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Abstract Cancer immunotherapies, in particular checkpoint blockade immunotherapy (CBT), 
can induce control of cancer growth, with a fraction of patients experiencing durable responses. 
However, the majority of patients currently do not respond to CBT and the molecular determinants 
of resistance have not been fully elucidated. Mounting clinical evidence suggests that the clonal 
status of neoantigens (NeoAg) impacts the anti- tumor T cell response. High intratumor heteroge-
neity (ITH), where the majority of NeoAgs are expressed subclonally, is correlated with poor clinical 
response to CBT and poor infiltration with tumor- reactive T cells. However, the mechanism by which 
ITH blunts tumor- reactive T cells is unclear. We developed a transplantable murine lung cancer 
model to characterize the immune response against a defined set of NeoAgs expressed either clon-
ally or subclonally to model low or high ITH, respectively. Here we show that clonal expression of a 
weakly immunogenic NeoAg with a relatively strong NeoAg increased the immunogenicity of tumors 
with low but not high ITH. Mechanistically we determined that clonal NeoAg expression allowed 
cross- presenting dendritic cells to acquire and present both NeoAgs. Dual NeoAg presentation by 
dendritic cells was associated with a more mature DC phenotype and a higher stimulatory capacity. 
These data suggest that clonal NeoAg expression can induce more potent anti- tumor responses due 
to more stimulatory dendritic cell:T cell interactions. Therapeutic vaccination targeting subclonally 
expressed NeoAgs could be used to boost anti- tumor T cell responses.
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Introduction
Engaging tumor- reactive immune responses has been an incredibly powerful tool in the fight against 
cancer (Waldman et al., 2020; Esfahani et al., 2020). Cytotoxic CD8+ T cells recognize peptides on 
class I major histocompatibility complexes (MHCI) expressed on tumor cells, and following recognition 
mediate specific lysis of their target cell (Stinchcombe et al., 2001; Isaaz et al., 1995). While CD8+ T 
cells can recognize many tumor- associated antigens, peptides specific to tumor cells are best suited 
to drive the most powerful anti- tumor responses (Schietinger et  al., 2008; Minati et  al., 2020). 
Amongst the tumor- specific antigens, the class of so- called neoantigens (NeoAg) is best understood 
thus far. NeoAgs are predominantly derived from non- synonymous mutations in highly expressed 
protein coding transcripts within the tumor cells (Schumacher et al., 2019). It has been shown that 
patients responding to checkpoint blockade immunotherapy (CBT) often experience an expansion 
in NeoAg- reactive T cells within tumor- infiltrating T cells, as well as in circulation (van Rooij et al., 
2013; Riaz et al., 2017). Further, adoptive cell transfer of NeoAg- specific T cells may be beneficial 
(Robbins et al., 2013; Verdegaal et al., 2016; Gros et al., 2014) and vaccination can induce objec-
tive responses toward tumor- specific NeoAgs (Carreno et al., 2015; Keskin et al., 2019; Johanns 
et al., 2019; Ott et al., 2017).

The presence of CD8+ T cells within the tumor microenvironment (TME) is established as a positive 
prognostic marker of response to CBT and overall survival (van der Leun et al., 2020). Over the past 
years, many studies have aimed to establish a correlation between the presence of NeoAgs and CD8+ 
T cells within the tumor resulting in findings that increased NeoAg burden is positively associated with 
T cell infiltration in some cancers (Rooney et al., 2015). Despite enormous efforts, several indepen-
dent reports suggest that NeoAg load alone cannot predict response to CBT (Mauriello et al., 2019; 
McGrail et al., 2021; Samstein et al., 2019; Ghorani et al., 2018). Of note, it seems the prognostic 
value of NeoAg burden depends on the baseline presence of a T cell infiltrate (Mauriello et al., 2019; 
McGrail et al., 2021). This can be best illustrated in cancer types with high mutational burden, such 
as melanoma, non- small cell lung cancer, and colon cancer. In those cancer types, a sizable proportion 
of patients lack a productive T cell infiltrate, despite an abundance in predicted NeoAgs (Mauriello 
et al., 2019; McGrail et al., 2021; Spranger et al., 2016). Past studies have indicated that alterations 
in tumor cell- intrinsic signaling pathways can mediate poor T cell infiltration, typically by means of 
poor T cell activation or poor T cell recruitment into the TME (Nguyen and Spranger, 2020; Lawson 
et al., 2020). However, these alterations do not account for all patients failing to respond to CBT while 
harboring high numbers of predicted NeoAgs. Recent studies suggest that intratumor heterogeneity 
(ITH), which might be highest in patients with high mutational burden, impacts the responsiveness to 
CBT (McGranahan et al., 2016). Clinical data suggest that clonal NeoAg expression is associated with 
response to anti- PD- 1 CBT in a cohort of patients with NSCLC and with significantly increased overall 
survival in melanoma patients, following treatment with anti- CTLA- 4 antibodies (McGranahan et al., 
2016). In contrast, subclonal NeoAg expression in tumors with high ITH was found to be associated 
with poor CBT responses and poor CD8+ T cell infiltration. These observations were confirmed in a 
transplantable mouse model using subclones derived from a UVB- irradiated murine melanoma cell 
line (Wolf et al., 2019).

While these initial studies strongly suggest that high ITH impairs the anti- tumor immune response, 
the mechanisms of how the anti- tumor immune response is impaired are still unknown. To interrogate 
the effect of ITH on anti- tumor T cell responses, we generated a syngeneic transplantable murine 
lung tumor model that enables us to precisely modulate the degree of ITH using naturally developed 
NeoAgs. Using two NeoAgs with different degrees of immunogenicity, we elucidated that responses 
against the weaker NeoAg were potentiated only in the clonal setting. This synergistic effect was 
established during T cell activation by cross- presenting conventional type I dendritic cells (cDC1), 
which acquired a more mature phenotype if they presented both antigens. Intriguingly, RNA- based 
vaccines targeting the weak NeoAg augmented immune responses in tumors with high ITH, high-
lighting the potential therapeutic value of targeting weakly immunogenic subclonal NeoAgs.

https://doi.org/10.7554/eLife.85263
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Results
Cancer cells expressing NeoAgs elicit diverse anti-tumor immune 
responses
Next- generation genome sequencing combined with MHCI binding prediction algorithms and in 
vivo validation have allowed for the identification of bona fide NeoAgs expressed in murine tumor 
lines including MC38, B16F10, and TRAMP- C1 (Yadav et al., 2014; Castle et al., 2012; Matsushita 
et al., 2012). Based on their reported immunogenicity, we selected candidate NeoAgs derived from 
mutated Adpgk, Aatf, and Cpne1 and immunized C57BL/6 mice with short peptides (8mer and 9mer) 
containing the mutations to validate their immunogenicity. Immunization with the mutant Adpgk 
peptide induced appreciable expansion of NeoAg- specific T cells while immunization with Cpne1 
and Aatf peptides resulted in low or non- detectable T cell responses, respectively (Figure 1A and 
Table 1).

We next generated cell lines to assay anti- NeoAg responses in vivo by using KP1233, a lung adeno-
carcinoma line derived from a KrasG12D/+Trp53−/− mouse (DuPage et al., 2009). Because of the inherent 
cellular heterogeneity observed in many murine cell lines (Ben- David et al., 2018), we derived a stable 
subclone, referred to as KP6S, that grew similarly to the parental line in wildtype mice. The clonal 
KP6S cell line was used exclusively to generate all cell lines used in this study. To drive expression of 
specific NeoAgs, we expressed one or two NeoAgs linked at the C- terminus of the fluorescent protein 
mCherry followed by a barcode (Figure 1B). Subcutaneous implantation of the subclones expressing 
a single NeoAg (KPAdpgk, KPAatf, KPCpne1) indicated that KPAdpgk exhibited early tumor control before 
growing out while KPAatf and KPCpne1 cell lines grew out progressively (Figure 1C, Figure 1—figure 
supplement 1A). To confirm that the initial control observed against KPAdpgk tumor cells was mediated 
by an adaptive immune response, we implanted all cell lines into Rag2-/- mice and observed that all 
three cell lines grew progressively with similar kinetics (Figure 1D, Figure 1—figure supplement 1B).

Naturally arising NeoAgs expressed in human cancer encompass both highly immunogenic and 
poorly immunogenic sequences. Thus, we chose the Adpgk, Aatf, and Cpne1 NeoAgs to capture the 
diversity of NeoAg- specific responses observed in humans (Luksza et al., 2017). Analysis of tumor- 
infiltrating T cells in KPAdpgk and KPAatf showed that KPAdpgk tumors had a greater degree of infiltration 
with CD8+ T cells compared to KPAatf tumors (Figure 1E and F). Further, CD8+ T cells in KPAdpgk tumors 
were more activated based on CD44 staining (Figure 1G). Additionally, IFNγ ELISpot showed a greater 
peripheral expansion of NeoAg- specific T cells in mice implanted with KPAdpgk tumors compared 
to KPAatf or KPCpne1 tumors (Figure 1H). Assessing the T cell infiltrate in KPCpne1 and KPmCherry tumors 
revealed that Cpne1- expressing tumor cells were not highly immunogenic as neither CD8+ T cell infil-
tration nor activation were significantly different between both tumors (Figure 1—figure supplement 
1C–E). The immune responses observed corresponded with MHCI binding affinities predicted by 
NetMHC 4.0 (Nielsen et al., 2003; Andreatta and Nielsen, 2016), with the mutant Adpgk peptide 
predicted to have an IC50 of 4.29 nM while the other mutant peptides had IC50 values ranging from 
90.16 nM (Aatf) to 182.34 nM (Cpne1) (Figure 1—figure supplement 1F). MHCI- stabilization assays 
also provided evidence that predicted binding affinities captured the range of peptide- MHCI (pMHCI) 
affinities for our selection of NeoAgs (Figure  1—figure supplement 1G). Thus, we established a 
model of transplantable syngeneic murine tumor lines that express NeoAgs with varying degrees of 
immunogenicity.

Homogeneous expression of NeoAgs increases the immunogenicity of 
cancer cells
To assess the impact of different NeoAg expression patterns in tumors, we first generated a cell line 
that expressed both Adpgk and Aatf, hereafter termed KP- HetLow (Figure 2A). To model heteroge-
neous NeoAg expression patterns (KP- HetHigh), we inoculated C57BL/6 mice with a mixture of 50% 
KPAatf cells and 50% KPAdpgk cells (Figure 2A). We implanted 1 × 106 cells of KP- HetHigh and KP- HetLow 
tumors into mice and observed drastically increased control of tumor outgrowth of KP- HetLow tumors 
compared to single antigen- expressing tumors. In contrast, KP- HetHigh grew progressively, with 
similar kinetics as observed for KPAatf (Figure  2B). In fact, quantitative PCR analysis of KP- HetHigh 
tumors showed progressive outgrowth of the KPAatf subclone that completely dominated the tumor 
by day 14 post- implantation (Figure 2—figure supplement 1A). The control of KP- HetLow tumors was 

https://doi.org/10.7554/eLife.85263
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Figure 1. KP6S cell line engineered to express natural neoantigens (NeoAgs) elicit variable anti- tumor immune responses. (A) Mice were vaccinated 
with short peptides with cyclic- di- GMP as adjuvant. 10 µg of peptide was delivered subcutaneously (s.c.) at the base of the tail along with 25 µg of 
cyclic- di- GMP. An identical dose was delivered s.c. 10 days following the first dose and spleens were collected at day 21 for IFNγ ELISpot. Quantification 
of IFNγ-producing cells after restimulation from two independent experiments shown as mean ± SEM (n = 3 per group per experiment). (B) Schematic 

Figure 1 continued on next page
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completely lost in Rag2-/- mice (Figure 2B), indicating that tumor control was mediated by an adap-
tive immune response. We also found that the change in tumor cell composition of KP- HetHigh tumors 
at later timepoints observed in wildtype mice was also absent in Rag2-/- mutants. Instead, KPAatf and 
KPAdpgk cells were maintained at nearly a 1:1 ratio (Figure  2—figure supplement 1B), providing 
evidence for immunoediting in this model. These data indicate that adaptive immune responses are 
capable of controlling tumors with homogeneous NeoAg expression, whereas tumors with hetero-
geneous NeoAg expression are characterized by immune editing and escape of non- immunogenic 
subclones.

To obtain insights into the kinetics of the tumor- reactive T cell response, we assayed NeoAg- 
specific T cells via IFNγ ELISpot on days 7, 10, and 14 post tumor implantation. The T cell response 
toward Adpgk was significantly greater in KP- HetLow tumors compared to KP- HetHigh tumors at day 
7 and greater than both KP- HetHigh and KPAdpgk tumors at day 10 (Figure  2C). Strikingly, at days 
7 and 10, the T cell response against Aatf was only detectable in mice implanted with KP- HetLow 
tumors and was absent in mice bearing KP- HetHigh or KPAatf tumors (Figure 2D). At day 14, the Aatf 
and Adpgk responses were similar in all tested conditions, suggesting mixed effects of tumor size, 
antigen availability, and loss of functional capacity of T cells over time (Figure 2B–D). The observed 
enhanced T cell response against a weakly immunogenic NeoAg is also observed when Cpne1 was 
co- expressed with Adpgk (Figure 2—figure supplement 2A and B). We considered the possibility 
that increasing NeoAg load in a cell could increase immunogenicity by expressing the two weakly 
immunogenic NeoAgs, Aatf and Cpne1, together. However, this provided no benefit to the Aatf 
response (Figure 2—figure supplement 3). These data suggest that homogeneous NeoAg expres-
sion patterns can increase the peripheral response against poorly immunogenic NeoAgs if they are 
paired in tandem with a stronger antigen.

We next assessed the relative contribution of each NeoAg- specific immune response to the supe-
rior control of KP- HetLow tumors. Adoptively transferred CD8+ T cells from KP- HetLow- bearing donor 
mice slowed the growth of KPAdpgk as well as KPAatf in Rag2-/- mice (Figure 2E). In line with the weaker 
IFNγ ELISpot responses observed in KP- HetHigh tumors, transfer of CD8+ T cells from KP- HetHigh- 
bearing donor mice was less beneficial, resulting in improved control of KPAdpgk, but not of KPAatf. 
While adoptive cell transfer more effectively slowed the growth of KPAdpgk tumors, this suggests that 
the Aatf- specific immune response contributes to the superior tumor control of KP- HetLow tumors.

of the lentiviral construct used to transduce the KP6S subclone. (C, D) Mice were injected s.c. with 1 × 106 tumor cells in (B) WT mice or (C) Rag2-

/- mice. Representative data from one of two individual experiments are shown (n = 3 or 4 per group per experiment). Quantification of (E) absolute 
numbers of CD8+ TIL per gram tumor from six independent experiments (pooled n = 17 per group), (F) proportion of CD8+ TIL at day 9 or 10 after 
tumor implantation from eight independent experiments (pooled n = 23 per group), (G) proportion of CD44+CD62L- Teffector from eight independent 
experiments (pooled n = 23 per group), (H) IFNγ-producing cells restimulated 9 or 10 d after tumor implantation using ELISpot from two independent 
experiments (pooled n = 5 per group). *p<0.05, **p<0.01, ****p<0.0001; one- way ANOVA (Kruskal–Wallis) test in (A), two- way ANOVA (Tukey) in (C, D), 
Mann–Whitney U in (E–H). Data are shown as mean ± SEM.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw data for Figure 1.

Figure supplement 1. Characterization of the immunogenicity of an array of natural neoantigens (NeoAgs).

Figure supplement 1—source data 1. Raw data for Figure 1—figure supplement 1.

Figure 1 continued

Table 1. Amino acid sequences of wildtype and NeoAg.

Name

Wildtype Mutant

Peptide sequence
Sequence 
position

Binding 
prediction

Predicted affinity 
(IC50) Peptide sequence

Binding 
prediction

Predicted affinity 
(IC50)

Adpgk ASMTNRELM 298–307 Db 6.21 ASMTNMELM Db 4.29

Aatf MAPIDHTAM 493–501 Db 297.14 MAPIDHTTM Db 90.16

Cpne1 SSPDSLHYL 298–307 Db 764.37 SSPYSLHYL Db 182.34

https://doi.org/10.7554/eLife.85263
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Figure 2. Tumors expressing a pair of neoantigens (NeoAgs) homogeneously have increased immunogenicity. (A) Schematic of the generation of 
tumors used in (B). (B) Tumor growth of KP- HetHigh and KP- HetLow in WT and Rag2-/- mice. Representative data from one of two individual experiments 
are shown (n = 3 per group per experiment). (C, D) Splenocytes from tumor- bearing mice were used in an IFNγ ELISpot to determine the frequency of 
NeoAg- specific T cells in the periphery at days 7, 10, and 14 after tumor implantation. Quantification of the (C) Adpgk- specific response and (D) Aatf- 

Figure 2 continued on next page
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Batf3+ dendritic cells are required for anti-tumor responses in KP-HetLow 
tumors
Given our observation that peripheral T cell responses against weak NeoAgs are enhanced early 
following tumor inoculation, we postulated that T cell activation of Aatf- reactive T cells in the lymph 
node might be different between mice bearing KP- HetLow and KP- HetHigh tumors. While it is estab-
lished that cross- presenting cDC1 driven by the transcription factor Batf3 are critical for priming CD8+- 
specific responses (Hildner et al., 2008; Spranger et al., 2015), recent work by us and others have 
also implicated additional cDC subsets (Duong et al., 2022) or compensatory development of Batf3- 
independent cDC1 (Tussiwand et al., 2012) in mediating anti- tumor immunity. We thus aimed to 
determine whether Batf3- dependent cDC1 were required for the increased immune control observed 
against KP- HetLow tumors. We implanted KP- HetLow tumor cells in wildtype, Rag2-/- and Batf3-/- mice, 
and observed a loss of tumor control in Rag2-/- and Batf3-/- mice (Figure 3A), indicating that cDC1 are 
required for the induction of effective T cell responses.

cDC1 can impact anti- tumor T cell responses during T cell activation in the tumor- draining lymph 
node (TdLN) or by facilitating recruitment to the tumor (Spranger et al., 2015). Since we observed 
differences in CD8+ T cell infiltration between KP- HetLow and KP- HetHigh, we first assessed the number 
of tumor- infiltrating cDC1. However, while we observed dynamic changes in the absolute numbers of 
cDC1 over time, no significant difference was found between the two tumor conditions (Figure 3B, 
Figure 3—figure supplement 1). To track cDC1 carrying tumor cell debris, we controlled for mCherry 
expression in all cell lines by assessing the fluorescent intensity using flow cytometry to ensure equal 
antigen and fluorophore expression (Figure 3—figure supplement 2). Assessing the number of tumor 
cell debris carrying mCherry+ cDC1 in the TdLN further affirmed that the differences in T cell activation 
were not driven by a lack of migratory cDC1 bringing antigen to the TdLN as similar frequencies were 
detected between the two tumor conditions (Figure 3C, Figure 3—figure supplement 1). Analysis 
of the mCherry MFI amongst the mCherry+ cDC1 similarly showed no significant difference between 
the KP- HetLow and KP- HetHigh conditions (Figure 3D), suggesting that neither cDC1 recruitment to the 
tumor, trafficking to the TdLN, nor amount of available antigen can explain the observed differences 
in T cell activation.

In the homogeneous KP- HetLow setting, it is conceivable that epitope spreading in response to a 
rapid and strong Adpgk- specific T cell response might lead to an increase in available Aatf antigen 
as killing of KP- HetLow cells would result in release of both Adpgk and Aatf- containing debris. This 
increase in antigen abundance could explain an increase in activation of Aatf- reactive T cells compared 
to the KP- HetHigh setting. To test whether antigen availability alone might explain the differences in T 
cell response, we inoculated mice with lethally irradiated tumor cells using single- antigen- expressing 
tumor cell lines (KPAatf or KPAdpgk), or the KP- HetLow and KP- HetHigh conditions (Figure 3E). To ensure 
robust responses, we recalled T cell responses with an equal mixture of purified Adpgk and Aatf short 

specific response. Pooled data from five independent experiments for day 7 for single antigen tumors and six independent experiments for all other 
groups (n = 3–4 per group per experiment), four independent experiments for day 10 for single antigen tumors and five independent experiments for all 
other groups (n = 3 per group per experiment) and three independent experiments for day 14 (n = 3 per group per experiment) in (C, D). (E) Schematic 
and tumor growth of KPAatf and KPAdpgk in Rag2-/- mice after adoptive T cell transfer (ACT) from naïve or tumor- bearing mice on day 4 after tumor 
injection. Representative data from one of two individual experiments are shown (n = 4 per group per experiment). *p<0.05, ***p<0.001, ****p<0.0001; 
two- way ANOVA (Tukey) in (B, E), one- way ANOVA (Kruskal–Wallis followed by Dunn’s multiple- comparisons test) in (C, D). Data are shown as mean ± 
SEM.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw data for Figure 2.

Figure supplement 1. KP- HetHigh tumors are immune edited.

Figure supplement 1—source data 1. Raw data for Figure 2—figure supplement 1.

Figure supplement 2. Expansion of neoantigen (NeoAg)- specific T cells directed against weak antigens occurs earlier when they are co- expressed with 
a stronger antigen.

Figure supplement 2—source data 1. Raw data for Figure 2—figure supplement 2.

Figure supplement 3. Increased Aatf- specific T cell expansion is not due to increased numbers of antigens expressed in KP- HetLow tumors.

Figure supplement 3—source data 1. Raw data for Figure 2—figure supplement 3.

Figure 2 continued

https://doi.org/10.7554/eLife.85263
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Figure 3 continued on next page
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peptides combined with cyclic- di- GMP as an adjuvant 10  d after the initial injection of irradiated 
tumor cells (Figure 3E). Then 11 d post recall, T cell responses were assessed using an IFNγ ELISpot 
assay (Figure 3E). Consistent with our previous observations, we observed that the Aatf- specific T cell 
response was dependent on the context of the NeoAg expression patterns, with greater expansion 
of Aatf- specific T cells in response to KP- HetLow tumor debris compared to either KPAatf or KP- HetHigh 
tumor debris (Figure 3F). In contrast, we did observe that the Adpgk response was sensitive to lower 
antigen availability as mice injected with irradiated KP- HetHigh tumor cells, where only 50% of the 
cells express Adpgk, also exhibited a significantly reduced expansion of Adpgk- specific T cells in 
the periphery compared to KPAdpgk and KP- HetLow, both tumors where all the cells express Adpgk 
(Figure 3G). This result is consistent with previous reports on the correlation between antigen avail-
ability and strength of T cell response, where providing less Adpgk debris resulted in a corresponding 
decrease in the Adpgk- specific response (Bullock et al., 2003; Westcott et al., 2021). In sum, we 
identified that NeoAg expression patterns are critical for priming responses against weak NeoAgs, 
while the antigen load impacts responses toward strong NeoAgs.

NeoAg presentation on dendritic cells mirrors NeoAg expression 
patterns in the TME
It has been shown that the same dendritic cell can take up debris containing both MHCII- and MHCI- 
restricted epitopes, allowing the DC to interact with CD4+ T cells for licensing to then activate a 
productive CD8+ T cell response (Ferris et al., 2020b). Similarly, reports suggest that interactions 
between a DC and CD8+ T cells can impact the maturation state of the DC (Mailliard et al., 2002; 
Hernandez et al., 2007). We thus considered the possibility that a strong MHCI epitope might act 
as a ‘licensing’ response to a weaker MHCI epitope when presented on the same DC. To test this 
notion, we regenerated the KP- HetLow cell lines by expressing Adpgk linked at the C- terminus of 
ZsGreen (ZsG) while Aatf maintained its expression with mCherry establishing KP- HetLow(ZsG- Adpgk,Aatf), 
and a corresponding KPZsG- Adpgk as control (Figure  4—figure supplement 1A). We confirmed that 
these tumor cell lines recapitulated the previously observed outgrowth kinetics (Figure  4—figure 
supplement 1B). Given that we established the importance of cDC1 for T cell priming, we focused our 
analysis on this DC subset and used mCherry and ZsGreen as a readout for tumor cell debris engulf-
ment and antigen presentation (Figure 4A). We first determined the proportion of single- fluorophore 
or double- fluorophore positive cDC1 in the TdLN at day 7 post tumor implantation and found that 
in KP- HetHigh tumors most of the cDC1 carrying detectable debris were either mCherry+ or ZsGreen+ 
(Figure  4B). In stark contrast, most tumor cell debris- positive cDC1 found in the TdLN- draining 
KP- HetLow tumors were double positive for both mCherry and ZsGreen (Figure 4B). Within the single 
positive cDC1 subset in both tumors, there was a bias toward ZsGreen+ cells (Figure 4C), which could 
be attributed to the stability of this fluorescent protein (Yi et al., 2022).

Previous reports have indicated that costimulatory markers were upregulated on dendritic cells 
following ‘licensing’ interactions with CD4+ but also CD8+ T cells (Mailliard et al., 2002; Hernandez 

independent experiments for days 7 and 10 and three independent experiments for day 14 is shown (n = 3 per group per experiment). (D) Median 
fluorescence intensity of the mCherry signal of cells from (B). (E) Experimental schematic for (F, G). Tumor cells were irradiated with 40 Gy and 1.5 × 
106 total irradiated cells were immediately s.c. injected into mice. A short peptide boost with both peptides and c- di- GMP as adjuvant was given 10 d 
after and administered s.c. at the base of the day. 21 days after the irradiated cell implantation, spleens were collected for ELISpot. (F) Peripheral Aatf- 
specific response. Pooled data from three independent experiments are shown (pooled n = 11 or 12 per group). (G) Peripheral Adpgk- specific response. 
Pooled data from one or three independent experiments are shown (n = 6 for KPAdpgk and pooled n = 12 for remaining groups). *p<0.05, **p<0.01, 
****p<0.0001; two- way ANOVA (Tukey) in (A), Mann–Whitney U for each time point between the two tumors was assessed in (B–D), one- way ANOVA 
(Kruskal–Wallis followed by Dunn’s multiple- comparisons test) in (F, G). Data are shown as mean ± SEM.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Raw data for Figure 3.

Figure supplement 1. Gating strategy for cDC1.

Figure supplement 1—source data 1. Raw data for Figure 3—figure supplement 1.

Figure supplement 2. KP cell lines express similar levels of neoantigens (NeoAg).

Figure supplement 2—source data 1. Raw data for Figure 3—figure supplement 2.

Figure 3 continued

https://doi.org/10.7554/eLife.85263
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Figure 4. Antigen presentation on dendritic cells in the tumor- draining lymph node mirror antigen expression patterns in the tumor microenvironment 
(TME). (A) Experimental schematic for (B, C). KP- HetHigh tumors were composed of KPZsG- Adpgk and KPAatf; KP- HetLow tumors were composed of KP- 
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C). (D) Normalized CD40 median fluorescence intensity for single- positive and double- positive populations. (E) Normalized CD80 median fluorescence 
intensity for the same sample populations in (D). Pooled data from three independent experiments are shown (pooled n = 13 per group) for (D) and 
(E). *p<0.05, **p<0.01; one- way ANOVA (Kruskal–Wallis followed by Dunn’s multiple- comparisons test) in (B–E). Data are shown as mean ± SEM.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw data for Figure 4.

Figure supplement 1. Clonal expression of Adpgk and Aatf neoantigens (NeoAgs) results in increased immunogenicity regardless of linked or separate 
expression of NeoAgs in the same cell.

Figure supplement 1—source data 1. Raw data for Figure 4—figure supplement 1.

https://doi.org/10.7554/eLife.85263
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et al., 2007; Carenza et al., 2019; Min et al., 2010). We therefore assessed the expression of CD40 
and CD80 on single or double fluorophore- positive cDC1 populations in the TdLN. Affirming our 
initial hypothesis, we observed significantly greater expression of the costimulatory molecules CD40 
and CD80 in double- positive cDC1 compared to mCherry+ cDC1 that engulf only Aatf- containing 
debris (Figure 4D and E). CD40 expression was comparable between Adpgk- ZsGreen+ and double- 
positive cDC1, while CD80 was highly expressed on both these cDC1 populations (Figure 4D and 
E), suggesting that the Adpgk- specific T cell response might induce upregulation of co- stimulatory 
molecules. In sum, these findings suggest that the antigen- dependent interaction between cDC1 and 
Adpgk- specific T cells could result in increased activation (‘licensing’) of cDC1, and subsequently, an 
increased capacity of cDC1 to prime Aatf- reactive T cells, if the same cDC1 also presents the weaker 
NeoAg.

Prophylactic RNA vaccination expands Aatf-specific T cells and 
increases response of heterogeneous tumors to CBT
Clinically, a high degree of ITH is associated with poor responses to CBT. To determine whether 
our established model system faithfully recapitulated resistance to therapy, we inoculated KP- HetLow 
or KP- HetHigh in C57BL/6 mice and treated mice with dual CBT, consisting of anti- CTLA4 and anti- 
PD- L1 antibodies on days 7, 10, 13, and 16. Consistent with clinical observations, our model showed 
that KP- HetLow tumors could be fully controlled following therapy (Figure 5A). In contrast, KP- HetHigh 
tumors, engineered to resemble tumor with high ITH, showed mixed responses (Figure  5A). Our 
gained insights into the mechanism of resistance in tumor with heterogeneous NeoAg expression 
suggest that increased tumor control in homogeneous tumor was associated with a more rapid and 
robust expansion of T cell responses toward weaker NeoAgs. Therefore, we aimed to determine 
whether prophylactic vaccination might increase tumor control of KP- HetHigh tumors in the context of 
dual CBT. Mice were vaccinated with self- amplifying RNA (replicons) encased in a lipid nanoparticle 
administered intramuscularly (i.m.) and boosted i.m. 2 wk after the initial dose. Using this strategy, we 
induced a detectable Aatf- specific response 7 d post boost (Figure 5B), unlike short peptide vacci-
nations (Figure 1A). 1 × 106 KP- HetHigh tumor cells were inoculated 7 d post boost and dual CBT was 
administered on days 7, 10, 13, and 16 post tumor implantation (Figure 5C). As seen before, KP- HetHigh 
tumors showed mixed responses following CBT, ranging from progressive growth to stable disease 
(Figure  5D). Prophylactic vaccination alone only resulted in a modest reduction of tumor growth 
(Figure  5D). However, we observed a synergistic effect of the combination treatment of prophy-
lactic vaccination and dual CBT, with two out of seven (29%) objective responses with one complete 
response and one stable disease (Figure 5D). Thus, we established proof of concept that targeting a 
subclonal, weakly immunogenic NeoAg could be a viable strategy to increase CBT response.

Therapeutic RNA vaccination with CD40 agonism synergizes with CBT 
in KP-HetHigh tumors
Given that the majority of NeoAgs emerge during tumor development and thus disqualify prophy-
lactic vaccination, we next aimed to determine the utility of therapeutic vaccination with CBT as a 
therapeutic strategy. Four days after tumor implantation, mice were treated with RNA replicons and 
continually dosed every week thereafter (Figure 6A). Our analysis of the cDC1 compartment in tumors 
with clonal NeoAg expression further suggested that CD40:CD40 ligand interactions would enhance 
induction of Aatf- reactive effector T cell responses (Figure 4D). Furthermore, previous studies have 
shown that CD40 stimulation could induce strong systemic anti- tumor responses leading to regression 
of tumors in preclinical models (van Mierlo et al., 2002; Sandin et al., 2014), and it has also been 
shown to synergize with CBT (Westcott et al., 2021; Morrison et al., 2020). Thus, we combined the 
vaccination approach with a single dose of agonistic anti- CD40 antibody along with the first vaccine 
dose (Figure 6A). Dual CBT was administered intraperitoneally (i.p.) on days 7, 10, 13 and 16 post 
tumor implantation (Figure 6A).

Similar to CBT alone, vaccination alone or agonistic CD- 40 antibody administration exhibited 
only a modest response characterized by slowing of tumor growth (Figure 6B). In stark contrast, the 
triple combination of CBT with therapeutic vaccination and a single dose of agonistic CD40 antibody 
induced complete tumor control in three of five (60%) mice and a significant delay in tumor growth 
in the remaining 40% of mice (Figure  6C). CD40 agonism with vaccination was able to induce a 

https://doi.org/10.7554/eLife.85263
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Figure 5. Prophylactic mRNA replicon vaccination increases response to checkpoint blockade therapy in KP- HetHigh tumors. (A) Tumor growth of KP- 
HetHigh and KP- HetLow WT mice treated with checkpoint blockade immunotherapy (CBT) or control. 100 µg of each antibody (CBT or isotype control) 
was administered intraperitoneally (i.p.) on days 7, 10, 13, and 16 after implantation. Representative data from one of two individual experiments are 
shown (n = 3 per group per experiment). (B) IFNγ ELISpot using splenocytes from mice vaccinated with replicons expressing Aatf. Pooled data from 
two independent experiments (n = 3 or 4 per group per experiment). (C) Experimental schematic for prophylactic vaccination in (C). Three weeks before 
tumor- challenge mice are initially vaccinated, replicons are administered intramuscularly (i.m.). Animals are boosted 1 wk before challenge. CBT is 
administered (i.p.) on days 7, 10, 13, and 16 following subcutaneous (s.c.) implantation of KP- HetHigh. (D) KP- HetHigh outgrowth in WT mice. Individual 
traces for mice dosed with a lipid- only control and treated with CBT or an isotype antibody control, treated only with isotype antibody control and 
dosed with the replicon or lipid only control, and vaccinated with the replicon and treated with CBT or an isotype control (left to right). Far- right plot is 
the averaged results. Representative data from three independent experiments (n = 5–10 per group per experiment). *p<0.05, **p<0.01, ***p<0.001; 
two- way ANOVA (Tukey) in (A) and (D), Mann–Whitney U in (B). Data are shown as mean ± SEM.

The online version of this article includes the following source data for figure 5:

Source data 1. Raw data for Figure 5.
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modest reduction of tumor growth with 1/5 (20%) mice exhibiting complete tumor regression, while 
CD40 agonism with CBT exhibited mixed response comparable to CBT alone where stable disease 
was observed in 1/7 (14%) of mice although all tumors eventually progressed (Figure 6B and C). 
These data suggest that for therapeutic vaccination against poorly immunogenic antigens, especially 
in the heterogeneous setting, optimal priming can be achieved when the vaccine- induced response is 
augmented with an initial agonistic CD40 treatment and then sustained using CBT treatment.

Discussion
Clinical and preclinical studies have established that ITH impairs the anti- tumor immune response 
(McGranahan et al., 2016; Wolf et al., 2019; Gejman et al., 2018), but the mechanism blunting T cell- 
mediated immunity in tumors with heterogeneous NeoAg expression is still unknown. Understanding 
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Figure 6. Therapeutic mRNA replicon vaccination synergizes with checkpoint blockade immunotherapy (CBT) and CD40 agonism in KP- HetHigh tumors. 
(A) Experimental schematic for therapeutic vaccination in (B, C). Animals were implanted with 1 × 106 KP- HetHigh tumor cells implanted subcutaneously 
(s.c.). Tumor- bearing mice were vaccinated with replicon vaccine (i.m.) on day 4 post tumor inoculation and continually vaccinated every following week. 
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16 post tumor inoculation. (B) Tumor growth of KP- HetHigh treated with replicons or lipid only with or without anti- CD40 antibody. (C) Tumor growth of 
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The online version of this article includes the following source data for figure 6:

Source data 1. Raw data for Figure 6.
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how ITH weakens anti- tumor immunity will enable the development of rational therapies for patients 
with ITH and increase response rates in patients treated with immunotherapy. We utilized a reductionist 
approach to study the effect of heterogeneous NeoAg expression on the resulting anti- tumor immune 
response in a transplantable mouse tumor model. By comparing NeoAgs expressed in subclonal or 
clonal settings, we discovered that immune responses against poorly immunogenic NeoAg were 
enhanced when clonally expressed with a strong NeoAg. Mechanistically, we identified that subclonal 
expression of NeoAgs resulted in presentation of peptides on distinct populations of cross- presenting 
cDC1, which showed lower expression of costimulatory molecules such as CD40, if presenting only 
a peptide with a low- binding affinity. Therapeutic vaccination against weak NeoAgs demonstrated 
synergy with CBT only when the first dose was administered along with an anti- CD40 agonist anti-
body. In sum, our data suggest that while subclonally expressed NeoAgs elicit weaker anti- tumor T 
cell responses against less immunostimulatory peptides, these poorly immunogenic peptides may still 
be viable candidates for therapeutic vaccination in combination with targeted DC maturation.

In tumors with low ITH, we observed migratory cDC1 carrying both antigens to the TdLN. These 
cDC1 showed higher expression levels of the co- stimulatory ligands CD40 and CD80 compared to 
cDC1 carrying only the weak NeoAg. It is possible that the difference in tumor debris carried by the 
cDC1 could result in different interactions with T cells against the stronger NeoAg in the TdLN. Our 
observation of increased CD40 on cDC1 carrying immunogenic NeoAg is consistent with the concept 
of DC licensing, where a DC carrying both CD4+ and CD8+ epitopes is being ‘licensed’ by the helper T 
cell response (Wu and Murphy, 2022). Recent work demonstrated that cDC1 can be licensed by CD4+ 
T cells, which induce a more mature phenotype via interaction of CD40 with CD40L (Wu and Murphy, 
2022). By inducing a more mature phenotype, ‘licensed’ cDC1 were found to have a greater ability to 
prime the CD8+ T cell response. Further, it was shown that CD40 expression alone on cDC1 results in 
a more robust expansion of antigen- specific CD8+ T cells, further evidence that increased expression 
of CD40 might directly impact priming of tumor- reactive T cells (Ferris et al., 2020a). In our model, 
cDC1 presenting Adpgk or both antigens expressed more CD40 than cDC1 carrying Aatf debris. This 
association between CD40 levels and presence of Adpgk on cDC1 suggests that potent CD8+ T cells 
could act in a similar manner as CD4+ helper T cell responses and enhance the stimulatory capacity of 
DCs. Additional work is needed to delineate transcriptional changes and the timing of these changes 
on these populations for greater mechanistic insights.

Our data thus far can exclude that the observed effect was primarily driven by epitope spreading, 
the resulting differences in antigen availability or tumor growth kinetics, as changes in NeoAg- specific 
T cell responses were preserved following implantation of lethally irradiated tumor cells expressing a 
single NeoAg or clonal or subclonal NeoAgs in tumors expressing two NeoAgs. While the more immu-
nogenic Adpgk NeoAg response was dependent on the NeoAg load, we observed that the weaker 
Aatf response was significantly greater in mice implanted with irradiated KP- HetLow cells compared to 
cohorts injected with the same amount of antigen without a strong NeoAg (KPAatf). This result high-
lights the importance of the context under which a NeoAg is expressed.

For the selection of potent NeoAgs, much emphasis has been placed on the binding affinity of 
the NeoAg peptide to MHC and the relative binding to its wildtype counterpart (Schumacher et al., 
2019; Verdegaal et al., 2016; Gubin et al., 2014; Duan et al., 2014). However, these predictions 
focus on high- affinity NeoAgs in isolation and not on functional immunogenicity. It was recently 
shown that antigen dominance can dampen anti- tumor immunity in the context of two peptides with 
similar strong binding affinity (Burger et al., 2021). Therapeutic vaccination against the sub- dominant 
NeoAg enhanced anti- tumor immunity. In our system, however, we observe that the antigen with the 
higher affinity (Adpgk; 4.3 nM) did provide ‘help’ rather than competition for binding of H2- Db with 
the Aatf antigen with a lower affinity of 90 nM. While we did observe that the Adpgk response was 
dominant, as previously reported (Kotturi et al., 2008), we also saw a greater expansion of both 
NeoAg- specific responses when both antigens were clonally expressed. This observation suggests 
a therapeutic potential for thus far unused NeoAgs with a lower binding affinity to MHC. It is inter-
esting to note that Aatf was first identified as a potential NeoAg, but was described to be unlikely 
immunogenic due to its mutant amino acid being located near the carboxy terminus of the peptide, 
therefore less likely to bind with the TCR (Yadav et al., 2014). Our finding underscores the importance 
of validation of NeoAg immunogenicity in vivo. Furthermore, our study demonstrates the importance 
of studying NeoAgs with highly variable immunogenicity as this might preclude detrimental effects of 

https://doi.org/10.7554/eLife.85263
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immunodominance between multiple high- affinity NeoAgs. This might be especially important clin-
ically as the NeoAg landscape in patients currently does contain peptides with predicted weaker 
affinity (Luksza et al., 2017).

We developed therapeutic regimens to enhance an Aatf- specific response in KP- HetHigh tumors that 
was comparable to what we observed in KP- HetLow. This therapy comprised antigen- specific vacci-
nation, anti- CD40 and CBT while neither dual combination was sufficient. This observation suggests 
that to eradicate a heterogeneous tumor harboring weak and subclonal NeoAgs requires (1) boosting 
an antigen- specific response, (2) enhancing the productive priming response by providing co- stim-
ulation, and (3) preventing T cell exhaustion by CBT. Our results mirror those from other preclinical 
models which showed CD40 agonism and CBT synergizing in treating mice with colon tumors (West-
cott et al., 2021) and significant prolonged survival in a pancreatic cancer model treated with a DC 
vaccine paired with CD40 agonism (Lau et al., 2020). For optimal translation into clinical practice, 
it will be critical to determine which antigen- specific T cell responses would benefit the most from 
CD40 agonism and determine how the observed synergy between weak and strong NeoAgs can be 
exploited best in a vaccine setting. Given the importance of CD4+ T cells in the role to license DC, 
it will likewise be critical to decipher the differences between CD4+ and CD8+ helper responses, as 
discussed above. Another consequence of DC licensing is that mature DCs can produce chemokines 
to facilitate recruitment of naïve CD8+ T cells, thereby increasing the likelihood of interacting with 
cognate CD8+ T cells to activate (Castellino et al., 2006). This notion is highly consistent with our 
observation that Aatf- reactive T cells are detectable at earlier timepoints when expressed homoge-
neously compared to the heterogeneous NeoAg expression pattern. Future studies employing tools 
to detect NeoAg- presentation on cDC1 and identification of NeoAg- reactive T cells in situ will be 
needed to understand how spatial organization of these cells affects the priming response. While 
our observations are predominately focused on the initial priming of a NeoAg T cell response, cDC1- 
mediated re- stimulation of effector T cells is also a critical feature in the TME (Spranger et al., 2017; 
Gardner et al., 2022). However, within the tumor the expression patterns of NeoAg will likely be even 
more critical as spatial analysis of the tumor suggests the formation of areas of clonal growth, resulting 
in patches of NeoAg expression (Angelova et al., 2018; Milo et al., 2018). Thus, in tumors with 
heterogeneous NeoAg expression, cDC1 will consequently only present NeoAg from surrounding 
tumor cells, thus limiting the stimulatory potential for tumor- infiltrating T cells. It is plausible that this 
process might accelerate the induction of terminal T cell exhaustion.

In sum, our study provides critical mechanistic insights into how heterogeneous NeoAg expression 
mediates weaker anti- tumor CD8+ T cell responses. Our work underscores the necessity of improving 
prediction of functional NeoAg immunogenicity in a patient- specific context, considering ITH, expres-
sion level, and binding affinity. Understanding these parameters, their dependencies, and their collec-
tive impact on the functional immunogenicity of each NeoAg has the potential to expand the number 
of actionable NeoAgs for targeted vaccination. The model we developed is a powerful preclinical tool 
for these future studies with more complex modeling of tumors that better reflect the clinical situation.

Materials and methods
Mice
C57BL/6 were purchased from Taconic Biosciences and Jackson Laboratory. Rag2-/- and Batf3-/- mice 
were purchased from Jackson Laboratory and bred in- house. B6 CD45.1 were purchased from Jackson 
Laboratory. All mice were housed and bred under specific pathogen- free (SPF) conditions at the Koch 
Institute for Integrative Cancer Research Building animal facility. For all studies, mice were gender- 
matched and age- matched to 6–12 weeks old at the start of experiments. All experimental animal 
procedures were approved by the Committee on Animal Care (CAC/IACUC) at MIT.

Tumor cell lines and tissue culture
KP1233 and RMA- S were gifts from the Jacks Laboratory at MIT. The KP cell line was validated using 
SNP analysis, and all cell lines used are routinely tested for mycoplasma. KP6S was subcloned from 
KP1233. Tumor cell lines were cultured at 37°C and 5% CO2 in culture media (DMEM [Gibco] supple-
mented with 10% heat- inactivated FBS [Atlanta Biologicals], 1% penicillin/streptomycin [Gibco], and 
20 mM HEPES [Gibco]).

https://doi.org/10.7554/eLife.85263
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Functional lentiviral titration
KP6S were plated in a 6- well plate to have 20–40% confluency the following day. Lentivirus was serially 
diluted and cells were transduced as described here. Then, 48 hr later, cells were selected with puro-
mycin or blasticidin (Gibco) and continually selected for 6–8 d until colonies were visible in the wells 
with the highest dilution. Supernatant was removed and cells were washed once with PBS. 0.5 mL of 
10% formalin (Sigma- Aldrich) was added to the wells to fix cells at room temperature (RT) for 5 min. 
Cells were washed with PBS. 0.5 mL of crystal violet stain (0.05% w/v) was added to stain the cells at 
RT for 30 min. Cells were washed twice with RODI water. Plates were drained and dried overnight. 
Blue colonies were counted to determine functional titers.

Generation of NeoAg-expressing cell lines
KP6S were transduced with the pLV- EF1a- mCherry- mcs lentiviral constructs expressing different 
NeoAg(s) at an MOI (Multiplicity of Infection) of 0.1. Lentivirus diluted in culture media and supple-
mented with 4 µg/mL protamine sulfate (Sigma- Aldrich, stock is 1 mg/mL in PBS) was added to cells. 
The media were changed the following day. Selection began 48 hr after cells were transduced. Flow 
cytometry was used to confirm and quantify construct expression.

Predicted binding affinities
Peptide sequences were entered into NetMHC Server 4.0 (https://services.healthtech.dtu.dk/services/ 
NetMHC-4.0/) to determine binding affinities.

Peptide synthesis
All peptides were synthesized by GenScript at >95% purity with unmodified N- and C- termini.

RMA-S MHCI stabilization assay
RMA- S cells were cultured in RPMI (Gibco) supplemented with 10% heat- inactivated FBS 
(Atlanta Biologicals), 1% penicillin/streptomycin (Gibco), and 20  mM HEPES (Gibco) with 55  µM 
2- Mercaptoethanol (Gibco). Cells were placed in a tissue culture incubator and incubated at 28°C the 
day before the experiment. Cells were collected, counted, and resuspended in suspension cell media 
at 10 × 106 cells/mL. 100 µL of cells were added to a 96- well plate. A titration of peptide was added to 
the cells to bring the volume to 200 µL. Cells were incubated for 2 hr at 28°C before antibody staining 
for flow cytometry analysis.

Short peptide vaccination
A single dose consisting of 10 µg of peptide (peptide stock is 10 mg/mL resuspended in DMSO) was 
added to 25 µg cyclic- di- GMP (stock is 1 mg/mL resuspended in PBS) (Invivogen tlrl- nacdg) and PBS 
added to a final volume of 50 µL. Mice were briefly anesthetized (isoflurane) and the vaccine was 
administered subcutaneously (s.c.) at the base of the tail. Mice were given a second identical boost 
10 d later and spleens were collected 11 d after the boost.

Tumor outgrowth studies
Tumor cells were collected by trypsinization (Gibco) and washed three times with 1× PBS (Gibco). 
Cells were resuspended in PBS, and 1 × 106 tumor cells were injected subcutaneously into the flanks 
of mice. Subcutaneous tumor area measurements (calculated as length × width) were collected 2–3 
times a week using digital calipers until the endpoint of the study.

DNA extraction and qRT-PCR
DNA was extracted using the Sigma- Aldrich GenElute Mammalian Genomic DNA Miniprep kit 
following manufacturer’s instructions. Extracted DNA was quantified by NanoDrop. DNA was diluted 
to yield stock concentrations of 50–120 ng/µL. This was further diluted 1:100 or 1:1000 for the reac-
tions. For each plate, a standard was plated using genomic DNA extracted from cell lines along with 
genomic DNA extracted from tumor tissue. Then, 20 µL reactions were ran [10 µL 2× SYBR Green 
PCR Master Mix [Applied Biosystems]], 200 µM forward primer, 200 µM reverse primer, 6 µL diluted 
DNA. Reactions were run on the StepOne Real- Time PCR System (Applied Biosystems), and CT values 
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were used to determine the amount of DNA contributed by a clone in a single sample. The single- cell 
suspension implanted into mice on day 0 (Input) was used as a normalization factor:

 Normalized KPAatf/ KPAdpgk mass ratio = (Sample KPAatf/ KPAdpgk) / (Input KPAatf/ KPAdpgk)  

Tumor dissociation
Tumors were dissected from mice, weighed, and collected in RPMI (Gibco) containing 250 μg/mL 
Liberase (Sigma- Aldrich) and 1 mg/mL DNase (Sigma- Aldrich). Tumors were minced with dissection 
scissors or a razor blade and incubated for 45 min at 37°C for enzymatic digestion. Following the 
digestion, tumor pieces were mashed through a 70 μm filter with a 1 mL syringe plunger to generate 
a single- cell suspension. The dissociated cells were washed three times with chilled PBS containing 1% 
heat- inactivated FBS and 2 mM EDTA (Gibco).

Flow cytometry
Prior to staining, cells were washed with FACS staining buffer (chilled PBS containing 1% FBS and 
2 mM EDTA). If cells were used for intracellular staining, Brefeldin A at 1× (BioLegend) was added 
to all reagents up until the fixation/permeabilization step. Cells were stained for 15 min on ice with 
eBioscience Fixable Viability Dye eFluor 780 to distinguish live and dead cells and with anti- CD16/
CD32 (clone 93, BioLegend) to prevent non- specific antibody binding. Cells were washed once and 
cell surface proteins were stained for 30 min on ice with fluorophore- conjugated antibodies. Following 
surface staining, cells were washed twice and analyzed directly or fixed with IC Fixation Buffer (eBio-
science) for 20 min at RT for analysis the next day. For intracellular staining, cells were washed twice 
in wash buffer (eBioscience) and incubated with fluorophore- conjugated antibodies for at least 30 min 
or overnight at 4°C. Cells were washed twice with FACS staining buffer before running samples. To 
obtain absolute counts of cells, Precision Count Beads (BioLegend) were added to samples following 
manufacturer’s instructions. All antibodies used are listed in Supplementary file 1. Flow cytometry 
sample acquisition was performed on BD LSRFortessa cytometer and BD Symphony cytometer, and 
the collected data was analyzed using FlowJo v10.5.3 software (TreeStar).

Mouse IFNγ-ELISpot
All ELISpot- specific reagents are part of the IFNγ-ELISpot kit from BD Biosciences (Cat# 551083). 
ELISpot plates were coated overnight at 4°C with anti- IFNγ antibody. Plates were washed and blocked 
with DMEM supplemented with 10% FBS, 1% penicillin/streptomycin, and 20 mM HEPES for 2 hr at 
RT. Spleens were harvested from mice and mashed through a 70 μm filter with a 1 mL syringe plunger 
to generate a single- cell suspension. Red blood cells were lysed with 500 μL of ACK Lysing Buffer 
(Gibco) on ice for 5 min, and splenocytes were washed three times with chilled PBS. For IFNγ-ELISpot 
assays using peptide restimulation, 1 × 106 splenocytes were assayed per well in the presence or 
absence of 10 µg of peptide. As a positive control, splenocytes were incubated with a mixture of 
100 ng/mL PMA (Sigma- Aldrich) and 1 μg/mL ionomycin (Sigma- Aldrich). Following an overnight incu-
bation at 37°C and 5% CO2, plates were developed using the BD mouse IFNγ-ELISpot kit, following 
manufacturer’s protocol.

Irradiated tumor cell vaccination
Tumor cells were trypsinized, washed once in 1× PBS, passaged through an 18 g needle to generate a 
single- cell suspension, and further washed twice in 1× PBS. Cells were resuspended at a concentration 
of 15 × 106 cells/mL in 1× PBS. Cells were placed in a conical and irradiated with 40 Gy (gray) on ice. 
Cells were injected into mice immediately following irradiation. Mice were vaccinated as described 
in short peptide vaccination with both Aatf and Adpgk peptides included in the dose. Spleens were 
collected for IFNγ-ELISpot on day 21 post implantation of lethally irradiated tumor cells.

Adoptive T cell transfer
CD8+ T cells were isolated from spleens of naïve or tumor- bearing (KPHetHigh or KPHetLow) mice on day 
7 after tumor inoculation. CD8+ T cells were enriched using magnetic cell separation (CD8a+ T Cell 
Isolation Kit, Miltenyi Biotec). Recipient Rag2-/- mice were injected with 5 × 105 KPAatf and KPAdpgk tumor 
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cells on opposite flanks and 5 × 106 pooled donor CD8+ T cells were transferred retro- orbitally on day 
4 after tumor inoculation.

Immunotherapeutic modulation
For checkpoint blockade therapy, 100 µg each of anti- CTLA- 4 (clone UC10- 4F10- 11, Bio X Cell BP0032) 
and anti- PD- L1 (clone 10F.9G2, Bio X Cell BP0101) or 100 µg each of isotype controls (clones N/A 
and LTF2, Bio X Cell BP0091 and BE0090) was administered i.p. diluted in a total volume of 100 µL 
or 200 µL of PBS on days 7, 10, 13, and 16 following tumor implantation. For CD40 agonism, 100 µg 
of anti- CD40 (clone FGK4.5, Bio X Cell BP0016- 2) was administered i.p. diluted in a total volume of 
100 µL of PBS on day 4 following tumor implantation.

RNA vaccination
Self- replicating RNA based on Venezuelan Equine Encephalitis virus replicons were cloned encoding 
two copies of the cell- penetrating peptide (CPP) penetratin attached to the previously defined NeoAg 
Aatf ( TCTT  TTAT  GGCT  CCAA  TAGA  CCAT  ACTA  CTAT  GTCA  GAT) separated by GGS cleavable sites 
(CPP- Aatf- CPP- Aatf) under the subgenomic promoter and prepared by in vitro transcription as previ-
ously described (Melo et al., 2019). Replicons were formulated in lipid nanoparticles by microfluidic 
nanoprecipitation. The lipids were composed of N1,N3,N5- tris(3- (didodecylamino)propyl)benzene- 
1,3,5- tricarboxamide (TT3) (Li et  al., 2015), (6Z,9Z,28Z,31Z)- Heptatriaconta- 6,9,28,31- tetraen- 19- yl 
4- (dimethylamino) butanoate (DLin- MC3- DMA; MedChemExpress), 1,2- dioleoyl- sn- glycero- 3- phosp
hoethanolamine (DOPE; Avanti Polar Lipids), Cholesterol (Avanti Polar Lipids), and 1,2- dimyristoyl- r
ac- glycero- 3- methoxypolyethylene glycol- 2000 (DMG- PEG2k; Avanti Polar Lipids) at a molar ratio of 
10:25:20:40:5. RNA (stored in RNAse- free water) was diluted in 10 mM citrate buffer at pH 3.0 (Alfa 
Aesar). The lipids and RNA were mixed using the NanoAssemblr Ignite instrument (Precision Nanosys-
tems) operated with the following settings: volume ratio 2:1; flow rate 12 mL/min; and waste volume 
0 mL. The RNA- loaded LNPs were dialyzed against PBS prior to use. Mice were immunized with 1 µg 
of replicon RNA in LNPs i.m. in the gastrocnemius muscle.

Statistical analysis
All statistical analyses were performed using GraphPad Prism (GraphPad).
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