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Abstract Circadian clocks are evolved to adapt to the daily environmental changes under 
different conditions. The ability to maintain circadian clock functions in response to various stresses 
and perturbations is important for organismal fitness. Here, we show that the nutrient- sensing GCN2 
signaling pathway is required for robust circadian clock function under amino acid starvation in 
Neurospora. The deletion of GCN2 pathway components disrupts rhythmic transcription of clock 
gene frq by suppressing WC complex binding at the frq promoter due to its reduced histone H3 
acetylation levels. Under amino acid starvation, the activation of GCN2 kinase and its downstream 
transcription factor CPC- 1 establish a proper chromatin state at the frq promoter by recruiting the 
histone acetyltransferase GCN- 5. The arrhythmic phenotype of the GCN2 kinase mutants under 
amino acid starvation can be rescued by inhibiting histone deacetylation. Finally, genome- wide tran-
scriptional analysis indicates that the GCN2 signaling pathway maintains robust rhythmic expression 
of metabolic genes under amino acid starvation. Together, these results uncover an essential role of 
the GCN2 signaling pathway in maintaining the robust circadian clock function in response to amino 
acid starvation, and demonstrate the importance of histone acetylation at the frq locus in rhythmic 
gene expression.

Editor's evaluation
This fundamental work is important in demonstrating that the general amino acid control response 
to amino acid limitation in Neurospora, which includes the key nutrient- controlled protein kinase 
Gcn2, is crucial to maintain circadian rhythmic cell growth and transcription of the FRQ gene, the 
master regulator of rhythmicity. There is an abundance of compelling evidence supporting the 
conclusions, with rigorous molecular and genetic assays of key mutants impaired for general amino 
acid control or transcriptional cofactors. The work will be of broad interest to geneticists and molec-
ular biologists, and will be particularly valuable to researchers interested in circadian rhythm or 
nutrient control of gene expression.
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Introduction
Circadian clocks enable organisms to adapt to the daily environmental changes caused by the earth’s 
rotation (Bell- Pedersen et al., 2005; Dunlap and Loros, 2017; Johnson et al., 2017; Takahashi, 
2017). Rhythmic gene expression allows different organisms to regulate their daily molecular, cellular, 
behavioral, and physiological activities. The ability to maintain circadian clock function in response 
to various stresses and perturbations is an important property of living systems (Bass, 2012; Hogen-
esch and Ueda, 2011). Although gene expression is sensitive to temperature changes, temperature 
compensation is a key feature of circadian clocks to maintain circadian period length at different 
physiological temperatures (Hu et al., 2021; Narasimamurthy and Virshup, 2021; Ode and Ueda, 
2018). DNA damage and translation stress are known to reset the circadian clock through the check-
point kinase 2 signaling pathway in Neurospora and the ATM signaling pathway in mammalian cells 
(Diernfellner et al., 2019; Oklejewicz et al., 2008; Pregueiro et al., 2006). Cellular redox balance, 
including oxidative stress, regulates the circadian clock by modulating CLOCK and NPAS2 activity 
(Nakahata et al., 2008; Rutter et al., 2001). Nutritional stress, such as a high- fat diet, can disrupt the 
oscillating metabolites and behavioral rhythms in mice (Eckel- Mahan et al., 2013; Kohsaka et al., 
2007; Panda, 2016).

Starvation for all or certain amino acids leads to induced transcription followed by derepression of 
genes in many amino acid biosynthetic pathways, referred as general amino acid control in yeast and 
cross- pathway control (CPC) in Neurospora (Hinnebusch, 2005). General control nonderepressible 2 
(GCN2) kinase, called CPC- 3 in Neurospora, is a serine/threonine kinase that functions as an amino 
acid sensor (Battu et al., 2017; Efeyan et al., 2015; Sattlegger et al., 1998). GCN2 is activated by 
accumulated uncharged tRNAs when intracellular amino acids are limited (Ramirez et al., 1992; Wek 
et al., 1995). Activated GCN2 phosphorylates the α subunit of eukaryotic initiation factor 2 (eIF2α) 
to translationally repress protein synthesis (Lyu et al., 2021; Sonenberg and Hinnebusch, 2009). 
Meanwhile, it also upregulates the transcription activator GCN4, named CPC- 1 in Neurospora, which 
activates amino acid biosynthetic and transport pathways (Ebbole et al., 1991; Hinnebusch, 2005). 
Recently, it has been shown that circadian clock control of the GCN2- mediated eIF2α phosphorylation 
is necessary for rhythmic translation initiation in Neurospora (Ding et al., 2021; Karki et al., 2020). 
Although amino acid starvation is known to activate the GCN2–GCN4 signaling pathway, how nutrient 
limitation, especially amino acid starvation, affects circadian clock is not known.

Despite evolutionary divergence in eukaryotes, circadian rhythms are controlled by the conserved 
transcription/translation- based negative feedback loops (Bell- Pedersen et  al., 2005). Neurospora 
crassa has been established as one of the best studied model systems for analyzing the molecular 
mechanism of eukaryotic circadian clocks (Cha et al., 2015; Dunlap and Loros, 2017; Heintzen and 
Liu, 2007). In the Neurospora core circadian negative feedback loop, two PAS- domain- containing 
transcription factors, White Collar- 1 (WC- 1) and WC- 2 form a complex (WCC) and bind to the C- box 
of the frq promoter to activate its transcription (Cheng et  al., 2001b; Crosthwaite et  al., 1997; 
Froehlich et al., 2002). FRQ protein is translated from frq mRNA in the cytosol and progressively 
phosphorylated at about 103 phosphorylation sites, which plays a major role in determining circadian 
periodicity by regulating the FRQ–CK1 interaction (Baker et al., 2009; Chen et al., 2023; Larrondo 
et al., 2015; Liu et al., 2019; Liu et al., 2000; Tang et al., 2009). To close the negative feedback loop, 
FRQ forms a complex with its partner FRQ- interacting RNA helicase (FRH) to inhibit the activity of the 
WCC by promoting WCC phosphorylation mediated by CK1 and CK2 (He et al., 2006; He and Liu, 
2005; Schafmeier et al., 2005; Wang et al., 2019).

Chromatin structure and histone modification changes play important roles in regulating the 
transcription of circadian clock genes (Papazyan et al., 2016; Takahashi, 2017; Zhu and Belden, 
2020). In mammals, rhythmic H3K4me3, H3K9ac, and H3K27ac modifications have been shown to be 
enriched at the promoter of clock genes and positively correlated with gene expression (Etchegaray 
et al., 2003; Katada and Sassone- Corsi, 2010; Koike et al., 2012). In Neurospora, rhythmic binding 
of WCC to the frq promoter is regulated by ATP- dependent chromatin remodeling factors, such as 
the SWI/SNF complex, the INO80 complex, the chromodomain helicase DNA- binding- 1 (CHD1), and 
the Clock ATPase (CATP) (Belden et  al., 2011; Cha et  al., 2013; Gai et  al., 2017; Wang et  al., 
2014). Histone chaperone FACT complex and histone modification enzymes, SET1, SET2, and RPD3 
complex, have also been shown to affect frq transcription by regulating rhythmic histone compositions 
and modifications at the frq locus (Liu et al., 2017; Raduwan et al., 2013; Sun et al., 2016). However, 
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it is still unknown how the chromatin structure is 
organized to allow rhythmic clock gene expres-
sion under nutrient limitation conditions.

In this study, we discovered that the disruption 
of the GCN2 (CPC- 3) signaling pathway abolished 
robust circadian rhythms under amino acid star-
vation, which was important for rhythmic expres-
sion of metabolic genes. In the GCN2 signaling 
pathway mutants, amino acid starvation abol-
ished the rhythmic binding of WC- 2 at the frq 
promoter by decreasing its histone H3 acetylation 
levels. Amino acid starvation activated CPC- 3 and 
CPC- 1, which re- established a proper chromatin 
state at the frq promoter by recruiting the histone 
acetyltransferase GCN- 5 to allow rhythmic frq 
expression. Furthermore, the inhibition of histone 
deacetylases could rescue the impaired circadian 
rhythm phenotypes under amino acid starva-
tion, demonstrating the importance of rhythmic 
histone acetylation at the frq gene promoter for 
maintaining robust circadian rhythms of gene 
expression.

Results
CPC-3 and CPC-1 are required for 
robust circadian rhythms under 
amino acid starvation
To investigate whether the nutrient- sensing GCN2 
pathway is involved in regulating circadian clock 
function under amino acid starvation, we created 
the cpc- 3 and cpc- 1 knockout mutants (see Mate-
rials and methods). In Neurospora, cpc- 3 and 
cpc- 1 encode for the GCN2 and GCN4 homolog, 
respectively. As expected, the CPC- 3- mediated 
eIF2α phosphorylation and CPC- 1 induction by 
3- aminotriazole (3- AT) treatment were completely 
abolished in the cpc- 3KO strain (Figure 1—figure 
supplement 1A). 3- AT is an inhibitor of the histi-
dine synthesis enzyme encoded by his- 3 which 
triggers the amino acid starvation response 
(Natarajan et  al., 2001). On the other hand, 
CPC- 1 expression and its induction by 3- AT were 
eliminated in the cpc- 1KO mutant (Figure  1—
figure supplement 1B). The circadian conidiation 
rhythms of the cpc- 3KO and cpc- 1KO mutants were 
examined by race tube assays. Under a normal 
growth condition (0  mM 3- AT), cpc- 3 deletion 
had no effect on the circadian period but cpc- 1 
deletion led to the period lengthening of ~1.7 hr 
(Figure  1A). The long period of cpc- 1KO strain 
could be rescued by the expression of Myc.CPC- 1 
(Figure 1—figure supplement 1C).

To investigate how amino acid starvation 
affects circadian clock, we treated the wild- type 

Figure 1. CPC- 3 and CPC- 1 are required for circadian 
rhythm by regulating rhythmic frq transcription in 
response to amino acid starvation. (A) Race tube assay 
showing that amino acid starvation (3- aminotriazole [3- 
AT] treatment) disrupted circadian conidiation rhythm 
of the cpc- 3KO and cpc- 1KO strains. 0 mM 3- AT is the 
normal growth condition. (B) Luciferase reporter assay 
showing that amino acid starvation disrupted rhythmic 
expression of frq promoter- driven luciferase of the cpc- 
3KO and cpc- 1KO strains. A frq- luc transcriptional fusion 
construct was expressed in cpc- 3KO and cpc- 1KO strains 
grown on the fructose- glucose- sucrose FGS- Vogel’s 
medium with the indicated concentrations of 3- AT, and 
the luciferase signal was recorded using a LumiCycle 
in constant darkness (DD) for more than 7 days. 
Normalized data with the baseline luciferase signals 
subtracted are shown. (C) Western blot showing that 
amino acid starvation dampened rhythmic expression 
of FRQ protein of the cpc- 3KO and cpc- 1KO strains at the 
indicated time points in DD (n = 3; WT: p = 5.00E−08, 
cpc- 3KO: p = 0.0016, cpc- 1KO: p = 0.0004, RAIN; WT vs 
cpc- 3KO: mesor p = 0.1421, amplitude p = 0.0774, phase 
p = 0.4319; WT vs cpc- 1KO: mesor p = 0.0614, amplitude 
p = 0.1920, phase p = 0.4404, CircaCompare). The left 
panel showing that protein extracts were isolated from 
WT, cpc- 3KO, and cpc- 1KO strains grown in a circadian 
time course in DD and probed with FRQ antibody. The 
right panel showing that the densitometric analyses 
of the results of three independent experiments. (D) 
Northern blot showing that amino acid starvation 
dampened rhythmic expression of frq mRNA of the 
cpc- 3KO and cpc- 1KO strains at the indicated time 
points in DD (n = 3; WT: p = 6.56E−05, cpc- 3KO: p = 
0.0039, cpc- 1KO: p > 0.05, RAIN; WT vs cpc- 3KO: mesor 
p = 0.1153, amplitude p = 0.4316, phase p = 0.0788, 
CircaCompare). The densitometric analyses of the 
results from three independent experiments were 
shown on the right panel. Error bars indicate standard 
deviation (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001; 
Student’s t test was used.

Figure 1 continued on next page
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(WT), cpc- 3KO, and cpc- 1KO strains with different 
concentrations of 3- AT. As shown in Figure 1A, 
although treatment with 3 or 4 mM 3- AT resulted 
in modest inhibition of the WT growth rate, 
the robust circadian conidiation rhythms were 
maintained. In the cpc- 3KO and cpc- 1KO strains, 
however, addition of 3 or 4  mM 3- AT resulted 
in severe inhibition of growth rates and the loss 
of circadian conidiation rhythms. To exclude the 
effect of 3- AT on other target genes, we exam-
ined the circadian rhythm of the his- 3− strain, 
which contained a single mutation in the his- 3 
gene required for histidine synthesis and could 
not grow in the medium without histidine. Race 
tube assays showed that the his- 3− strain grew 
normally and exhibited a robust circadian conidia-
tion rhythm in the presence of histidine (1.0 × 10−2 
mg/ml). Although addition of the same amount 
of histidine could rescue the growth of the cpc- 
3KO his- 3− strain, it could not rescue its circadian 
conidiation rhythm (Figure  1—figure supple-
ment 1D), indicating that CPC- 3 is required for 
robust circadian rhythms under histidine starva-
tion stress.

To confirm the loss of circadian rhythms at the 
molecular level, we introduced a frq promoter- 
driven luciferase reporter into the cpc- 3KO and 
cpc- 1KO strains. As shown in Figure  1B and 
Figure 1—figure supplement 2A, B, the robust 
circadian rhythms of luciferase activity seen in the 
WT strain were severely dampened or arrhythmic 
in the cpc- 3KO and cpc- 1KO strains upon 3  mM 
3- AT treatment. Consistent with these results, 
western blot analysis showed that, after the initial 
light/dark transition, rhythms of FRQ levels and 

its phosphorylation were dampened in the cpc- 3KO and cpc- 1KO strains in the presence of 3- AT (WT: p 
= 5.00E−08, cpc- 3KO: p = 0.0016, cpc- 1KO: p = 0.0004) (Figure 1C and Figure 1—figure supplement 
2C). The statistical tests of circadian rhythms were performed using a circadian statistical analysis tool 
CircaCompare (Parsons et al., 2020) (see Materials and methods). Northern blot analysis showed 
that the circadian rhythms of frq mRNA in the cpc- 3KO and cpc- 1KO strains were also dampened in 
the presence of 3- AT (WT: p = 6.56E−05, cpc- 3KO: p = 0.0039, cpc- 1KO: p > 0.05) and the levels of frq 
mRNA were constantly low in DD (Figure 1D and Figure 1—figure supplement 2D). Together, these 
results suggest that the GCN2 pathway is required for a functional clock by regulating rhythmic frq 
transcription in response to amino acid starvation.

CPC-3 and CPC-1 are required for rhythmic WCC binding in response to 
amino acid starvation
Since 3- AT treatment resulted in low frq mRNA levels in the cpc- 3KO and cpc- 1KO strains (Figure 1D), 
we first examined the protein levels of WC- 1 and WC- 2 and found that their levels were higher in 
the mutants than those in the WT strain at different time points (Figure 2A, B). We then performed 
WC- 2 chromatin immunoprecipitation (ChIP) assays to examine whether the WCC binding to the frq 
promoter was affected. As shown in Figure 2—figure supplement 1A, WC- 2 rhythmically bound to 
the frq C- box in the WT, cpc- 3KO, and cpc- 1KO strains without 3- AT treatment (WT: p = 2.60E−07, cpc- 
3KO: p = 0.0016, cpc- 1KO: p = 1.06E−05). However, 3- AT treatment resulted in constant low levels of 
WC- 2 binding to the frq C- box during a circadian cycle in both cpc- 3KO and cpc- 1KO strains (Figure 2C, 

The online version of this article includes the following 
source data and figure supplement(s) for figure 1:

Source data 1. LumiCycle analysis dataset in 
Figure 1B.

Source data 2. Scan of western blot probed for FRQ 
protein and quantification dataset in Figure 1C.

Source data 3. Scan of Northern blot probed for frq 
mRNA and quantification dataset in Figure 1D.

Figure supplement 1. CPC- 3 and CPC- 1 are activated 
and required for robust circadian conidiation rhythm 
under histidine starvation.

Figure supplement 1—source data 1. Scan of 
western blot probed for eIF2α protein phosphorylation 
and CPC- 1 protein in Figure 1—figure supplement 
1A.

Figure supplement 1—source data 2. Scan of 
western blot probed for CPC- 1 protein in Figure 1—
figure supplement 1B.

Figure supplement 2. Rhythmic frq expression of cpc- 
3KO and cpc- 1KO strain.

Figure supplement 2—source data 1. LumiCycle 
analysis dataset in Figure 1—figure supplement 2A.

Figure supplement 2—source data 2. LumiCycle 
analysis dataset in Figure 1—figure supplement 2B.

Figure supplement 2—source data 3. Scan of 
western blot probed for FRQ protein and quantification 
dataset in Figure 1—figure supplement 2C.

Figure supplement 2—source data 4. Scan of 
Northern blot probed for frq mRNA and quantification 
dataset in Figure 1—figure supplement 2D.

Figure 1 continued
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D). These results indicate that the loss of circa-
dian rhythms in the cpc- 3KO and cpc- 1KO strains 
under amino acid starvation is caused by loss of 
rhythmic frq transcription, due to impaired WCC 
binding at the frq promoter.

Because WCC phosphorylation inhibited its 
transcriptional activation activity (He et al., 2006; 
He and Liu, 2005; Lee et al., 2000; Schafmeier 
et al., 2005; Wang et al., 2019), we also exam-
ined WCC phosphorylation profiles and found 
that 3- AT treatment resulted in hypophosphory-
lation of WC- 1 and WC- 2 (which is usually asso-
ciated with WCC activation) in the cpc- 3KO and 
cpc- 1KO strains (Figure 2—figure supplement 1B, 
C). Thus, their reduced WCC binding at the frq 
promoter is not caused by WCC hyperphosphor-
ylation. It should be noted that the overall phos-
phorylation status of WCC does not always reflect 
its activity in driving frq transcription, which is 
possibly due to the unknown function of multiple 
key phosphosites on WCC (Wang et  al., 2019; 
Zhou et al., 2018).

CPC-1 is required for the 
maintenance of chromatin 
structure in response to amino 
acid starvation
The low WC- 2 binding at the frq promoter 
prompted us to examine the chromatin structure 
of the frq promoter. We first performed ChIP assay 
to examine the histone and its acetylation levels at 
the frq promoter in the WT strain. Although amino 
acid starvation had little effect on the histone H2B 
levels (Figure 3A), it led to significantly decreased 
histone H3 acetylation levels (H3 acetylated at the 
N- terminus) at the frq promoter at high concen-
trations of 3- AT (Figure 3B). These results suggest 
that amino acid starvation can affect frq transcrip-
tion by reducing the histone acetylation levels at 
the frq promoter.

We then examined whether the CPC- 3 and 
CPC- 1 signaling pathway was involved in regu-
lating chromatin structure at the frq promoter in 
response to amino acid starvation. Histone H2B 
and H3ac ChIP assays at different circadian time 
points showed that the relative histone H3ac 
levels were slightly decreased in the cpc- 1KO 

Figure 2. CPC- 3 and CPC- 1 are required for rhythmic 
WCC binding in response to amino acid starvation. 
Western blot assay showing that WCC protein levels 
were elevated in the cpc- 3KO (A) and cpc- 1KO (B) strains 
after 3 mM 3- aminotriazole (3- AT) treatment. Protein 
extracts were isolated from WT, cpc- 3KO, and cpc- 1KO 
strains grown in the indicated time points in DD and 
probed with WC- 1 and WC- 2 antibodies. Chromatin 
immunoprecipitation (ChIP) assay showing that amino 
acid starvation disrupted rhythmic WC- 2 binding at 
the promoter of frq gene in the cpc- 3KO (n = 3; WT: p 
= 1.84E−05, cpc- 3KO: p > 0.05) (C) or cpc- 1KO strains (n 
= 3; WT: p = 0.0025, cpc- 1KO: p > 0.05) (D). Samples 
were grown for the indicated number of hours in DD 
prior to harvesting and processing for ChIP using WC- 2 
antibody. Occupancies were normalized by the ratio 
of ChIP to Input DNA. Error bars indicate standard 
deviation (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001; 
Student’s t test was used.

The online version of this article includes the following 
source data and figure supplement(s) for figure 2:

Source data 1. Scan of western blot probed for WC- 1 
and WC- 2 proteins in WT and cpc- 3KO strains with 
3- aminotriazole (3- AT) in Figure 2A.

Source data 2. Scan of western blot probed for WC- 1 
and WC- 2 proteins in WT and cpc- 1KO strains with 
3- aminotriazole (3- AT) in Figure 2B.

Source data 3. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 2C.

Source data 4. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 2D.

Figure supplement 1. WCC binding at the frq 
promoter and WCC phosphorylation levels in the cpc- 
3KO and cpc- 1KO strain.

Figure supplement 1—source data 1. Chromatin 
immunoprecipitation (ChIP) analysis dataset in 
Figure 2—figure supplement 1A.

Figure supplement 1—source data 2. Scan of 
western blot probed for phosphorylation of WC- 1 
and WC- 2 proteins in WT and cpc- 3KO strains with 
3- aminotriazole (3- AT) in Figure 2—figure supplement 
1B.

Figure supplement 1—source data 3. Scan of 
western blot probed for phosphorylation of WC- 1 
and WC- 2 proteins in WT and cpc- 1KO strains with 

Figure 2 continued on next page

3- aminotriazole (3- AT) in Figure 2—figure supplement 
1C.

Figure supplement 1—source data 4. Chromatin 
immunoprecipitation (ChIP) analysis dataset in 
Figure 2—figure supplement 1D.

Figure 2 continued
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strain compared to the WT strain under normal 
condition (Figure  2—figure supplement 1D). 
H2B levels were not markedly different between 
the WT and cpc- 1KO strains in the presence of 
3  mM 3- AT (Figure  3C). However, the relative 
histone H3ac levels were very different in these 
two strains in the presence of 3 mM 3- AT: it was 
rhythmic with a peak at DD18 in the WT strain but 
was dramatically reduced and arrhythmic in the 
cpc- 1KO strain at different time points in DD (WT: 
p = 0.0168, cpc- 1KO: p > 0.05) (Figure 3D). These 
results indicate that CPC- 1 is required for main-
taining the proper histone acetylation status at 
the frq promoter under amino acid starvation. The 
low H3ac levels at the frq promoter, which is crit-
ical for transcription activation, results in constant 
low WCC binding and arrhythmic frq transcription 
in the cpc- 1KO strain.

CPC-1 recruits GCN-5 to activate 
frq transcription in response to 
amino acid starvation
To determine how CPC- 1 is involved in regu-
lating histone acetylation levels at the frq locus, 
we examined the occupancy of CPC- 1 at the frq 
promoter by ChIP assays using CPC- 1 antibody. 
As shown in Figure  4A and Figure  4—figure 
supplement 1A, CPC- 1 was found to be rhythmi-
cally enriched at the frq promoter in the WT strain 
but not in the cpc- 1KO strain under normal (WT: 
p = 8.37E−06, cpc- 1KO: p > 0.05) or amino acid 
starvation (WT: p = 7.64E−05) conditions in DD, 
peaking at ~DD14, a time point corresponding to 
the peak of frq mRNA levels. Co- immunoprecip-
itation (Co- IP) assay showed that CPC- 1 did not 
associate with WC- 1 or WC- 2 (Figure 4—figure 
supplement 1B), suggesting that CPC- 1 and 
WCC bind independently to the frq promoter.

How does the GCN2 signaling pathway regu-
late histone acetylation in response to amino acid 
starvation? The yeast GCN4 was previously shown 
to recruit the histone acetyltransferase GCN5 
containing (Spt- Ada- Gcn5 acetyltransferase) 
SAGA complex to selective gene promoters, 
likely through its physical interaction with the 

ADA2 subunit (Barlev et al., 1995; Drysdale et al., 1998; Kuo et al., 2000). To test this possibility, 
we performed Co- IP assay to check the interaction between CPC- 1 and the SAGA complex in Neuros-
pora in strains expressing the epitope- tagged Neurospora SAGA homologs. As shown in Figure 4B, 
Myc- tagged GCN- 5 was efficiently immunoprecipitated by the Flag- tagged ADA- 2, indicating the 
existence of an SAGA complex in Neurospora. Although the Myc.GCN- 5, MYC.CPC- 1 or Flag.ADA- 2 
protein levels were repressed by 3 mM 3- AT treatment (potentially due to global translational inhibi-
tion by eIF2α phosphorylation) (Karki et al., 2020), the interaction between GCN- 5 and ADA- 2 was 
almost the same under either normal or amino acid starved conditions (IP was normalized with Input). 
Importantly, Myc.CPC- 1 was also found to associate specifically with Flag.ADA- 2 with/without 3- AT 
treatment (Figure 4C), suggesting that CPC- 1 can recruit the SAGA complex to the frq promoter 

Figure 3. CPC- 1 is required for the maintenance 
of chromatin structure in response to amino acid 
starvation. Chromatin immunoprecipitation (ChIP) 
assay showing that amino acid starvation slightly 
increased histone H2B levels (A) and dramatically 
decreased histone H3ac levels (B) at the promoter 
of frq gene in the WT strain at DD18 at the indicated 
concentration of 3- aminotriazole (3- AT). Relative H3ac 
levels were normalized with H2B levels. (C, D) ChIP 
assay showing that amino acid starvation slightly 
increased histone H2B levels (n = 3; WT: p = 3.85E−04, 
cpc- 1KO: p = 0.0364, RAIN; WT vs cpc- 1KO: mesor p 
= 0.0312, amplitude p = 0.2155, phase p = 0.2995, 
CircaCompare) (C) and dramatically decreased histone 
H3ac levels (n = 3; WT: p = 0.0168, cpc- 1KO: p > 0.05) 
(D) at the promoter of frq gene in the cpc- 1KO strain 
at the indicated time points in DD. Error bars indicate 
standard deviations (n = 3). *p < 0.05; ***p < 0.001; 
Student’s t test was used.

The online version of this article includes the following 
source data for figure 3:

Source data 1. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 3A.

Source data 2. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 3B.

Source data 3. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 3C.

Source data 4. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 3D.

https://doi.org/10.7554/eLife.85241
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through its ADA- 2 subunit to regulate histone 
acetylation levels at the frq locus under normal 
or amino acid starvation conditions. Further-
more, immunoprecipitation assays showed that 
WC- 1 and WC- 2 also interacted with Myc.GCN- 5 
(Figure 4—figure supplement 1C). These results 
suggest that CPC- 1 can regulate histone acetyl-
ation by recruiting the SAGA complex to the frq 
promoter.

To further confirm if CPC- 1 can recruit GCN5 
to the frq promoter, we performed ChIP assay 
to examine the occupancy of GCN- 5 at the frq 
promoter. As shown in Figure  4D, Myc- tagged 
GCN- 5 rhythmically bound at the frq promoter in 
DD in the WT strain but its binding was constantly 
low and arrhythmic in the cpc- 1KO strain (WT: p = 
0.0006, cpc- 1KO: p > 0.05), suggesting that CPC- 1 
recruits the GCN- 5 containing SAGA complex 
to the frq promoter to allow rhythmic histone 
acetylation levels, which maintain rhythmic WC- 2 
binding and thus rhythmic frq transcription.

GCN-5 is required for rhythmic 
H3ac at the frq promoter
GCN- 5 has been shown to regulate light induc-
tion and oxidative stress response in Neurospora 
(Grimaldi et  al., 2006; Qi et  al., 2018), but its 
role in the circadian clock remains unclear. To 
determine the function of GCN- 5 in the circadian 
clock, we created the gcn- 5 knockout mutant, and 
found that it exhibited slow growth and lacked a 
conidiation rhythm (Figure 5A). To determine its 
circadian clock at the molecular level, we intro-
duced the FRQ- LUC reporter (luciferase fused 
at the C terminus of the FRQ protein) into the 
gcn- 5KO strain (Larrondo et al., 2015). As shown 
in Figure  5B and Figure  5—figure supple-
ment 1B, a robust circadian rhythm of luciferase 
activity was observed in the WT strain, but it was 
quickly dampened after 1 day in DD and became 
arrhythmic in the gcn- 5KO strain. Western blot 
analysis showed that, after the initial light/dark 
transition, the rhythmic FRQ abundance and 
phosphorylation were significantly dampened in 
the gcn- 5KO mutant (WT: p = 5.00E−8, gcn- 5KO: 
p = 0.0016) (Figure  5C). Reverse Transcription 
Quantitative PCR RT- qPCR analysis showed that 
the circadian rhythms of frq mRNA were also 

Figure 4. CPC- 1 recruits GCN- 5 to activate frq 
transcription in response to amino acid starvation. 
(A) Chromatin immunoprecipitation (ChIP) assay 
showing that CPC- 1 rhythmically bound at the 
promoter of frq gene (n = 3; WT: p = 8.37E−06, 
cpc- 1KO: p > 0.05). WT and cpc- 1KO strains grown for 
the indicated number of hours in DD. Samples were 
crosslinked with formaldehyde and harvested for 
ChIP using CPC- 1 antibody. CPC- 1 ChIP occupancies 
were normalized by the ratio of ChIP to Input DNA. 
(B) Co- immunoprecipitation (Co- IP) assay showing 
that Flag.ADA- 2 interacted with Myc.GCN- 5 with or 
without 3 mM 3- aminotriazole (3- AT). Flag.ADA- 2 
and Myc.GCN- 5 were co- expressed in the WT strain 
and immunoprecipitation was performed using Flag 
antibody. (C) Co- IP assay showing that Flag.ADA- 2 
interacted with Myc.CPC- 1 with or without 3 mM 3- AT. 
Flag.ADA- 2 and Myc.CPC- 1 were co- expressed in the 
WT strain and immunoprecipitation was performed 
using Flag antibody. (D) ChIP assay showing that 
rhythmic GCN- 5 binding at the promoter of frq gene 
was dampened in the cpc- 1KO strain (n = 3; WT: p = 
0.0006, cpc- 1KO: p > 0.05). Samples were grown for the 
indicated number of hours in DD prior to harvesting 
and processing for ChIP as described in (A). Error bars 
indicate standard deviations (n = 3). *p < 0.05; **p < 
0.01; ***p < 0.001; Student’s t test was used.

The online version of this article includes the following 
source data and figure supplement(s) for figure 4:

Source data 1. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 4A.

Source data 2. Scan of western blot probed for 
Flag.ADA- 2 and Myc.GCN- 5 proteins in Figure 4B.

Source data 3. Scan of western blot probed for 
Flag.ADA- 2 and Myc.CPC- 1 proteins in Figure 4C.

Source data 4. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 4D.

Figure supplement 1. CPC- 1 rhythmically binds at the 
frq promoter and GCN- 5 interacts with WCC.

Figure supplement 1—source data 1. Chromatin 
immunoprecipitation (ChIP) analysis dataset in 
Figure 4—figure supplement 1A.

Figure supplement 1—source data 2. Scan of 

Figure 4 continued on next page

western blot probed for Myc.CPC- 1, WC- 1, and WC- 2 
proteins in Figure 4—figure supplement 1B.

Figure supplement 1—source data 3. Scan of 
western blot probed for Myc.GCN- 5, WC- 1, and WC- 2 
proteins in Figure 4—figure supplement 1C.

Figure 4 continued

https://doi.org/10.7554/eLife.85241
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severely dampened in the gcn- 5KO strain without 
(WT: p = 8.37E−06, gcn- 5KO: p > 0.05) or with 
3 mM 3- AT (WT: p = 5.39E−12, gcn- 5KO: p > 0.05) 
(Figure  5D, E). Together, these results indicate 
that GCN- 5 is critical for maintaining the function 
of circadian clock.

ChIP assay results showed that the H3ac levels 
were significantly decreased at the frq promoter, 
and their rhythmic occupancies were severely 
dampened in the gcn- 5KO strain compared with 
the WT strain (WT: p = 8.10E−05, gcn- 5KO: p > 
0.05) (Figure  5F). Furthermore, the rhythmic 
WC- 2 binding at the frq C- box of the WT strain 
was dramatically reduced in the gcn- 5KO strain 
in DD (WT: p = 0.0003, gcn- 5KO: p = 0.0459) 
(Figure 5G). These results indicate that GCN- 5 is 
critical for circadian clock function by regulating 
rhythmic chromatin structure changes to allow 
rhythmic WC- 2 binding at the frq promoter to 
drive rhythmic frq transcription.

Since ADA- 2 interacts with GCN- 5 and it is a 
subunit of the SAGA complex, we also created 
the Neurospora ada- 2 knockout mutant and 
examined the function of ADA- 2 in the circadian 
clock. As expected, we found that the circadian 
phenotypes and frq expression of the ada- 2KO 
strain were very similar to those of the gcn- 5KO 
strain (Figure  5—figure supplement 1A–F). 
Together, these results demonstrate the impor-
tance of GCN- 5 and ADA- 2 in the Neurospora 
circadian clock function.

Figure 5. GCN- 5 is required for rhythmic chromatin 
structure changes at the frq promoter. (A) Race tube 
assay showing that the conidiation rhythm in gcn- 5KO 
strain was lost compared with WT strain. (B) Luciferase 
assay showing that the luciferase activity rhythm was 
impaired in the gcn- 5KO strain after 1 day transition 
from light to dark. A FRQ- LUC translational fusion 
construct was expressed in WT and gcn- 5KO strains, and 
the luciferase signal was recorded in DD for more than 
7 days. Normalized data with the baseline luciferase 
signals subtracted are shown. (C) Western blot assay 
showing that rhythmic expression of FRQ protein 
was dampened in the gcn- 5KO strain (n = 3; WT: p = 
5.00E−08, gcn- 5KO: p = 0.0016, RAIN; WT vs gcn- 5KO: 
mesor p = 0.1421, amplitude p = 0.0774, phase p = 
0.4319, CircaCompare). RT- qPCR analysis showing that 
rhythmic expression of frq mRNA was dampened in the 
gcn- 5KO strain without 3- aminotriazole (3- AT; n = 3; WT: 
p = 8.37E−06, gcn- 5KO: p > 0.05) (D) or with 3- AT (n = 3; 
WT: p = 5.39E−12, gcn- 5KO: p > 0.05) (E). (F) Chromatin 
immunoprecipitation (ChIP) assay showing decreased 
histone H3ac levels at the promoter of frq gene in the 
gcn- 5KO strain at the indicated time points in DD (n = 
3; WT: p = 8.10E−05, gcn- 5KO: p > 0.05). Relative H3ac 
levels were normalized with H2B levels. (G) ChIP assay 
showing decreased WC- 2 levels at the promoter of frq 
gene in the gcn- 5KO strain at the indicated time points 
in DD (n = 3; WT: p = 0.0003, gcn- 5KO: p = 0.0459, 
RAIN; WT vs gcn- 5KO: mesor p = 0.2939, amplitude p 
= 0.0010, phase p = 0.6933, CircaCompare). Error bars 
indicate standard deviations (n = 3). *p < 0.05; **p < 
0.01; ***p < 0.001; Student’s t test was used.

The online version of this article includes the following 
source data and figure supplement(s) for figure 5:

Source data 1. LumiCycle analysis dataset in 
Figure 5B.

Source data 2. Scan of western blot probed for FRQ 
protein and quantification dataset in Figure 5C.

Figure 5 continued on next page

Source data 3. RT- qPCR analysis dataset in Figure 5D.

Source data 4. RT- qPCR analysis dataset in Figure 5E.

Source data 5. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 5F.

Source data 6. Chromatin immunoprecipitation (ChIP) 
analysis dataset in Figure 5G.

Figure supplement 1. ADA- 2 is required for circadian 
rhythm by regulating rhythmic frq expression.

Figure supplement 1—source data 1. LumiCycle 
analysis dataset in Figure 5—figure supplement 1B.

Figure supplement 1—source data 2. LumiCycle 
analysis dataset in Figure 5—figure supplement 1C.

Figure supplement 1—source data 3. Scan of 
western blot probed for FRQ protein and quantification 
dataset in Figure 5—figure supplement 1D.

Figure supplement 1—source data 4. Quantification 
of Northern blot dataset in Figure 5—figure 
supplement 1E.

Figure supplement 1—source data 5. Quantification 
of Northern blot dataset in Figure 5—figure 
supplement 1F.

Figure 5 continued

https://doi.org/10.7554/eLife.85241
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Elevated histone acetylation 
partially rescues circadian clock 
defects caused by amino acid 
starvation
Our results above suggest that amino acid star-
vation results in low histone acetylation levels at 
the frq promoter, which impairs the WC- 2 binding 
and rhythmic frq transcription in the cpc- 3KO and 
cpc- 1KO mutants. To further confirm this conclu-
sion, we hypothesized that the circadian clock 
defects under amino acid starvation should be 
rescued by increasing the histone acetylation 
levels. Trichostatin A (TSA) is a histone deacety-
lase (HDACs) inhibitor, which can inhibit HDACs 
activity and increase the histone acetylation levels 
in Neurospora (Selker, 1998). We treated the WT 
strain with different concentrations of 3- AT and 
TSA, and found that high concentrations of 3- AT 
lengthened the circadian period of the WT strain 
to ~24  hr (Figure  6A), but high concentrations 
of TSA resulted in a slight period shortening to 
21 hr (Figure 6B). When TSA was used together 
with a high concentration of 3- AT (7.5 mM), the 
long period phenotype can be gradually rescued 
by increasing TSA concentrations (Figure  6C), 
which is consistent with our conclusion that the 
histone acetylation levels changes are responsible 
for the circadian clock defects caused by amino 
acid starvation.

GCN- 5 is the major histone acetyltransferase 
responsible for histone acetylation at the frq locus 
in response to amino acid starvation. On the other 
hand, the histone deacetylase HDA- 1 was previ-
ously reported as a major histone deacetylase 
that can antagonize and compete with GCN- 5 
for recruitment to promoters to deacetylate H3 
(Islam et  al., 2011; Vogelauer et  al., 2000). 
ChIP assays showed that H3ac levels were indeed 
significantly decreased in the gcn- 5KO strain and 
were markedly increased in the hda- 1KO strain at 

the frq promoter region (Figure 6D), indicating that HDA- 1 is responsible for histone deacetylation at 
the frq locus. Race tube assays showed that in contrast to period lengthening in the WT strain by 3- AT 
(Figure 6A), the hda- 1KO strain exhibited nearly normal circadian period even in the presence of high 
3- AT concentrations (Figure 6E), suggesting that reduced histone deacetylation can partially rescue 
the circadian clock defects in response to amino acid starvation. To further confirm our conclusion, 
we treated the cpc- 3KO strains with different concentrations of TSA and found that the arrhythmic 
circadian conidiation rhythm caused by 3- AT treatment could be partially rescued by TSA treatments 
(Figure 6F). Together, these results strongly suggest that the amino acid starvation induced clock 
defects in the GCN2 signaling pathway mutants are largely due to the decreased histone acetylation 
at the frq promoter, which prevents efficient WC- 2 binding and disrupts the rhythmic frq transcription.

Figure 6. Elevated histone acetylation partially rescues 
impaired circadian rhythm caused by amino acid 
starvation stress. (A) Race tube assay showing that high 
concentrations of 3- aminotriazole (3- AT) treatment 
elongated circadian conidiation period of WT strain. (B) 
Race tube assay showing that the high concentrations 
of Trichostatin A (TSA) treatment shortened circadian 
conidiation period of WT strain. (C) TSA treatment 
rescued prolonged circadian period of WT strain 
caused by 3- AT treatment. WT strain was grown on 
the race tube medium containing 7.5 mM 3- AT and 
indicated concentrations of TSA in DD. (D) Chromatin 
immunoprecipitation (ChIP) assay showing that H3ac 
levels were decreased in gcn- 5KO strains and increased 
in hda- 1KO strains at the promoter of frq gene. Error 
bars indicate standard deviations (n = 3). *p < 0.05; **p 
< 0.01; Student’s t test was used. (E) The hda- 1KO strain 
exhibited near normal circadian period in the presence 
of 3- AT. hda- 1KO strains were grown on the race tube 
medium containing the indicated concentrations of 
3- AT in DD. (F) TSA treatment rescued the impaired 
circadian rhythm of cpc- 3KO strain caused by 3- AT 
treatment. cpc- 3KO strains were grown on the race 
tube medium containing 3 mM 3- AT and indicated 
concentrations of TSA in DD.

The online version of this article includes the following 
source data for figure 6:

Source data 1. RT- qPCR analysis dataset in Figure 6D.

https://doi.org/10.7554/eLife.85241


 Research article      Cell Biology | Genetics and Genomics

Liu, Yang et al. eLife 2023;12:e85241. DOI: https://doi.org/10.7554/eLife.85241  10 of 24

Rhythmic expression of CPC-1 
activated metabolic genes under 
amino acid starvation
Circadian clock has been shown to control meta-
bolic processes and rhythmic transcription of 
metabolic genes (Baek et  al., 2019; Hurley 
et al., 2014; Hurley et al., 2018). To determine 
the role of the GCN2 pathway in controlling 
gene expression under amino acid starvation, we 
performed RNA- seq experiments to analyze the 
genome- wide mRNA levels in the WT and cpc- 1KO 
strains in the presence of 3- AT (12 mM). As shown 
in Figure 7A, 22.1% of genes were found to be 
upregulated and 11.2% of genes were down-
regulated in the WT strain after 3- AT treatment 
compared with normal condition. Specifically, 
those genes involved in the regulation of oxidore-
ductase and amino acid metabolism were partic-
ularly enriched and were mostly upregulated 
during the amino acid starvation (Figure  7B). 
However, the differential expression of the 148 
upregulated and 127 downregulated genes found 
in the WT strain was abolished in the cpc- 1KO 
strain after 3- AT treatment, suggesting that these 
genes were regulated by CPC- 1 under amino 
acid starvation (Figure 7D and Figure 7—figure 
supplement 1A, B). Similar to those in Saccharo-
myces cerevisiae (Natarajan et al., 2001), genes 
of amino acid biosynthetic pathways, vitamin 
biosynthetic enzymes, peroxisomal components, 
and mitochondrial carrier proteins were also 
identified as CPC- 1 targets. Among them, the 
genes involved in amino acid and vitamin metab-
olism were particularly enriched and were mostly 
upregulated during the amino acid starvation 
(Figure  7E). For example, amino acid synthesis 
genes his- 3 (NCU03139), arg- 1 (NCU02639), trp- 3 
(NCU08409), and ser- 2 (NCU01439) were upregu-
lated in the WT strain, but unchanged in the cpc- 
1KO strain under amino acid starvation (Figure 7A, 
C).

To examine whether these CPC- 1 activated 
genes were controlled by circadian clock, we 
re- analyzed and compared our identified CPC- 1 
target genes with previously published RNA- seq 
data of rhythm samples (Hurley et  al., 2014; 
Hurley et al., 2018). As shown in Supplementary 
file 1, we summarized the rhythmic expression 
of 79 upregulated and 67 downregulated CPC- 1 
target genes based on the eJTK Cycle results 
of Hurley et  al., 2018 (its Supplemental Data-
sets 1 and 2). We re- analyzed the rhythmicity of 
CPC- 1- targeted genes (148 upregulated and 127 
downregulated) using CircaSingle (Parsons et al., 
2020), and added the p- values in Supplementary 

Figure 7. Circadian clock control of CPC- 1- activated 
metabolic genes under amino acid starvation. (A) 
Comparison of the transcript expression profiles of the 
WT strains with and without 12 mM 3- aminotriazole 
(3- AT) treatment. (B) Gene functional enrichment 
analysis based on the mRNA levels changes for the 
up- and downregulated genes in the WT strains with 
and without 12 mM 3- AT treatment. (C) Comparison of 
the transcript expression profiles of the cpc- 1KO strains 
with and without 12 mM 3- AT treatment. (D) Pie charts 
showing the overlaps of upregulated genes in the WT 
strain, but stable genes in the cpc- 1KO strains after 
12 mM 3- AT treatment. (E) Gene functional enrichment 
analysis based on the mRNA levels changes for the 
overlaps of upregulated genes in the WT strain, but 
stable genes in the cpc- 1KO strains after 12 mM 3- AT 
treatment. (F) RT- qPCR analysis showing that amino 
acid synthetic genes his- 3 (NCU03139) (n = 3; WT: 
p = 2.21E−05, cpc- 1KO: p>0.05), arg- 1 (NCU02639) 
(n = 3; WT: p = 0.0097, cpc- 1KO: p > 0.05), and trp- 3 
(NCU08409) (n = 3; WT: p = 0.0009, cpc- 1KO: p > 0.05) 
were activated by CPC- 1 and were rhythmic expressed 
with 3 mM 3- AT treatment. The primers used for RT- 
qPCR are shown in Key Resources Table.

The online version of this article includes the following 
source data and figure supplement(s) for figure 7:

Source data 1. Raw dataset of RNA- seq analysis in 
Figure 7A.

Source data 2. Raw dataset of RNA- seq analysis in 
Figure 7C.

Source data 3. RT- qPCR analysis dataset in Figure 7F.

Figure supplement 1. CPC- 1 regulated metabolic 
genes under amino acid starvation.

Figure supplement 1—source data 1. Chromatin 
immunoprecipitation (ChIP) analysis dataset in 
Figure 7—figure supplement 1C.

Figure supplement 1—source data 2. RT- qPCR 

Figure 7 continued on next page
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file 1. There were 146 rhythmic genes based on 
the eJTK Cycle, and 132 rhythmic genes based 
on the CircaSingle. As expected, there were 106 
overlapping genes between these two sets of 
data, confirming the results using eJTK Cycle. 
Thus, we performed further analysis based on the 
data from eJTK Cycle. There were about 146/275 
(53%) of the CPC- 1 up- and downregulated genes 
under amino acid starvation exhibiting rhyth-
micity, indicating a highly significant enrichment 
of CPC- 1 regulated genes as clock- controlled 
genes (p = 3.341905e−06, hypergeometric distri-
bution test). Furthermore, we performed ChIP 
experiments to examine whether CPC- 1 directly 
activates the expression of amino acid synthetic 
genes. As shown in Figure  7—figure supple-
ment 1C, CPC- 1 was found to be constitutively 
enriched at the promoters of his- 3 (NCU03139), 
trp- 3 (NCU08409), and ser- 2 (NCU01439) genes 
(WT (0 mM 3- AT): p > 0.05, WT (3 mM 3- AT): p 
> 0.05, cpc- 1KO (0 mM 3- AT): p > 0.05), and the 
enrichment was enhanced by 3- AT treatment. 
Because the CPC- 1 binding was not rhythmic, 
we performed RT- qPCR experiments to re- an-
alyze whether those genes were rhythmically 
transcribed in DD. Consistent with the published 
RNA- seq analysis results, we found that frq and 
the amino acid synthetic genes such as his- 3 
(NCU03139) (WT: p = 2.21E−05, cpc- 1KO: p > 
0.05), arg- 1 (NCU02639) (WT: p = 0.0097, cpc- 1KO: 
p > 0.05), and trp- 3 (NCU08409) (WT: p = 0.0009, 
cpc- 1KO: p > 0.05) were rhythmically expressed in 
the WT but not cpc- 1KO strain under amino acid 
starvation (Figure 7F). In addition, we also found 
that ser- 2 (NCU01439) (WT: p = 2.25E−05, cpc- 
1KO: p > 0.05) exhibited rhythmic expression in 
the WT but not in the cpc- 1KO strain under amino acid starvation (Figure 7—figure supplement 1D), 
even though it was not previously shown to be rhythmic in the published RNA- seq analysis study. 
These results suggest that many CPC- 1- activated metabolic genes under amino acid starvation are 
regulated by circadian clock. Next, we performed RT- qPCR experiments to detect the mRNA levels of 
amino acid synthesis genes under normal condition (0 mM 3- AT), and found that arg- 1 (NCU02639) 
(WT: p = 0.0353), trp- 3 (NCU08409) (WT: p = 0.0436), and ser- 2 (NCU01439) (WT: p = 0.0008) genes, 
but not the his- 3 (NCU03139) (WT: p > 0.05) gene, were rhythmic in the WT strain in DD (Figure 7—
figure supplement 1E). Together, these results suggest that the GCN2 signaling pathway functions 
to maintain the robust circadian clock and rhythmic expression of metabolic genes under amino acid 
starvation.

Figure 8. Model showing the role of CPC- 3 and CPC- 1 
in maintaining the Neurospora circadian rhythm in 
response to amino acid starvation. Under normal 
conditions, CPC- 1 is expressed at its basal levels in the 
WT (Left) or cpc- 3KO (Right) strain, which is required 
for rhythmic expression of frq gene by recruiting the 
histone acetyltransferase GCN- 5 containing SAGA 
complex to the frq promoter. Under amino acid 
starvation conditions, the chromatin in the frq promoter 
of the WT strain is constitutively compacted (due to 
decreased H3ac), likely due to activation of histone 
deacetylases or inhibition of histone acetyltransferases. 
CPC- 3 and CPC- 1 signaling pathway was activated by 
amino acid starvation and the elevated CPC- 1 protein 
would efficiently recruit the histone acetyltransferase 
GCN- 5 containing SAGA complex to promote the 
histone acetylation levels, which permitted rhythmic 
WCC binding at the frq promoter (Left). Disruption 
of the CPC- 3 and CPC- 1 signaling pathway resulted 
in decreased histone acetylation levels of the frq 
gene promoter, reduced WCC binding and damped 
circadian oscillations in response to the amino acid 
starvation stress (Right).

analysis dataset in Figure 7—figure supplement 1D.

Figure supplement 1—source data 3. RT- qPCR 
analysis dataset in Figure 7—figure supplement 1E.

Figure 7 continued
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Discussion
Circadian clock drives robust rhythmic gene expression and activities in different environmental and 
nutritional conditions. Here, we demonstrate that the nutrient- sensing GCN2 pathway plays an unex-
pected role in maintaining the Neurospora circadian clock in response to amino acid starvation stress. 
Under normal conditions, CPC- 1 is expressed at its basal levels in the WT or cpc- 3KO strain, which 
is required for rhythmic expression of frq gene by recruiting the histone acetyltransferase GCN- 5 
containing SAGA complex to the frq promoter. However, amino acid starvation resulted in compact 
chromatin structure (due to decreased H3ac) in the frq promoter in the WT strain (Figure 3B), likely 
due to activation of the histone deacetylases or inhibition of histone acetyltransferases. The circadian 
clock- controlled CPC- 3 and CPC- 1 signaling pathway (Karki et al., 2020) is activated by amino acid 
starvation, and the elevated CPC- 1 protein efficiently recruits the histone acetyltransferase GCN- 5 
containing SAGA complex to the frq promoter to increase the histone acetylation levels and loosen 
the chromatin structure, which permits rhythmic WC- 2 binding. Therefore, under amino acid starva-
tion, the disruption of the CPC- 3 and CPC- 1 signaling pathway results in decreased histone acetyla-
tion levels, reduced WC- 2 binding at the frq promoter and the loss of robust rhythmic frq transcription 
(Figure 8).

Maintaining robust rhythmic gene expression and circadian activities in response to various envi-
ronmental and nutritional stresses is important for the health or survival of different organisms. Circa-
dian clock synchronizes metabolic processes and systemic metabolite levels, while nutrients and 
energy signals also feedback to circadian clocks to adapt their metabolic state (Bass, 2012; Hurley 
et al., 2014; Klemz et al., 2017; Reinke and Asher, 2019). Amino acid starvation is known to inhibit 
the global translation efficiency through activating GCN2- mediated eIF2α phosphorylation, which 
conserves energy and allows cells to reprogram gene expression to relieve stress damage. It was 
recently shown that circadian clock control of GCN2- mediated eIF2α phosphorylation was necessary 
for rhythmic translation initiation in Neurospora (Ding et al., 2021; Karki et al., 2020). However, it 
was previously unknown whether circadian clock would be affected by amino acid starvation stress. 
After activation of the GCN2- mediated eIF2α phosphorylation by amino acid starvation, a subset of 
transcripts containing overlapping upstream open reading frames (uORFs) in their 5′ untranslated 
region (5′ UTR) are efficiently translated, including the yeast transcription factor GCN4, the Neuros-
pora CPC- 1 and their mammalian ortholog ATF4, which activate the transcription of various amino 
acid biosynthetic genes (Hinnebusch, 1984; Paluh et al., 1988; Vattem and Wek, 2004). Our ChIP 
results showed that CPC- 1 could rhythmically bind to the region close to C- box at the frq promoter 
to activate frq transcription (Figure 4A). WCC binding at the frq C- box region was slightly decreased 
under normal condition (Figure 2—figure supplement 1A), and dramatically decreased under amino 
acid starvation in the cpc- 1KO strain (Figure 2D), suggesting that CPC- 1 cooperates with WCC to 
promote frq transcription in response to amino acid starvation. Although CPC- 1 rhythmically bound 
at the frq promoter, ChIP experiments showed that CPC- 1 binding at several selected amino acid 
biosynthetic genes did not appear to be rhythmic (Figure 7—figure supplement 1C). However, our 
RT- qPCR results (Figure 7F and Figure 7—figure supplement 1) and the previous RNA- seq data 
showed that many CPC- 1- targeted metabolic genes were rhythmic expressed (Hurley et al., 2018). 
It is possible that the binding of CPC- 1 to these promoters is still rhythmic but with low amplitudes. 
As a result, the limited sensitivity of our ChIP assays failed to detect these rhythms. Alternatively, the 
rhythmic transcription of these genes might be controlled by the rhythmic transcriptional activation 
activity of CPC- 1 rather than its binding. In addition, the rhythmic binding of WCC or WCC- controlled 
transcription factors (Hurley et al., 2014) might also contribute to their rhythmic transcription.

Amino acid starvation was able to affect gene expression by regulating chromatin modifications. 
Mammalian transcription factor ATF2 was reported to promote the modification of the chromatin 
structure in response to amino acid starvation to enhance the transcription of numbers of amino acid- 
regulated genes (Bruhat et al., 2007). Amino acid starvation was also shown to induce reactivation of 
silenced transgenes and latent HIV- 1 provirus by downregulation of histone deacetylase 4 in mamma-
lian cells (Palmisano et al., 2012). Here, we found that amino acid starvation suppressed frq expres-
sion by decreasing the histone acetylation levels likely through activation of histone deacetylases or 
inhibition of histone acetyltransferases (Figure 3B). The activated GCN2 signaling pathway resulted in 
recruitment of the histone acetyltransferase SAGA complex to the frq promoter through its interaction 
with CPC- 1 to re- establish a proper histone acetylation state to relieve the repression (Figure 3 and 
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Figure 4). Although histone acetylation and deacetylation rhythms have been reported in mammalian 
cells (Papazyan et al., 2016; Takahashi, 2017), SAGA complex has also been reported to be involved 
in circadian regulation through interaction with the CLOCK complex in Drosophila (Mahesh et al., 
2020), their function in circadian clock is unclear in Neurospora. Here we demonstrated the important 
role of GCN- 5 in regulating the rhythmic histone acetylation and WC- 2 binding at the frq promoter 
(Figure 5). Our study unveiled an unsuspected link between nutrient limitation and circadian clock 
function mediated by the GCN2 signaling pathway. These results provide key insights into the epigen-
etic regulatory mechanisms of circadian gene expression during amino acid starvation.

The nutrient- sensing GCN2 signaling pathway is highly conserved in eukaryotic cells from yeast 
to mammals. In the budding yeast S. cerevisiae and the filamentous fungus N. crassa, the GCN2 
kinase responds to nutrient deprivation, whereas it phosphorylates eIF2α and upregulates the master 
transcription factors GCN4 or CPC- 1, respectively, which binds target DNA as a dimer to activate 
amino acid biosynthetic genes (Ebbole et al., 1991; Hinnebusch, 2005; Hope and Struhl, 1987). In 
mammalian cells, several GCN2- related kinases can phosphorylate eIF2α in response to various stress 
conditions, triggering the integrated stress response (Costa- Mattioli and Walter, 2020; Donnelly 
et al., 2013). Interestingly, different from the normal circadian period of cpc- 3KO strain in Neurospora 
without amino acid starvation (Figure  1A, Figure  1—figure supplement 1 and Figure  1—figure 
supplement 2), it was reported that GCN2 modulated circadian period by phosphorylation of eIF2α 
in mammals under normal condition, but it was unknown whether GCN2 was involved in circadian 
regulation of metabolism under nutrient limitation (Pathak et al., 2019). Our results suggest that 
the GCN2 signaling pathway is required for maintaining circadian clock under amino acid starvation, 
which is important for robust rhythmic expression of metabolic genes (Figure  7). Because GCN2 
signaling pathway is important for nutrient sensing, it may also be important for nutritional compen-
sation (Kelliher et al., 2023) and plays a role in maintaining the robustness of rhythms in a range 
of nutritional conditions. Time- restricted feeding prevents obesity and metabolic syndrome through 
circadian- related mechanisms (Chaix et al., 2019), but how eating pattern affects circadian regulation 
is unclear. The conservation of the GCN2 signaling pathway and our results here suggest that GCN2 
may play an important role in mediating circadian regulation of metabolism during nutrient limitation 
caused by feeding restrictions in mammals. Together, our studies suggest a conserved role of the 
GCN2 signaling pathway in maintaining the robustness of circadian clock under nutrient starvation in 
eukaryotes.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background 
(Neurospora crassa) 87- 3 (ras- 1bd, a) Dr.Yi Liu’s Laboratory

Strain, strain 
background 
(Neurospora crassa)

301- 6 (ras- 1bd, his- 
3-, A) Dr.Yi Liu’s Laboratory

Strain, strain 
background 
(Neurospora crassa) ras- 1bd;cpc- 3KO

Fungal Genetics Stock 
Center NCU01187

Strain, strain 
background 
(Neurospora crassa) ras- 1bd;cpc- 1KO

Fungal Genetics Stock 
Center NCU04050

Strain, strain 
background 
(Neurospora crassa) ras- 1bd;gcn- 5KO

Fungal Genetics Stock 
Center NCU10847

Strain, strain 
background 
(Neurospora crassa) ras- 1bd;ada- 2KO

Fungal Genetics Stock 
Center NCU04459

https://doi.org/10.7554/eLife.85241
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background 
(Neurospora crassa) ras- 1bd;hda- 1KO

Fungal Genetics Stock 
Center NCU01525

Strain, strain 
background 
(Neurospora crassa)

ras- 1bd;cpc- 1KO, cpc- 
1- Myc.CPC- 1 Dr.Xiao Liu’s Laboratory

Strain, strain 
background 
(Neurospora crassa)

301- 6, cfp- Myc.CPC- 
1, cfp- Flag.ADA- 2 Dr.Xiao Liu’s Laboratory

Strain, strain 
background 
(Neurospora crassa)

301- 6, cfp- Myc.
GCN- 5, cfp- Flag.
ADA- 2 Dr.Xiao Liu’s Laboratory

Strain, strain 
background 
(Neurospora crassa) frq- luc Dr.Yi Liu’s Laboratory

Strain, strain 
background 
(Neurospora crassa)

ras- 1bd;cpc- 3KO, 
frq- luc Dr.Xiao Liu’s Laboratory

Strain, strain 
background 
(Neurospora crassa)

ras- 1bd;cpc- 1KO, 
frq- luc Dr.Xiao Liu’s Laboratory

Strain, strain 
background 
(Neurospora crassa) FRQ- LUC

Dr. Luis Larrondo’s 
Laboratory

Strain, strain 
background 
(Neurospora crassa)

ras- 1bd;gcn- 5KO, 
FRQ- LUC Dr.Xiao Liu’s Laboratory

Strain, strain 
background 
(Neurospora crassa)

ras- 1bd;ada- 2KO, 
FRQ- LUC Dr.Xiao Liu’s Laboratory

Antibody
Rabbit polyclonal 
anti- Histone H2B Abcam Cat# ab1790 1:3000

Antibody
Rabbit polyclonal 
anti- Histone H3ac Millipore Cat# 06- 599 1:3000

Antibody
Mouse monoclonal 
anti- c- Myc TransGen Cat# HT101 1:3000

Antibody
Mouse monoclonal 
anti- Flag Sigma Cat# F1804 1:3000

Antibody
Rabbit polyclonal 
anti- P- eIF2α Abcam Cat# ab32157 1:3000

Antibody
Rabbit polyclonal 
anti- CPC- 1 Dr.Xiao Liu’s Laboratory 1:3000

Antibody
Rabbit polyclonal 
anti- FRQ Dr.Yi Liu’s Laboratory 1:3000

Antibody
Rabbit polyclonal 
anti- WC- 1 Dr.Yi Liu’s Laboratory 1:4000

Antibody
Rabbit polyclonal 
anti- WC- 2 Dr.Yi Liu’s Laboratory 1:8000

Sequence- based 
reagent frq- F Dr.Xiao Liu’s Laboratory RT- qPCR  GCAGTGTCATTGACGACTTG

 Continued

 Continued on next page
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Sequence- based 
reagent frq- R Dr.Xiao Liu’s Laboratory RT- qPCR  CCTC CAAC TCAC GTTT CTTTC

Sequence- based 
reagent his- 3- F Dr.Xiao Liu’s Laboratory RT- qPCR  CCTC GTTC GTCA AGCA CATTA

Sequence- based 
reagent his- 3- R Dr.Xiao Liu’s Laboratory RT- qPCR  CTCC TCAA CCTT AGCC AACTG

Sequence- based 
reagent trp- 3- F Dr.Xiao Liu’s Laboratory RT- qPCR  ACCT ATAT CCTT CAGA ACCA ATACG

Sequence- based 
reagent trp- 3- R Dr.Xiao Liu’s Laboratory RT- qPCR  GCTCGGTATCCTTCCAGTTG

Sequence- based 
reagent ser- 2- F Dr.Xiao Liu’s Laboratory RT- qPCR  GCTGCTAACGGTGACTACTT

Sequence- based 
reagent ser- 2- R Dr.Xiao Liu’s Laboratory RT- qPCR  GGTG AGGA TGAT GTTG TTGAG

Sequence- based 
reagent arg- 1- F Dr.Xiao Liu’s Laboratory RT- qPCR CCCATCATTGCCCGTGCCC

Sequence- based 
reagent arg- 1- R Dr.Xiao Liu’s Laboratory RT- qPCR TGACGACCCTGGAAGCGAG

Sequence- based 
reagent β-tubulin- F Dr.Xiao Liu’s Laboratory RT- qPCR GCGTATCGGCGAGCAGTT

Sequence- based 
reagent β-tubulin- R Dr.Xiao Liu’s Laboratory RT- qPCR  CCTC ACCA GTGT ACCA ATGCA

Sequence- based 
reagent frq C- box- F Dr.Xiao Liu’s Laboratory ChIP- qPCR  GTCAAGCTCGTACCCACATC

Sequence- based 
reagent frq C- box- R Dr.Xiao Liu’s Laboratory ChIP- qPCR  CCGA AAGT ATCT TGAG CCTCC

Sequence- based 
reagent frq promoter- F Dr.Xiao Liu’s Laboratory ChIP- qPCR  GTTGCCGTGACTCCCCCTTG

Sequence- based 
reagent frq promoter- R Dr.Xiao Liu’s Laboratory ChIP- qPCR  CCGA AAGT ATCT TGAG CCTCC

Sequence- based 
reagent his- 3 ChIP- F Dr.Xiao Liu’s Laboratory ChIP- qPCR  TTTTCATAAAGCCCGAGTCT

Sequence- based 
reagent his- 3 ChIP- R Dr.Xiao Liu’s Laboratory ChIP- qPCR  CAGGTATTGTGCTGTTCCCC

Sequence- based 
reagent trp- 3 ChIP- F Dr.Xiao Liu’s Laboratory ChIP- qPCR  AATCGGGTGAGTCAAAGGCG

Sequence- based 
reagent trp- 3 ChIP- R Dr.Xiao Liu’s Laboratory ChIP- qPCR  CGAGCAAGAGGGAGAGGTGT

Sequence- based 
reagent ser- 2 ChIP- F Dr.Xiao Liu’s Laboratory ChIP- qPCR  GGGA CAAA AGCA GTGA TTCTA

Sequence- based 
reagent ser- 2 ChIP- R Dr.Xiao Liu’s Laboratory ChIP- qPCR  CGATTTACATCCATCTGAGA

Sequence- based 
reagent frq northern- F Dr.Xiao Liu’s Laboratory Northern blot

 TAAT ACGA CTCA CTAT AGGG CCTT CGTT GGAT ATCC 
ATCATG

Sequence- based 
reagent frq northern- R Dr.Xiao Liu’s Laboratory Northern blot  GAAT TCTT GCAG GGAA GCCGG

Software, algorithm ImageJ https://imagej.nih.gov/ij/

 Continued

 Continued on next page
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm LumiCycle
https://actimetrics.com/ 
products/lumicycle/

Software, algorithm CircaCompare

https://github. 
com/RWParsons/ 
circacompare/; Parsons 
et al., 2020

 Continued

Strains, culture conditions, and race tube assay
The 87- 3 (ras- 1bd, a) and 301- 6 (ras- 1bd, his- 3−, A) strain was used as the wild- type (WT) strain in this 
study. Knockout mutants were all generated based on the ras- 1bd background (Belden et al., 2007). 
cpc- 3KO (NCU01187), cpc- 1KO (NCU04050), gcn- 5KO (NCU10847), ada- 2KO (NCU04459), and hda- 1KO 
(NCU01525) strains were obtained from the Fungal Genetic Stock Center (FGSC) and were crossed 
with a ras- 1bd strain to create the ras- 1bd;cpc- 3KO, ras- 1bd;cpc- 1KO, ras- 1bd;gcn- 5KO, ras- 1bd;ada- 2KO, and 
ras- 1bd;hda- 1KO strains (Colot et al., 2006). Constructs with the cpc- 1 promoter driving expression of 
Myc.CPC- 1 were introduced into the cpc- 1KO strains at the his- 3 (NCU03139) locus by homologous 
recombination. Constructs with the cfp promoter driving expression of Flag.ADA- 2 were introduced 
into the 301- 6, cfp- Myc.CPC- 1 or 301- 6, cfp- Myc.GCN- 5 strains by random insertion with nourseo-
thricin selection (He et al., 2020). Positive transformants were identified by western blot analyses, and 
homokaryon strains were isolated by microconidia purification with 5 µm filters.

Liquid cultures were grown in minimal media (1× Vogel’s, 2% glucose). For rhythmic experiments, 
Neurospora was cultured in petri dishes in liquid medium for 2 days. The Neurospora mats were cut 
into discs and transferred into medium- containing flasks and were harvested at the indicated time 
points.

The medium for race tube assay contained 1× Vogel’s salts, 0.1% glucose, 0.17% arginine, 50 ng/
ml biotin, and 1.5% agar. After entrainment of 24 hr in the constant light condition, race tubes were 
transferred to constant darkness conditions and marked every 24  hr. The circadian period of the 
Neurospora strain could be calculated according to the ratio between the distance of marked conidia 
band positions and the distance of conidiation bands.

Luciferase reporter assay
The luciferase reporter assay was performed as reported previously (Gooch et al., 2008; Larrondo 
et al., 2015; Liu et al., 2017). The luciferase reporter construct (frq- luc) containing the luciferase gene 
under the control of the frq promoter, was introduced into 301- 6, cpc- 3KO or cpc- 1KO strains by trans-
formation. The luciferase reporter construct (FRQ- LUC) containing a luciferase fused to the C terminus 
of the FRQ protein, was introduced into gcn- 5KO or ada- 2KO strains by crossing. Firefly luciferin (final 
concentration of 50 μM) was added to autoclaved FGS- Vogel’s medium containing 1× FGS (0.05% 
fructose, 0.05% glucose, 2% sorbose), 1× Vogel’s medium, 50 μg/l biotin, and 1.8% agar. Conidia 
suspension was placed on autoclaved FGS- Vogel’s medium and grown in constant light overnight. 
The cultures were then transferred to constant darkness, and luminescence was recorded in real time 
using a LumiCycle after 1 day in DD. The data were then normalized with LumiCycle analysis software 
by subtracting the baseline luciferase signal, which increases as cell grows.

Protein analysis
Protein extraction, quantification, and western blot analyses were performed as previously described 
(Liu et  al., 2017). Briefly, tissues were ground in liquid nitrogen with a mortar and pestle and 
suspended in ice- cold extraction buffer (50 mM Hydroxyethylpiperazine Ethane Sulfonic Acid HEPES 
(pH 7.4), 137 mM NaCl, 10% glycerol) with protease inhibitors (1 μg/ml Pepstatin A, 1 μg/ml Leupeptin, 
and 1  mM phenylmethylsulfonyl fluoride PMSF). After centrifugation, protein concentrations were 
measured using protein assay dye (Bio- Rad). For western blot analyses, equal amounts of total protein 
(40 μg) were loaded in each protein lane of 7.5% or 10% sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS–PAGE) gels containing a ratio of 37.5:1 acrylamide/bisacrylamide. After elec-
trophoresis, proteins were transferred onto PVDF membranes, and western blot analyses using FRQ, 
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WC- 1, WC- 2, P- eIF2α (Abcam, ab32157), and CPC- 1 antibodies were performed. Western blot signals 
were detected by X- ray films and scanned for quantification.

To detect the phosphorylation levels of WC- 1 and WC- 2, PPase inhibitors (25 mM NaF, 10 mM 
Na4P2O7·10H2O, 2 mM Na3VO4, 1 mM ethylenediaminetetraacetic acid EDTA) were made fresh and 
added to the protein extraction buffer. Proteins were loaded in each protein lane of 7.5% SDS–PAGE 
gels containing a ratio of 149:1 acrylamide/bisacrylamide.

RNA analysis
RNA was extracted with Trizol and further purified with 2.5 M LiCl as described previously (Liu et al., 
2017). For Northern blot analysis, equal amounts of total RNA (20 μg) were loaded onto agarose 
gels. After electrophoresis, the RNA was transferred onto nitrocellulose membrane. The membrane 
was probed with [32P] UTP (PerkinElmer)- labeled RNA probes specific for frq. RNA probes were tran-
scribed in vitro from PCR products by T7 RNA polymerase (Invitrogen, AM1314M) with the manufac-
turer’s protocol. The frq primers used for the template amplification are shown in Key Resources Table.

For RT- qPCR, the cultures of WT and cpc- 1KO strains were collected at the indicated time points 
in constant darkness in liquid growth medium (1× Vogel’s, 2% glucose). RT- qPCR were performed as 
previously described (Cui et al., 2020). Each RNA sample (1 μg) was subjected to reverse transcrip-
tion with HiScript II reverse transcriptase (Vazyme, R223), and then amplified by real- time PCR (Bio- 
Rad, CFX96). For RT- qPCR, primers target the coding genes of frq (NCU02265), his- 3 (NCU03139), 
ser- 2 (NCU01439), trp- 3 (NCU08409), his- 4 (NCU06974), arg- 1 (NCU02639), and arg- 10 (NCU08162) 
were designed, and the β-tubulin (NCU04054) was used as an internal control. The primers used for 
RT- qPCR are shown in Key Resources Table.

Generation of antiserum against CPC-1
Two CPC- 1 peptides (SELDLLDFATFDGG and RDKPLPPIIVEDPS) were synthesized and used as the 
antigens to generate rabbit polyclonal antisera (ABclonal) as described previously (Cui et al., 2020; 
Zhou et al., 2013).

Co-IP analysis
Immunoprecipitation analyses were performed as previously described (Cao et  al., 2018; Cheng 
et al., 2001b). Briefly, Neurospora proteins were extracted as described above. For each immuno-
precipitation reaction, 2 mg protein and 2 μl c- Myc (TransGen, HT101), 2 μl Flag (Sigma, F1804), or 
2 μl WC- 2 antibody (Cheng et al., 2001a) were used. After incubation with antibody for 3 hr, 40 μl 
GammaBind G Sepharose beads (GE Healthcare, 17061801) were added, and samples were incu-
bated for 1 hr. Immunoprecipitated proteins were washed three times using extraction buffer before 
western blot analysis. IP experiments were performed using cultures harvested in constant light.

ChIP analysis
ChIP assays were performed as previously described (Cui et al., 2020; Zhou et al., 2013) with 1 mg 
protein used for each immunoprecipitation reaction. The ChIP reaction was carried out with 2 μl WC- 2 
(Cheng et al., 2001a), CPC- 1, H2B (Abcam, ab1790), or H3ac (Millipore, 06- 599) antibody. Immuno-
precipitated DNA was quantified by real- time qPCR. Occupancies were normalized by the ratio of 
ChIP to Input DNA. ChIP was performed using 2 μl c- Myc monoclonal antibody (TransGen, HT101) 
to examine occupancy of Myc.GCN- 5. Occupancies of ChIP were normalized using IgG. The primers 
used for ChIP- qPCR are shown in Key Resources Table.

RNA-seq analysis
The WT and cpc- 1KO strains were cultured with or without 12 mM 3- AT treatment in constant light. 
Total RNAs were extracted using Trizol reagents. Libraries were prepared according to the manu-
facturer’s instructions and analyzed using 150 bp paired- end Illumina sequencing (Annoroad Gene 
Technology, Beijing). After sequencing, the raw data were treated and mapped to the genome of 
Neurospora crassa and transformed into expression value. The gene expression levels were scored by 
fragments per kb per million (FPKM) method. The differences in gene expression between samples was 
compared by comparing FPKM values, and those with fold change more than 1 (False Discovery Rate 
FDR <0.1) were thought to be differentially expressed genes. The functional category enrichments, 
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including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes KEGG terms, were 
analyzed. The KEGG pathway enrichment was evaluated based on hypergeometric distribution, and 
the R package ‘ggplot2’ version 3.3.6 was used to visualize the enrichment results.

Quantification and statistical analysis
Quantification of western blot data were performed using Image J software. Error bars are standard 
deviations for ChIP assays from at least three independent technical experiments, and standard error 
of means for race tube assays from at least three independent biological experiments, unless other-
wise indicated. Statistical significance was determined by Student’s t test. Statistical tests for the 
presence of rhythmicity and differences between two rhythms in parameters, including amplitude, 
phase, and mesor (the midline estimating statistic of rhythms) were analyzed using CircaSingle and 
CircaCompare (https://rwparsons.shinyapps.io/circacompare/) (Liu et al., 2021; Parsons et al., 2020). 
CircaCompare was used to compare the differences between two rhythmic datasets, and CircaSingle 
was used to re- analyze the rhythmic parameters of the RNA- seq results by eJTK Cycle. Amplitude 
refers to half of the difference between the peak and trough of a given response variable, phase refers 
to the time at which the response variable peaks, and mesor refers to the rhythm- adjusted mean level 
of a response variable around which a wave function oscillates. Statistical tests for the presence of 
rhythmicity and statistically significant differences between two groups of rhythmic parameters are 
indicated by p- values. A p- value <0.05 indicates the presence of rhythmicity, but a p- value >0.05 indi-
cates the loss of rhythmicity. The results of the CircaSingle statistical tests are added in Supplemen-
tary file 1. The results of the CircaCompare statistical tests are summarized in Supplementary file 2.

Data and materials availability
All data generated or analyzed during this study are included in the manuscript and supporting files. 
Our generated RNA sequencing data have been deposited in GEO under accession code GSE220169. 
RNA sequencing data from Hurley et al., 2014 were previously deposited to the NCBI SRA under 
accession number SRP046458 (Hurley et al., 2014). Materials are available from the corresponding 
authors upon reasonable request.
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Liu XL, Yang Y, Liu X 2022 The nutrient- sensing 
GCN2 signaling pathway 
is essential for circadian 
clock function by regulating 
histone acetylation under 
amino acid starvation

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE220169

NCBI Gene Expression 
Omnibus, GSE220169

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Hurley JM, Dasgupta 
A, Dunlap JC

2014 Analysis of clock- regulated 
genes in Neurospora 
reveals widespread 
posttranscriptional control 
of metabolic potential

https://www. ncbi. nlm. 
nih. gov/ bioproject/ 
PRJNA250475

NCBI BioProject, 
PRJNA250475
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