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Abstract Transfer RNAs (tRNAs) in bacteriophage genomes are widespread across bacterial host 
genera, but their exact function has remained unclear for more than 50 years. Several hypotheses 
have been proposed, and the most widely accepted one is codon compensation, which suggests 
that phages encode tRNAs that supplement codons that are less frequently used by the host. 
Here, we combine several observations and propose a new hypothesis that phage-encoded tRNAs 
counteract the tRNA-depleting strategies of the host using enzymes such as VapC, PrrC, Colicin D, 
and Colicin E5 to defend from viral infection. Based on mutational patterns of anticodon loops of 
tRNAs encoded by phages, we predict that these tRNAs are insensitive to host tRNAses. For phage-
encoded tRNAs targeted in the anticodon itself, we observe that phages typically avoid encoding 
these tRNAs, further supporting the hypothesis that phage tRNAs are selected to be insensitive to 
host anticodon nucleases. Altogether, our results support the hypothesis that phage-encoded tRNAs 
have evolved to be insensitive to host anticodon nucleases.

Editor's evaluation
This important work substantially advances our understanding of the mechanisms phages use to 
evade host defenses. Specifically, the authors use computational and theoretical analyses of tRNA-
encoding phages that infect several bacterial species to identify a novel, potential mechanism 
through which phage-encoded tRNAs help these phages evade tRNA cleavage that is induced as a 
host defense. Although the evidence supporting the conclusions is compelling, with multiple obser-
vations suggesting that the phage-encoded tRNAs have evolved to evade host-encoded tRNases, 
the conclusions would have been more strongly supported by providing an experimental test of the 
hypothesis.

Introduction
Transfer RNAs (tRNAs) were first discovered in the 1950s (Kresge et al., 2005) and have since been 
found to play a vital role in the central dogma of molecular biology in all living systems (Crick, 1970). 
During the 1960s, tRNAs were also reported in viruses of bacteria (bacteriophages or phages) (Weiss 
et al., 1968). We now know that phage-encoded tRNAs are widespread, especially among virulent 
phages (Bailly-Bechet et al., 2007). Multiple hypotheses have been proposed for the role of these 
phage-encoded tRNAs. The most established being codon compensation, where codons rarely used 
by the host but necessary to the phage are supplemented by the tRNAs encoded by the phage 
(Bailly-Bechet et al., 2007). Why phages are pushed toward these alternative codons is generally 
believed to be a side effect of differences in the GC content of phage and host (Bailly-Bechet et al., 
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2007; Lucks et al., 2008; Limor-Waisberg et al., 2011). A recent study by Yang et al., 2021 may 
have hinted at an additional factor: phage tRNAs represent a means to counteract the depletion of 
host tRNAs that occurs as an early response to phage infection. The host employs several mechanisms 
to deplete its tRNA pool, such as downregulating the expression of its tRNAs, modifying tRNAs to 
make them unusable for translation, and most notably cleaving the tRNAs using anticodon nucleases 
(Thompson and Parker, 2009; Yang et al., 2021; Bailly-Bechet et al., 2007; Amitsur et al., 1989; 
Wolfram-Schauerte et al., 2022). Exactly what activates host tRNA cleavage is often unknown; an 
exception is anticodon nuclease PrrC, which cleaves tRNA-Lys(ttt) when triggered after sensing phage 
T4-encoded protein Stp (Kaufmann, 2011). In response, phage T4 encodes a tRNA ligase that repairs 
the cleaved tRNA-Lys (Kaufmann, 2011). Recently, a phage-encoded tRNA was found to replenish 
the depleted host tRNA caused by phage defense system Retron Ec78 , thereby preventing the inhi-
bition of phage propagation (Azam et al., 2023). However, it remains unclear how phage tRNAs avoid 
being degraded by the same mechanism that results in the depletion of host tRNAs during phage 
infection. Here, we have analyzed phage-encoded tRNAs and hypothesize that the tRNAs encoded 
by phages are insensitive to tRNA anticodon nuclease activity, preventing depletion of the tRNA pool 
and translation stalling during phage infection.

Results and discussion
To investigate our hypothesis that phage tRNAs are insensitive to tRNA anticodon nucleases, we 
analyzed the tRNAs encoded by a large and well-characterized dataset of tRNA-rich bacteriophages 
(33 tRNAs per phage on average) that infect mycobacteria: mycobacteriophage cluster C1 (Russell 
and Hatfull, 2017; Figure  1A and B). We specifically selected this mycobacteriophage dataset 
because the bacterial host encodes a range of well-characterized tRNA nucleases (tRNAses), such as 
VapC, MazF, and RelE (Winther et al., 2016; Chauhan et al., 2022; Cruz et al., 2015; Cintrón et al., 
2019; Barth et al., 2021; Pedersen et al., 2003). A subset of these tRNAses target the tRNA anti-
codon loop and are activated upon various stress responses, including phage infection (Calcuttawala 
et al., 2022). Upon activation, these anticodon nucleases cleave specific tRNAs in conserved regions 
within the anticodon loop to inactivate the tRNAs and thereby regulate protein translation of the host 
(Winther et al., 2016). The cleavage region within the tRNA anticodon loop is sequence-dependent 
and highly specific to the type of tRNA. Mutations in the recognition and cleavage sequence within 
the anticodon loop have been found to result in insensitivity to these anticodon nucleases (Winther 
et al., 2016; Cruz et al., 2015). To check phage tRNAs for mutations that are known to cause insen-
sitivity to anticodon nucleases (Winther et al., 2016; Cruz et al., 2015; Chauhan et al., 2022), we 
compared them to those of their host. We found that all 10 mycobacteriophage-encoded tRNAs that 
are targeted by anticodon nucleases contained anticodon loop mutations known to affect cleavage 
by VapC (Figure 1C, Supplementary file 1a, and Supplementary file 1b). These findings support 
the idea that phage-encoded tRNAs are insensitive to cleavage by anticodon nucleases (Figure 1C). 
We propose that these phage tRNAs serve as a mechanism to counteract the depletion of tRNAs by 
anticodon nucleases during phage infection, thereby allowing the phage to translate its proteins and 
successfully complete the infection cycle (Figure 1D).

In addition, we observe that mycobacteriophages rarely encode tRNAs that are cleaved within 
the anticodon itself (Supplementary file 1b), suggesting that these anticodons are avoided by the 
phage and that no tRNAs evolved to be insensitive to cleavage. Specifically, this avoidance is seen 
for the serine-coding tRNAs that are cleaved at the GA site within the anticodon (tRNA-Ser(gga), 
tRNA-Ser(tga), tRNA-Ser(cga), and tRNA-Ser(aga)) (Winther et al., 2016; Supplementary file 1b). 
To compensate for this, the phage encodes a serine tRNA (tRNA-Ser(gct)) that is not targeted by 
nucleases. We observed the same avoidance for known targets of RelE (Pedersen et  al., 2003), 
including stop codon (cta), tRNA-Leu(tta), and tRNA-Gln(cga) (Supplementary file 1b). Interestingly, 
when comparing the codon frequency of phage genes, we observed no differences in the codon 
frequency between codons for which the phage encodes a tRNA and those for which it does not 
(Welch’s two-sample t-test, t = 1.0471, df = 41.591, p-value=0.3011) (Supplementary file 1b). More-
over, we did not observe a difference in the codon frequency between phage and host genes (paired 
t-test, p-value=0.999) (Supplementary file 1b). We also found that in only 2 out of 23 instances 
the preferred codon (i.e. the most frequently encoded codon per amino acid) of the phage did not 
match that of the host (tRNA-Val(cac) and tRNA-Ala(cgc)) (Supplementary file 1b). Together, these 
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observations suggest that the phage-encoded tRNAs were likely not selected for codon compensa-
tion. Overall, our findings support the hypothesis that phage tRNAs in mycobacteria evolved to resist 
anticodon nucleases in order to overcome host tRNA-depletion strategies that limit phage propaga-
tion. To investigate whether this hypothesis could extend more generally outside mycobacteria, we 
examined other species with anticodon nucleases, including Shigella flexneri (VapC-LT2) (Winther 
and Gerdes, 2011), Escherichia coli (VapC, PrrC, Colicin D, and Colicin E5) (Winther and Gerdes, 
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Figure 1. Phage transfer RNAs (tRNAs) are predicted to be anticodon nuclease resistant. (A) The genomic context of the tRNA clusters containing 
36 tRNAs present in C1 mycobacteriophage Rizal (Russell and Hatfull, 2017). (B) Prevalence of individual phage-encoded tRNAs in the C1 
mycobacteriophage cluster, composed of 161 phages. (C) Mutations in the anticodon loop of phage tRNAs in comparison to host tRNAs, located in the 
cleavage site of anticodon nucleases. (D) Proposed mechanism of action of phage tRNAs. During phage infection, tRNAses are activated and deplete 
the host tRNA pool via tRNA cleavage to prevent phage propagation. Phage tRNAs are insensitive to cleavage, allowing the phage to propagate.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Phage transfer RNAs (tRNAs) from enterobacteria.
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2011; Kaufmann, 2011; Amitsur et al., 1987; Ogawa et al., 2006), and Salmonella enterica (VapC/
MvpT) (Winther and Gerdes, 2011). It is important to point out that the following analyses are based 
solely on the known cleavage site, and that the recognition sequence of these anticodon nucleases is 
unknown, thus limiting the ability to identify possible insensitivity-causing mutations in the recognition 
site of the anticodon loop. Despite this limitation, we observed mutations in the anticodon loop near 
or at the cleavage site of anticodon loop-targeted phage-encoded tRNAs in nearly all instances (9 
out of 11) (Figure 1—figure supplement 1 and Supplementary file 1c). When the anticodon itself 
was the target of the anticodon nuclease, as is the case for VapC-LT2 in S. flexneri, we found that 
the phage generally avoided encoding the target tRNA (tRNA-fMet), except for two instances. One 
of these is the phage-encoded tRNA-Lys(ttt) in coliphages. In this instance, the phage encodes a 
tRNA-Lys ligase (rnl1 and rnl2) that repairs tRNA-Lys(ttt) after it has been cleaved by PrrC (Kaufmann, 
2011). The other instance involves phage-encoded tRNAs targeted by E. coli Colicin E5. The cleavage 
activity of Colicin E5 depends on modifying the wobble position (Ogawa et al., 2006), which might 
be absent in these phage tRNAs possibly caused by mutations in the anticodon loop that we observed 
for three out of the four targeted tRNAs (Figure 1—figure supplement 1c). Alternatively, these muta-
tions might affect the recognition by Colicin E5. In summary, our findings in mycobacteria are consis-
tent with almost all (9 out of 11) currently known instances of targeted phage tRNAs in enterobacteria 
(Supplementary file 1c). The discrepancies in these cases can be accounted for by the presence of 
tRNA ligases, reliance on tRNA modifications of the cleavage site, or mutations within the uncharac-
terized recognition site. Thus, we speculate that our hypothesis may be extended beyond mycobac-
teria and enterobacteria, given the ubiquity of virus-encoded tRNAs and host tRNAses (Ogawa et al., 
2006; Cavard and Lazdunski, 1979; Jones et al., 2017).

Conclusion
We propose that phage-encoded tRNAs escape targeting by host tRNAses via insensitivity-causing 
mutations within the tRNA cleavage and recognition site. This proposed hypothesis can be helpful in 
selecting or engineering bacteriophages capable of infecting hosts containing anticodon nucleases.

Materials and methods
tRNA analysis in mycobacteria and mycobacteriophages
Mycobacterium smegmatis MC2-155 (CP000480.1) and Mycobacterium tuberculosis H37Rv 
(NC_000962.3) were used as references for obtaining the host tRNA sequences. All C1 cluster myco-
bacteriophage genomes were downloaded from https://phagesdb.org/ on September 1, 2022. tRNAs 
were annotated using Aragorn (v1.2.41; Laslett and Canback, 2004) and tRNAscan-SE (v2.0; Chan 
and Lowe, 2019). Codon frequency and fraction were determined using cusp (EMBOSS v6.6.0.0; Rice 
et al., 2000).

tRNA analysis in non-mycobacteria species and phages
We performed a literature search for all anticodon nucleases with known specificities on March 1, 
2023. These were found in Leptospira interrogans (Lopes et  al., 2014), S. flexneri (Winther and 
Gerdes, 2011), E. coli (Winther and Gerdes, 2011; Kaufmann, 2011; Amitsur et al., 1987; Ogawa 
et al., 2006), S. enterica (Winther and Gerdes, 2011), Deinococcus radiodurans (Miyamoto et al., 
2017), and Geobacillus kaustophilus (Davidov and Kaufmann, 2008). We excluded L. interrogans, D. 
radiodurans, and G. kaustophilus due to the absence of known tRNA-encoding phages. The species-
specific tRNA sequence of the host for each anticodon in question was obtained using tRNAviz (Lin 
et  al., 2019). Species-specific phages were obtained from the public PhageAI database (Tynecki 
et al., 2020) on March 1, 2023. tRNAs were annotated and analyzed as indicated above for mycobac-
teria and mycobacteriophages.
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