. A latent variable of cognition, referred 
to as General Cognitive Ability (GCA), was created for the regression benchmarking task using HCP 
data. The HCP study administered the NIHToolbox Cognition battery (Gershon et al., 2010), and a 
bi-factor model was fit (for further modeling details and assessment of model fit see Sripada et al., 
2020b). For COBRE and UMich studies, clinical diagnosis of schizophrenia was confirmed using the 
Structured Clinical Interview used for DSM-5 disorders (SCID) (First, 1956). All subjects were screened 
and excluded if they had: a history of neurological disorder, mental retardation, severe head trauma, 
or substance abuse/dependence within the last 6 (UMich) or 12 months (COBRE), were pregnant/
nursing (UMich), or had any contraindications for MRI.

Image preprocessing
Structural MRI data were preprocessed using the Freesurfer (version 6.0) recon-all pipeline (Dale 
et al., 1999; Fischl et al., 2002; Fischl and Dale, 2000) to reconstruct surface representations of the 
volumetric data. Estimates of cortical thickness and subcortical volume were then extracted (aparc 
and aseg) for each subject from their Freesurfer output folder, then merged, and formatted into a csv 
file (rows = subjects, columns = brain ROIs). We also share models of surface area, extracted in the 
same manner as the cortical thickness data from a similar dataset (described in Supplementary file 2).

Resting-state data were preprocessed separately for each study using fMRIPrep Esteban et al., 
2019; however, similar steps were done to all resting-state data following best practices including 
field-map correction of multi-band data, slice time correction (non-multi-band data), co-registration of 
functional to structural data, normalization to MNI template space, spatial smoothing (2 x voxel size, 
4–6 mm), and regression of nuisance confounders (WM/CSF signals, non-aggressive AROMA compo-
nents [Pruim et al., 2015a; Pruim et al., 2015b], linear and quadratic effects of motion).

Large-scale brain networks from the 17-network Yeo atlas (Yeo et al., 2011) were then extracted 
and between-network connectivity was calculated using full correlation. We also shared functional 
normative models using the Smith-10 ICA-based parcellation (Smith et  al., 2009) which includes 
subcortical coverage, however, the benchmarking tasks only use the Yeo-17 functional data. Fisher 
r-to-z transformation was performed on the correlation matrices. If there were multiple functional 
runs, connectivity matrices were calculated separately for each run then all runs for a subject were 
averaged. For further details regarding the preparation of the functional MRI data, see Appendix 1.

Normative model formulation
After dataset selection and preprocessing, normative models were estimated using the Predictive 
Clinical Neuroscience toolkit (PCNtoolkit), an open-source python package for normative modeling 
(Marquand et al., 2021). For the structural data, we used a publicly shared repository of pre-trained 
normative models that were estimated on approximately 58,000 subjects using a warped Bayesian 

https://doi.org/10.7554/eLife.85082
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Linear Regression algorithm (Fraza et al., 2021). The covariates used to train the structural norma-
tive models included age, sex, data quality metric (Euler number), and site. Normative models of 
surface area were also added to the same repository Supplementary file 2. Model fit was established 
using explained variance, mean standardized log loss, skew, and kurtosis. The outputs of normative 
modeling also include a Z-score, or deviation score, for all brain regions and all subjects. The deviation 
score represents where the individual is in comparison to the population the model was estimated on, 
where a positive deviation score corresponds to the greater cortical thickness or subcortical volume 
than average, and a negative deviation score represents less cortical thickness or subcortical volume 
than average. The deviation (Z) scores that are output from the normative model are the features input 
for the normative modeling data in the benchmarking analyses.

In addition to normative models of brain structure, we also expanded our repository by estimating 
normative models of brain functional connectivity (resting-state brain networks, Yeo-17 and Smith-10) 
using the same algorithm (Bayesian Linear Regression) as the structural models. The covariates used to 
train the functional normative models were similar to the structural normative models which included 
age, sex, data quality metric (mean framewise displacement), and site. Functional normative models 
were trained on a large multi-site dataset (approx. N=22,000) and evaluated in several test sets using 
explained variance, mean standardized log loss, skew, and kurtosis. The training dataset excluded 
subjects with any known psychiatric diagnosis. We transferred the functional normative models to 
the datasets used in this work for benchmarking (Table 1) to generate deviation (Z) scores. HCP was 
included in the initial training (half of the sample was held out in the test set), while the UMich and 
COBRE datasets were not included in the training and can be considered as examples of transfer to 
new, unseen sites.

“Raw” input data
The data that we compare the output of normative modeling to, referred to throughout this work as 
‘raw’ input data, is simply the outputs of traditional preprocessing methods for structural and func-
tional MRI. For structural MRI, this corresponds to the cortical thickness files that are output after 
running the Freesurfer recon-all pipeline. We used the aparcstats2table and asegstats2table func-
tions to extract the cortical thickness and subcortical volume from each region in the Destrieux atlas 
and Freesurfer subcortical atlas. For functional MRI, tradition data refers to the Yeo17 brain network 
connectomes which were extracted from the normalized, smoothed, de-noised functional time-series. 
The upper triangle of each subject’s symmetric connectivity matrix was vectorized, where each cell 
represents a unique between-network connection. For clarification, we also note that the raw input 
data is the starting point of the normative modeling analysis, or in other words, the raw input data 
is the response variable or independent (Y) variable that is predicted from the vector of covariates 
when estimating the normative model. Before entering into the benchmarking tasks, to create a fair 
comparison between raw data and deviation scores, nuisance variables including sex, site, linear and 
quadratic effects of age and head motion (only for functional models) were regressed out of the raw 
data (structural and functional) using least squares regression.

Benchmarking
The benchmarking was performed in three separate tasks, mass univariate group difference testing, 
multivariate prediction – classification, and multivariate prediction – regression, described in further 
detail below. In each benchmarking task, a model was estimated using the deviation scores as input 
features and then estimated again using the raw data as the input features. For task one, group 
difference testing, the models fit in a univariate approach meaning there was one test performed for 
each brain feature, and for tasks 2 and 3, classification and regression, the models fit in a multivariate 
approach. After each model was fit, the performance metrics were evaluated and the difference in 
performance between the deviation score and raw data models was calculated, again described in 
more detail below.

Task one: Mass univariate group difference testing
Mass univariate group difference (schizophrenia versus control) testing was performed across all brain 
regions. Two sample independent t-tests were estimated and run on the data using the SciPy python 
package (Virtanen et al., 2020). After addressing multiple comparison corrections, brain regions with 

https://doi.org/10.7554/eLife.85082
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FDR corrected p<.05 were considered significant and the total number of regions displaying statisti-
cally significant group differences was counted.

For the purpose of comparing group difference effects to individual differences, we also summa-
rized the individual deviation maps and compare this map to the group difference map. Individual 
deviation maps were summarized by counting the number of individuals with ‘extreme’ deviations 
(Z>2 or Z<–2) at a given brain region or network connectivity pair. This was done separately for posi-
tive and negative deviations and for each group and visualized qualitatively (Figure 4B). To quantify 
the individual difference maps in comparison to group differences, we performed a Mann-Whitney 
U-test on the count of extreme deviations in each group. The U-test was used because the distribu-
tion of count data is skewed (non-Gaussian) which the U-test is designed to account for (Mann and 
Whitney, 1947).

Task two: Multivariate prediction – classification
Support vector machine is a commonly used algorithm in machine learning studies and performs well 
in classification settings. A support vector machine constructs a set of hyper-planes in a high dimen-
sional space and optimizes to find the hyper-plane that has the largest distance, or margin, to the 
nearest training data points of any class. A larger margin represents better linear separation between 
classes and will correspond to a lower error of the classifier in new samples. Samples that lie on the 
margin boundaries are also called ‘support vectors.’ The decision function provides per-class scores 
than can be turned into probabilities estimates of class membership. We used Support vector classifi-
cation (SVC) with a linear kernel as implemented in the scikit-learn package (version 1.0.9) (Pedregosa 
et al., 2011) to classify a schizophrenia group from a control group. These default hyperparameters 
were chosen based on following an example of SVC provided by scikit-learn, however, similar results 
were obtained using a radial basis function kernel (not shown). This classification setting of distin-
guishing schizophrenia from a control group was chosen due to past work showing the presence of 
both case-control group differences and individual differences (Wolfers et al., 2018). The evaluation 
metric for the classification task is an area under the receiving operator curve (AUC) averaged across 
all folds within a 10-fold cross-validation framework.

Task three: Multivariate prediction – regression
A linear regression model was implemented to predict a latent variable of cognition (general cognitive 
ability) in the HCP dataset. Brain Basis Set (BBS) is a predictive modeling approach developed and 
validated in previous studies (Sripada et al., 2019; Sripada et al., 2019); see also studies by Wager 
and colleagues for a broadly similar approach (Chang et al., 2015; Wager et al., 2013; Woo et al., 
2017). BBS is similar to principal component regression (Jolliffe, 1982; Park, 1981), with an added 
predictive element. In the training set, PCA is performed on a n_subjects by p_brain_features matrix 
using the PCA function from scikit-learn in Python, yielding components ordered by descending 
eigenvalues. Expression scores are then calculated for each of the k components for each subject by 
projecting each subject’s feature matrix onto each component. A linear regression model is then fit 
with these expression scores as predictors and the phenotype of interest (general cognitive ability) 
as the outcome, saving B, the k x 1 vector of fitted coefficients, for later use. In a test partition, the 
expression scores for each of the k components for each subject are again calculated. The predicted 
phenotype for each test subject is the dot product of B learned from the training partition with the 
vector of component expression scores for that subject. We set k=15 in all models, following prior 
work (Rutherford et al., 2020). The evaluation metric for the regression task is the mean squared 
error of the prediction in the test set.

Benchmarking: Model comparison evaluation
Evaluation metrics of each task (count, AUC, and MSE) were calculated independently for both devi-
ation score (Z) and raw data (R) models. Higher AUC, higher count, and lower MSE represent better 

https://doi.org/10.7554/eLife.85082
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py
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model performance. We then have a statistic of interest that is observed, theta, which represents the 
difference between deviation and raw data model performance.

	﻿‍ θtask 1 = Countz − CountR‍�

	﻿‍ θtask 2 = AUCz − AUCR‍�

	﻿‍ θtask 3 = MSER − MSEz‍�

To assess whether ‍θ‍ is more likely than would be expected by chance, we generated the null distri-
bution for theta using permutations. Within one iteration of the permutation framework, a random 
sample is generated by shuffling the labels (In tasks 1 & 2 we shuffle SZ/HC labels, and in task three we 
shuffle cognition labels). Then this sample is used to train both deviation and raw models, ensuring the 
same row shuffling scheme across both deviation score and raw data datasets (for each permutation 
iteration). The shuffled models are evaluated, and we calculate ‍θperm‍ for each random shuffle of labels. 
We set n_permutations =10,000 and use the distribution of ‍θperm‍ to calculate a p-value for ‍θobserved‍ at 
each benchmarking task. The permuted p-value is equal to ‍(C + 1)/(n_permutations + 1)‍. Where C is the 
number of permutations where ‍θperm >= θobserved‍. The same evaluation procedure described here 293 
(including permutations) was performed for both cortical thickness and functional network modalities.

Figure 2. Functional brain network normative modeling. (A) Age distribution per scanning site in the train, test, and transfer data partitions and across 
the full sample (train +test). (B) The Yeo-17 brain network atlas is used to generate connectomes. Between network connectivity was calculated for all 
17 networks, resulting in 136 unique network pairs that were each individually input into a functional normative model. (C) The explained variance in the 
controls test set (N=7244) of each of the unique 136 network pairs of the Yeo-17 atlas. Networks were clustered for visualization to show similar variance 
patterns.

https://doi.org/10.7554/eLife.85082
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Results
Sharing of functional big data normative models
The first result of this work is the evaluation of the functional big data normative models (Figure 2). 
These models build upon the work of Rutherford et  al., 2022a in which we shared population-
level structural normative models charting cortical thickness and subcortical volume across the human 
lifespan (ages 2–100). The datasets used for training the functional models, the age range of the 
sample, and the procedures for evaluation closely resemble the structural normative models. The 
sample size (approx. N=22,000) used for training and testing the functional models is smaller than the 
structural models (approx. N=58,000) due to data availability (i.e. some sites included in the structural 
models did not collect functional data or could not share the data) and the quality control procedures 
(see methods). However, despite the smaller sample size of the functional data reference cohort, the 
ranges of the evaluation metrics are quite similar to the structural models (Figure 3). Most impor-
tantly, we demonstrate the opportunity to transfer the functional models to new samples, or sites that 
were not included in the original training and testing sets, referred to as the transfer set, and show 
that transfer works well in a clinical sample (Figure 3 - transfer patients) or sample of healthy controls 
(Figure 3 - transfer controls).

Figure 3. Functional normative model evaluation metrics. (A) Explained variance per network pair across the test set (top), and both transfer sets 
(patients – middle, controls – bottom). Networks were clustered for visualization to show similar variance patterns. (B) The distribution across all models 
of the evaluation metrics (columns) in the test set (top row) and both transfer sets (middle and bottom rows). Higher explained variance (closer to one), 
more negative MSLL, and normally distributed skew and kurtosis correspond to better model fit.

https://doi.org/10.7554/eLife.85082
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Normative modeling shows larger effect sizes in mass univariate group 
differences
The strongest evidence for embracing normative modeling can be seen in the benchmarking task 
one group difference (schizophrenia versus controls) testing results (Table 2, Figure 4). In this appli-
cation, we observe numerous group differences in both functional and structural deviation score 
models after applying stringent multiple comparison corrections (FDR p-value <0.05). The strongest 
effects (HC>SZ) in the structural models were located in the right hemisphere lateral occipitotem-
poral sulcus (S_oc_temp_lat) thickness, right hemisphere superior segment of the circular sulcus of 
the insula (S_circular_ins_sup) thickness, right Accumbens volume, left hemisphere Supramarginal 
gyrus (G_pariet_inf_Supramar) thickness, and left hemisphere Inferior occipital gyrus (O3) and sulcus 
(G_and_S_occipital_inf) thickness. For the functional models, the strongest effects (HC>SZ t-statistic) 
were observed in the between-network connectivity of Visual A-Default B, Dorsal Attention A-Control 
B, and Visual B-Limbic A. In the raw data models, which were residualized of covariates including site, 
sex, and linear +quadratic effects of age and head motion (only included for functional models), we 
observe no group differences after multiple comparison corrections. The lack of any group differences 
in the raw data was initially a puzzling finding due to reported group differences in the literature 
(Arbabshirani et al., 2013; Cetin et al., 2015; Cetin et al., 2016; Cheon et al., 2022; Dansereau 
et al., 2017; Howes et al., 2023; Lei et al., 2020a; Lei et al., 2020b; Meng et al., 2017; Rahim et al., 
2017; Rosa et al., 2015; Salvador et al., 2017; Shi et al., 2021; van Erp et al., 2018; Venkataraman 
et al., 2012; Wannan et al., 2019; Yu et al., 2012), however, upon the investigation of the uncor-
rected statistical maps, we observe that the raw data follows a similar pattern to the deviation group 
difference map (Figure 4), but these results do not withstand multiple comparison correction. For 
full statistics including the corrected and uncorrected p-values and test-statistic of every ROI, see 
Supplementary files 3 and 4. While there have been reported group differences between controls 
and schizophrenia in cortical thickness and resting state brain networks in the literature, these studies 
have used different datasets (of varying sample sizes), different preprocessing pipelines and software 
versions, and different statistical frameworks (Castro et al., 2016; Di Biase et al., 2019; Dwyer et al., 
2018; Geisler et al., 2015; Marek et al., 2022; Sui et al., 2015; van Haren et al., 2011). When 
reviewing the literature of studies on SZ versus HC group difference testing, we did not find any study 
that performed univariate t-testing and multiple comparison correction at the ROI-level or network-
level, rather most works used statistical tests and multiple comparison correction at the voxel-level or 
edge-level. Combined with the known patterns of heterogeneity present in schizophrenia disorder (Lv 
et al., 2021; Wolfers et al., 2018), it is unsurprising that our results differ from past studies.

The qualitative (Figure 4B) and quantitative (Figure 4C) comparison of the group difference maps 
with the individual difference maps showed the additional benefit of normative modeling - that it can 

Table 2. Benchmarking results.
Deviation (Z) score column shows the performance using deviation scores (AUC for classification, the total number of regions 
with significant group differences FDR-corrected p<0.05 for case versus control, mean squared error for regression), Raw column 
represents the performance when using the raw data, and Difference column shows the difference between the deviation scores and 
raw data (Deviation - Raw). Higher AUC, higher count, and lower MSE represent better performance. Positive values in the Difference 
column show that there is better performance when using deviation scores as input features for classification and group difference 
tasks, and negative performance difference values for the regression task show there is a better performance using the deviation 
scores. *=statistically significant difference between Z and Raw established using permutation testing (10 k perms).

Benchmark Modality
Normative Modeling
Deviation Score Data Raw Data

Performance
Difference

Group Difference Cortical thickness 117/187 0/187 117*

Group Difference Functional Networks 50/136 0/136 50*

Classification Cortical thickness 0.87 0.43 0.44*

Classification Functional Networks 0.69 0.68 0.01

Regression Cortical thickness 0.699 0.708 –0.008

Regression Functional Networks 0.877 0.890 –0.013

https://doi.org/10.7554/eLife.85082
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Figure 4. Group difference testing evaluation. (A) Significant group differences in the deviation score models, (top left) functional brain network 
deviation, and (top right) cortical thickness deviation scores. The raw data, either cortical thickness or functional brain networks (residualized of sex 
and linear/ quadratic effects of age and motion (mean framewise displacement)) resulted in no significant group differences after multiple comparison 
corrections. Functional networks were clustered for visualization to show similar variance patterns. (B) There are still individual differences observed that 
do not overlap with the group difference map, showing the benefit of normative modeling, which can detect both group and individual differences 
through proper modeling of variation. Functional networks were clustered for visualization to show similar variance patterns. (C) There are significant 
group differences in the summaries (count) of the individual difference maps (panel B).

https://doi.org/10.7554/eLife.85082
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reveal subtle individual differences which are lost when only looking at group means. The individual 
difference maps show that at every brain region or connection, there is at least one person, across 
both patient and clinical groups, that has an extreme deviation. We found significant differences 
in the count of negative deviations (SZ >HC) for both cortical thickness (p=0.0029) and functional 
networks (p=0.013), and significant differences (HC >SZ) in the count of positive cortical thickness 
(p=0.0067).

Figure 5. Benchmark task two multivariate prediction – Classification evaluation. (A) Support vector classification (SVC) using cortical thickness deviation 
scores as input features (most accurate model). (B) SVC using cortical thickness (residualized of sex and linear/quadratic effects of age) as input features. 
(C) SVC using functional brain network deviation scores as input features. (D) SVC using functional brain networks (residualized of sex and linear/ 
quadratic effects of age and motion (mean framewise displacement)) as input features.

https://doi.org/10.7554/eLife.85082


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Rutherford et al. eLife 2023;12:e85082. DOI: https://​doi.​org/​10.​7554/​eLife.​85082 � 12 of 24

Normative modeling shows highest classification performance using 
cortical thickness
In benchmarking task two, we classified schizophrenia versus controls using SVC within a 10-fold cross-
validation framework (Table 2, Figure 5). The best-performing model used cortical thickness deviation 
scores to achieve a classification accuracy of 87% (AUC = 0.87). The raw cortical thickness model 
accuracy was indistinguishable from chance accuracy (AUC = 0.43). The AUC performance difference 
between the cortical thickness deviation and raw data models was 0.44, and this performance differ-
ence was statistically significant. The functional models, both deviation scores (0.69) and raw data 
(0.68) were more accurate than chance accuracy, however, the performance difference (i.e. improve-
ment in accuracy using the deviation scores) was small (0.01) and was not statistically significant.

Normative modeling shows modest performance improvement in 
predicting cognition
In benchmarking task three we fit multivariate predictive models in a held-out test set of healthy 
individuals in the Human Connectome Project young-adult study to predict general cognitive ability 
(Table 2). The evidence provided by this task weakly favors the deviation score models. The most 
accurate (lowest mean squared error) model was the deviation cortical thickness model (MSE = 0.699). 
However, there was only an improvement of 0.008 in the deviation score model compared to the 
raw data model (MSE = 0.708) and this difference was not statistically significant. For the functional 
models, both the deviation score (MSE = 0.877) and raw data (MSE = 0.890) models were less accu-
rate than the structural models and the difference between them (0.013) was also not statistically 
significant.

Discussion
This work expands the available open-source tools for conducting normative modeling analyses and 
provides clear evidence for why normative modeling should be utilized by the neuroimaging commu-
nity (and beyond). We updated our publicly available repository of pre-trained normative models 
to include a new MRI imaging modality (models of resting-state functional connectivity extracted 
from the Yeo-17 and Smith-10 brain network atlases) and demonstrate how to transfer these models 
to new data sources. The repository includes an example transfer dataset and in addition, we have 
developed a user-friendly interface (https://pcnportal.dccn.nl/) that allows transferring the pre-trained 
normative models to new samples without requiring any programming. Next, we compared the 
features that are output from normative modeling (deviation scores) against ‘raw’ data features across 
several benchmarking tasks including univariate group difference testing (schizophrenia vs. control), 
multivariate prediction – classification (schizophrenia vs. control), and multivariate prediction – regres-
sion (predicting general cognitive ability). We found across all benchmarking tasks there were minor 
(regression) to strong (group difference testing) benefits of using deviation scores compared to the 
raw data features.

The fact that the deviation score models perform better than the raw data models confirms the 
utility of placing individuals into reference models. Our results show that normative modeling can 
capture population trends, uncover clinical group differences, and preserve the ability to study indi-
vidual differences. We have some intuition on why the deviation score models perform better on 
the benchmarking tasks than the raw data. With normative modeling, we are accounting for many 
sources of variance that are not necessarily clinically meaningful (i.e. site) and we are able to capture 
clinically meaningful information within the reference cohort perspective. The reference model helps 
beyond just removing confounding variables such as scanner noise because we show that even when 
removing the nuisance covariates (age, sex, site, head motion) from the raw data, the normative 
modeling features still perform better on the benchmarking tasks.

Prior works on the methodological innovation and application of normative modeling Kia et al., 
2018; Kia et al., 2020; Kia et al., 2021; Kia and Marquand, 2018 have focused on the beginning 
foundational steps of the framework (i.e. data selection and preparation, algorithmic implementa-
tion, and carefully evaluating out of sample model performance). However, the framework does not 
end after the model has been fit to the data (estimation step) and performance metrics have been 
established (evaluation step). Transferring the models to new samples, interpretation of the results, 

https://doi.org/10.7554/eLife.85082
https://github.com/predictive-clinical-neuroscience/braincharts
https://pcnportal.dccn.nl/
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and potential downstream analysis are equally important steps, but they have received less attention. 
When it comes time to interpret the model outputs, it is easy to fall back into the case-control thinking 
paradigm, even after fitting a normative model to one’s data (which is supposed to be an alternative 
to case vs. control approaches). This is due in part to the challenges arising from the results existing in 
a very high dimensional space (~100 s to 1000 s of brain regions from ~100 s to 1000 s of subjects). 
There is a reasonable need to distill and summarize these high-dimensional results. However, it is 
important to remember there is always a trade-off between having a complex enough of a model to 
explain the data and dimensionality reduction for the sake of interpretation simplicity. This distillation 
process often leads back to placing individuals into groups (i.e. case-control thinking) and interpreting 
group patterns or looking for group effects, rather than interpreting results at the level of the indi-
vidual. We acknowledge the value and complementary nature of understanding individual variation 
relative to group means (case-control thinking) and clarify that we do not claim the superiority of 
normative modeling over case-control methods. Rather, our results from this work, especially in the 
comparisons of group difference map to individual difference maps (Figure 4), show that the outputs 
of normative modeling can be used to validate, refine, and further understand some of the inconsis-
tencies in previous findings from case-control literature.

There are several limitations of the present work. First, the representation of functional normative 
models may be surprising and concerning. Typically, resting-state connectivity matrices are calculated 
using parcellations containing between 100–1000 nodes and 5000–500,000 connections. However, 
the Yeo-17 atlas (Yeo et al., 2011) was specifically chosen because of its widespread use and the 
fact that many other (higher resolution) functional brain parcellations have been mapped to the Yeo 
brain networks (Eickhoff et al., 2018; Glasser et al., 2016; Gordon et al., 2016; Gordon et al., 
2017; Kong et al., 2019; Laumann et al., 2015; Power et al., 2011; Schaefer et al., 2018; Shen 
et al., 2013). There is an on-going debate about the best representation of functional brain activity. 
Using the Yeo-17 brain networks to model functional connectivity ignores important considerations 
regarding brain dynamics, flexible node configurations, overlapping functional modes, hard versus 
soft parcellations, and many other important issues. We have also shared functional normative models 
using the Smith-10 ICA-based parcellation, though did not repeat the benchmarking tasks using these 
data. Apart from our choice of parcellation, there are fundamental open questions regarding the 
nature of the brain’s functional architecture, including how it is defined and measured. While it is 
outside the scope of this work to engage in these debates, we acknowledge their importance and 
refer curious readers to a thorough review of functional connectivity challenges (Bijsterbosch et al., 
2020).

We would also like to expand on our prior discussion (Rutherford et al., 2022a) on the limitations 
of the reference cohort demographics, and the use of the word ‘normative.’ The included sample for 
training the functional normative models in this work, and the structural normative modeling sample in 
Rutherford et al., 2022a are most likely overrepresentative of European-ancestry (WEIRD population 
Henrich et al., 2010) due to the data coming from academic research studies, which do not match 
global population demographics. Our models do not include race or ethnicity as covariates due to 
data availability (many sites did not provide race or ethnicity information). Prior research supports the 
use of age-specific templates and ethnicity-specific growth charts (Dong et al., 2020). This is a major 
limitation that requires additional future work and should be considered carefully when transferring 
the model to diverse data (Benkarim et al., 2022; Greene et al., 2022; Li et al., 2022). The term 
‘normative model’ can be defined in other fields in a very different manner than ours (Baron, 2004; 
Colyvan, 2013; Titelbaum, 2021). We clarify that ours is strictly a statistical notion (normative = being 
within the central tendency for a population). Critically, we do not use normative in a moral or ethical 
sense, and we are not suggesting that individuals with high deviation scores require action or interven-
tion to be pulled toward the population average. Although in some cases this may be true, we in no 
way assume that high deviations are problematic or unhealthy (they may in fact represent compensa-
tory changes that are adaptive). In any case, we treat large deviations from statistical normality strictly 
as markers predictive of clinical states or conditions of interest.

There are many open research questions regarding normative modeling. Future research directions 
are likely to include: (1) further expansion of open-source pre-trained normative modeling reposito-
ries to include additional MRI imaging modalities such as task-based functional MRI and diffusion-
weighted imaging, other neuroimaging modalities such as EEG or MEG, and models that include 

https://doi.org/10.7554/eLife.85082
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other non-biological measures, (2) increase in the resolution of existing models (i.e. voxel, vertex, 
models of brain structure and higher resolution functional parcellations), (3) replication and refinement 
of the proposed benchmarking tasks in other datasets including hyperparameter tuning and different 
algorithm implementation, and improving the regression benchmarking task, and (4) including addi-
tional benchmarking tasks beyond the ones considered here.

There has been recent interesting work on ‘failure analysis’ of brain-behavior models (Greene 
et  al., 2022), and we would like to highlight that normative modeling is an ideal method for 
conducting this type of analysis. Through normative modeling, research questions such as ‘what 
are the common patterns in the subjects that are classified well versus those that are not classified 
well’ can be explored. Additional recent work (Marek et al., 2022) has highlighted important issues 
the brain-behavior modeling community must face, such as poor reliability of the imaging data, 
poor stability and accuracy of the predictive models, and the very large sample sizes (exceeding 
that of even the largest neuroimaging samples) required for accurate predictions. There has also 
been working showing that brain-behavior predictions are more reliable than the underlying func-
tional data (Taxali et al., 2021), and other ideas for improving brain-behavior predictive models are 
discussed in-depth here (Finn and Rosenberg, 2021; Rosenberg and Finn, 2022). Nevertheless, 
we acknowledge these challenges and believe that sharing pre-trained machine learning models 
and further development of transfer learning of these models could help further address these 
issues.

In this work, we have focused on the downstream steps of the normative modeling framework 
involving evaluation and interpretation, and how insights can be made on multiple levels. Through the 
precise modeling of different sources of variation, there is much knowledge to be gained at the level 
of populations, clinical groups, and individuals.
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Appendix 1
Functional MRI Acquisition Parameters
In the HCP study, four runs of resting state fMRI data (14.5 min each) were acquired on a Siemens 
Skyra 3 Tesla scanner using multi-band gradient-echo EPI (TR = 720ms, TE = 33ms, flip angle = 
52°, multiband acceleration factor = 8, 2 mm isotropic voxels, FOV = 208 × 180 mm, 72 slices, 
alternating RL/LR phase encode direction). T1 weighted scans were acquired with 3D MPRAGE 
sequence (TR = 2400ms, TE = 2.14ms, TI = 1000ms, flip angle = 8, 0.7 mm isotropic voxels, FOV 
= 224 mm, 256 sagittal slices) and T2 weighted scans were acquired with a SPACE sequence (TR = 
3200ms, TE = 565ms, 0.7 mm isotropic voxels, FOV = 224 mm, 256 sagittal slices). In the COBRE 
study, the T1 weighted acquisition is a multi-echo MPRAGE (MEMPR) sequence (1 mm isotropic). 
Resting state functional MRI data was collected with single-shot full k-space echo-planar imaging 
(EPI) (TR = 2000ms, TE = 29ms, FOV = 64 × 64, 32 slices in axial plane interleaved multi slice series 
ascending, voxel size = 3 × 3 x4 mm3). The University of Michigan SchizGaze study was collected in 
two phases with different parameters but using the same MRI machine (3.0T GE MR 750 Discovery 
scanner). In SchizGaze1 (N=47), functional images were acquired with a T2*-weighted, reverse spiral 
acquisition sequence (TR = 2000ms, 240 volumes (8 min), 3 mm isotropic voxels) and a T1-weighted 
image was acquired in the same prescription as the functional images to facilitate co-registration. In 
SchizGaze2 (N=68), functional images were acquired with a T2*-weighted multi-band EPI sequence 
(multi-band acceleration factor of 8, TR = 800ms, 453 volumes (6 min), 2.4 mm isotropic voxels) and 
T1w (MPRAGE) and T2w structural scans were acquired for co-registration with the functional data. 
In addition, field maps were acquired to correct for intensity and geometric distortions.

Functional MRI Preprocessing Methods
T1w images are corrected for intensity nonuniformity, reconstructed with recon-all (FreeSurfer), 
spatially normalized (ANTs), and segmented with FAST (FSL). For every BOLD run, data are co-
registered to the corresponding T1w reference, and the BOLD signal is sampled onto the subject’s 
surfaces with mri_vol2surf (FreeSurfer). A set of noise regressors are generated during the preceding 
steps that are used to remove a number of artifactual signals from the data during subsequent 
processing, and these noise regressors include: head-motion parameters (via MCFLIFT; FSL) 
framewise displacement and DVARS, and physiological noise regressors for use in component-based 
noise correction (CompCor). ICA-based denoising is implemented via ICA-AROMA and we compute 
‘non-aggressive’ noise regressors. Resting state connectomes are generated from the fMRIPrep 
processed resting state data using Nilearn, denoising using the noise regressors generated above, 
with orthogonalization of regressors to avoid reintroducing artifactual signals.

Functional Brain Networks Normative Modeling
Data from 40 sites were combined to create the initial full sample. These sites are described in 
detail in Supplementary file 1, including the sample size, age (mean and standard deviation), 
and sex distribution of each site. Many sites were pulled from publicly available datasets including 
ABCD, CAMCAN, CMI-HBN, HCP-Aging, HCP-Development, HCP-Early Psychosis, HCP-Young 
Adult, NKI-RS, OpenNeuro, PNC, and UKBiobank. For datasets that include repeated visits (i.e. 
ABCD, UKBiobank), only the first visit was included. Full details regarding sample characteristics, 
diagnostic procedures and acquisition protocols can be found in the publications associated with 
each of the studies. Training and testing datasets (80/20) were created using scikit-learn’s train_
test_split function, stratifying on the site variable. To show generalizability of the models to new 
data not included in training, we leveraged three datasets (ds000243, ds002843, ds003798) from ​
OpenNeuro.org to create a multi-site transfer dataset.

Normative modeling was run using python 3.8 and the PCNtoolkit package (version 0.26). 
Bayesian Linear Regression (BLR) with likelihood warping was used to predict each Yeo-17 network 
pair from a vector of covariates (age, sex, mean_FD, site). For a detailed mathematical description 
see Fraza et al., 2021. Briefly, for each region of interest, ‍y‍ is predicted as:

	﻿‍ y = wTϕ
(
x
)

+ ϵ‍� (1)

Where ‍wT ‍ is the estimated weight vector, ‍ϕ
(
x
)
‍ is a basis expansion of the of covariate vector x, 

consisting of a B-spline basis expansion (cubic spline with 5 evenly spaced knots) to model non-linear 
effects of age, and ‍ϵ = η

(
0,β

)
‍ a Gaussian noise distribution with mean zero and noise precision term 

β (the inverse variance). A likelihood warping approach was used to model non-Gaussian effects by 
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applying a bijective nonlinear warping function to the non-Gaussian response variables to map them 
to a Gaussian latent space where inference can be performed in closed form. We used a ‘sinarcsinsh’ 
warping function, equivalent to the SHASH distribution that is commonly used in the generalized 
additive modeling literature (Jones and Pewsey, 2009). Site variation was modeled using fixed 
effects. A fast numerical optimization algorithm was used to optimize hyperparameters (‘Powell’). 
Deviation scores (Z-scores) are calculated for the n-th subject, and d-th brain area, in the test set as:

	﻿‍
Znd = ynd−ŷnd√

σ2
d+

(
σ2
∗
)

d ‍�
(2)

Where ‍ynd‍ is the true response, ‍̂ynd‍ is the predicted mean, ‍σ
2
d‍ is the estimated noise variance 

(reflecting uncertainty in the data), and 
‍

(
σ2
∗
)

d‍
 is the variance attributed to modeling uncertainty. 

Model fit for each brain region was evaluated by calculating the explained variance (which measures 
central tendency), the mean squared log-loss (MSLL, central tendency and variance) plus skew and 
kurtosis of the deviation scores (2) which measures how well the shape of the regression function 
matches the data (Dinga et al., 2021).

All pretrained models and code are shared online including documentation for transferring to 
new sites and an example transfer dataset. Given a new set of data (e.g. sites not present in the 
training set), this is done by first applying the warp parameters estimating on the training data to 
the new dataset, adjusting the mean and variance in the latent Gaussian space, then (if necessary) 
warping the adjusted data back to the original space, which is similar to the approach outlined in 
Dinga et al., 2021.
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