Global change in brain state during spontaneous and forced walk in Drosophila is composed of combined activity patterns of different neuron classes

  1. Sophie Aimon  Is a corresponding author
  2. Karen Y Cheng
  3. Julijana Gjorgjieva
  4. Ilona C Grunwald Kadow  Is a corresponding author
  1. School of Life Sciences, Technical University of Munich, Germany
  2. University of Bonn, Medical Faculty (UKB), Institute of Physiology II, Germany
  3. Max Planck Institute for Brain Research, Computation in Neural Circuits, Germany
7 figures, 8 videos, 3 tables and 2 additional files

Figures

Figure 1 with 1 supplement
Global brain activation during walk.

(A) Schematic overview of the preparation and analysis method. Please see methods for details. (B) Raster plot of the activity of regions. Top panels depict walking bouts in green and rest or grooming in magenta. Lower panel shows calcium activity elicited throughout the experiment. The brighter the higher the calcium transients. Mean forward speed: 5.6 mm/s, mean angular velocity: 0.4 rad/s. Bar is 60 μm. (C) Sample traces (ΔF/F) for different brain regions relative to walk (green). (D) First two principal components from whole brain activity color coded with behavior (see additional examples in Figure 1—figure supplement 1). (E) R2 for regression of single regions with single behaviors (all regions were pooled, but p-values are obtained after averaging regions for each fly. Walk: N = 16, Flail: N = 7, Groom: N = 6). Mann–Whitney U-test Bonferroni adjusted p-values: Walk vs. Flail: 0.085, Walk vs. Groom: 0.011, Flail vs. Groom: 0.26. Center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. (F) R2 of single region activity regression with walk, walk onset and walk offset (all regions were pooled, nsyb-Gal4: N = 16, GMR57C10-Gal4: N = 4). Regressors for walk onset or offset are Dirac functions convolved with the GCaMP response (see Methods). Box plots show: center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. Mann–Whitney U-test for the two genotypes grouped (comparison of fly-wise averages): walk vs. walk onset: p = 3 × 10−5, walk vs. walk offset: p = 6 × 10−5. (G) Z-stack map of R2 median (Walk: N (flies) = 16, Flail: N = 7, Groom: N = 6) for regression between single region activity and walk, flail or groom (see values in Figure 1—figure supplement 1D-F). (H) Coefficient of single region’ activity regression with walk. All regions’ 95% CI ( bars) are above zero and all adjusted p-values <0.001 (Benjamini–Hochberg correction). N = 16.

Figure 1—figure supplement 1
Correlation of regional activity with walk.

(A) R2 during walk at different recording frequencies for pan-neuronally expressed GCaMP6f or GCaMP6m (all regions were pooled). No significant difference was found for walk between the different frequencies. Box plots show: center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. (B) R2 for walking with eyes free (not painted, N = 5) and eyes covered (painted, N = 5, p-value: 0.34). Box plots show: center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. (C) Additional examples (two different flies) of whole brain activity reduced to the two first principal component space. (D) R2 obtained with regressing activity of individual regions with walk (pan-Gal4;UAS-GCaMP). Adjusted p-values (Benjamini–Hochberg correction) were all <0.01. Bars are 95% CI. (E) R2 obtained with regressing activity of individual regions with flail (pan-Gal4;UAS-GCaMP). Empty markers correspond to adjusted (Benjamini–Hochberg correction) p-value >0.05 for comparison to 0. Bars are 95% CI. (F) R2 obtained with regressing activity of individual regions with groom (pan-Gal4;UAS-GCaMP). Bars are 95% CI. (G) Correlation coefficient obtained with regressing activity of individual regions with flail (pan-Gal4;UAS-GCaMP). Bars are 95% CI. (H) Correlation coefficient obtained with regressing activity of individual regions with grooming behavior (pan-Gal4;UAS-GCaMP). Bars are 95% CI. (I) R2 obtained with regressing activity of individual regions with walking on an air-supported (N = 19) vs. a styrofoam ball (N = 13), p-value = 0.02. Box plots show: center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. (J) R2 obtained with regressing activity of individual regions with walking on an air-supported (N = 19) vs. a Styrofoam ball (N = 13). Box plots show: center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. (K) Top: Examples of brain activity maps (R2 as z-stacks) and names of individual brain regions. Bottom: Schematic showing brain regions in adult fly brain adapted from Ito et al., 2014.

Figure 2 with 1 supplement
Activity of neurons releasing the three major neurotransmitters, glutamate, GABA, and acetylcholine, during walk.

N = 5 flies for each genotype. (A) R2 for regression of single region activity with walk for different genotypes (all regions were pooled). No pairwise comparison of fly-wise averages is significantly different (Mann–Whitney U-test). Box plot: center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. (B) Maps of activation during walk (regression coefficient of single region activity with walk) for Cha-Gal4, GAD-Gal4, and Vglut-Gal4 expressing neurons. See Figure 2—figure supplement 1 for values and statistical tests. Cosine similarity: Cha vs. Vglut: 0.98, Vglut vs. GAD: 0.98, Cha vs. GAD: 0.99. (C) Sample traces (ΔF/F) for different brain regions relative to forward walk (green). See Figure 2—figure supplement 1 for values. (D) R2 for regression of single region activity with walk for Cha-Gal4, GAD-Gal4, and Vglut-Gal4. 95% CI is shown. All values are significantly above zero (Benjamini–Hochberg adjusted t-test p-values <0.001).

Figure 2—figure supplement 1
Correlation coefficients for regression of single region activity with walk.

N = 5 flies for each genotype. Empty markers correspond to adjusted (Benjamini–Hochberg correction) p-value >0.05 for comparison to 0. Right, expression pattern for three example flies per genotype (baseline fluorescence at z = −60, −18, 24, and 66 µm). (A) Cholinergic neurons (Cha-Gal4;UAS-GCaMP6). (B) Glutamatergic neurons (Vglut-Gal4;UAS-GCaMP6). (C) GABAergic neurons (GAD-Gal4;UAS-GCaMP6). 95% CI. Bar is 60 µm.

Figure 3 with 1 supplement
Neuromodulatory neurons are strongly and differentially activated during walk.

TH/DDC-Gal4: N = 9, Tdc2-Gal4: N = 7, Trh-Gal4: N = 6 flies. (A) R2 for regression of single region activity with walk for different genotypes (all regions were pooled). Mann–Whitney U-test Bonferroni adjusted p-values: TH vs. Trh: 0.032, TH vs. TDC: ns, Trh vs. TDC: 0.040. Box plot: center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. (B) Maps of activation during walk (regression coefficient of single region activity with walk) for TH-Gal4 and DDC-Gal4 or GMR58E04-Gal4 (dopaminergic neurons), TDC2-Gal4 (octopaminergic neurons), and Trh-Gal4 (serotonergic neurons) expressing neurons. Blue indicates inhibition. (C) Overlay of activity maps of two neuromodulators in each panel. Cosine similarity: TH vs. Trh: 0.69, TH vs. TDC: 0.93, TDC vs. Trh: 0.69. (D) Sample traces (ΔF/F) for different brain regions relative to forward walk (green). (E) Coefficient during walk for different brain regions for Trh-Gal4 expressing serotonergic neurons. All regions are significantly correlated. (F) R2 of regression of fluorescence vs. walk for TH/DDC(58E02)-Gal4, Tdc2-Gal4, and Trh-Gal4 expressing neurons. Bars are 95% CI.

Figure 3—figure supplement 1
Correlation coefficients for regression of single region activity with walk.

Empty markers correspond to adjusted (Benjamini–Hochberg correction) p-value >0.05 (null hypothesis is 0). TH/DDC-Gal4: N = 9, Tdc2-Gal4: N = 7. (A) Dopaminergic neurons (TH/DDC-Gal4 or GMR58E04-Gal4;UAS-GCaMP6). (B) Octopaminergic neurons (Tdc2-Gal4;UAS-GCaMP6). Bars are 95% CI. (C) Expression pattern for three example flies per genotype (baseline fluorescence at z = −60, −18, 24, and 66 µm).

Figure 4 with 1 supplement
Whole brain analysis pinpoints specific subregions responding to walk.

(A) Images of example components that are significantly correlated with walk (coefficient or R2 95% CI above zero). Upper left: Components derived from imaging with a pan-neuronal driver. Upper right: Components derived with Tdc2-Gal4. Lower left: Components derived with TH/DDC or GMR58E02-Gal4. Lower right: Components derived with Trh-Gal4. (B) Correlation coefficient for component activity vs. walk. N = 58 flies of different genotypes, see table in methods for details. Empty markers correspond to adjusted (Benjamini–Hochberg correction) p-value >0.05 for comparison to 0. Bars are 95% CI.

Figure 4—figure supplement 1
Component maps and correlation with walk.

(A) Z-stacks of functional components for walk mapped onto the adult fly brain. (B) Functional components for walk and their names or acronyms. See Table 2 for definition of acronyms. (C) R2 for regression of components activity with walk. See Table 2 for definition of acronyms. N = 58 flies of different genotypes; see table in methods for details. Bars are 95% CI.

Figure 5 with 1 supplement
Turning activates specific components and candidate neurons.

(A) Examples of components present in both the left and right hemispheres labeled in different colors (magenta and green). Panels on the right present an example component that could be mapped to a single neuron. Upper right panel: Turning-correlated component, lower right panel: reconstruction of neuron that this functional component was mapped to. (B) Difference between the correlation coefficient (normalized ∆F/F) for turning on the ipsilateral side and the coefficient on the contralateral side is displayed as a function of the identified components. Positive and negative correlations correspond to components being active more during turn on the ipsilateral side than the contralateral side and the reverse, respectively. See Table 2 for definition of acronyms. N = 58 flies of different genotypes, see table in methods for details. Empty markers correspond to adjusted (Benjamini–Hochberg correction) p-value >0.05 for comparison to 0. Bars are 95% CI.

Figure 5—figure supplement 1
Turning activates specific components and candidate neurons.

(A) Examples of components present in both the left and right hemispheres labeled in different colors (magenta and green). (B) R2 of regression coefficients during turn for all genotypes. The value for the contralateral side was subtracted from the ipsilateral side and plotted for every component. N = 58 flies of different genotypes, see table in methods for details. Empty markers correspond to adjusted (Benjamini–Hochberg correction) p-value >0.05 for comparison to 0. Bars are 95% CI.

Figure 6 with 2 supplements
Onset dynamics of activity in multiple functional components across the brain at start of walk.

Walk-onset triggered average activity for pan-neuronal data in individual active components at 30 Hz or higher temporal resolution. Trials were normalized individually before averaging (see Figure 6—figure supplement 1 for non-normalized traces and all recording frame rates). Red band indicates walk onset. Note that while most components are activated after walk onset, several components show activity before start of walk. Stars correspond to an above zero significance for integrated traces from −0.5 s to start of walk (Wilcoxon one-sided test). Multiple comparison adjusted p-values (Benjamini–Hochberg): *p < 0.05, **p < 0.01, ***p < 0.001. See Table 2 for definition of acronyms. N = 30 flies of different genotypes, see table in methods for details.

Figure 6—figure supplement 1
Graphs show onset of walk trials for all flies and all transgenic lines at all recording speeds.

The gray band represents the uncertainty of walk-onset time due to lower temporal resolution in some recordings. A corrective factor based on regression coefficient with walk (fluorescence response to walk = coeff × UAS-GCaMP version: GCaMP7f: 0.6, GCaMP6f: 1, GCaMP6M: 1.1, GCaMP7s: 1.2, GCaMP6s: 1.4) was applied for direct comparison between experiments with different reporter versions. The average value for the first 50 ms was taken as baseline and subtracted. Gray shaded area represents walk onset.

Figure 6—figure supplement 2
Normalized trials ∆F/F GCaMP fluorescence in brain regions 1 s before to 1 s after walk onset for different anatomically defined brain regions: (A) dopaminergic neurons (TH/DDC-Gal4;UAS-GCaMP), (B) octopaminergic neurons (Tdc2-Gal4;UAS-GCaMP), and (C) serotonergic neurons (Trh-Gal4;UAS-GCaMP).

Gray shading corresponds to the standard deviation. Red band is the onset of walk.

Figure 7 with 1 supplement
Forced and spontaneous walk elicit highly similar global brain activity.

(A) Z-stacks of map of brain regions activated by walk in flies expressing cytosolic GCaMP (pan-Gal4;UAS-GCaMP6m) or synaptically tagged GCaMP (pan-Gal4;UAS-sytGCaMP6m) (R2 of FF=f(walk)). (B) Time series of components during spontaneous walk (green) or rest (magenta). Box plots show: center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. (C) Time series of active components during forced walk (green) or forced rest (magenta). (D) R2 for behavior regression at different conditions (all regions were pooled, spontaneous, forced, forced with severed connection between ventral nerve cord (VNC) and brain). (E) R2 for behavior regression for different active components for forced (red) vs. spontaneous (green) walk. Empty markers correspond to adjusted (Benjamini–Hochberg correction) p-value >0.05 for comparison to 0. Bars are 95% CI. (F) R2 difference between brain region activity during forced turn on the ipsilateral side and forced turn on the contralateral side (orange). Forced turning speeds ranged from 0.3 to 2 rad/s. Only data with N ≥ 4 components were analyzed. Lilac shows the difference for spontaneous turns. N = 58 flies for spontaneous walk/turn of different genotypes and N = 26 flies for forced walk/turn, see table in methods for details. Empty markers correspond to adjusted (Benjamini–Hochberg correction) p-value >0.05 for comparison to 0. Star corresponds to a significant difference between spontaneous and forced turns: Mann–Whitney U-test adjusted p-value <0.05 (Benjamini–Hochberg correction). Box plots show: center line, median; box limits, upper and lower quartiles; whiskers, ×1.5 interquartile range; points, outliers. Bars are 95% CI. (G) Comparison between activity at walk onset for spontaneous (green) and forced (red) walk for additional components. Individual trials were normalized and averaged for each component. Shaded regions represent the trial SEM (standard error of the mean), nf: number of flies, nt: total number of trials. Gray shaded area indicate walk onset. Stars show the significance of difference in the integral between −0.5 s and the start of walk, and is corrected for multiple comparison (Benjamini–Hochberg): *p < 0.05, ***p < 0.001.

Figure 7—figure supplement 1
Additional evidence for most activity being induced by walk.

(A) Comparison of activity during walk for cytosolic and synaptically tagged GCaMP. Left: expression patterns (baseline fluorescence), Right: Coefficient in linear models of regional activity as a function of walk. (B) Regression coefficients with forced or spontaneous walk for components. Bar is 60 µm. (C) R2 and coefficient for ∆F/F regression with forced and spontaneous walk for different brain regions for dopaminergic neurons. (D) R2 and coefficient for ∆F/F regression with forced and spontaneous walk for different brain regions for octopaminergic neurons. (E) R2 and coefficient for ∆F/F regression with forced and spontaneous walk for different brain regions for serotonergic neurons. TH/DDC-Gal4: spontaneous, N = 9, forced, N = 5; Tdc2-Gal4: spontaneous, N = 7, forced, N = 6; Trh-Gal4: spontaneous, N = 6, forced, N = 6 flies. (B-E): Empty markers correspond to adjusted (Benjamini–Hochberg correction) p-value >0.05 for comparison to 0. Bars are 95% CI. (F) Panel showing GCaMP-fluorescence relative to onset of walk for pan-neuronally expressed GCaMPs in different regions relative to the GNG. Piece-wise linear curves were fitted to fluorescence traces 0.5 s before to 0.5 s after the onset of walk. The onset time was determined as the point of change from one linear piece to the next. Note that all medians are positive. Inset: Fit of activity onset. TH/DDC-Gal4: N = 9, Tdc2-Gal4: N = 7, Trh-Gal4: N = 6 flies. (G) Comparison between activity at walk onset for spontaneous (green) and forced (red) walk for additional components. Individual trials were normalized and averaged for each component. Shaded regions represent the trial SEM, nf: number of flies, nt: total number of trials. Stars show the significance of difference in the integral between −500 ms to start of walk, and is corrected for multiple comparison (Benjamini–Hochberg): **p < 0.01, ***p < 0.01.

Videos

Video 1
Movie of pan-neuronal activation during walk and groom (accelerated).
Video 2
Movie of TH/DDC-neuronal activation during walk (accelerated).
Video 3
Movie of TDC2-neuronal activation during walk (accelerated).
Video 4
Movie of Trh-neuronal activation during walk (accelerated).
Video 5
Video sequence showing activation of the PPM2-LW neurons during turning.
Video 6
Video showing neuronal activation moving from ventral to dorsal brain areas.

Note that a clear progression of activation was observed only in a fraction of trials.

Video 7
Video showing whole brain activity of a fly being forced to walk on a rotating rod.
Video 8
Video showing whole brain activity of a fly with a severed connection between the brain and ventral nerve cord (VNC) being forced to walk on a treadmill.

Note that the fly is still capable of walking on the rod when being forced. We did not, however, observe spontaneous walking activity.

Tables

Table 1
Summary statistics of R2 dependence on different factors where R2 is obtained from regressing a single regionally averaged brain activity with a single behavior.
sum_sqPR(>F)
GAL40.0021977.58E−01
Behavior12.2151851.64E−106
RegionNames10.3729024.13E−65
UAS2.0831382.13E−18
Behavior:RegionNames1.452139.17E−01
Residual67.904784NaN
Table 2
List of components with potential underlying candidate neurons.

Most matches are speculative except those in bold that correspond to high confidence matches due to the lack of other Gal4-positive neurons in the region.

Short nameDescriptionExamples of matching (Flycircuit) neuronsPresent in Gal4 line (detected in ≥5 flies)
Antennal lobe and mushroom body
ALWhole antennal lobeGad1-F-000394; Gad1-F-100601; Gad1-F-800129; VGlut-F-900126Nsyb, GMR57C10, Vglut, Gad
PNAntennal lobe projection neuronVGlut-F-500486Nsyb, GMR57C10, Cha, Vglut, Gad
MultiGlWhole antennal lobe and PN-like projectionsTrh-F-600017TH, Trh, TDC
PNvAntennal lobe projection neuron, ventral tract of the lateral hornVFB_00101133Nsyb, GMR57C10, Cha, Vglut, Gad
PN-KCAntennal lobe projection neuron and kenyon cell in the same componentNsyb, GMR57C10, Cha, Vglut
KCabAlpha-Beta Kenyon cellCha-F-300226; Cha-F-100049; fru-F-000026; Vglut-F-100284; Gad1-F-100014;Nsyb, GMR57C10
KCapbpAlpha’-Beta’; Kenyon cellGad1-F-100024; Trh-F-200069;Nsyb, GMR57C10
KCgGamma kenyon cellsfru-F-000006; Vglut-F-100359; Gad1-F-100021;Nsyb, GMR57C10
Beta1Betap1Beta1 and/or Beta’1 mushroom body compartmentPAM10(B1)_L (FlyEM-HB:1328522741) [VFB_jrchk385]TH
Beta2Betap2Beta2 and/or Beta’2 mushroom body compartmentPAM02(B’2a)_L (FlyEM-HB:1295566429)Nsyb, Gad, TH
Gamma1Gamma1 mushroom body compartmentPPL1-gamma1-pedcTH
Gamma2Gamma2 mushroom body compartmentPPL1-gamma2-alpha’1TH
Gamma3Gamma3 mushroom body compartmentMBON-γ3, PAM-γ3Gad, TH
Gamma4Gamma4 mushroom body compartmentPAM-γ4TH
Gamma5Gamma5 mushroom body compartmentPAM-γ5TH
SLP-AlphaAlpha or Alpha’ lobe with projection through the superior lateral neuropilVGlut-F-500002Vglut
Alpha1Alpha1 mushroom body compartmentPAM-alpha1TH
Alpha2Alpha2 mushroom body compartmentPPL1-alpha’2alpha2TH
Alpha3Alpha3 mushroom body compartmentPPL1-alpha3TH
Alphap3Alpha’3 mushroom body compartmentPPL1-alpha’3TH
Superior neuropil
SCLtractTract linking both superior clampTrh-F-200082,Trh-F-100051Trh
CLvertLateral part of the superior clampTH-F-000023Nsyb, TH
CL?Interrogation point surrounding the pedonculus,Trh-F-300074,Trh-M-700081, DNp32TH, Trh
CL-LHSurrounds the lateral horn from the medial and ventral directionsTrh-F-200047Trh, TDC
CLOther shapes at the level of the clampGad1-F-700550,Gad1-F-800055Nsyb, GMR57C10, Gad, TH, TDC
SMPmMedial part of the superior medial protocerebrumTH-F-000021; VGlut-F-700286, Cha-F-300251Nsyb, GMR57C10, Cha, Vglut, Gad, TH, TDC
PPL-SMPVentral lateral part of the superior medial protocerebrum, with tracts coming from a posterior lateral cell clusterTH-F-000019,TH-F-000018,TH-F-000046TH
SMPl-SIPSuperior intermediate protocerebrum and lateral part of the superior medial protocerebrumCha-F-000221,Cha-F-300154, TH-F-300056Nsyb, GMR57C10, Cha, Gad, TH, TDC
SIP-SMPdSuperior intermediate protocerebrum and dorsal part of the superior medial protocerebrumfru-F-800063Nsyb
SIP-FBSuperior intermediate protocerebrum and dorsal layer of the fan-shaped bodyTrh-F-100015Nsyb, GMR57C10, TH, Trh
FB-SNBroad innervaion of the superior neuropil, and fan-shaped bodyOA-VMP3, OA-VPM4TDC
SLP-SMPprojLarge SMP neuron projecting to ventral regionsTrh-F-700011,Trh-F-000083Nsyb, GMR57C10, TH, Trh
SLP-SMPSuperior lateral protocerebrum and superior medial protocerebrumTrh-F-500176, DNp25Trh
SLPSuperior lateral protocerebrum onlyTH-F-100046Nsyb, GMR57C10, TH, TDC
LH-SLPLateral horn and superior lateral protocerebrumGad1-F-900346,Gad1-F-600340Nsyb, Gad
Central complex
FBcolFan-shaped body columnsTdc2-F-100009; Tdc2-F-300026; Tdc2-F-300001; Tdc2-F-200011; Tdc2-F-100062; Tdc2-F-100016; Gad1-F-900245; Gad1-F-800329; Gad1-F-500513; Gad1-100157Nsyb, GMR57C10, Vglut, Gad, TDC
FBlayvVentral layer of the fan-shaped bodyTH-M-300065Nsyb, TH
FBlaymMedial layer of the fan-shaped bodyTH-F-200055Nsyb, TH
FBlaydDorsal layer of the fan-shaped bodyTH-F-200054; Trh-F-300036; Trh-F-400062Nsyb, TH, Trh
NONodulus or noduliCha-F-100429Nsyb
PBProtocerebral bridge onlyVglut-F-800282; Vglut-F-600784; Vglut-F-600229; Gad1-F-600267; Gad1-F-100361; Gad1-F-100593; Vglut-F-000156; Vglut-F-100064Nsyb, Vglut, Gad
PBfullComponents with full protocerebral bridgeCha-F-900016, Cha-F-200148Nsyb, GMR57C10, Cha
PB-DAProtocerebral bridge and two dots (maybe cell bodies) at the top of the tracheaTH-F-000048TH
BU-PBl-EBBulb, ellipsoid body and lateral part of the protocerebral bridgeGad1-F-900445Nsyb, Gad
PB-EBEB-radial and PB glomeruliCha-F-500009Nsyb, GMR57C10, Cha, Gad
EBEllipsoid body ringsTrh-F-300095; Cha-F-800146Nsyb, GMR57C10, Cha, Vglut, Trh
EB-DAEllipsoid body and lateral accessory lobeTH-F-100001TH
AOTU-BUAnterior optic tubercule and bulbGad1-F-200712, VGlut-F-400630Nsyb, GMR57C10, Cha, Vglut, Gad
Posterior neuropil
IBInferior bridgeNsyb, Gad
ATLAntlerAdult antler neuron 031TH, Trh
M-OmegaPosterior ensemble forming an M dorsally and an omega ventrallyTH-F-300078TH
SPSSuperior posterior slopeVGlut-F-900089, VGlut-F-800136,Cha-F-800003,Gad1-F-900039Nsyb, GMR57C10, Cha, Vglut, Gad
IPS-YInverse Y shape in the posterior slopeDNb02?Nsyb, GMR57C10, Cha, Vglut, Gad
LAL-PSLateral accessory lobe and posterior slopeDNb01?Nsyb, GMR57C10, Cha, Vglut, Gad
PPM2-LWPPM2-LAL-We L,RTH-F-000000,TH-F-000015,TH-F-000016TH
PPM2-VIPPM2-VMNP-INP L,RTH-F-000007,TH-F-300058TH
Lateral neuropil
WPENbAntennal mechanosensory and motor center and/or Wedge, in the posterior lateral protocerebrum and posterior connection to opposite sideVGlut-F-200005,WPNb, WPNB3#5 (FAFB:4271367) [VFB_001011lp]Vglut, Gad
AMMC-PLPAntennal mechanosensory and motor center and/or Wedge and branch in the posterior lateral protocerebrumVGlut-F-400269Nsyb, Cha, Vglut, Gad
AMMC-WEAntennal mechanosensory and motor center and/or WedgeVGlut-F-000138, VGlut-F-400586Nsyb, GMR57C10, Vglut, Gad
WE-DAWedge with two branches forming a large VTH-F-200127,TH-F-000024TH
AVLPonlyprojLowest medial part of the anterior ventral lateral protocerebrum projecting ventrallyCha-F-700097
AVLPprojmLowest medial part of the anterior ventral lateral protocerebrum projecting ventrallyGad1-F-500762, Cha-F-400059; Gad1-F-000013Nsyb, GMR57C10, Gad
AVLPprojlLowest lateral part of the anterior ventral lateral protocerebrum projecting ventrallyCha-F-800125Cha
AVLPmAnterior ventral lateral protocerebrum medial partGad1-F-900529, Cha-F-800062,Trh-F-400039,Trh-F-400070; Vglut-F-200405*; Vglut-F-900122; Cha-F-400237; Cha-F-200299; Gad1-F-500279Nsyb, GMR57C10, Vglut, Gad, TH, Trh, TDC
AVLPdAnterior ventral lateral protocerebrum dorsal partCha-F-000424Nsyb
AVLPshellAnterior ventral lateral protocerebrum surfaceTrh-F-100082TH, Trh
AVLPsmearAnterior ventral lateral protocerebrum anterior partNsyb
VLPlVentro-lateral protocerebrum most lateral partGad1-F-900096, Vglut-F-500616,Cha-F-800087Nsyb, GMR57C10, Cha, Vglut, Gad
PLP-LHPosterior lateral protocerebrum to the basis of the lateral hornGad1-F-500325Nsyb
PLPPosterior lateral protocerebrumGad1-F-800092Nsyb, Gad
Ventral neuropil
PIPars intercerebralisTrh-F-100040, Trh-M-000056Nsyb, GMR57C10, TH, Trh
PI-PRWPars intercerebralis connected to ProwVGlut-F-600158Nsyb, GMR57C10, Gad
PRWProwTH-M-000037Nsyb, GMR57C10, Vglut, Gad, TH
PRW-SLPProw and superior lateral protocerebrumGad1-F-600213, Cha-F-200258; fru-F-000133; Gad1-F-600213; Trh-F-100091Nsyb, GMR57C10
PENP-CLPeriesophageal neuropils and clampmALD3_L (FlyEM-HB:822708945)Nsyb, GMR57C10, Cha, Gad
GNGvwGnathal ganglia medial and lateralCha-F-400186Cha
GNGmGnathal ganglia medialCha-F-300235Nsyb, GMR57C10
GNGmlGnathal ganglia medial–lateralCha-F-400159Nsyb, GMR57C10, Cha, Gad
GNGlGnathal ganglia lateralCha-F-400146Nsyb, Cha
GNG-AMMCGnathal ganglia and on the opposite side antennal mechanosensory and motor center and posterior lateral protocebrumVGlut-F-600685Nsyb, Vglut
GNGvaVentral anterior part of the gnathal gangliaNsyb
vaCellsVentral anterior cellsTH-F-100049TH, Trh
Optic lobe
OLOptic lobe; mostly medulla and lobullaNsyb, GMR57C10, Cha, Vglut, Gad
LOPLobulla plateCha-F-600161Cha, TDC
OL-FBOptic lobe to central regions including the fan-shaped bodyTH
OL-PENPOptic lobe and periesophageal neuropilsTdc2-F-200056Nsyb, Gad, Trh, TDC
OL-PLPOptic lobe and posterior lateral protocerebrumCha-F-000316Nsyb, Cha, Gad
OL-WEOptic lobe and wedgeTH-F-300030TH
Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Genetic reagent (D. melanogaster)UAS-GCaMP6sBloomington Drosophila Stock CenterBDSC_42749
Genetic reagent (D. melanogaster)UAS-GCaMP6mBloomington Drosophila Stock CenterBDSC_42750
Genetic reagent (D. melanogaster)UAS-GCaMP7sBloomington Drosophila Stock CenterBDSC_79032
Genetic reagent (D. melanogaster)UAS-GCaMP6fBloomington Drosophila Stock CenterBDSC_42747
Genetic reagent (D. melanogaster)UAS-GCaMP7fBloomington Drosophila Stock CenterBDSC_79031
Genetic reagent (D. melanogaster)UAS-syt-GCaMP6sVanessa RutaN/A
Genetic reagent (D. melanogaster)GMR58E04-Gal4Bloomington Drosophila Stock CenterBDSC_41347
Genetic reagent (D. melanogaster)TH-Gal4Bloomington Drosophila Stock CenterBDSC_8848
Genetic reagent (D. melanogaster)Tdc2-Gal4Bloomington Drosophila Stock CenterBDSC_9313
Genetic reagent (D. melanogaster)Trh-Gal4Bloomington Drosophila Stock CenterBDSC_38388
Genetic reagent (D. melanogaster)Ddc-Gal4Bloomington Drosophila Stock CenterBDSC_7009
Genetic reagent (D. melanogaster)TH, 58E02-Gal4Siju et al.N/A
Genetic reagent (D. melanogaster)TH, DDC-Gal4This paperN/A
Genetic reagent (D. melanogaster)Vglut-Gal4Bloomington Drosophila Stock CenterBDSC_24635
Genetic reagent (D. melanogaster)Cha-Gal4Bloomington Drosophila Stock CenterBDSC_6798
Genetic reagent (D. melanogaster)Nsyb-Gal4Bloomington Drosophila Stock CenterBDSC_51635
Genetic reagent (D. melanogaster)GMR57C10-Gal4Bloomington Drosophila Stock CenterBDSC_39171
Genetic reagent (D. melanogaster)Gad1-Gal4Bloomington Drosophila Stock CenterBDSC_51630
Software, algorithmPython 3Python Software Foundationhttps://www.python.org
Software, algorithmImageJ/FIJISchindelin et al., 2012https://fiji.sc/
Software, algorithmMATLABMATLABmathworks.com
Software, algorithmAnalysis codeGitHubhttps://github.com/sophie63/Aimon2022

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie Aimon
  2. Karen Y Cheng
  3. Julijana Gjorgjieva
  4. Ilona C Grunwald Kadow
(2023)
Global change in brain state during spontaneous and forced walk in Drosophila is composed of combined activity patterns of different neuron classes
eLife 12:e85202.
https://doi.org/10.7554/eLife.85202