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Abstract Generating synthetic locomotory and neural data is a useful yet cumbersome 
step commonly required to study theoretical models of the brain’s role in spatial navigation. 
This process can be time consuming and, without a common framework, makes it difficult to 
reproduce or compare studies which each generate test data in different ways. In response, we 
present RatInABox, an open-source Python toolkit designed to model realistic rodent locomotion 
and generate synthetic neural data from spatially modulated cell types. This software provides 
users with (i) the ability to construct one- or two-dimensional environments with configurable 
barriers and visual cues, (ii) a physically realistic random motion model fitted to experimental 
data, (iii) rapid online calculation of neural data for many of the known self-location or velocity 
selective cell types in the hippocampal formation (including place cells, grid cells, boundary 
vector cells, head direction cells) and (iv) a framework for constructing custom cell types, multi-
layer network models and data- or policy-controlled motion trajectories. The motion and neural 
models are spatially and temporally continuous as well as topographically sensitive to boundary 
conditions and walls. We demonstrate that out-of-the-box parameter settings replicate many 
aspects of rodent foraging behaviour such as velocity statistics and the tendency of rodents to 
over-explore walls. Numerous tutorial scripts are provided, including examples where RatInABox 
is used for decoding position from neural data or to solve a navigational reinforcement learning 
task. We hope this tool will significantly streamline computational research into the brain’s role in 
navigation.

Editor's evaluation
RatInABox is a new python library for generating synthetic behavioral and neural data (many func-
tional cell types) that is a highly important contribution to computational neuroscience. Critically, 
the authors have gone beyond the generally accepted practice with their well-written paper, docu-
mented and verified code. They show compelling evidence of its utility and usability, and this is sure 
to be an influential paper with implications for developing new theories and methods for joint neural 
and behavioral analysis beyond the navigation field.
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Introduction
Computational modelling provides a means to understand how neural circuits represent the world 
and influence behaviour, interfacing between experiment and theory to express and test how infor-
mation is processed in the brain. Such models have been central to understanding a range of neural 
mechanisms, from action potentials (Hodgkin and Huxley, 1952) and synaptic transmission between 
neurons (del Castillo and Katz, 1954), to how neurons represent space and guide complex behaviour 
(Hartley et al., 2000; Hartley et al., 2004; Byrne et al., 2007; Banino et al., 2018; de Cothi et al., 
2022). Relative to empirical approaches, models can offer considerable advantages, providing a 
means to generate large amounts of data quickly with limited physical resources, and are a precise 
means to test and communicate complex hypotheses. To fully realise these benefits, computational 
modelling must be accessible and standardised, something which has not always been the case.

Spurred on by the proposition of a ‘cognitive map’ (Tolman and Honzik, 1930), and the discovery 
of neurons with position-(O’Keefe and Dostrovsky, 1971), velocity-(Sargolini et al., 2006; Kropff 
et al., 2015) and head direction-(Taube et al., 1990) selective receptive fields in the hippocampal 
formation, understanding the brain’s role in navigation and spatial memory has been a key goal of 
the neuroscience, cognitive science, and psychology communities. In this field, it is common for theo-
retical or computational models to rely on artificially generated data sets. For example, for the direct 
testing of a normative model, or to feed a learning algorithm with training data from a motion model 
used to generate a time series of states, or feature-vectors. Not only is this data more cost-effective, 

eLife digest The brain is a complex system made up of over 100 billion neurons that interact to 
give rise to all sorts of behaviours. To understand how neural interactions enable distinct behaviours, 
neuroscientists often build computational models that can reproduce some of the interactions and 
behaviours observed in the brain.

Unfortunately, good computational models can be hard to build, and it can be wasteful for different 
groups of scientists to each write their own software to model a similar system. Instead, it is more 
effective for  scientists to share their code so that different models can be quickly built from an iden-
tical set of core elements. These toolkits should be well made, free and easy to use.

One of the largest fields within neuroscience and machine learning concerns navigation: how does 
an organism – or an artificial agent – know where they are and how to get where they are going next? 
Scientists have identified many different types of neurons in the brain that are important for naviga-
tion. For example, ‘place cells’ fire whenever the animal is at a specific location, and ‘head direction 
cells’ fire when the animal's head is pointed in a particular direction. These and other neurons interact 
to support navigational behaviours.

Despite the importance of navigation, no single computational toolkit existed to model these 
behaviours and neural circuits. To fill this gap, George et al. developed RatInABox, a toolkit that 
contains the building blocks needed to study the brain’s role in navigation. One module, called the 
‘Environment’, contains code for making arenas of arbitrary shapes. A second module contains code 
describing how organisms or ‘Agents’ move around the arena and interact with walls, objects, and 
other agents. A final module, called ‘Neurons’, contains code that reproduces the reponse patterns  
of well-known cell types involved in navigation. This module also has code for more generic, trainable 
neurons that can be used to model how machines and organisms learn.

Environments, Agents and Neurons can be combined and modified in many ways, allowing users 
to rapidly construct complex models and generate artificial datasets. A diversity of tutorials, including 
how the package can be used for reinforcement learning (the study of how agents learn optimal 
motions) are provided.

RatInABox will benefit many researchers interested in neuroscience and machine learning. It is 
particularly well positioned to bridge the gap between these two fields and drive a more brain-inspired 
approach to machine learning. RatInABox’s userbase is fast growing, and it is quickly becoming one of 
the core computational tools used by scientists to understand the brain and navigation. Additionally, 
its ease of use and visual clarity means that it can be used as an accessible teaching tool for learning 
about spatial representations and navigation.

https://doi.org/10.7554/eLife.85274
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quicker to acquire, and less resource-intensive than conducting spatial experiments (no rats required), 
but it also offers the advantage of being flexibly hand-designed to support the validation or refutation 
of theoretical propositions. Indeed, many past (Mehta et al., 2000; Burak et al., 2009; Gustafson 
and Daw, 2011) and recent (Stachenfeld et al., 2017; de Cothi and Barry, 2020; Bono et al., 2023; 
George et al., 2022; Banino et al., 2018; Schaeffer et al., 2022; Benna and Fusi, 2021) models have 
relied on artificially generated movement trajectories and neural data.

Artificially generating data can still be a bottleneck in the scientific process. We observe a number 
of issues: First, the lack of a universal standard for trajectory and cell activity modelling hinders apples-
to-apples comparisons between theoretical models whose conclusions may differ depending on the 
specifics of the models being used. Secondly, researchers must begin each project reinventing the 
wheel, writing software capable of generating pseudo-realistic trajectories and neural data before 
the more interesting theoretical work can begin. Thirdly, inefficiently written software can significantly 
slow down simulation time or, worse, push users to seek solutions which are more complex and power-
intensive (multithreading, GPUs, etc.) than the underlying task requires, decreasing reproducibility. 
Finally, even the relatively modest complexities of motion modelling in continuous environments raises 
the technical entry barrier to computational research and can impel researchers towards studying only 
one-dimensional environments or biologically unrealistic ‘gridworlds’ with tabularised state spaces. 
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Figure 1. RatInABox is a flexible toolkit for simulating locomotion and neural data in complex continuous environments. (a) One minute of motion 
in a 2D Environment with a wall. By default the Agent follows a physically realistic random motion model fitted to experimental data. (b) Premade 
neuron models include the most commonly observed position/velocity selective cells types (6 of which are displayed here). Users can also build more 
complex cell classes based on these primitives. Receptive fields interact appropriately with walls and boundary conditions. (c) As the Agent explores the 
Environment, Neurons generate neural data. This can be extracted for downstream analysis or visualised using in-built plotting functions. Solid lines 
show firing rates, and dots show sampled spikes. (d) One minute of random motion in a 1D environment with solid boundary conditions. (e) Users can 
easily construct complex Environments by defining boundaries and placing walls, holes and objects. Six example Environments, some chosen to 
replicate classic experimental set-ups, are shown here.

https://doi.org/10.7554/eLife.85274
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Not only can gridworld models scale poorly in large environments but they typically disregard aspects 
of motion which can be non-trivial, for example speed variability and inertia. Whilst there are valid 
reasons why gridworld and/or tabularised state-space models may be preferred – and good open 
source packages for modelling this (Maxime et al., 2023; Juliani et  al., 2022) – we suspect that 
coding simplicity, rather than theory-based justifications, remain a common reason these are used 
over continuous analogs.

To overcome these issues we built RatInABox (https://github.com/RatInABox-Lab/RatInABox) 
(George, 2022): an open source Python toolkit for efficient and realistic motion modelling in complex 
continuous environments and concurrent simulation of neuronal activity data for many cell types 
including those typically found in the hippocampal formation (Figure 1).

RatInABox
RatInABox is an open source software package comprising three component classes:

•	 Environment: The environment (or ‘box’) that the Agent exists in. An Environment can be 
one- or two-dimensional, contain walls/barriers, holes, and objects and they can have periodic 
or solid boundary conditions (Figure 1a, b, d, e).

•	 Agent: The agent (or ‘rat’) moving around the Environment (Figure  1a, d). Agents are 
0-dimensional and Environments can contain multiple Agents simultaneously.

•	 Neurons: A population of neurons whose firing rates update to encode the ‘state’ of the Agent 
in a rich variety of ways. Specific subclasses are provided corresponding to commonly studied 
cell-types (including, but not limited to, PlaceCells, GridCells, BoundaryVectorCells 
and HeadDirectionCells, Figure 1b, c). Users can also write their own Neurons subclasses 
or build/train complex function-approximator Neurons based on these primitives.

A typical workflow would be as follows: Firstly, an Environment is initialised with parameters 
specifying its dimensionality, size, shape and boundary conditions. Walls, holes and objects (which 
act as ‘visual cues’) can be added to make the Environment more complex. Secondly, an Agent is 
initialised with parameters specifying the characteristics of its motion (mean/standard deviation of its 
speed and rotational velocity, as well as behaviour near walls). Thirdly, populations of Neurons are 
initialised with parameters specifying their characteristics (number of cells, receptive field parameters, 
maximum firing rates etc.).

Next, a period of simulated motion occurs: on each step the Agent updates its position and 
velocity within the Environment, given the duration of the step, and Neurons update their firing 
rates to reflect the new state of the Agent. After each step, data (timestamps, position, velocities, 
firing rates and spikes sampled according to an inhomogenous Poisson process) are saved into their 
respective classes for later analysis, Figure 1.

RatInABox is fundamentally continuous in space and time. Position and velocity are never discre-
tised but are instead stored as continuous values and used to determine cell activity online, as explo-
ration occurs. This differs from other models which are either discrete (e.g. ‘gridworld’ or Markov 
decision processes) (Maxime et al., 2023; Juliani et al., 2022) or approximate continuous rate maps 
using a cached list of rates precalculated on a discretised grid of locations (de Cothi and Barry, 2020). 
Modelling time and space continuously more accurately reflects real-world physics, making simula-
tions smooth and amenable to fast or dynamic neural processes which are not well accommodated 
by discretised motion simulators. Despite this, RatInABox is still fast; to simulate 100 PlaceCells for 
10 min of random 2D motion (dt = 0.1 s) it takes about 2 s on a consumer grade CPU laptop (or 7 s 
for boundary vector cells).

By default the Agent follows a temporally continuous smooth random motion model, closely 
matched to the statistics of rodent foraging in an open field (Sargolini et al., 2006, Figure 2); however, 
functionality is also provided for non-random velocity control via a user provided control signal or for 
the Agent to follow an imported trajectory (Figure 3a). Once generated, data can be plotted using 
in-built plotting functions (which cover most of the figures in this manuscript) or extracted to be used 
in the theoretical model being constructed by the user.

Intended use-cases
RatInABox can be used whenever locomotion and/or populations of cells need to be modelled in 
continuous one- or two-dimensional environments. These functionalities are coupled (locomotion 

https://doi.org/10.7554/eLife.85274
https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/list_of_plotting_fuctions.md
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directly adjusts the cell firing rates) but can also be used independently (for example an Environ-
ment and Agent can be modelled without any Neurons if users only require the motion model, 
or alternatively users can calculate cell activity on an imported trajectory without using the random 
motion model).

We envisage use cases falling into two broad categories. (i) Data generation: The user is inter-
ested in generating realistic trajectories and/or neural data for use in a downstream analysis or model 
training procedure (Lee et al., 2023). (ii) Advanced modelling: The user is interested in building a 
model of the brain’s role in navigation (George et al., 2023), including how behaviour and neural 
representations mutually interact.

Below we briefly describe the most important details and features of RatInABox, divided into their 
respective classes. We leave all mathematical details to the Methods. Additional details (including 
example scripts and figures) can be found in the supplementary material and on the GitHub reposi-
tory. The codebase itself is comprehensively documented and can be referenced for additional under-
standing where necessary.
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Figure 2. The RatInABox random motion model closely matches features of real rat locomotion. (a) An example 5-min trajectory from the Sargolini 
et al., 2006. dataset. Linear velocity (Rayleigh fit) and rotational velocity (Gaussian fit) histograms and the temporal autocorrelations (exponential 
fit) of their time series’. (b) A sampled 5-min trajectory from the RatInABox motion model with parameters matched to the Sargolini data. (c) Figure 
reproduced from Figure 8D in Satoh et al., 2011 showing 10 min of open-field exploration. ‘Thigmotaxis’ is the tendency of rodents to over-explore 
near boundaries/walls and has been linked to anxiety. (d) RatInABox replicates the tendency of agents to over-explore walls and corners, flexibly 
controlled with a ‘thigmotaxis’ parameter. (e) Histogram of the area-normalised time spent in annuli at increasing distances, ‍d ‍, from the wall. RatInABox 
and real data are closely matched in their tendency to over-explore locations near walls without getting too close.

https://doi.org/10.7554/eLife.85274
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The Environment
Unlike discretised models, where environments are stored as sets of nodes (‘states’) connected by 
edges (‘actions’)(Juliani et al., 2022), here Environments are continuous domains containing walls 
(1D line segments through which locomotion is not allowed) and objects (which are 0-dimensional 
and act as visual cues). Boundaries and visual cues are thought to provide an important source of 
sensory data into the hippocampus (O’Keefe and Burgess, 1996; Hartley et al., 2000; Barry et al., 
2006; Solstad et al., 2008) and play an important role in determining cell activity during navigation 
(Stachenfeld et al., 2017; de Cothi and Barry, 2020). An Environment can have periodic or solid 
boundary conditions and can be one- or two-dimensional (Figure 1a, d).
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Figure 3. Advanced features and computational efficiency analysis. (a) Low temporal-resolution trajectory data (2 Hz) imported into RatInABox is 
upsampled (‘augmented’) using cubic spline interpolation. The resulting trajectory is a close match to the ground truth trajectory (Sargolini et al., 2006) 
from which the low resolution data was sampled. (b) Movement can be controlled by a user-provided ‘drift velocity’ enabling arbitrarily complex motion 
trajectories to be generated. Here, we demonstrate how circular motion can be achieved by setting a drift velocity (grey arrows) which is tangential 
to the vector from the centre of the Environment to the Agent’s position. (c) Egocentric VectorCells can be arranged to tile the Agent’s field 
of view, providing an efficient encoding of what an Agent can ‘see’. Here, two Agents explore an Environment containing walls and an object. 
Agent-1 (purple) is endowed with three populations of Boundary- (grey), Object- (red), and Agent- (green) selective field of view VectorCells. 
Each circle represents a cell, its position (in the head-centred reference frame of the Agent) corresponds to its angular and distance preferences and 
its shading denotes its current firing rate. The lower panel shows the firing rate of five example cells from each population over time. (d) A Neurons 
class containing a feed forward neural network learns, from data collect online over a period of 300 min, to approximate a complex target receptive 
field from a set of grid cell inputs. This demonstrates how learning processes can be incorporated and modelled into RatInABox. (e) RatInABox used 
in a simple reinforcement learning example. A policy iteration technique converges onto an optimal value function (heatmap) and policy (trajectories) 
for an Environment where a reward is hidden behind a wall. State encoding, policy control and the Environment are handled naturally by RatInABox. 
(f) Compute times for common RatInABox (purple) and non-RatInABox (red) operations on a consumer grade CPU. Updating the random motion model 
and calculating boundary vector cell firing rates is slower than place or grid cells (note log-scale) but comparable, or faster than, size-matched non-
RatInABox operations. Inset shows how the total update time (random motion model and place cell update) scales with the number of place cells.

https://doi.org/10.7554/eLife.85274
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The Agent
Physically realistic random motion
Smooth and temporally continuous random motion can be difficult to model. To be smooth (and 
therefore physically plausible), a trajectory must be continuous in both position and velocity. To be 
temporally continuous, the statistics of the motion must be independent of the integration timestep 
being used. To be random, position and velocity at one time must not be reliable predictors of posi-
tion and velocity at another time, provided these times are seperated by a sufficiently long interval. 
Implementations of random motion models typically fail to satisfy one, or sometimes two, of these 
principles (Raudies and Hasselmo, 2012; Benna and Fusi, 2021).

Ornstein-Uhlenbeck processes, which sit at the heart of the RatInABox random motion model, are 
continuous-in-time random walks with a tendency to return to a central drift value. The decorrelation 
timescale can be also be controlled. We use these to update the velocity vector (linear and rotational 
velocities are updated independently) on each update step. Position is then updated by taking a step 
along the velocity vector with some additional considerations to avoid walls. This method ensures 
both position and velocity are continuous, yet evolve ‘randomly’ (Figure 1a, d), and the statistics of 
the motion is independent of the size of the discretisation timestep being used.

Reanalysing rat locomotion data from Sargolini et al., 2006 (as has been done before, by Raudies 
and Hasselmo, 2012) we found that the histograms of linear speeds are well fit by a Rayleigh distri-
butions whereas rotational velocities are approximately fit by normal distributions (Figure 2a). Unlike 
Raudies and Hasselmo, 2012, we also extract the decorrelation timescale of these variables and 
observe that rotational velocity in real locomotion data decorrelates nearly an order of magnitude 
faster than linear velocity (0.08 s vs. 0.7 s). We set the default parameters of our Ornstein-Uhlenbeck 
processes (including applying a transform on the linear velocity so its long-run distribution also follows 
a Rayleigh distribution, see Methods) to those measured from the Sargolini et  al., 2006 dataset 
(Figure 2b).

Motion near walls
Animals rarely charge head-first into a wall, turn around, then continue in the opposite direction. 
Instead, they slow down smoothly and turn to avoid a collision. Additionally, during random foraging, 
rodents are observed to show a bias towards following walls, a behaviour known as thigmotaxis (Satoh 
et  al., 2011; Figure  2c). To replicate these observations, walls in the Environment lightly repel 
the Agent when it is close. Coupled with the finite turning speed this creates (somewhat counter-
intuitively) a thigmotactic effect where the agent over-explores walls and corners, matching what is 
observed in the data (Figure 2e). A user-defined parameter called ‘thigmotaxis’ can be used to 
control the strength of this emergent effect (Figure 2d).

Imported trajectories
RatInABox supports importing trajectory data which can be used instead of the inbuilt random motion 
model. Imported trajectory data points which may be of low temporal-resolution are interpolated 
using cubic splines and smoothly upsampled to user-define temporal precision (Figure  3a). This 
upsampling is essential if one wishes to use low temporal resolution trajectory data to generate high 
temporal resolution neural data.

Trajectory control
RatInABox supports online velocity control. At each integration step a target drift velocity can be 
specified, towards which the Agent accelerates. We anticipate this feature being used to generate 
complex stereotyped trajectories or to model processes underpinning complex spatial behaviour (as 
we demonstrate in Figure 3b, e).

Neurons
RatInABox provides multiple premade Neurons subclasses chosen to replicate the most popular 
and influential cell models and state representations across computational neuroscience and machine 
learning. A selection of these are shown in Figure 1b. See Methods for mathematical details. These 
currently include:

https://doi.org/10.7554/eLife.85274
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•	 PlaceCells: A set of locations is sampled uniformly at random from across the Environ-
ment or provided manually, each defining the centre of a place field. The place cell firing rate 
is determined by the some function of the distance from the Agent to the centre of the place 
field. Provided functions are

○○ Gaussian: A Gaussian centred on the place field centre.
○○ Gaussian threshold: A gaussian cropped and levelled at 1 standard deviation.
○○ Difference of two Gaussians: A wide Gaussian substracted from a narrower Gaussian with 

zero total volume.
○○ Top hat: Fires uniformly only within a circle of specific radius (similar to tile coding in machine 

learning).
○○ One hot: Only the closest place cell to a given position will fire. This is useful for replicating 

tabular state spaces but with continuous motion.
○○ PhasePrecessingPlaceCells: A subclass of PlaceCells which display phase preces-

sion (O’Keefe and Recce, 1993) with respect to a background LFP theta-oscillation.
•	 GridCells: Grid cells are modelled using a method proposed by Burgess et al., 2007. Recep-

tive fields are given by the thresholded or shifted sum of three cosine waves at 60°.
•	 VectorCells: Each vector cells responds to salient features in the Environment at a 

preferred distance and angle according to a model inspired by the double-Gaussian model 
used by Hartley et al., 2000. Vector cells can be ‘allocentric’ (angular preferences are rela-
tive to true-North) or ‘egocentric’ (Byrne et al., 2007) (angular preferences are relative to the 
Agent’s heading). Types include:

○○ BoundaryVectorCells: Respond to walls.
○○ ObjectVectorCells: Respond to objects.
○○ AgentVectorCells: Respond to other Agents.
○○ FieldOfViewBVCs/OVCs/AVCs: Egocentric vector cells arranged to tile the Agent’s field-

of-view, further described below.
•	 HeadDirectionCells: Each cell has a preferred direction. The firing rate is given by a von 

Mises distribution centred on the preferred direction.
•	 VelocityCells: Like HeadDirectionCells but firing rate scales proportional to speed.
•	 SpeedCell: A single cell fires proportional to the scalar speed of the Agent.
•	 RandomSpatialNeurons: Each cell has a locally smooth but random spatial receptive field of 

user-defined lengthscale.

A dedicated space containing additional cell classes not described here, is made available for 
community contributions to this list.

Customizable and trainable neurons
Any single toolkit cannot contain all possible neural representations of interest. Besides, static cell 
types (e.g. PlaceCells, GridCells etc.) which have fixed receptive fields are limiting if the goal is 
to study how representations and/or behaviour are learned. RatInABox provides two solutions: Firstly, 
being open-source, users can write and contribute their own bespoke Neurons (instructions and 
examples are provided) with arbitrarily complicated rate functions. Secondly, two types of function-
approximator Neurons are provided which map inputs (the firing rate of other Neurons) to outputs 
(their own firing rate) through a parameterised function which can be hand-tuned or trained to repre-
sent an endless variety of receptive field functions including those which are mixed selective, non-
linear, dynamic, and non-stationary.

•	 FeedForwardLayer: Calculates a weighted linear combination of the input Neurons with 
optional bias and non-linear activation function.

•	 NeuralNetworkNeurons: Inputs are passed through a user-provided artificial neural network.

Naturally, function-approximator Neurons can be used to model how neural populations in the 
brain communicate, how neural representations are learned or, in certain cases, neural dynamics. 
In an online demo, we show how GridCells and HeadDirectionCells can be easily combined 
using a FeedForwardLayer to create head-direction selective grid cells (aka. conjunctive grid cells 
Sargolini et al., 2006). In Figure 3d and associated demo GridCells provide input to a Neural-
NetworkNeurons class which is then trained, on data generated during exploration, to have a highly 
complex and non-linear receptive field. Function-approximator Neurons can themselves be used as 
inputs to other function-approximator Neurons allowing multi-layer and/or recurrent networks to be 
constructed and studied.

https://doi.org/10.7554/eLife.85274
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Field of view encodings
Efficiently encoding what an Agent can ‘see’ in its local vicinity, aka. its field of view, is crucial for many 
modelling studies. A common approach is to use a convolutional neural network (CNN) to process a 
rendered image of the nearby environment and extract activations from the final layer. However, this 
method is computationally expensive and necessitates training the CNN on a large dataset of visual 
images.

RatInABox offers a more efficient alternative through the use of VectorCells. Three variants 
– FieldOfViewBVCs, FieldOfViewOVCs, and FieldOfViewAVCs – comprise populations of 
egocentric Boundary-, Object-, and AgentVectorCells with angular and distance preferences 
specifically set to tile the Agent’s field of view. Being egocentric means that the cells remained fixed 
in the reference frame of the Agent as it navigates the Environment. Users define the range and 
resolution of this field of view. Plotting functions for visualising the field of view cells, as shown in 
Figure 3c, are provided.

Geometry and boundary conditions
In RatInABox, PlaceCells and VectorCells are sensitive to walls in the Environment. Three 
distance geometries are supported: ‘euclidean’ geometry calculates the Euclidean distance to a place 
field centre and so cell activity will ‘bleed’ through boundaries as if they weren’t there. ‘line_of_sight’ 
geometry allows a place cell to fire only if there is direct line-of-sight to the place field centre from the 
current location. Finally ‘geodesic’ geometry (default) calculates distance according to the shortest 
boundary-avoiding path to the cell centre (notice smooth wrapping of the third place field around the 
wall in Figure 1b). The latter two geometries respect the observation that place fields don’t typical 
pass through walls, an observation which is thought to support efficient generalisation in spatial rein-
forcement learning (Gustafson and Daw, 2011). Boundary conditions can be periodic or solid. In the 
former case, place fields near the boundaries of the environment will wrap around.

Rate maps
RatInABox simplifies the calculation and visualization of rate maps through built-in protocols and 
plotting functions. Rate maps can be derived explicitly from their known analytic firing functions or 
implicitly from simulation data. The explicit method computes rate maps by querying neuron firing 
rates at all positions simultaneously, utilizing ’array programming’ to rapidly compute the rate map. 
In the implicit approach, rate maps are created by plotting a smoothed histogram of positions visited 
by the Agent, weighted by observed firing rates (a continuous equivalent of a smoothed spike raster 
plot). Additionally, the tool offers the option to visualize spikes through raster plots.

Results
The default parameters of the random motion model in RatInABox are matched to observed statis-
tics of rodent locomotion, extracted by reanalysing data from Sargolini et  al., 2006 (data freely 
available at: https://doi.org/10.11582/2017.00019, exact filename used: 8F6BE356-3277-475C-
87B1-C7A977632DA7_1/11084–​03020501_​t2c1.​mat). Trajectories and statistics from the real data 
(Figure  2a) closely compare to the artificially generated trajectories from RatInABox (Figure  2b). 
Further, data (Satoh et  al., 2011) shows that rodents have a tendency to over-explore walls and 
corners, a bias often called ‘thigmotaxis’ which is particularly pronounced when the animal is new to 
the environment (Figure 2c). This bias is correctly replicated in the artificial trajectories generated by 
RatInABox - the strength of which can be controlled by a single parameter Agent.thigmotaxis 
(Figure 2d, e).

RatInABox can import and smoothly interpolate user-provided trajectory data. This is demonstrated 
in Figure 3a where a low-resolution trajectory is imported into RatInABox and smoothly upsampled 
using cubic spline interpolation. The resulting trajectory is a close match to the ground truth. Note 
that without upsampling, this data (2 Hz) would be far too low in temporal-resolution to usefully simu-
late neural activity. For convenience, the exact datafile Sargolini et al., 2006 used in Figures 3a and 
2a is uploaded with permission to the GitHub repository and can be imported using Agent.import_
trajectory(dataset="sargolini"). An additional trajectory dataset from a much larger envi-
ronment is also supplied with permission from Tanni et al., 2022.

https://doi.org/10.7554/eLife.85274
https://doi.org/10.11582/2017.00019
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RatInABox is computationally efficient. We compare compute times for typical RatInABox oper-
ations (Figure 3f, purple bars) to typical non-RatInABox operations representing potential ‘bottle-
necking’ operations in a downstream analysis or model-training procedure for which RatInABox is 
providing data (Figure 3f, red bars). These were multiplying a matrix by a vector using the numpy 
(Harris et al., 2020) package and a forward and backward pass through a small feedforward artifi-
cial neural network using the pytorch package (Paszke et al., 2019). PlaceCells, GridCells and 
the random motion model all update faster than these two operations. BoundaryVectorCells 
(because they require integrating around a 360° field-of-view) are significantly slower than the other 
cells but still outpace the feedforward neural network. All vector, matrix, and cell populations were 
size ‍n = 100‍, the feed forward network had layer sizes ‍nL = (100, 1000, 1000, 1)‍, the Environment was 
2D with no additional walls and all operations were calculated on a consumer-grade CPU (MacBook 
Pro, Apple M1). These results imply that, depending on the details of the use-case, RatInABox will 
likely not be a significant computational bottleneck.

Our testing (Figure 3f, inset) reveals that the combined time for updating the motion model and a 
population of PlaceCells scales sublinearly ‍O(1)‍ for small populations ‍n > 1000‍ where updating the 
random motion model dominates compute time, and linearly for large populations ‍n < 1000‍. Place-
Cells, BoundaryVectorCells and the Agent motion model update times will be additionally 
affected by the number of walls/barriers in the Environment. 1D simulations are significantly quicker 
than 2D simulations due to the reduced computational load of the 1D geometry.

Case studies
We envisage RatInABox being used to support a range of theoretical studies by providing data and, 
if necessary, infrastructure for building models powered by this data. This ‘Bring-Your-Own-Algorithm’ 
approach makes the toolkit generally applicable, not specialised to one specific field. Two examplar 
use-cases are provided in the supplement and are briefly described below. The intention is to demon-
strate the capacity of RatInABox for use in varied types of computational studies and to provide tuto-
rials as a tool for learning how to use the package. Many more demonstrations and accompanying 
notebooks are provide on the Github repository.

In our first example, we perform a simple experiment where location is decoded from neural firing 
rates (Appendix 1—figure 1). Data – the location and firing rate trajectories of an Agent randomly 
exploring a 2D Environment – are generated using RatInABox. Non-parameteric Gaussian process 
regression is used to predict position from firing rates on a held-out testing dataset. We compare the 
accuracy of decoding using different cell types; place cells, grid cells and boundary vector cells.

Next, we demonstrate the application of RatInABox to a simple reinforcement learning (RL) task 
(Appendix  1—figure 2, summarised in Figure  3e). A small network capable of model-free RL is 
constructed and trained using RatInABox. First a neuron calculates and learns – using a continuous 
variant of temporal difference learning – the value function 

‍
Vπ(x) =

∑
i

wiF
pc
i (x)

‍
 as a linear combination 

of place cell basis features. Then a new ‘improved’ policy is defined by setting a drift velocity – which 
biases the Agent’s motion – proportional to the gradient of the value function ‍v

drift(x) = π(x) ∝ ∇xVπ
‍. 

The Agent is therefore encouraged to move towards regions with high value. Iterating between these 
stages over many episodes (‘policy iteration’) results in convergence towards near optimal behaviour 
where the Agent takes the shortest route to the reward, avoiding the wall (Figure 3e).

Additional tutorials, not described here but available online, demonstrate how RatInABox can be 
used to model splitter cells, conjunctive grid cells, biologically plausible path integration, successor 
features, deep actor-critic RL, whisker cells and more. Despite including these examples we stress 
that they are not exhaustive. RatInABox provides the framework and primitive classes/functions from 
which highly advanced simulations such as these can be built.

Discussion
RatInABox is a lightweight, open-source toolkit for generating realistic, standardised trajectory and 
neural data in continuous environments. It should be particularly useful to those studying spatial navi-
gation and the role of the hippocampal formation. It remains purposefully small in scope - intended 
primarily as a means for generating data. We do not provide, nor intend to provide, a set of bench-
mark learning algorithms to use on the data it generates. Its user-friendly API, inbuilt data-plotting 

https://doi.org/10.7554/eLife.85274
https://github.com/RatInABox-Lab/RatInABox/tree/main/demos
https://github.com/RatInABox-Lab/RatInABox/tree/main/demos
https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/
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functions and general yet modular feature set mean it is well placed to empower a wide variety of 
users to more rapidly build, train and validate models of hippocampal function (Lee et al., 2023) and 
spatial navigation (George et al., 2023), accelerating progress in the field.

Our package is not the first to model neural data (Stimberg et al., 2019; Hepburn et al., 2012; 
Hines and Carnevale, 1997) or spatial behaviour (Todorov et al., 2012; Merel et al., 2019), yet 
it distinguishes itself by integrating these two aspects within a unified, lightweight framework. The 
modelling approach employed by RatInABox involves certain assumptions:

1.	 It does not engage in the detailed exploration of biophysical (Stimberg et al., 2019; Hines 
and Carnevale, 1997) or biochemical (Hepburn et al., 2012) aspects of neural modelling, nor 
does it delve into the mechanical intricacies of joint and muscle modelling (Todorov et  al., 
2012; Merel et al., 2019). While these elements are crucial in specific scenarios, they demand 
substantial computational resources and become less pertinent in studies focused on higher-
level questions about behaviour and neural representations.

2.	 A focus of our package is modelling experimental paradigms commonly used to study spatially 
modulated neural activity and behaviour in rodents. Consequently, environments are currently 
restricted to being two-dimensional and planar, precluding the exploration of three-dimensional 
settings. However, in principle, these limitations can be relaxed in the future.

3.	 RatInABox avoids the oversimplifications commonly found in discrete modelling, predominant 
in reinforcement learning (Maxime et al., 2023; Juliani et al., 2022) which we believe impede 
its relevance to neuroscience.

4.	 Currently, inputs from different sensory modalities, such as vision or olfaction, are not explic-
itly considered. Instead, sensory input is represented implicitly through efficient allocentric or 
egocentric representations. If necessary, one could use the RatInABox API in conjunction with a 
third-party computer graphics engine to circumvent this limitation.

5.	 Finally, focus has been given to generating synthetic data from steady-state systems. Hence, 
by default, Agents and Neurons do not explicitly include learning, plasticity or adaptation. 
Nevertheless we have shown that a minimal set of features such as parameterised function-
approximator neurons and policy control enable time varying behavioural policies and cell 
responses (Bostock et al., 1991; Barry et al., 2007) to be modelled within the framework.

In conclusion, while no single approach can be deemed the best, we believe that RatInABox’s 
unique positioning makes it highly suitable for normative modelling and NeuroAI. We anticipate that 
it will complement existing toolkits and represent a significant contribution to the computational 
neuroscience toolbox.

Materials and methods
The following section describes in mathematical detail the models used within RatInABox. Table 1, 
below compiles a list of all important parameters along with their default values, allowed ranges and 
how they can be adjusted. These are up to date as of the time/version of publication but later versions 
may differ, see the GitHub repository for the most up-to-date list.

Motion model
Temporally continuous random motion
Our random motion model is based on the Ornstein Uhlenbeck (OU) process, ‍Xθ,λ,µ(t)‍, a stochastic 
process satisfying the Langevin differential equation

	﻿‍

Xθ,λ,µ(t + dt) = Xθ,λ,µ(t) + dXθ,λ,µ(t),

dXθ,λ,µ(t) = θ(µ− Xθ,λ,µ(t))dt + λη(t)
√

dt‍�
(1)

where ‍η(t) ∼ N (0, 1)‍ is Gaussian white noise and ‍θ‍, ‍λ‍ and μ are constants. The first term in the update 
equation drives decay of ‍Xθ,λ,µ(t)‍ towards the mean μ. The second term is a stochastic forcing term, 
driving randomness. These stochastic processes are well studied; their unconditioned covariance 
across time is

	﻿‍
⟨Xθ,λ,µ(t)Xθ,λ,µ(t′)⟩ = λ2

2θ
e−θ|t−t′ |.

‍�
(2)

https://doi.org/10.7554/eLife.85274
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Thus ‍Xθ,λ,µ(t)‍ decorrelates smoothly over a timescale of ‍τ = 1/θ‍. Over long periods ‍Xθ,λ,µ(t)‍ is 
stochastic and therefore unpredictable. Its long-run stationary probability distribution is a Gaussian 
with mean μ and standard deviation ‍σ =

√
λ2/2θ‍. We can re-parameterise the Ornstein Uhlenbeck 

process in terms of these more intuitive parameters (the decoherence timescale ‍τ ‍ and the long-run 
standard deviation ‍σ‍) using the transformations

	﻿‍
θ = 1

τ
, λ =

√
2σ2

τ
,
‍�

(3)

to give

	﻿‍

Xτ ,σ,µ(t + dt) = Xτ ,σ,µ(t) + dXτ ,σ,µ(t),

dXτ ,σ,µ(t) = 1
τ

(µ− Xτ ,σ,µ(t))dt +

√
2σ2

τ
η(t)

√
dt.

‍�

(4)

Ornstein Uhlenbeck processes have the appealing property that they are temporally continuous (their 
statistics are independent of ‍dt‍) and allow for easy control of the long-run standard deviation and the 
decoherence timescale of the stochastic variable. For these reasons, we use use them to model rota-
tional and linear velocities within RatInABox.

2D motion
For 2D locomotion, we sample the Agent’s rotational velocity ‍ω(t) = θ̇v(t)‍ and linear speed, 

‍v2D(t) = ∥v(t)∥‍, from independent OU processes. This is because, as shown in the Results section, 
they have decoherence timescales differing by an order of magnitude. Rotational velocity is sampled 
from a standard Ornstein Uhlenbeck process with zero mean. Linear speed is also sampled from an 
Ornstein Uhlenbeck process with one additional transform applied in order to match the observation 
that linear speeds have a Rayleigh, not normal, distribution.

	﻿‍ ω(t) ∼ Xτω ,αω ,0(t),‍� (5)

	﻿‍ v2D(t) = Rσv (z(t)) where z(t) ∼ Xτv,1,0(t),‍� (6)

where ‍Rσ(x)‍ is a monotonic transformation which maps a normally distributed random variable 

‍x ∼ N (0, 1)‍ to one with a Rayleigh distribution of scale parameter ‍σ‍ corresponds to the mode, or 
‍≈ 0.8‍ times the mean, of the Rayleigh distribution.

	﻿‍
Rσ(x) = σ

√
−2 ln

(
1 − 1

2

[
1 + erf

( x√
2

)])
.
‍�

(7)

The parameters ‍{τω ,σω , τv,σv}‍ are fitted from real open field 2D locomotion data in Figure 2 or can 
be set by the user (see Table 1, below).

Full trajectories are then sampled as follows: First the rotational and linear velocities are updated 
according to Equations 5, 6 (and additional considerations for walls, see next section). Next the 
velocity direction, ‍θv(t)‍ – defined as the angle of the velocity vector measured anticlockwise from the 
x-direction – is updated according to the rotational velocity, ‍ω(t)‍.

	﻿‍ θv(t) =
(
θv(t − dt) + ω(t)dt

)
mod 2π.‍� (8)

This is combined with the linear speed, ‍v2D(t)‍ to calculate new total velocity vector, ‍v(t)‍.

	﻿‍

v(t) = v2D(t)


cos θv(t)

sin θv(t)


 .

‍�
(9)

Finally position, ‍x(t)‍, is updated by integrating along the total velocity vector to give a continuous and 
smooth, but over long time periods random, motion trajectory.

	﻿‍ x(t) = x(t − dt) + v(t)dt.‍� (10)

https://doi.org/10.7554/eLife.85274
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1D motion
Motion in 1D is more simple than motion in 2D. Velocity is also modelled as an Ornstein Uhlenbeck 
process without the Rayleigh transform. In this case a non-zero mean, ‍µv‍, corresponding to directional 
bias in the motion, can be provided by the user. In summary:

	﻿‍ v1D(t) ∼ Xτv,αv,µv (t),‍� (11)

	﻿‍ x(t) = x(t − dt) + v1D(t)dt.‍� (12)

External velocity control
It is possible to provide an external velocity signal controlling the Agent’s motion. After the random 
motion update (as described above) is applied, if an external velocity ‍vdrift(t)‍ is provided by the user, 
an additional update to the velocity vector is performed

	﻿‍
dv(t + dt) = 1

τdrift
(vdrift(t) − v(t))dt.

‍�
(13)

In cases where ‍τdrift >> τv‍ the net update to the velocity (random update and drift update) is domi-
nated by the random component. When ‍τdrift << τv‍ the update is dominated by the drift component. 
We define ‍τdrift := τv/k‍ where ‍k‍ is an argument also provided by the user. To good approximation for 
large ‍k >> 1‍ the Agent velocity closely tracks the drift velocity at all times and is not random whilst for 
‍k << 1‍ the drift velocity is ignored and the motion is entirely random.

Motion near walls in 2D
An important feature is the ability to generate Environments with arbitrary arrangements of walls 
(aka ‘barriers’ or ‘boundaries’). Walls are meaningful only if they appropriately constrain the motion of 
the Agent. For biological agents this means three things:

1.	 The Agent cannot travel through a wall.
2.	 The Agent slows down upon approaching a wall to avoid a full-speed collision.
3.	 There may be a bias called “thigmotaxis” for the Agent to stay near walls.

Our motion model replicates these three effects as follows:

Collision detection
To avoid travelling through walls, if a collision is detected the velocity is elastically reflected off the 
wall (normal component is flipped). The speed is then scaled to one half the average motion speed, 

‍v2D(t) = 0.5σv‍.

Wall repulsion
Spring-deceleration model. In order to slow down before colliding with a wall the Agent feels an 
acceleration, perpendicular to the wall, whenever it is within a small distance, ‍dwall‍, of the wall.

	﻿‍

v̇(t) = k1
∑

walls,j
nj





(s · σv)2

d2
wall

· (dwall − d⊥,j(t)) if d⊥,j(t) ≤ dwall,

0 if d⊥,j(t) > dwall.‍�

(14)

‍d⊥,j(t)‍ is the perpendicular distance from the Agent to the ‍j
th

‍ wall, ‍nj‍ is the perpendicular norm of the 

‍j
th

‍ wall (the norm pointing towards the Agent) and ‍k1‍ & ‍s‍ are constants (explained later). ‍dwall‍ is the 
distance from the wall at which the Agent starts to feel the deceleration, defaulting to ‍dwall = 0.1‍ m.

Note that this acceleration is identical to that of an oscillating spring-mass where the base of the 
spring is attached a distance ‍dwall‍ from the wall on a perpendicular passing through the Agent. The 
spring constant is tuned such that a mass starting with initial velocity towards the wall of ‍−sσvnj‍ would 
stop just before the wall. In summary, for ‍k1 = 1‍, if the Agent approaches the wall head-on at speed 
of ‍sσv‍ (‍s‍ times its mean speed) this deceleration will just be enough to avoid a collision.

‍s‍ is the unitless wall repel strength parameter (default ‍s = 1‍). When it is high, walls repel the agent 
strongly (only fast initial speeds will result in the agent reaching the wall) and when it is low, walls repel 

https://doi.org/10.7554/eLife.85274
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weakly (even very slow initial speeds will not be slowed done by the spring dynamics). When ‍s = 0‍ wall 
repulsion is turned off entirely.

Conveyor-belt model. A second (similar, but not exactly equivalent) way to slow down motion near 
a wall is to consider a hypothetical conveyor belt near the wall. This conveyor belt has a non-uniform 
velocity pointing away from the wall of

	﻿‍

ẋ(t) = k2
∑

walls,j
nj





s · σv

(
1 −

√
1 −

(dwall − d⊥,j(t))2

d2
wall

)
if d⊥,j(t) ≤ dwall,

0 if d⊥,j(t) > dwall.‍�

(15)

When the Agent is close to the wall the hypothetical conveyor-belt moves it backwards on each time 
step, effectively slowing it down. Note that this velocity is identical to that of a spring-mass attached 
to the wall with initial velocity ‍sσvnj‍ away from the wall and spring constant tuned to stop the mass just 
before it reaches a distance ‍dwall‍. In summary, for ‍k2 = 1‍, if the Agent approaches the wall head-on at 
speed of ‍sσv‍ the conveyor belt will just be fast enough to bring it to a halt at the location of the wall.

Wall attraction (thigmotaxis). Although similar, there is an exploitable difference between the 
‘spring-deceleration’ and ‘conveyor-belt’ models: the ‘conveyor-belt’ changes the Agents position, 

‍x(t)‍, on each step but not its internal velocity variable ‍v(t)‍. As as result (and as the conveyor-belt 
intuition suggests) it will slow down the Agent’s approach towards the wall without causing it to 
turn around. This creates a ‘lingering’ or ‘thigmotactic’ effect whereby whenever the Agent heads 
towards a wall it may carry on doing so, without collision, for some time until the stochastic processes 
governing its motion (section ‘Temporally continuous random motion’) cause it to turn. Conversely the 
‘spring-deceleration’ model has no ‘thigmotactic’ effect since it actively changes the internal velocity 
variable causing the Agent to turn around or ‘bounce’ off the walls.

The relative strengths of these two effects, ‍k1‍ and ‍k2‍, are controlled by a single thigmotaxis param-
eter, ‍λthig ∈

[
0, 1

]
‍ which governs the trade-off between these two models.

	﻿‍ k1 = 3(1 − λthig)2, k2 = 6λ2
thig.‍� (16)

When ‍λthig = 1‍ only the conveyor belt model is active giving a strong thigmotactic effects. When 

‍λthig = 0‍ only the spring-deceleration model is active giving no thigmotactic effect. By default 

‍λthig = 0.5‍. The constants 3 and 6 are tuning parameters chosen by hand in order that direct collisions 
with the walls are rare but not impossible.

Although this procedure, intended to smoothly slow the Agent near a wall, may seem complex, it 
has a two advantages: Firstly, deceleration near walls is smooth, becoming stronger as the Agent gets 
nearer and so induces no physically implausible discontinuities in the velocity. Secondly, it provides 
a tunable way by which to control the amount of thigmotaxis (evidenced in Figure 2c, d). Recall that 
these equations only apply to motion very near the wall (‍< dwall‍) and they can be turned off entirely 
(‍s = 0‍) (see Table 1, below).

Importing trajectories
Users can override the random motion model by importing their own trajectory with Agent.import_
trajectory(times,positions) where times is an array of times (not necessarily evenly spaced) 
and positions is an array of positions at each time. The trajectory is then interpolated using scipy.inter-
polate’s interp1d function following which the standard RatInABox ​Agent.​update(​dt) API is called 
to move the Agent to a new position a time dt along the imported trajectory.

When moving along imported trajectories the Agent will not be subject to the wall repel nor wall 
collision effects described above.

Head direction
As well as position and velocity Agents have a head direction, ‍̂h(t)‍. Head direction is used by various 
cell types to determine firing rate including HeadDirectionCells and (egocentric) VectorCells. 

https://doi.org/10.7554/eLife.85274
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By default, head direction is just the smoothed-then-normalised velocity vector, updated on each 
timestep as follows:

	﻿‍
h(t + dt) =

(
1 − dt

τh

)
ĥ(t) + dt

τh

v(t)
∥v(t)∥‍�

(17)

	﻿‍
ĥ(t + dt) = h(t + dt)

∥h(t + dt)∥ .
‍�

(18)

By default the amount of smoothing is very small (in 2D ‍τh = 0.15‍, in 1D there is no smoothing at all) 
meaning that, to a good approximation, head direction is simply the normalised velocity vector at time 
‍t‍, ‍̂h(t) ≈ v̂(t)‍. However by storing head direction as an independent variable, we make available the 
possibility for users to craft their own, potenitally more complex, head direction dynamics if desired.

We also define the head direction angle ‍ϕh(t)‍ aka. the angle of head direction vector measured 
clockwise from the x-axis.

Distance measures
In many of the cell models, it is necessary to calculate the ‘distance’ between two locations in the 
Environment (for example to calculate the firing rate of a Gaussian PlaceCell). This might depend 
on the type of geometry being used and the arrangement of walls in the Environment. There are 
three types of geometry currently supported:

	﻿‍ euclidean : d(x1, x2) = ∥x1 − x2∥‍� (19)

	﻿‍ geodesic : d(x1, x2) = length of shortest wall-avoiding path between x1 and x2‍� (20)

	﻿‍

line_of_sight: d(x1, x2) =




∥x1 − x2∥, if no wall obstructs the straight line between x1 and x2

∞, otherwise
‍�

(21)

By default RatInABox typically uses geodesic distance, except in Environments with more than one 
additional wall where calculating the shortest path becomes computationally expensive. In these cases, 
line_of_sight distance is typically used instead. Furthermore, in Environments with periodic 
boundary conditions these distance measures will respect the periodicity by always using the shortest 
path between two points, wrapping around boundaries if necessary. These geometry considerations 
are what allow RatInABox cell classes to interact sensibly with walls (e.g. by default place cells won’t 
bleed through walls, as observed in the brain). Hereon we refer to this as the ‘environmental-distance’.

Cell models
In the following section, we list mathematical models for some of the default provided Neurons 
subclasses, including all those covered in this manuscript. More cell types and documentation can 
be found on the codebase. Readers will note that, oftentimes, parameters are set randomly at the 
point of initialisation (e.g. where the place cells are located, the orientation of grid cells, the angular 
preference of boundary vector cells etc.). Many of these random parameters are all set as class attri-
butes and so can be redefined after initialisation if necessary. For simplicity here we describe default 
behaviour only – the default values for all parameters and how to change them are given in Table 1, 
below.

Maximum and minimum firing rates. For most cell classes it is also possible to set their maximum 
and minimum firing rates (‍fmax‍, ‍fmin‍). For simplicity, the formulae provided below are written such that 
they have a maximum firing rate of 1.0 Hz and minimum firing rate of 0.0 Hz but readers should be 
aware that after evaluation these firing rates are linearly scaled according to

	﻿‍ F(t) ← (fmax − fmin)F(t) + fmin.‍� (22)

Noise. By default all Neurons are noiseless with their firing rates entirely determined by the deter-
ministic mathematical models given below. Smooth Ornstein Uhlenbeck sampled random noise of 
coherence timescale ‍τη‍ and magnitude ‍ση‍ can be added:

	﻿‍ η(t) ∼ Xτη ,ση ,0(t)‍� (23)

https://doi.org/10.7554/eLife.85274
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	﻿‍ F(t) ← F(t) + η(t)‍� (24)

Rates vs. Spikes. RatInABox Neurons are fundamentally rate-based. This means that their firing 
rate is a continuous function of time. Simultaneously, at every time-step, spikes are sampled from this 
firing rate and saved into the history dataframe in case spiking data is required:

	﻿‍ P(Neuron i spikes in[t, t + dt]) = Fi(t)dt.‍� (25)

PlaceCells
A set of locations (the centre of the place fields), ‍{xPC

i }‍, is randomly sampled from the Environ-
ment. By default these locations sit on a grid uniformly spanning the Environment to which a small 
amount of random jitter, half the scale of the sampled grid, is added. Thus, place cell locations appear 
‘random’ but initialising in this way ensures all parts of the Environment are approximately evenly 
covered with the same density of place fields.

The environmental-distance from the Agent to the place field centres is calculated (‍di(t) = d(xPC
i , x(t))‍). 

The firing rate is then determined by one of the following functions (defaulting to ‍F gaussian‍):

	﻿‍ Fgaussian
i (t) = e−d2

i /2w2
i
‍� (26)

	﻿‍
Fgaussian_threshold

i (t) = max
(

0, e−d2
i /2w2

i − e−1/2

1 − e−1/2

)

‍�
(27)

	﻿‍
Fdiff_of_gaussians

i (t; r = 1.5) = e−d2
i /2w2

i − (1/r2)e−d2
i /2(rwi)2

1 − 1/r2 ‍�
(28)

	﻿‍

Ftop_hat
i (t) =





1 if di ≤ wi

0 otherwise
‍�

(29)

	﻿‍ Fone_hot
i (t) = δ(i == argminj(dj)).‍� (30)

Where used, ‍wi‍ is the user-provided radius (aka. width) of the place cells (defaulting to 0.2 m).

GridCells
Each grid cell is assigned a random wave direction ‍θi ∼ U[0,2π]‍, gridscale ‍λi ∼ U[0.5 m,1.0 m]‍ and phase 
offset ‍ϕi ∼ U[

0,2π
]
‍. The firing rate of each grid cell is given by the thresholded sum of three cosines

	﻿‍
Fi(t) = 1

3
max

(
0, cos

(
2π

x(t) · eθi

λi
+ ϕi

)
+ cos

(
2π

x(t) · eθi+π/3
λi

+ ϕi

)
+ cos

(
2π

x(t) · eθi+2π/3
λi

+ ϕi

))
.
‍

� (31)

‍eθ‍ is the unit vector pointing in the direction ‍θ‍. We also provide a shifted (as opposed to rectified) sum 
of three cosines grid cell resulting in softer grid fields

	﻿‍
Fi(t) = 2

3

(
1
3

(
cos

(
2π

x(t) · eθi

λi
+ ϕi

)
+ cos

(
2π

x(t) · eθi+π/3
λi

+ ϕi

)
+ cos

(
2π

x(t) · eθi+2π/3
λi

+ ϕi

))
+ 1

2

)

‍
� (32)

‍eθ‍ is the unit vector pointing in the direction ‍θ‍.

VectorCells (parent class only)
VectorCells subclasses include BoundaryVectorCells, ObjectVectorCells and Agent-
VectorCells as well as FieldOfView versions of these three classes. The common trait amongst 
all types of VectorCell is that each cell is responsive to a feature of the environment (boundary 
segments, objects, other agents) at a preferred distance and angle. The firing rate of each vector cell 
is given by the product of two functions; a Gaussian radial function and a von Mises angular function. 

https://doi.org/10.7554/eLife.85274
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When the agent is a euclidean distance ‍d(t)‍ from the feature, at an angle ‍ϕ(t)‍ the contribution of that 
feature to the total firing rate is given by

	﻿‍
gi(r(t), θ(t)) = exp

(
− (di − d(t))2

2σ2
d,i

)
· fVM(ϕ(t)|ϕi,κi)

‍�
(33)

where ‍fVM‍ is the radial von Mises distribution (a generalisation of a Gaussian for periodic variables)

	﻿‍ fVM(ϕ(t)
∣∣ϕi,κi) := exp(κi cos(ϕ(t) − ϕi)).‍� (34)

Total firing rate is calculated by summing/integrating these contributions over all features in the 
Environment as described in the following sections. Distance and angular tuning parameters and 
defined/sampled as follows:

•	 ‍di‍ is the distance tuning of the vector cell. By default ‍di ∼ U[0.05 m,0.3 m]‍
•	 ‍σd,i‍ is the distance tuning width. By default this increases linearly as a function of ‍di‍: ‍σd,i = di/β + ξ‍ 

for constants ‍β‍ and ‍ξ‍ but can be set otherwise. See Table 1, below for the values which are 
chosen to match those used by Cothi and Barry (de Cothi and Barry, 2020).

•	 ‍ϕi‍ is the angular tuning of the vector cell. By default ‍ϕi ∼ U[0◦,360◦]‍.
•	 ‍σϕ,i‍ (which defines the von Mises concentration measure ‍κi := 1/√σϕ,i ‍) is the angular tuning 

width of the vector cell. By default ‍σϕ,i ∼ U[10◦,30◦]‍.

The asymptotic equivalence between a Gaussian and a von Mises distribution (true for small angular 
tunings whereby von Mises distributions of concentration parameter ‍κ‍ approach Gaussian distribu-
tions of variance ‍σ2 = 1/κ‍) means this model is effectively identical to the original boundary vector cell 
model proposed by Hartley et al., 2000 but with the difference that our vector cells (BVCs included) 
will not show discontinuities if they have wide angular tunings of order ‍360◦‍.

All vector cells can be either

•	 allocentric (default): ‍ϕ(t)‍ is the angle subtended between the x-direction vector ‍ex = [1, 0]‍, and 
the line between the Agent and the feature.

•	 egocentric: ‍ϕ(t)‍ is the angle subtended between the heading direction of the agent ‍̂h(t)‍, and 
the line between the Agent and the feature.

BoundaryVectorCells
The environmental features which BoundaryVectorCells (BVCs) respond to are the boundary 
segments (walls) of the Environment. The total firing rate of of each cell is given by integrating 
(computationally we use a default value of ‍dθ = 2◦‍ to numerically approximate this integral) the contri-
butions from the nearest line-of-sight boundary segments (walls occluded by other walls are not 
considered) around the full ‍2π‍ field-of-view;

	﻿‍
Fi(t) = Ki

ˆ 2π

0
gi(r, θ)dθ,

‍�
(35)

(computationally we use a default value of ‍dθ = 2◦‍ to numerically approximate this integral). 

‍
Ki = 1/ max

x
Fi(x)

‍
 is a normalisation constant calculated empirically at initialisation such that each BVC 

has a maximum firing rate (before scaling) of 1.0 Hz.

ObjectVectorCells
ObjectVectorCells (OVCs) respond to objects in the Environment. Objects are zero-dimensional 
and can be added anywhere within the Environment, each object, ‍j‍, comes with a “type” attribute, 

‍tj‍. Each object vector cell has a tuning type, ‍ti‍, and is only responsive to objects of this type. The total 
firing rate of of each cell is given by the sum of the contributions from all objects of the correct type 
in the Environment;

https://doi.org/10.7554/eLife.85274
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	﻿‍
Fi(t) =

∑
objects,j if tj=ti

gi(rj(t), θj(t)).
‍�

(36)

Since Equation 33 has a maximum value of 1 by definition the maximum firing rate of an object vector 
cell is also 1 Hz (unless multiple objects are closeby) and no normalisation is required.

AgentVectorCells
AgentVectorCells respond to other Agents in the Environment. All cells in a given class are 
selective to the same Agent, index ‍j‍. The firing rate of each cell is then given by;

	﻿‍ Fi(t) = gi(rj(t), θj(t)).‍� (37)

FieldOfViewBVCs, FieldOfViewOVCs, and FieldOfViewAVCs
FieldOfViewBVCs/OVCs/AVCs are a special case of the above vector cells where the tuning param-
eters (‍di‍, ‍σd,i‍, ‍ϕi‍, ‍σϕ,i‍) for a set of VectorCells are carefully set so that cells tile a predefined ‘field 
of view’. By default these cells are egocentric and so the field of view (as the name implies) is defined 
relative to the heading direction of the Agent; if the Agent turns the field of view turns with it.

Users define the angular and radial extent of the field of view as well as the resolution of the cells 
which tile it. There is some flexiblity for users to construct complex fields of view but baic API simplifies 
this process, exposing a few key parameters:

•	 ‍rfov = [rmin
fov , r max

fov ]‍ (default [0.02 m, 0.2 m]): the radial extent of the field of view.
•	 ‍θfov‍ (default [0°, 75°]): the angular extend of the field of view (measured from the forward 

heading direction, symmetric left and right).
•	 ‍δ

0
fov‍ (default 0.02 m): FieldOfView VectorCells all have approximately circular receptive 

fields (i.e. the radial Gaussian and angular von Mises in Equation 33 have matched variances 
which depend on their tuning distance; ‍σd,i = di · σϕ,i := δfov(di)‍). ‍δ

0
fov‍ sets the resolution of the 

inner-most row of cells in the field of view, ‍δ
0
fov = δfov(di = rmin

fov )‍.
•	 Manifold type: For “diverging” manifolds (default) cells further away from the Agent have larger 

receptive fields ‍δfov(di) = ξ0 + di/β‍ for user-defined ‍β‍ (default ‍β = 5‍) and ‍ξ0 := δ0
fov − rmin

fov /β‍. For 
“uniform” manifold all cells have the same sized receptive fields, ‍δfov(di) = δ0

fov‍.

More complex field of views can be constructed and a tutorial is provided to show how.

HeadDirectionCells
In 2D Environments each head direction cell has an angular tuning mean ‍θi‍ and width ‍σi := 1/

√
κi ‍. 

The response function is then a von Mises in the head direction of the Agent:

	﻿‍ Fi(t) = exp(κi cos(θh(t) − θi)).‍� (38)

By default all cells have the same angular tuning width of 3° and tuning means even spaced from 0° 
to ‍360◦‍.

In 1D Environments there is always and only exactly ‍n = 2‍ HeadDirectionCells; one for left-
ward motion and one for rightward motion.

	﻿‍

F1(t) = max(0, sgn(v1D(t)))

F2(t) = max(0, sgn(−v1D(t)))‍�
(39)

VelocityCells
VelocityCells are a subclass of HeadDirectionCells which encode the full velocity vector 
rather than the (normalised) head direction. In this sense they are similar to HeadDirectionCells 
but their firing rate will increase with the speed of the Agent.

In 2D their firing rate is given by:

	﻿‍
Fi(t) = v2D

σv
exp(κi cos(θv(t) − θi))

‍� (40)

https://doi.org/10.7554/eLife.85274
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where ‍θv(t)‍ is the angle of the velocity vector ‍v(t)‍ anticlockwise from the x-direction and ‍σv‍ is the likely 
speed scale of the Agent moving under random motion (this is chosen so the firing rate of the velocity 
cell before scaling is approximately ‍O(1)‍ Hz).

In 1D environments:

	﻿‍

F1(t) = max
(

0, v1D(t)
σv + µv

)
,

F2(t) = max
(

0,− v1D(t)
σv + µv

)

‍�

(41)

where the addition of ‍µv‍ accounts for any bias in the motion.

SpeedCell
A single cell encodes the scaled speed of the Agent

	﻿‍
F(t) = ∥v(t)∥

σv ‍�
(42)

where, same as with the VelocityCells, ‍σv‍ (or ‍σv + µv‍ in 1D) is the typical speed scale of the Agent 
moving under random motion giving these cells ad pre-scaled maximum firing rate of ‍O(1)‍ Hz.

PhasePrecessingPlaceCells
PhasePrecessingPlaceCells (a subclass of PlaceCells) display a phenomena known as phase 
precession with respect to an underlying theta oscillation; within each theta cycle the firing rate of a 
place cell peaks at a phase dependent on how far through the place field the Agent has travelled. 
Specifically, as the Agent enters the receptive field the firing rate peaks at a late phase in the cycle 
and as the Agent leaves the receptive field the firing rate peaks at an early phase in the cycle, hence 
the name phase precession. Phase precession is implemented by modulating the spatial firing rate of 
PlaceCells with a phase precession factor, ‍F

θ
i (t)‍,

	﻿‍ Fi(t) ← Fi(t) · Fθ
i (t),‍� (43)

which rises and falls each theta cycle, according to:

	﻿‍
Fθ

i (t) = 2πfVM

(
ϕθ(t)

����ϕ∗
i
(
x(t), ẋ(t)

)
,κθ

)
.
‍�

(44)

This is a von Mises factor where ‍ϕθ(t) = 2πνθt mod 2π‍ is the current phase of the ‍νθ‍ Hz theta-rhythm 
and ‍ϕ

∗
i
(
x(t), ˆ̇x(t)

)
‍ is the current ‘preferred’ theta phase of a cell which is a function of it’s position ‍x(t)‍ 

and direction of motion ‍̂̇x(t)‍. This preferred phase is calculated by first establishing how far through a 
cells spatial receptive field the Agent has travelled along its current direction of motion;

	﻿‍ di(x(t), ˆ̇x(t)) = (x(t) − xi) · ˆ̇x(t),‍� (45)

and then mapping this to a uniform fraction ‍βθ‍ of the range ‍[0, 2π]‍;

	﻿‍
ϕ∗

i (t) = π − βθπ
di(t)
σi

.
‍�

(46)

‍σi‍ is the width of the cell at its boundary, typically defined as ‍σi = wi‍, except for gaussian place cells 
where the boundary is arbitrarily drawn at two standard deviations ‍σi = 2wi‍.

The intuition for this formula can be found by considering an Agent travelling straight through 
the midline of a circular 2D place field. As the Agent enters into the receptive field (at which point 

‍(x(t) − xi) · ˆ̇x(t) = −σi‍) the firing rate will peak at a theta phase of ‍π + βπ‍. This then precesses back-
wards as it passes through the field until the moment it leaves (‍(x(t) − xi) · ˆ̇x(t) = σi‍) when the firing rate 
peaks at a phase of ‍π − βπ‍. This generalises to arbitrary curved paths through 2D receptive fields. This 

https://doi.org/10.7554/eLife.85274
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model has been used and validated before by Jeewajee et al., 2014 . ‍κθ‍ determines the spread of 
the von Mises, i.e. how far from the preferred phase the cell is likely to fire.

RandomSpatialNeurons
RandomSpatialNeurons provide spatially ‘tuned’ inputs for use in instances where PlaceCells, 
GridCells, BoundaryVectorCells etc. These neurons have smooth but, over long distances, 
random receptive fields (approximately) generated by sampling from a Gaussian process with a radial 
basis function kernel of lengthscale ‍l‍ (default ‍l = 0.1‍ m). The kernel is given by:

	﻿‍ k(x, x′) = exp−
d(x,x′ )2

2l2 ‍� (47)

where ‍d(x, x′)‍ is the environmental-distance between two points in the environment. This distance 
measure (same as used for PlaceCells, and VectorCells etc.) accounts for walls in the environ-
ment and so the receptive fields of these neurons are smooth everywhere except across walls (see 
Section ‘Distance measures’).

Firing rates are calculated as follows: At initialisation an array of target locations, at least as dense 
as the lengthscale, is sampled across the environment ‍{xj}‍. For each neuron, ‍i‍, ‍j‍ target values, ‍[F̃i]:‍, is 
sampled from the multivariate Normal distribution

	﻿‍ [F̃i]: ∼ N (0, K)‍� (48)

where ‍K‍ is the covariance matrix with elements ‍Klm = k(xl, xm)‍. This creates a sparse set of locations, 

‍{xj}‍, and targets, ‍F̃ij‍, across the Environment: locations close to each other are likely to have similar 
targets (and hence similar firing rates) whereas locations far apart will be uncorrelated.

At inference time the firing rate at an arbitrary position in the Environment, ‍x(t)‍ (which will 
not neccesarily be one of the pre-sampled targets) is estimated by taking the mean of the targets 
weighted by the kernel function between the position and the target location:

	﻿‍
Fi(x(t)) =

∑
j k(x(t), xj)F̃i,j∑

j k(x(t), xj) ‍�
(49)

This weighted average is a cheap and fast approximation to the true Bayesian Gaussian process which 
would require the inversion of the covariance matrix ‍K‍ at each time-step and which we find to be 
numerically unstable around exposed walls.

FeedForwardLayer
FeedForwardLayer and NeuralNetworkNeurons are different from other RatInABox classes; their 
firing rates are not textitexplicitly determined by properties (position, velocity, head direction etc.) 
of their Agent but by the firing rates of a set of input layers (other ratinabox.Neurons). They 
allow users to create arbitrary and trainable ‘function approximator’ Neurons with receptive fields 
depending non-trivially on the states of one or many Agent(s).

Each FeedForwardLayer has a list of inputs ‍{Lj}N
j=1‍ which must be other ratinabox.Neurons 

subclasses (e.g. PlaceCells, BoundaryVectorCells, FeedForwardLayer). For input layer ‍j‍ 
with ‍nj‍ neurons of firing rates ‍F

Lj
k (t)‍ for ‍k ∈ [1, nj]‍, a weight matrix is initialised by drawing weights 

randomly ‍w
Lj
ik ∼ N (0, g/√nj)‍ (for default weight intialisation scale ‍g = 1‍). The firing rate of the ‍ith‍ Feed-

ForwardLayer neuron is given by weighted summation of the inputs from all layers plus a bias term:

	﻿‍
ri(t) =

N∑
j=1

nj∑
k=1

wLj
ik F Lj

k (t) + bi
‍�

(50)

	﻿‍ Fi(t) = ϕ(ri(t))‍� (51)

where ‍ϕ(x)‍ is a potentially non-linear activation function defaulting to a linear identity function of unit 
gain. ‍bi‍ is a constant bias (default zero). A full list of available activations and their defining parameters 

https://doi.org/10.7554/eLife.85274
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can be found in the utils.py file; these include ReLU, sigmoid, tanh, Retanh, softmax and linear (the 
default) functions or users can pass their own bespoke activation function.

Alongside ‍ϕ(ri(t))‍ this layer also calculates and saves ‍ϕ
′(ri(t))‍ where ‍ϕ

′
‍ is the derivative of the acti-

vation function, a necessary quantity for many learning rules and training algorithms.

NeuralNetworkNeurons
NeuralNetworkNeurons are a generalisation of FeedForwardLayer. Like FeedForwardLayer 

they are initialised with a list of inputs ‍{Lj}N
j=1‍. This class also recieves, at the point of initialisation, a 

neural network, NN. This can be any ​pytorch.​nn.​module. To calculate teh firing rate this class takes 
the firing rates of all input layers, concatenates them, and passes them through the neural network. 
The firing rate of the NeuralNetworkNeurons neuron is given by the activity of the neuron in the 
output layer of neural network:

	﻿‍

Fi(t) = NNi(F⃗L1 (t), F⃗L2 (t), ...︸ ︷︷ ︸
inputs

; w︸︷︷︸
weights

)

‍�
(52)

If no neural network is provided by the user a default network with two hidden ReLU layers of size 20 
is used.

In order to be compatible with the rest of the RatInABox API the firing rate returned by this class 
is a numpy array, however, on each update the output of the pytorch neural network is addition-
ally saved as a torch tensor. By accessing this tensor, users can take gradients back through the 
embedded neural network and train is as we demonstrate in Figure 3e.

In Figure 3e and an associated demo script a NeuralNetworkNeurons layer is initialised with 
‍N = 1‍ neuron/output. The inputs to the network come from a layer of 200 GridCells, ranging in grid 
scale from 0.2 m to 0.5 m. These are passed through a neural network with three hidden ReLU layers 
of size 100 and a linear readout. As the Agent randomly explores its Environment the network is 
trained with gradient descent to reduce the L2 error between the firing rate of the network and that of 
a ‘target’ rate map (a vector image of the letters ‘RIAB’). We use gradient descent with momentum 
and a learning rate of ‍η = 0.002 · dt2‍ (which makes the total rate of learning time-step independent). 

Momentum is set to 
‍
µ = (1 − dt

τet
)
‍
 where ‍τet‍ is the eligibility trace timescale of 10 s which smoothes the 

gradient descent, improving convergence. We find learning converges after approximately 2 hr and a 
good approximation of the target function is achieved.

Tutorials and demonstrations
We provide numerous resources, some of which are listed here, to streamline the process of learning 
RatInABox. Next to each we describe the key features – which you may be interested in learning – 
covered by the resource.

•	 Github readme: Installing and importing RatInABox. Descriptions and diagrams of key features.
•	 Simple script: A minimal example of using RatInABox to generate and display data. Code dupli-

cated below for convenience.
•	 Extensive script: A more detailed tutorial showing advanced data generation, and advanced 

plotting.
•	 Decoding position example: Data collection. Firing rate to position decoding. Data plotting.
•	 Conjunctive grid cells example: GridCells and HeadDirectionCells are combined with 

the function approximator FeedForwardLayer class to make head direction-selective grid 
cells (aka. conjunctive grid cells)

•	 Splitter cells example: Bespoke Environment, Agent and Neurons subclasses are written to 
make simple model of splitter cells.

•	 Successor features example: Loop-shaped Environment is constructed. Implementation of 
TD learning.

•	 Reinforcement Learning Example: A bespoke ValueNeuron subclass is defined. Implementa-
tion of TD learning. External ‘non-random’ control of Agent velocity.

https://doi.org/10.7554/eLife.85274
https://github.com/RatInABox-Lab/RatInABox/blob/main/ratinabox/utils.py
https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/simple_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/extensive_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/decoding_position_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/conjunctive_gridcells_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/splitter_cells_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/successor_features_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
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•	 Deep learning example: Deep NeuralNetworkNeurons trained to approximate a target func-
tion. Bespoke Neurons subclass encoding a.png is written.

•	 Actor-critic example: Deep NeuralNetworkNeurons are used to implement the actor-critic 
algorithm in egocentric and allocentric action/representation spaces.

•	 Path Integration Example: Extensive use of FeedForwardLayer to build a deep multilayer 
network. Implementation of a local Hebbian learning rule.

•	 List of plotting functions: Lists and describes all available plotting functions.

In addition, scripts reproducing all figures in the GitHub readme and this paper are provided too. 
The code comments are nearly comprehensive and can be referenced for additional understanding 
where needed.

A simple script
See the GitHub repository for instructions on how to install RatInABox. The following is a Python script 
demonstrating a very basic use-case.

Import RatInABox and necessary classes. Initialise a 2D Environment. Initialise an Agent in the 
Environment. Initialise some PlaceCells. Simulate for 20 s. Print table of times, position and 
firing rates. Plot the motion trajectory, the firing rate timeseries’ and place cell rate maps.

# Import RatInABox  
import ratinabox from ratinabox.Environment import Environment  
from ratinabox.Agent import Agent  
from ratinabox.Neurons import PlaceCells  
import pandas as pd 
 
# Run a very simple simulation  
Env = Environment()  
Ag = Agent(Env)  
PCs = PlaceCells(Ag)  
for i in range(int(20/​Ag.​dt)):  
​Ag.​update()  
​PCs.​update() 
 
# Export data into a dataframe  
pd.DataFrame(Ag.history) 
 
# Plot data  
Ag.plot_trajectory()  
PCs.plot_rate_timeseries()  
PCs.plot_rate_map()

Table of default parameters
Table 1 lists the RatInABox parameters and their default values. The ‘Key’ column give the key in a 
parameters dictionary which can be passed to each class upon initialisation. Any variables not present 
in the parameters dictionary at initialisation will be taken as default. For example, initialising an Envi-
ronment of size 2 m (which is not the default size) and adding an Agent with a mean speed of 0.3ms-1 
(which is not the default size) would be done as follows:

import ratinaboxfrom ratinabox.Environment import Environment 
from ratinabox.Agent import Agent 
 
Env=Environment(params = "scale":2.0) # initialise non-default Environment 
Ag=Agent(Env, params = "speed_mean":0.3) # initialise non-default Agent

https://doi.org/10.7554/eLife.85274
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/deep_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/actor_critic_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/path_integration_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/list_of_plotting_fuctions.md
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/readme_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/tree/main/ratinabox
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Table 1. Default values, keys and allowed ranges for RatInABox parameters.
* This parameter is passed as a kwarg to Agent.update() function, not in the input dictionary. ** This parameter is passed as a 
kwarg to FeedForwardLayer.add_input() when an input layer is being attached, not in the input dictionary.

Parameter Key Description (unit) Default Acceptable range

Environment()

‍D‍ dimensionality
Dimensionality of 
Environment. "2D" ["1D","2D"]

Boundary conditions boundary_conditions

Determines behaviour of 
Agent and PlaceCells at 
the room boundaries. "solid" ["solid", "periodic"]

Scale, ‍s‍ scale Size of the environment (m). 1.0 ‍R+‍

Aspect ratio, ‍a‍ aspect

Aspect ratio for rectangular 
2D Environments; width = 
‍sa‍, height = ‍s‍. 1.0 ‍R+‍

‍dx‍ dx
Discretisation length used for 
plotting rate maps (m). 0.01 ‍R+‍

Walls walls

A list of internal walls (not 
the perimeter walls) which 
will be added inside the 
Environment. More typically, 
walls will instead be added 
with the Env.add_wall() 
API (m). [] ‍Nwalls × 2 × 2‍-array/list

Boundary boundary

Initialise non-rectangular 
Environments by passing 
in this list of coordinates 
bounding the outer perimeter 
(m). None ‍Ncorners × 2‍-array/list

Holes holes

Add multiple holes into the 
Environment by passing in 
a list of lists, each internal list 
contains coordinates (min 3) 
bounding the hole (m). None ‍Nholes× ≥ 3 × 2‍-array/list

Objects walls

A list of objects inside the 
Environment. More typically, 
objects will instead be added 
with the Env.add_object() 
API (m). [] ‍Nobjects × 2‍-array/list

Agent()

dt dt
Time discretisation step size 
(s). 0.01 ‍R+‍

‍τv‍ speed_coherence_time

Timescale over which speed 
(1D or 2D) decoheres under 
random motion (s). 0.7 ‍R+‍

‍σv‍ (2D) ‍µv‍ (1D) speed_mean

2D: Scale Rayleigh distribution 
scale parameter for random 
motion in 2D. 1D: Normal 
distribution mean for random 
motion in 1D (ms-1). 0.08 2D: ‍R+‍ 1D: ‍R‍

‍σv‍ speed_std

Normal distribution standard 
deviation for random motion 
in 1D (ms-1). 0.08 ‍R+‍

‍τω‍ rotational_velocity_
coherence_time

Rotational velocity 
decoherence timescale under 
random motion (s).

0.08 ‍R+‍

Table 1 continued on next page
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Parameter Key Description (unit) Default Acceptable range

‍σω‍
rotational_velocity_
std

Rotational velocity Normal 
distribution standard 
deviation (rad s-1). ‍2π/3‍ ‍R+‍

‍λthig‍ thigmotaxis Thigmotaxis parameter. 0.5 ‍0 < λthig < 1‍

‍dwall‍ wall_repel_distance Wall range of influence (m). 0.1 ‍R+‍

s walls_repel_strength
How strongth walls repel the 
Agent. 0=no wall repulsion. 1.0 ‍R

+
0 ‍

‍k‍
drift_to_random_ 
strength_ratio*

How much motion is 
dominated by the drift 
velocity (if present) relative to 
random motion. 1.0 ‍R

+
0 ‍

Neurons()

‍n‍ n Number of neurons. 10 ‍Z+‍

‍fmax‍ max_fr
Maximum firing rate, see code 
for applicable cell types (Hz). 1.0 ‍R‍

‍fmin‍ min_fr
Minimum firing rate, see code 
for applicable cell types (Hz). 0.0 ‍fmin < fmax‍

‍ση‍ noise_std

Standard deviation of OU 
noise added to firing rates 
(Hz). 0.0 ‍R+‍

‍τη‍ noise_coherence_time
Timescale of OU noise added 
to firing rates (s). 0.5 ‍R+‍

Name name
A name which can be used to 
identify a Neurons class. "Neurons" Any string

PlaceCells()

Type description Place cell firing function. "gaussian"

["gaussian", "gaussian_
threshold", "diff_of_
gaussians", "top_hat", 
"one_hot"]

‍wi‍ widths

Place cell width parameter; 
can be specified by a single 
number (all cells have same 
width), or an array (each cell 
has different width) (m). 0.2 ‍R+‍

‍{xPC
i }‍ place_cell_centres

Place cell locations. If None, 
place cells are randomly 
scattered (m). None

None or array of positions 
(length ‍n‍)

Wall geometry wall_geometry
How place cells interact with 
walls. "geodesic"

["geodesic", "line_of_
sight", "euclidean"]

GridCells()

‍λi‍ gridscale

Grid scales (m), or parameters 
for grid scale sampling 
distribution. (0.5,1) array-like or tuple

‍λi‍-dist
gridscale_
distribution

The distribution from which 
grid scales are sampled, if 
they aren’t manually provided 
as an array/list. "uniform"

see utils.
distribution_
sampler() for list

‍θi‍ orientation Orientations (rad), or 
parameters for orientation 
sampling distribution.

(0,2π) array-like or tuple

Table 1 continued
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Parameter Key Description (unit) Default Acceptable range

‍θi‍-dist
orientation_
distribution

The distribution from which 
orientations are sampled, if 
they aren’t manually provided 
as an array/list. "uniform"

see utils.
distribution_
sampler() for list

‍ϕi‍ phase_offset

Phase offsets (rad), or 
parameters for phase offset 
sampling distribution. (0,2π) array-like or tuple

‍ϕi‍-dist
phase_offset_
distribution

The distribution from which 
phase offsets are sampled, if 
they aren’t manually provided 
as an array/list. "uniform"

see utils.
distribution_
sampler() for list

Type description Grid cell firing function.
"three_rectified_
cosines"

["three_rectified_
cosines", "three_
shifted_cosines"]

VectorCells()

Reference frame reference_frame

Whether receptive fields are 
defined in allo- or egocentric 
coordinate frames "allocentric"

["allocentric", 
"egocentric"]

Arrangement protocol cell_arrangement
How receptive fields are 
arranged in the environment. "random"

["random", "uniform_
manifold", "diverging_
manifold", function()]

‍di‍ tuning_distance

Tuning distances (m), or 
parameters for tuning 
distance sampling 
distribution. (0.0,0.3) array-like or tuple

‍di‍-dist
tuning_distance_
distribution

The distribution from which 
tuning distances are sampled, 
if they aren’t manually 
provided as an array/list. "uniform"

see utils.distribution 
_sampler() for list

‍σd,i‍ sigma_distance

Distance tuning widths (m), 
or parameters for distance 
tuning widths distribution. (By 
default these give ‍ξ‍ and ‍β‍) (0.08,12) array-like or tuple

‍σd,i‍-dist
sigma_distance_
distribution

The distribution from which 
distance tuning widths 
are sampled, if they aren’t 
manually provided as an 
array/list. "diverging" is an 
exception where distance 
tuning widths are an 
increasing linear function of 
tuning distance. "diverging"

see utils.distribution 
_sampler() for list

‍ϕi‍ tuning_angle

Tuning angles (‍◦‍), or 
parameters for tuning angle 
sampling distribution 
(degrees). (0.0,360.0) array-like or tuple

‍ϕi‍-dist
tuning_angle_
distribution

The distribution from which 
tuning angles are sampled, if 
they aren’t manually provided 
as an array/list. "uniform"

see utils.
distribution_
sampler() for list

‍σϕ,i‍ sigma_angle

Angular tuning widths (‍◦‍), or 
parameters for angular tuning 
widths distribution (degrees). (10,30) array-like or tuple

‍σϕ,i‍-dist sigma_angle_
distribution

The distribution from which 
angular tuning widths are 
sampled, if they aren’t 
manually provided as an 
array/list.

"uniform" see utils.
distribution_
sampler() for list

Table 1 continued
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Parameter Key Description (unit) Default Acceptable range

BoundaryVectorCells()

‍dθ‍ dtheta
Size of angular integration 
step (°). 2.0 ‍0 < dθ << 360‍

ObjectVectorCells()

‍ti‍ object_tuning_type

Tuning type for object vectors, 
if "random" each OVC has 
preference for a random 
object type present in the 
environment "random"

"random" or any-int or 
arrray-like

wall-behaviour walls_occlude
Whether walls occlude objects 
behind them. True bool

AgentVectorCells()

Other agent, ‍j‍ Other_Agent

The ratinabox.Agent 
which these cells are selective 
for. None ratinabox.Agent

wall-behaviour walls_occlude
Whether walls occlude 
Agents behind them. True bool

FieldOfView[X]s() for [X] ‍∈‍ [BVC,OVC,AVC]

‍rfov‍ distance_range
Radial extent of the field-of-
view (m). [0.02,0.4] List of two distances

‍θfov‍ angle_range
Angular range of the field-of-
view (°). [0,75] List of two angles

‍δ
0
fov‍ spatial_resolution

Resolution of the inner-most 
row of vector cells (m) 0.02

‍β‍ beta

Inverse gradient for how 
quickly receptie fields 
increase with distance (for 
"diverging_manifold" 
only) 5 ‍R+‍

Arrangement protocol cell_arrangement

How the field-of-view 
receptive fields are 
constructed "diverging_manifold"

["diverging_manifold", 
"uniform_manifold"]

FeedForwardLayer()

‍{Lj}N
j=1‍ input_layers

A list of Neurons classes 
which are upstream inputs to 
this layer. [] ‍N ‍-list of Neurons for ‍N ≥ 1‍

Activation function activation_function

Either a dictionary containing 
parameters of premade 
activation functions in utils.
activate() or a user-define 
python function for bespoke 
activation function.

{"activation": 
"linear"}

See utils.activate() for 
full list

‍g‍ w_init_scale**
Scale of random weight 
initialisation. 1.0 ‍R+‍

‍bi‍ biases
Biases, one per neuron 
(optional). [0,....,0] ‍Rn‍

NeuralNetworkNeurons()

‍{Lj}N
j=1‍

input_layers A list of Neurons classes 
which are upstream inputs to 
this layer.

[] A list of Neurons

Table 1 continued
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License
RatInABox is currently distributed under an MIT License, meaning users are permitted to use, copy, 
modify, merge publish, distribute, sublicense and sell copies of the software.
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‍NN‍ NeuralNetworkModule

The internal neural network 
function which maps inputs 
to outputs. If None a default 
ReLU networ kwith two-
hidden layers of size 20 will 
be used. None Any torch.nn.module

RandomSpatialNeurons()

‍l‍ lengthscale
Lengthscale of the Gaussian 
process kernel (m). 0.1 ‍R+‍

Wall geometry wall_geometry

How distances are calculated 
and therefore how these cells 
interact with walls. "geodesic"

["geodesic", "line_of_
sight", "euclidean"]

PhasePrecessingPlaceCells()

‍νθ‍ theta_freq The theta frequency (Hz). 10.0 ‍R+‍

‍κθ‍ kappa
The phase precession breadth 
parameter. 1.0 ‍R+‍

‍βθ‍ beta The phase precession fraction. 0.5 ‍0.0 < β < 1.0‍
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Supplementary files
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Data availability
Code is provided on the GitHub repository https://github.com/TomGeorge1234/RatInABox (George, 
2022).

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Sargolini F 2006 Grid cell data Sargolini et 
al 2006

https://​doi.​org/​10.​
11582/​2017.​00019

NIRD Research 
Data Archive, 
10.11582/2017.00019

References
Banino A, Barry C, Uria B, Blundell C, Lillicrap T, Mirowski P, Pritzel A, Chadwick MJ, Degris T, Modayil J, 

Wayne G, Soyer H, Viola F, Zhang B, Goroshin R, Rabinowitz N, Pascanu R, Beattie C, Petersen S, Sadik A, et al. 
2018. Vector-based navigation using grid-like representations in artificial agents. Nature 557:429–433. DOI: 
https://doi.org/10.1038/s41586-018-0102-6, PMID: 29743670

Barry C, Lever C, Hayman R, Hartley T, Burton S, O’Keefe J, Jeffery K, Burgess N. 2006. The boundary vector cell 
model of place cell firing and spatial memory. Reviews in the Neurosciences 17:71–97. DOI: https://doi.org/10.​
1515/revneuro.2006.17.1-2.71, PMID: 16703944

Barry C, Hayman R, Burgess N, Jeffery KJ. 2007. Experience-dependent rescaling of entorhinal grids. Nature 
Neuroscience 10:682–684. DOI: https://doi.org/10.1038/nn1905, PMID: 17486102

Benna MK, Fusi S. 2021. Place cells may simply be memory cells: Memory compression leads to spatial tuning 
and history dependence. PNAS 118:e2018422118. DOI: https://doi.org/10.1073/pnas.2018422118, PMID: 
34916282

Bono J, Zannone S, Pedrosa V, Clopath C. 2023. Learning predictive cognitive maps with spiking neurons during 
behavior and replays. eLife 12:e80671. DOI: https://doi.org/10.7554/eLife.80671, PMID: 36927625

Bostock E, Muller RU, Kubie JL. 1991. Experience-dependent modifications of hippocampal place cell firing. 
Hippocampus 1:193–205. DOI: https://doi.org/10.1002/hipo.450010207, PMID: 1669293

Burak Y, Fiete IR, Sporns O. 2009. Accurate path integration in continuous attractor network models of grid 
cells. PLOS Computational Biology 5:e1000291. DOI: https://doi.org/10.1371/journal.pcbi.1000291

Burgess N, Barry C, O’Keefe J. 2007. An oscillatory interference model of grid cell firing. Hippocampus 
17:801–812. DOI: https://doi.org/10.1002/hipo.20327, PMID: 17598147

Byrne P, Becker S, Burgess N. 2007. Remembering the past and imagining the future: A neural model of spatial 
memory and imagery. Psychological Review 114:340–375. DOI: https://doi.org/10.1037/0033-295X.114.2.340, 
PMID: 17500630

de Cothi W, Barry C. 2020. Neurobiological successor features for spatial navigation. Hippocampus 30:1347–
1355. DOI: https://doi.org/10.1002/hipo.23246, PMID: 32584491

de Cothi W, Nyberg N, Griesbauer E-M, Ghanamé C, Zisch F, Lefort JM, Fletcher L, Newton C, Renaudineau S, 
Bendor D, Grieves R, Duvelle É, Barry C, Spiers HJ. 2022. Predictive maps in rats and humans for spatial 
navigation. Current Biology 32:3676–3689.. DOI: https://doi.org/10.1016/j.cub.2022.06.090, PMID: 
35863351

del Castillo J, Katz B. 1954. Quantal components of the end‐plate potential. The Journal of Physiology 124:560–
573. DOI: https://doi.org/10.1113/jphysiol.1954.sp005129

Doya K. 2000. Reinforcement learning in continuous time and space. Neural Computation 12:219–245. DOI: 
https://doi.org/10.1162/089976600300015961, PMID: 10636940

George TM. 2022. Ratinabox. v1.11.4. Github. https://github.com/TomGeorge1234/RatInABox
George TM, de Cothi W, Stachenfeld K, Barry C. 2022. Rapid learning of predictive maps with STDP and theta 

phase precession. [bioRxiv]. DOI: https://doi.org/10.1101/2022.04.20.488882, PMID: 35411351
George TM, Barry C, Stachenfeld K, Clopath C, Fukai T. 2023 A generative model of the hippocampal formation 

trained with theta driven local learning rules. bioRxiv. DOI: https://doi.org/10.1101/2023.12.12.571268v1
Gustafson NJ, Daw ND. 2011. Grid cells, place cells, and geodesic generalization for spatial reinforcement 

learning. PLOS Computational Biology 7:e1002235. DOI: https://doi.org/10.1371/journal.pcbi.1002235, PMID: 
22046115

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, 
Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P, 
Gérard-Marchant P, et al. 2020. Array programming with NumPy. Nature 585:357–362. DOI: https://doi.org/10.​
1038/s41586-020-2649-2, PMID: 32939066

https://doi.org/10.7554/eLife.85274
https://github.com/TomGeorge1234/RatInABox
https://doi.org/10.11582/2017.00019
https://doi.org/10.11582/2017.00019
https://doi.org/10.1038/s41586-018-0102-6
http://www.ncbi.nlm.nih.gov/pubmed/29743670
https://doi.org/10.1515/revneuro.2006.17.1-2.71
https://doi.org/10.1515/revneuro.2006.17.1-2.71
http://www.ncbi.nlm.nih.gov/pubmed/16703944
https://doi.org/10.1038/nn1905
http://www.ncbi.nlm.nih.gov/pubmed/17486102
https://doi.org/10.1073/pnas.2018422118
http://www.ncbi.nlm.nih.gov/pubmed/34916282
https://doi.org/10.7554/eLife.80671
http://www.ncbi.nlm.nih.gov/pubmed/36927625
https://doi.org/10.1002/hipo.450010207
http://www.ncbi.nlm.nih.gov/pubmed/1669293
https://doi.org/10.1371/journal.pcbi.1000291
https://doi.org/10.1002/hipo.20327
http://www.ncbi.nlm.nih.gov/pubmed/17598147
https://doi.org/10.1037/0033-295X.114.2.340
http://www.ncbi.nlm.nih.gov/pubmed/17500630
https://doi.org/10.1002/hipo.23246
http://www.ncbi.nlm.nih.gov/pubmed/32584491
https://doi.org/10.1016/j.cub.2022.06.090
http://www.ncbi.nlm.nih.gov/pubmed/35863351
https://doi.org/10.1113/jphysiol.1954.sp005129
https://doi.org/10.1162/089976600300015961
http://www.ncbi.nlm.nih.gov/pubmed/10636940
https://github.com/TomGeorge1234/RatInABox
https://doi.org/10.1101/2022.04.20.488882
35411351
https://doi.org/10.1101/2023.12.12.571268v1
https://doi.org/10.1371/journal.pcbi.1002235
http://www.ncbi.nlm.nih.gov/pubmed/22046115
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

George et al. eLife 2024;13:e85274. DOI: https://doi.org/10.7554/eLife.85274 � 29 of 35

Hartley T, Burgess N, Lever C, Cacucci F, O’Keefe J. 2000. Modeling place fields in terms of the cortical inputs 
to the hippocampus. Hippocampus 10:369–379. DOI: https://doi.org/10.1002/1098-1063(2000)10:4<369::AID-
HIPO3>3.0.CO;2-0, PMID: 10985276

Hartley T, Trinkler I, Burgess N. 2004. Geometric determinants of human spatial memory. Cognition 94:39–75. 
DOI: https://doi.org/10.1016/j.cognition.2003.12.001

Hepburn I, Chen W, Wils S, De Schutter E. 2012. STEPS: efficient simulation of stochastic reaction-diffusion 
models in realistic morphologies. BMC Systems Biology 6:36. DOI: https://doi.org/10.1186/1752-0509-6-36, 
PMID: 22574658

Hines ML, Carnevale NT. 1997. The NEURON simulation environment. Neural Computation 9:1179–1209. DOI: 
https://doi.org/10.1162/neco.1997.9.6.1179, PMID: 9248061

Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction 
and excitation in nerve. The Journal of Physiology 117:500–544. DOI: https://doi.org/10.1113/jphysiol.1952.​
sp004764

Jeewajee A, Barry C, Douchamps V, Manson D, Lever C, Burgess N. 2014. Theta phase precession of grid and 
place cell firing in open environments. Philosophical Transactions of the Royal Society of London. Series B, 
Biological Sciences 369:20120532. DOI: https://doi.org/10.1098/rstb.2012.0532, PMID: 24366140

Juliani A, Barnett S, Davis B, Sereno M, Momennejad I. 2022. Neuro-Nav: a library for neurally-plausible 
reinforcement learning. 2022 Conference on Cognitive Computational Neuroscience. San Francisco, California, 
USA:1.16. DOI: https://doi.org/10.32470/CCN.2022.1212-0

Kropff E, Carmichael JE, Moser M-B, Moser EI. 2015. Speed cells in the medial entorhinal cortex. Nature 
523:419–424. DOI: https://doi.org/10.1038/nature14622, PMID: 26176924

Lee JQ, Keinath AT, Cianfarano E, Brandon MP. 2023. Identifying Representational Structure in CA1 to 
Benchmark Theoretical Models of Cognitive Mapping. bioRxiv. DOI: https://doi.org/10.1101/2023.10.08.​
561112

DJC MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
Maxime C, Bolun D, Mark T. 2023. Minigrid & Miniworld: Modular & Customizable Reinforcement Learning 

Environments for Goal-Oriented Tasks. [arXiv]. DOI: https://doi.org/10.48550/arXiv.2306.13831
Mehta MR, Quirk MC, Wilson MA. 2000. Experience-dependent asymmetric shape of hippocampal receptive 

fields. Neuron 25:707–715. DOI: https://doi.org/10.1016/s0896-6273(00)81072-7, PMID: 10774737
Merel J, Aldarondo D, Marshall J, Tassa Y, Wayne G, Olveczky B. 2019. Deep neuroethology of a virtual rodent. 

arXiv. https://​arxiv.​org/​abs/​1911.​09451
O’Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the 

freely-moving rat. Brain Research 34:171–175. DOI: https://doi.org/10.1016/0006-8993(71)90358-1, PMID: 
5124915

O’Keefe J, Recce ML. 1993. Phase relationship between hippocampal place units and the EEG theta rhythm. 
Hippocampus 3:317–330. DOI: https://doi.org/10.1002/hipo.450030307, PMID: 8353611

O’Keefe J, Burgess N. 1996. Geometric determinants of the place fields of hippocampal neurons. Nature 
381:425–428. DOI: https://doi.org/10.1038/381425a0, PMID: 8632799

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, 
Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, et al. 
2019. Pytorch: an imperative style, high-performance deep learning library. In Advances in Neural Information 
Processing Systems 32 Curran Associates, Inc. p. 8024–8035.

Raudies F, Hasselmo ME. 2012. Modeling boundary vector cell firing given optic flow as a cue. PLOS 
Computational Biology 8:e1002553. DOI: https://doi.org/10.1371/journal.pcbi.1002553, PMID: 22761557

Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser M-B, Moser EI. 2006. Conjunctive 
representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762. DOI: https://doi.​
org/10.1126/science.1125572, PMID: 16675704

Satoh Y, Endo S, Nakata T, Kobayashi Y, Yamada K, Ikeda T, Takeuchi A, Hiramoto T, Watanabe Y, Kazama T. 
2011. ERK2 contributes to the control of social behaviors in mice. The Journal of Neuroscience 31:11953–
11967. DOI: https://doi.org/10.1523/JNEUROSCI.2349-11.2011, PMID: 21849556

Schaeffer R, Khona M, Fiete IR. 2022. No free lunch from deep learning in neuroscience: a case study through 
models of the entorhinal-hippocampal circuit. bioRxiv. DOI: https://doi.org/10.1101/2022.08.07.503109

Solstad T, Boccara CN, Kropff E, Moser M-B, Moser EI. 2008. Representation of geometric borders in the 
entorhinal cortex. Science 322:1865–1868. DOI: https://doi.org/10.1126/science.1166466

Stachenfeld KL, Botvinick MM, Gershman SJ. 2017. The hippocampus as a predictive map. Nature Neuroscience 
20:1643–1653. DOI: https://doi.org/10.1038/nn.4650, PMID: 28967910

Stimberg M, Brette R, Goodman DF. 2019. Brian 2, an intuitive and efficient neural simulator. eLife 8:e47314. 
DOI: https://doi.org/10.7554/eLife.47314, PMID: 31429824

Tanni S, de Cothi W, Barry C. 2022. State transitions in the statistically stable place cell population correspond to 
rate of perceptual change. Current Biology 32:3505–3514. DOI: https://doi.org/10.1016/j.cub.2022.06.046, 
PMID: 35835121

Taube JS, Muller RU, Ranck JB. 1990. Head-direction cells recorded from the postsubiculum in freely moving 
rats. I. Description and Quantitative Analysis. The Journal of Neuroscience 10:ISSN. DOI: https://doi.org/10.​
1523/JNEUROSCI.10-02-00420.1990

Todorov E, Erez T, Tassa Y. 2012. IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 
Vilamoura-Algarve, Portugal. DOI: https://doi.org/10.1109/IROS.2012.6386109

https://doi.org/10.7554/eLife.85274
https://doi.org/10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0
https://doi.org/10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0
http://www.ncbi.nlm.nih.gov/pubmed/10985276
https://doi.org/10.1016/j.cognition.2003.12.001
https://doi.org/10.1186/1752-0509-6-36
http://www.ncbi.nlm.nih.gov/pubmed/22574658
https://doi.org/10.1162/neco.1997.9.6.1179
http://www.ncbi.nlm.nih.gov/pubmed/9248061
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1098/rstb.2012.0532
http://www.ncbi.nlm.nih.gov/pubmed/24366140
https://doi.org/10.32470/CCN.2022.1212-0
https://doi.org/10.1038/nature14622
http://www.ncbi.nlm.nih.gov/pubmed/26176924
https://doi.org/10.1101/2023.10.08.561112
https://doi.org/10.1101/2023.10.08.561112
https://doi.org/10.48550/arXiv.2306.13831
https://doi.org/10.1016/s0896-6273(00)81072-7
http://www.ncbi.nlm.nih.gov/pubmed/10774737
https://doi.org/10.1016/0006-8993(71)90358-1
http://www.ncbi.nlm.nih.gov/pubmed/5124915
https://doi.org/10.1002/hipo.450030307
http://www.ncbi.nlm.nih.gov/pubmed/8353611
https://doi.org/10.1038/381425a0
http://www.ncbi.nlm.nih.gov/pubmed/8632799
https://doi.org/10.1371/journal.pcbi.1002553
http://www.ncbi.nlm.nih.gov/pubmed/22761557
https://doi.org/10.1126/science.1125572
https://doi.org/10.1126/science.1125572
http://www.ncbi.nlm.nih.gov/pubmed/16675704
https://doi.org/10.1523/JNEUROSCI.2349-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21849556
https://doi.org/10.1101/2022.08.07.503109
https://doi.org/10.1126/science.1166466
https://doi.org/10.1038/nn.4650
http://www.ncbi.nlm.nih.gov/pubmed/28967910
https://doi.org/10.7554/eLife.47314
http://www.ncbi.nlm.nih.gov/pubmed/31429824
https://doi.org/10.1016/j.cub.2022.06.046
http://www.ncbi.nlm.nih.gov/pubmed/35835121
https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990
https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990
https://doi.org/10.1109/IROS.2012.6386109


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

George et al. eLife 2024;13:e85274. DOI: https://doi.org/10.7554/eLife.85274 � 30 of 35

Tolman EC, Honzik CH. 1930. Introduction and removal of reward, and maze performance in rats. University of 
California, Publications in Psychology 4:257–275.DOI: https://doi.org/10.1080/00221309.1930.9918318

https://doi.org/10.7554/eLife.85274
https://doi.org/10.1080/00221309.1930.9918318


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

George et al. eLife 2024;13:e85274. DOI: https://doi.org/10.7554/eLife.85274 � 31 of 35

Appendix 1
1.1 Figure details and parameter settings
A Jupyter script replicating Figures  1–3 can be found at https://github.com/RatInABox-Lab/​
RatInABox/blob/main/demos/paper_figures.ipynb. Unless stated below, parameters in all figures 
take their default values listed in Table 1.

Figure 1: Panel (b): Place cells are of type gaussian_threshold with widths ‍wi = 0.4‍ m. Panel 
(e) ‍µv = 0.1‍ and ‍σv = 0.2‍.

Figure 2: Panel (a): Curve fitting is done using scipy.optimize.curve_fit. Panel (d): ‍dt = 100‍ 
ms. Panel (e) Agent.wall_repel_strength = 2. Panel (e) uses all available datasets from Sargolini 
et al., 2006 to create the historgrams, as opposed to panel (a) which only uses one of the recordings.

Figure  3: Panel (a): 25  seconds of trajectory data from Sargolini et  al., 2006 is imported, 
converted into metres, mean centred and then downsampled by 30 x (from 50 Hz to 1.66 Hz) before 
being imported into a RatInABox Agent. Panel (c): All populations of vector cells had "distance_
range" = [0.05, 0.30], "angle_range" = [0,75] and "spatial_resolution"=0.015. Panel (e): 
RatInABox for reinforcement learning experiment is described below. Panel (f): The average and 
standard deviation over 1000 repeats is plotted. For the motion model this is taken for motion 
updates of a default Agent in a default Environment (i.e. 2D with solid boundary conditions and 
no additional walls). For the numpy matrix calculations the time taken does not include the time 
taken to initialise the matrices.

1.2 Supplementary figures
In this section we demonstrate how RatInABox could be used in two simple experiments: neural 
decoding and reinforcement learning. The intention is not to present novel scientific results but 
rather to demonstrate the capability of RatInABox to facilitate novel scientific research in a variety of 
fields. Additional demos beyond these two are given in the online repository and, as with all figures 
in this paper, executable Jupyter scripts are provided to replicate all figures shown.

1.2.1 Appendix 1—figure 1 RatInABox for neural decoding
Jupyter script: https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.​
ipynb.

In this demonstration we study, using RatInABox, which type of spatially modulated cell type is 
best for decoding position.

First we generate training and testing datasets. A set of Neurons (‍n = Ncells = 20‍) is initialised in 
a 1 m square Environment containing a small barrier (Appendix 1—figure 1, top). A six minute 
trajectory is simulated using the RatInABox random motion model to produce a dataset of inputs 

‍{xi}NT
i=1‍ and targets ‍{yi}NT

i=1‍:

	﻿‍ xi = F⃗(x(ti)) ∼ X ⊆ RNcells‍� (53)

	﻿‍ yi = x(ti) ∼ Y ⊆ R2
‍� (54)

where ‍x(ti)‍ is the position of the Agent at time ‍ti‍ and ‍⃗F‍ is the firing rate of the neuronal population. 
These data are split into training (‍0 < ti < 5‍ mins, Appendix  1—figure 1a purple) and testing 
(‍5 < ti < 6‍ mins, Appendix  1—figure 1a black) fractions. The goal of the decoder is to learn a 
mapping ‍G : X → Y ‍, from firing rates to positions.

To do this we use Gaussian Process Regression (GPR). GPR is a form of non-parameteric 
regression where a prior is placed over the infinite-dimensional function space ‍P(G(x))‍ in the form of 
its covariance kernel ‍C(x, x′)‍ and mean ‍µ(x)‍ (typically zero). This defines a prior on the targets in the 
training set ‍Y = (y1, y2, y3, ...)T‍,

	﻿‍ P(Y) = N (Y; 0, C),‍� (55)

where ‍Cij = C(xi, xj) + σηδij‍ is a covariance matrix established over the data points. The second 
term accounts for additive noise in the data function. This can be used to make an inference on 
the posterior of the target for an unseen testing data point, ‍P(ytest|{xi}train, {yi}train, xtest)‍ – itself a 

https://doi.org/10.7554/eLife.85274
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Gaussian – the mean of which is taken as the “prediction”. A more comprehensive reference/tutorial 
on Gaussian Process Regression is given by MacKay, 2003.

We use a radial basis function (aka “squared exponential”) kernel with width ‍l = l0
√

Ncells ‍ which 
scales with the expected size of the population vector (‍∼

√
Ncells ‍, we set ‍l0 =

√
20‍)

	﻿‍
C(x, x′) = exp

(
−∥x − x′∥2

2l2

)

‍�
(56)

and a small amount of target noise ‍ση = 1e − 10‍. Note that the closest ‘parameterised’ analog to 
GPR with an RBF kernel is linear regression against Gaussian basis features of length scale ‍l‍. Since 
the Gaussian is a non-linear function this means our regression prior is also non-linear function 
of firing rate (and therefore potential non-biologically plausible). We choose to optimise with 
the sklearn.gaussian_process.GaussianProcessRegressor package. Note we do not 
attempt to optimise the hyperparameters ‍l0‍ or ‍ση‍ which one would probably do in a more rigorous 
experiment. RatInABox parameters are all default with the exception that the place cells are of type 
gaussian_threshold and width ‍wi = 0.4‍ m and the timestep is set to ‍dt = 50‍ ms.

Appendix 1—figure 1b (lower) show the results over comparable sets of PlaceCells, GridCells 
and BoundaryVectorCells. Coloured dots show the prediction – mean of the posterior – of the 
GPR model “trained” on all points in the training dataset for that particular cell type. This is plotted 
on top of the true trajectory, shown in black. PlaceCells perform best achieving under 1  cm 
average decoding error, followed by BoundaryVectorCells then GridCells where the decoded 
position is visibly noisy.

Place cells outperform grid cells which outperform BVCs irrespective of how many cells are using 
in the basis feature set. More cells gives lower decoding error. Decoding errors in Appendix 1—
figure 1c are smaller than would be expected if one decoded from equivalently sized populations 
of real hippocampal neurons. There are likely many reasons for this. Real neurons are noisy, 
communicate sparsely through spikes rather than rates and, most likely, jointly encode position and 
many other behaviourally relevant (or irrelevant) variables simultaneously. All of these factors could 
be straightforwardly incorporated into this analysis using existing RatInABox functionality.
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Appendix 1—figure 1. RatInABox used for a simple neural decoding experiment. (a) Training (5 min) and testing 
(1 min) trajectories are sampled in a 1 m square environment containing a small barrier. (b) The firing rates of a 
population of ‍Ncells = 20‍ cells, taken over the training trajectory, are used to fit a Gaussian Process regressor 
model estimating position. This decoder is then used to decode position from firing rates on the the unseen 
testing dataset. Top row shows receptive field for 4 of the 20 cells, bottom row shows decoding estimate (coloured 
dots) against ground truth (black dots). The process is carried out independently for populations of place cells 
(left), grid cells (middle) and boundary vector cells (right). (c) Average decoding error against number of cells, note 
log scale. Error region shows the standard error in the mean over 15 random seeds. A jupyter script demonstrating 
this experiment is given in the codebase GitHub repository.
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1.2.2 Appendix 1—figure 2 RatInABox for reinforcement learning
Jupyter script: https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_​
learning_example.ipynb.

In this example we demonstrate how RatInABox can be used in a reinforcement learning (RL) 
study. The goal is as follows: train an artificial Agent to explore a 2D Environment where a reward 
is hidden behind a wall. The Agent should become proficient at navigating around the wall and 
towards the reward from all locations within the Environment.

The core of our approach will rest on model-free RL where an Agent first learns a value function 
for a policy (a process known as “policy evaluation”) and then uses this value function to define 
a new, improved policy (“policy improvement”). Iterating between these two procedures (“policy 
iteration”) can result in convergence towards an optimal or near-optimal policy.

A core pillar of RatInABox is its continuous approach to modelling time and space. This continuity 
will require revising typical approaches to how the value function if defined, approximated and then 
learned, as well as how motion control (aka action selection, in discrete space) is performed. This 
is not a weakness, in fact we would argue it is one of the strengths. Once we are done, we are left 
with a formulation of model-free RL which bears much higher resemblance to biological navigation. 
Furthermore, since most of the complexities of feature encoding and motion control in continuous 
time and space are handled by RatInABox innately this “upgrade” comes almost for free.

Policy evaluation
The value of a motion policy, ‍π‍, is defined as the decaying sum (or integral in continuous time) of 
expected future rewards

	﻿‍
V̂(t) ≈ Vπ(t) = E

[
1
τ

ˆ ∞

t
e
−

t′ − t
τ R(t′)dt′

]

‍�
(57)

where the expectation is taken over any stochasticity present in the current policy (i.e. how the Agent 
moves) and Environment/reward (although in this case both will be deterministic). This definition 
of value is temporally continuous. The key differences compared to the more common form – where 
value is written as a discrete sum of rewards over future timesteps – is that it is now a continuous 
integral over a reward density function and temporal discounting is done by exponentially decaying 
future reward over a time period ‍τ ‍. The prefactor of ‍1/τ ‍ is an optional constant of normalisation.

In order to learn the value function we define a new ValueNeuron class. The ValueNeuron, 
which is a subclass of FeedForwardLayer, recieves feedforward input from a set of features 
corresponding to PlaceCells scattered across the Environment with firing rates ‍{ϕi}

Nϕ=1000
i=1 ‍ 

where ‍ϕi(x) = Fi(x)‍ is the firing rate of the ‍ith‍ place cell at location ‍x‍. This linear approximation to the 
value function can be written as

	﻿‍
V̂(I(t); w) =

N∑
i=1

wiϕi(t).
‍�

(58)

We can take the temporal derivative of Equation (57) and derive a consistency equation (analogous 
to the Bellman equation) satisfied by this value function. This naturally gives a temporal difference-
style update rule which relies on “bootstrapping” (the current estimate of the value function is used 
in lieu of the true value function) to optimize the weights of the value function approximation. A 
good reference for continuous RL is Doya, 2000 if readers wish to know more about deriving this 
learning rule.

	﻿‍
δwi(t) = η

(
R(t) + τ

dV̂(t)
dt

− V̂(t)
)

ei(t).
‍�

(59)

For now it suffices to observe that this learning rule is very similar to the temporally discrete TD-
update rule. The first term in brackets represents the continuous analog of the temporal difference 

error (in fact, if you rediscretise using the Euler formula 
‍
V̇(t) = V(t + dt) − V(t)

dt ‍
 to replace the 

derivative, and set ‍dt =‍ 1, you will see they are identical). The second term is the ‘eligibility trace’ 
determining to which state – or basis feature – credit for the TD error should be assigned. Using an 

https://doi.org/10.7554/eLife.85274
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eligibility trace is optional, and it could just be replaced with ‍ϕi(t)‍, however doing so aids stability of 
the learning. It is defined as:

	﻿‍
ei(t) = 1

τe

ˆ t

−∞
e−

t−t′
τe ϕi(t′)dt′.

‍�
(60)

In total the newly defined ValueNeuron does three things, schematically laid out in Appendix 1—
figure 2

1.	 It linearly summates its PlaceCell inputs, Equation (58).
2.	 It stores and updates the eligibility traces, Equation (60).
3.	 It implements the learning rule, Equation (59), which requires access to the reward density 

function ‍R(t)‍, the eligibility traces ‍ei(t)‍, its firing rate ‍̂V(t)‍ and the temporal derivative of its firing 

rate 
‍
dV̂(t)

dt ‍
.

We use a temporal discount horizon of ‍τ = 10‍ s and an eligibility trace timescale of ‍τe = 5‍ s. Input 
features are a set of ‍Nϕ = 1000‍ PlaceCells of random widths uniformly sampled from 0.04 m to 
0.4 m (Appendix 1—figure 2b). The reward density function is taken to be the firing rate of a single 
PlaceCell positioned behind the wall of type top_hat and width 0.2 m (Appendix 1—figure 2c). 
The learning rate is set to ‍η = 1e − 4‍.

Policy improvement
Now we have a neuron capable of learning the value function under its current policy (“policy 
evaluation”). We want to use this to improve the policy (“policy improvement”) towards an optimal 
one. To do this we will exploit the “drift velocity” feature (see Section ‘External velocity control’). 
We set the drift velocity to be 3 times the mean velocity in the direction of steepest ascent of the 
value function.

	﻿‍ vdrift(t) = 3σv∇̂xV̂(x(t)).‍� (61)

This way the Agent is encouraged to move towards regions of higher and higher value. Note 
that calculating this gradient is a local calculation and can be done on-the-fly by the Agent, as it 
locomotes. This method of value ascent is essentially a continuous analog of a similar algorithm, 
“greedy policy optimization”, used in discrete action spaces.

Policy iteration
Learning is done in batches of 8 episodes each. An episode consists of the Agent being reset to a 
random location in the Environment and left to explore. The episode ends when the Agent gets 
close to the reward or times out (60 seconds). At the start of each batch the current value function is 
copied and cached - this cached version is used, but not updated, to determine the drift velocity in 
Equation (61) for the duration of the next batch. Varying the strength of the drift bias relative to the 
random motion allows us to control the trade of between exploration and exploitation. Scheduling 
goes as follows: initially the drift_to_random_strength_ratio is set to ‍k = 0.1‍ (i.e. mostly random 
exploration). On each successful episode which did not end in a timeout, this is increased by 10% up 
to a maximum of ‍k = 1‍ (approximately equal contributions of random and drift motions).

Results
Initially the input weights to the ValueNeuron are drawn randomly 

‍
wi ∼ N (0, 1√

Nϕ
)
‍
 and therefore 

the value map (and Agent motion) is random (Appendix 1—figure 2d, left). After 10 batches (80 
episodes) the Agent has successfully learnt a near-optimal value function showing high-value in and 
near to the corridor, and low values elsewhere. This allows it to rapidly navigate towards the reward, 
avoiding the obstructing wall, from all locations in the Environment (Appendix  1—figure 2d, 
middle, colourmap) (Appendix 1—figure 2d, middle and Figure 3b).

By virtue of using continuous action control in continuous space, the trajectories of the trained 
Agent look highly realistic compared to typical gridworld RL. Since PlaceCells in RatInABox 
interact adaptively with the Environment, when a small gap is created at the base of the obstructing 
wall the receptive fields of PlaceCells near this gap “spill” through. This causes an instantaneous 

https://doi.org/10.7554/eLife.85274
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update to the percieved value function and therefore policy allowing the Agent to immediately find 
a short cut to the reward with no additional training, a form of zero-shot learning (Appendix 1—
figure 2d, right).

(a)
Features

riab.PlaceCells()
�i(x)

Value neuron, 
riab.FeedForwardLayer()

V̂(x) =
X

i

wi�i(x)

Reward 
riab.PlaceCells()

R(x)

riab.Agent()
wi  wi + ⌘δTDφi vdrift / ~rxV̂

(d) Before learning After learning
After environmental change

No further learning (zero-shot)

(b) (c)

Features, �i(x) Reward, R(x)

Value neuron, V̂(x)

Appendix 1—figure 2. RatInABox used in a simple reinforcement learning project. (a) A schematic of the 1 
layer linear network. Using a simple model-free policy iteration algorithm the Agent, initially moving under a 
random motion policy, learns to approach an optimal policy for finding a reward behind a wall. The policy iteration 
algorithm alternates between (left) calculating the value function using temporally continuous TD learning and 
(right) using this to define an improved policy by setting the drift velocity of the Agent to be proportional to the 
gradient of the value function (a roughly continuous analog for the ‍ϵ‍-greedy algorithm). (b) 1000 PlaceCells act 
as a continuous feature basis for learning the value function. (c) The reward is also a (top-hat) PlaceCell, hidden 
behind the obstructing wall. (d) A ValueNeuron (a bespoke Neurons subclass defined for this demonstration) 
estimates the policy value function as a linear combination of the basis features (heatmap) and improves this using 
TD learning. After learning the Agent is able to accurately navigate around the wall towards the reward (middle). 
Because PlaceCells in RatInABox are continuous and interact adaptively with the Environment when a small 
gap is opened in the wall place fields corresponding to place cells near this gap automatically bleed through 
it, and therefore so does the value function. This allows the Agent to find a shortcut to the reward with zero 
additional training. A jupyter script replicating this project is given in the demos folder GitHub repository.

https://doi.org/10.7554/eLife.85274
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
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