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Abstract Grouping sets of sounds into relevant categories is an important cognitive ability that 
enables the association of stimuli with appropriate goal-directed behavioral responses. In percep-
tual tasks, the primary auditory cortex (A1) assumes a prominent role by concurrently encoding 
both sound sensory features and task-related variables. Here, we sought to explore the role of A1 
in the initiation of sound categorization, shedding light on its involvement in this cognitive process. 
We trained ferrets to discriminate click trains of different rates in a Go/No-Go delayed categori-
zation task and recorded neural activity during both active behavior and passive exposure to the 
same sounds. Purely categorical response components were extracted and analyzed separately 
from sensory responses to reveal their contributions to the overall population response throughout 
the trials. We found that categorical activity emerged during sound presentation in the population 
average and was present in both active behavioral and passive states. However, upon task engage-
ment, categorical responses to the No-Go category became suppressed in the population code, 
leading to an asymmetrical representation of the Go stimuli relative to the No-Go sounds and 
pre-stimulus baseline. The population code underwent an abrupt change at stimulus offset, with 
sustained responses after the Go sounds during the delay period. Notably, the categorical responses 
observed during the stimulus period exhibited a significant correlation with those extracted from the 
delay epoch, suggesting an early involvement of A1 in stimulus categorization.

Editor's evaluation
This study provides an important contribution to our understanding of the neural basis for the 
categorical perception of sounds. Although the number of animals included is small, solid evidence 
is presented to show how categorical information emerges in the ferret primary auditory cortex 
following sound presentation and persists until a behavioral response is made. The work will be of 
interest to neuroscientists interested in the neural representation of task–related variables in sensory 
cortex during decision–making tasks.

Introduction
Grouping individual stimuli into abstract, context-dependent categories and maintaining them in 
memory are fundamental cognitive abilities for appropriate behavioral responses and decisions. 
Neural correlates of such categorical perception have been found widely across cortical areas and 
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modalities, from sensory cortices to the frontal regions (Swaminathan and Freedman, 2012; Folstein 
et al., 2013; Yin et al., 2020; Reinert et al., 2021). The emerging picture thus far has been that cate-
gorization is a hierarchical process implemented through a series of computations and gradual trans-
formations across multiple cortical areas, beginning with relatively basic stimulus representations in 
the primary sensory areas, and ultimately concluding with categorical responses in the frontal regions 
(Yin et al., 2020; Atiani et al., 2014; Tajima et al., 2017). In the auditory modality, this framework 
suggests that the primary auditory cortex (A1) would mainly represent stimulus acoustic features and 
only exhibit weak correlates of the associated behavioral categories (Jaramillo et al., 2014; Selez-
neva et al., 2017; Christison-Lagay and Cohen, 2018).

Recent studies have however challenged this conception from multiple viewpoints. To begin 
with, the encoding of sounds in the primary auditory cortex (A1) is relatively plastic and is rapidly 
enhanced by task engagement (Yin et al., 2020; Fritz et al., 2003; Fritz et al., 2007; Xin et al., 
2019). Furthermore, A1 has already been shown to extract some of the behavioral meaning of target 
sounds for task-relevant downstream readout (Rodgers and DeWeese, 2014; Bagur et al., 2018; 
Barbosa et  al., 2022). Nevertheless, the stimuli and experimental designs used in most of these 
experiments did not allow for disentangling category-specific neural dimensions from sensory-related 
activity. It thus remains uncertain how A1 population responses represent stimulus category during 
sound presentation in addition to strictly sensory-evoked responses, and how the representations of 
the task-relevant categories could be dynamically maintained after the stimulus is played. This study 
explores the critical questions of how and when categorical encoding emerges in primary auditory 
cortex, and the extent to which these categorical representations become behaviorally shaped upon 
task engagement.

To this end, we trained ferrets to classify click trains into Go and No-Go categories of either low or 
high rates during an appetitive Go/No-Go task. After training, we recorded in A1 while ferrets passively 
listened to or actively discriminated between the two stimulus categories. Using population-level 
analyses, we contrasted the representation of stimulus features (click-rates) and behavioral categories 
(Go/No-Go) during and after stimulus presentation. First, we discovered a signature of category which 
emerged early during stimulus presentation in the population average. Second, upon task engage-
ment, the population-level representations of the No-Go category became suppressed, leading to an 
asymmetrical representation of the Go stimuli relative to the No-Go sounds and pre-stimulus base-
line. Third, at stimulus offset, the population code changed abruptly and a large fraction of neurons 
maintained sustained responses after Go sounds throughout the delay epoch. The responses to Go 
sounds built up during the delay in anticipation of the subsequent behavioral response. Lastly, incor-
rect behavioral choices could be traced back to degraded sensory encoding during the stimulus 
period, resulting in a degraded categorical representation.

Results
A1 neurons sustain activity after Go sounds during task engagement
Two ferrets were trained on a Go/No-Go delayed categorization task under appetitive reinforcement. 
Water-deprived ferrets had to classify click trains into two categories: target (Go) and non-target (No-
Go) depending on the rates of click trains. Six rates were used, from 4 to 24 Hz in 4 Hz steps, and 
with a category boundary fixed at 14 Hz. To ensure the dissociation between categories and stimulus 
rates, one animal was trained with low rates as the Go sounds, while the second animal classified high 
rates as the Go sounds. Click trains were presented for 1.1 s and were followed by a 1-s-long delay 
in which the animals had to refrain from licking (Figure 1a). Licks during the subsequent 1-s-long 
response window were rewarded with water in Go trials and punished with a timeout in No-Go trials. 
Any licks before this response window (early licks) resulted in an aborted trial and were punished with 
a timeout; these were called ‘early trials’.

Ferrets categorized the click trains (ferret P: d' = 1.2 ± 0.5, n = 35 sessions; ferret T: d' = 1.1 ± 0.2, n 
= 39 sessions; Figure 1b) with a bias to lick for the No-Go rates close to the category boundary (12 Hz 
for the animal shown in Figure 1b). This was found in both ferrets (Figure 1—figure supplement 1a 
and b) regardless of the mapping between stimulus rates and category, suggesting that their decision 
criterion was relatively liberal and impulsive. First lick probability was higher in Go than in No-Go trials 
throughout the entire trial duration (Figure 1c), confirming the categorical response profile. We also 
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Figure 1. Sustained A1 activity during a delayed categorization task. (a) Delayed categorization task. A trial starts with a 0.5 s of pre-stimulus silence 
followed by 1.1-s-duration click train stimulus. The animal must wait for a 1-s delay period before the 1-s-long response window (R.W.). Correct trials 
were rewarded with water while error trials and early trials (lick during delay period including sound period) were punished by a timeout. (b) Proportion 
of licks in response window for one of the animals (ferret P) with low rates as No-Go and higher rates as Go stimuli. Only non-early trials are considered. 
Shaded regions are SEM. (c) Temporal profile of first lick rate. Shaded regions are SEM. (d) Average PSTHs of all neurons from ferret P corresponding 
to passive (blue curve) and active (red curve) states for each of the click trains (only correct behavioral trials were used, i.e., correct rejections for No-Go 
and hits for Go sounds). Note that the response during the delay period is enhanced for Go stimuli (16, 20, 24 Hz). (e) Contrast (Go – No-Go firing rate) 
computed for neurons of both animals (n = 816 units) in passive (right) and active (left) states (z-scored with pre-stimulus baseline activity). Neurons were 
ranked by delay firing rate for Go active trials. (f) Modulation index (see ‘Methods’) with respect to spontaneous activity during delay (1.1–2.1 s) period 
for active and passive states (t-test *p<0.05; n = 816 units from both ferrets).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Behavioral performance and sustained responses for all animals.

Figure supplement 2. Modulation index for delay activity in (a) ferret P and (b) ferret T (*** p<0.001, * p<0.05).

Figure supplement 3. Difference in average firing rate between Go and No-Go correct trials computed for neurons of both animals (n = 816 units) in 
active (left) and passive (right) states (z-scored with pre-stimulus baseline activity).

https://doi.org/10.7554/eLife.85706
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observed a build-up of lick probability during the delay, with early responses being quite common 
in Go trials. Early trials and error trials (misses and false alarms) were discarded in the analysis unless 
otherwise specified.

We chronically recorded neural activity from a total of 816 units in A1 (ferret P: 575; ferret T: 241), 
while the two animals alternately listened passively to the stimuli or actively engaged in categorizing 
them. Figure 1d depicts the average click responses across all cells, showing a significant increase in 
firing rate relative to baseline activity in all conditions. Firing rates also steadily ramped up during the 
delay period in Go trials compared to No-Go’s (Figure 1d and e; both animals in Figure 1—figure 
supplement 1c and d). Importantly here we considered only hit trials in which the animals were not 
licking the spout until the response window. Neurons with significant changes in firing rate during the 
delay period did not show any modulation of activity during the passive state (Figure 1e). Ranking 
neurons by delay activity during the passive condition did not reveal a similar pattern neither in 
passive or active states (Figure 1—figure supplement 3), reflecting a pattern of response specific to 
the task-engaged delay period. Additionally, we found that the firing rates of these neurons increased 
during the delay (Figure 1f, paired t-test active p=0.01, passive p=0.15, n = 816 units; both animals 
in Figure 1—figure supplement 2; ferret P: active p=0.04, passive p=0.83, n = 575 units; ferret T: 
active p<0.001, passive p=0.35, n = 241 units). Nevertheless, we noticed some heterogeneity in the 
delay activity, with a proportion of neurons showing large suppression during this period (top neurons 
in Figure 1e).

A1 population activity encodes behavioral categories during stimulus in 
both active and passive states
Because A1 activity was heterogeneously modulated during the post-Go sound delay (Figure 1f), we 
relied on population decoding to examine the categorical representation. To do so, we trained linear 
decoders to discriminate Go and No-Go trials based on single-trial population activity (Figure 2a). 
During task engagement, population responses steadily discriminated between Go and No-Go cate-
gories along the entire course of the trial (Figure 2a, both animals in Figure 2—figure supplement 1). 
Decoding accuracy diminished at stimulus offset, but subsequently increased during the delay period, 
ultimately peaking in the behavioral response window (Figure 2a, Figure 2—figure supplement 1). 
By contrast, accuracy in the passive context decreased throughout the delay period. As a control, we 
performed recordings in an untrained (naive) animal using the same set of stimuli (Figure 2—figure 
supplement 2a). The accuracy of passive context decoder was also similar to what is observed in the 
naive animal (Figure 2—figure supplement 2b). Note that decoding was performed at the single-
session level (11.3 ± 4.9 neurons per session for ferret P; ± SD; n = 35 sessions and 5.2 ± 3.2 neurons 
per session for ferret T; n = 39 sessions), explaining the modest but above chance-level performance 
of the decoder.

We then looked further into how population code evolves during the trial. For this, we compared 
decoders trained at different time bins throughout the trial. We found that for both passive and task-
engaged sessions, the direction of the decoding axis was mainly preserved during the stimulus epoch 
(black outline in Figure 2b), and the corresponding decoders trained on passive and task-engaged 
data were correlated (Figure 2—figure supplement 3). Furthermore, these decoders were uncor-
related with the decoding axis during the delay period of the task-engaged condition (white outline 
in Figure 2b), indicating a behavior-dependent change of the population code at the sound offset. 
This delay activity pattern further persisted during the response window, as shown by the correlation 
between delay and response window decoding axes (pink outline in Figure 2b). This suggests a time-
independent categorical representation in A1 population activity throughout the delay and response 
window epochs.

While categorical encoding is evident during task engagement after the stimulus end, it remains 
unclear whether it was biased toward stimulus-related or category-related responses during the stim-
ulus. Indeed, both stimulus-related (click train rate) and category-related responses are captured by 
the decoders (Figure 2—figure supplement 4a and b). To disentangle sensory and categorical contri-
butions, we computed a population-level linear regression of the neuronal firing rates at each time bin 
in each session (see ‘Methods’ for details). Single-neuron activity showed linear relationship with click 
rates (example in Figure 2c) or robust categorical encoding during and after the stimulus (Figure 2d 
and e). To model this type of responses, we used two regressors: (i) stimulus rates as a sensory 

https://doi.org/10.7554/eLife.85706
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Figure 2. Emergence of categorical information from primary auditory cortex during stimulus presentation. (a) Go vs No-Go classification performance 
in active (red curve) and passive (blue curve) conditions (n = 35 sessions from ferret P). Gray curve indicates the performance by shuffling labels for the 
task-engaged condition. Error bars show 1 SD. The dashed lines separate stimulus, delay, and response window (R.W.) periods. (b) Cross-correlation 
matrix between decoders trained at different time points for task-engaged (left) and passive (right) data. Nonsignificant correlations are shown in 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.85706
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regressor and (ii) the binary category (Go or No-Go) as a category regressor. We also fitted two addi-
tional models in which the labels of one of the regressors were shuffled (Musall et al., 2019), which 
allowed us to compute the relative contributions using a coefficient of partial determination (CPD) 
from each regressor as the decrement in variance due to shuffling one of the regressors (Fisher et al., 
2019)⁠. During task engagement, we found that the CPD of the category regressor increased during 
the stimulus period and persisted throughout the delay period, before increasing at the response 
window (Figure 2f and h; paired t-test on category regressor, delay vs response window; ferret P: 
n = 395 neurons, p<0.001; ferret T: n = 203 neurons, p<0.01). Interestingly, both task-engaged and 
passive category CPD were larger than chance during stimulus presentations (Figure 2f–i), an effect 
absent in the naive animal (Figure 2i), which indicates training-dependent encoding of categories. 
Because the variance captured by the category regressor during the delay could be related to other 
factors than pure behavioral categories, such as reward delivery or licking, we fitted another model 
including lick and reward regressors (see ‘Methods’). We found similar category axes in the passive 
and active conditions when accounting for licks and rewards (Figure 2—figure supplement 5). We 
consider further the possible link of this delay activity pattern with reward expectation or motor prepa-
ration (see ‘Discussion’). For practical reasons, we will refer to the delay activity as category-related in 
the following sections.

Population-level categorical responses show suppression of No-Go 
representations upon task engagement
We then examined how the category information during the delay emerged from the mixed repre-
sentation of stimulus and category we found during stimulus presentation. Regression axes define 
encoding axes along which population activity carries information about stimulus click rate or cate-
gory. We thus projected population activity onto the category neural axis to track the categorical 
representation in the population at each moment in time. This procedure sums the neuronal responses 
weighted by the coefficients extracted from the earlier regression analysis and reduces A1 popula-
tion dynamics to one information-bearing dimension encoding category through time, independently 
from sensory information. We did so in both the stimulus and the delay periods for the passive and 
task-engaged conditions in order to compare the patterns of categorical encoding across conditions. 
Projections on the category neural axis (called thereafter categorical responses) revealed a stable 
encoding of categories during sound presentation, regardless of the stimulus identity (Figure 3a and 
b), indicating that these categorical responses were not contaminated by sensory activity.

Categorization can be defined as the maximization of neural differences between categories and a 
minimization of the differences within a category. Therefore, we investigated stimulus discriminability 
along the category neural axis. We designed a category index (see ‘Methods’) which compared the 

gray. Significance was assessed by permutation test (200 permutations). Black frame shows the significant cross-correlation during the stimulus period. 
White frames show absence of correlation between decoders trained during the stimulus and the delay period. Similarly, pink frames correspond to 
correlation of stimulus and response window decoders. (c) Example neuron showing sensory encoding during sound period, firing rate plotted as 
a function of click rates (blue curve, error bars show 1 SD over trials). Prediction from the regression model are overlaid (dashed line) (CPDsensory,stimulus 
= 0.07 ± 0.02/CPDcategory,stimulus = 0.02 ± 0.01). Time course of coefficient of partial determination (CPD) is shown below. (d, e) Same as (c) for example 
neurons mostly tuned to categories during the stimulus (d, CPDsensory,stimulus = 0.02 ± 0.01/CPDcategory,stimulus = 0.05 ± 0.01) or delay (e, CPDsensory,delay = 0.00 ± 
0.01/CPDcategory,delay = 0.02 ± 0.01) periods. (f) CPD computed by fitting linear regression models in active state (n = 395 neurons from ferret P). Shaded 
region represents 1 SEM over all the neurons. (g) Same as (f) for passive state. (h) CPD computed during the stimulus, delay, and response window time 
epochs. Significance is tested against pre-stimulus period value (two-tailed t-test ***p<0.001, n = 395 neurons from ferret P). (i) Same as (h) for passive 
state. CPD computed from a naive animal is added in the stimulus period for comparison.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. (a,c) Decoding accuracies for passive (blue) and active (red) states for ferret P (n=35 sessions). (b,d) Decoding accuracies for 
passive (blue) and active (red) for ferret T (n=39 sessions).

Figure supplement 2. Decoding accuracy in naive animals.

Figure supplement 3. Correlation of passive and task-engaged decoders for ferrets P and T.

Figure supplement 4. Projection of each click rates onto linear decoders.

Figure supplement 5. Regression model supplemented with licks and reward.

Figure 2 continued

https://doi.org/10.7554/eLife.85706
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Figure 3. Emergence of categorical representation through suppression of No-Go sounds. (a–d) Projection of trial-averaged activities of individual 
click rates onto category axis trained at different time epochs (n = 35 sessions from ferret P). The shaded regions show training time and the error 
bars are ±2 SEM over sessions. (a, c) are active and (b, d) are passive states. See Figure 3—figure supplement 2 for graded sensory responses to 
the different stimuli. (e) Categorical responses for passive and active states (n = 35 sessions from ferret P; Figure 3—figure supplement 1d for ferret 
T). (f) Time course of No-Go suppression in categorical responses (difference between the absolute value of passive and active No-Go categorical 
responses highlighted in e). Black bar represents the significant period (p<0.05, t-test n = 35 sessions).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. No-Go suppression in all animals.

Figure supplement 2. Projection of trial-averaged activity onto sensory regressor weights.

Figure supplement 3. Projection onto category neural axis extracted from the task-engaged condition for passive and active states.

https://doi.org/10.7554/eLife.85706
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neural distance between stimuli at the category boundary (12 and 16 Hz) against pairs of stimuli within 
categories. We found that categories were effectively present in both passive and task-engaged states 
during stimulus presentation with equal magnitude (Figure 3a and b, Figure 3—figure supplement 
1a and b). In contrast, significant categories were found only in the task-engaged state during the 
delay period (Figure 3c and d).

To further determine if task engagement induced a targeted change along the categorical neural 
dimension, we examined the temporal profiles of the Go and No-Go categorical responses. Here, 
we found that there was a clear shift of population coding between the two behavioral conditions: 
No-Go categorical responses aligned with the pre-stimulus spontaneous activity during task engage-
ment (Figure 3a), inducing an asymmetry between No-Go and Go categorical responses (Figure 3e, 
both animals in Figure 3—figure supplement 1c and d), a characteristic that is not observed in the 
passive projections (Figure 3b). A No-Go suppression index measuring the relative displacement of 
the No-Go responses closer to the projections of spontaneous activity (Figure 3f) showed that the 
suppression was confined to the stimulus period (Figure 3—figure supplement 1e and f, bottom 
row; ferret P: p<10–6, n = 35 sessions; ferret T: p<10–4, n = 39 sessions), and absent in the delay period 
(ferret P: p=0.70; ferret T: p=0.46). Crucially, projections of the passive population responses onto the 
active category neural axis did not show the suppression of No-Go sounds, confirming that this shift 
originated from a change in the structure of the population responses during task engagement, and 
not due to the weights of the regressor themselves (Figure 3—figure supplement 3). In summary, 
these findings demonstrate a task-induced asymmetry in categorical representations which specifi-
cally targets the relevant neural dimension.

Single-trial categorical representations correlate between sound and 
delay periods
The categorical signal in the stimulus period exhibits short latencies (Figure 3a) consistent with a 
feedforward mechanism of early categorization taking place in A1. We wondered whether this early 
categorical information may influence later categorical information captured in the delay period. 
However, the categorical axes in the early stimulus and delay periods were not correlated (white 
frames in Figure 4a). So how could the categorical information present in these two distinct intervals 
be still linked? To find out, we tested directly whether the categorical responses during the stim-
ulus period correlated with those during the delay. Specifically, we examined the single-trial fluctu-
ations of categorical responses in each period and discovered that the two categorical responses 
were correlated (one session in Figure 4b, all sessions in the inset; p<0.001, permutation test, n = 74 
sessions). Note that the stimulus and delay categorical responses were computed from uncorrelated 
projection axes (Figure 4a, Figure 4—figure supplement 1) that were originally derived from distinct 
non-overlapping epochs, and hence the single-trial fluctuations in categorical responses need not 
have been correlated in any way.

Post-sound anticipatory activity builds up towards behavioral response
Another interesting relationship is that between the categorical responses and the licks. We have 
observed that population activity on hit trials ramped up throughout the delay period (Figures 3c 
and 4c, categorical responses during the delay). By aligning single-trial projections onto lick timings 
during the response window, we found that the categorical activity built up during the delay period 
and culminated when the animal licked (Figure 4d, categorical responses centered on licks), indicating 
that delay activity was anticipating behavioral responses. We further tested whether the temporal 
dynamics of the categorical responses correlated with the timing of the animal’s behavioral response. 
To do so, we took advantage of early Go trials when the animals licked before the response window 
(see lick histogram in Figure 1c), so that we accessed to Go trials in which first licks occurred earlier 
than what we had in hit trials. We then sorted all the collected trials into three groups: early trials with 
licks early in the delay period (first half), early trials with licks late in the delay (second half), and hits. 
We found significantly faster response build-up rates in early trials than in hit trials (Figure 4c). Early 
trials with early licks in the delay exhibited the steepest response build-ups (Figure 4c), a pattern 
that was not observed in the categorical responses during the stimulus period (Figure  4—figure 
supplement 2). We then aligned all trials to their respective reaction times and found that categorical 
responses of early and hit trials culminated at the licking time (Figure 4d). This alignment was done on 

https://doi.org/10.7554/eLife.85706


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Chillale et al. eLife 2023;12:e85706. DOI: https://doi.org/10.7554/eLife.85706 � 9 of 20

lick times, that is, independently of neural activity, indicating a build-up of population-level dynamics 
anticipating behavioral response.

Sensory information is degraded during error trials, leading to poor 
categorization
Finally, we searched for the neural correlates of incorrect perceptual decisions. In particular, we wanted 
to pinpoint which encoding stages were degraded during incorrect categorizations. We envisioned 

Figure 4. Post-stimulus anticipatory activity correlates with categorical representation during the sound. (a) Temporal evolution of the category axis (n 
= 35 sessions from ferret P). (b) Scatter plot for categorical response during stimulus and delay period for one session. Inset: correlation of single-trial 
categorical responses between the sound and delay periods (n = 74 sessions from both ferrets). (c) Categorical responses for hit, early trials with licks 
in the early (early licks) and late (late licks) phases of the delay period. (d) Lick-aligned categorical responses. Projections were not different between hit 
and early trials at lick time (see outcome decoding in Figure 4—figure supplement 3). The black bar represents the significant period (p<0.05, t-test).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Scatter plot of the category weights regressed during stimulus and delay periods (n = 395 neurons from ferret P and n = 203 
neurons from ferret T).

Figure supplement 2. Projection of trial-averaged activity of hit, early–early, and late–early trials onto the category neural axis computed during the 
stimulus period.

Figure supplement 3. Delay activity in hit and early trials is identical.

https://doi.org/10.7554/eLife.85706
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three different hypotheses causing the error trials: (a) sensory information was intact in error trials, but 
conversion to the correct category during the stimulus was incorrect; or that (b) sensory-to-category 
processing during the stimulus period is correct, but the anticipatory activity is impaired during the 
delay; or that (c) sensory information was in fact degraded early on during the stimulus, leading to a 
loss of categorical information.

We first sought to test whether the error trials correlated with an inversion of the neural responses 
between the Go and No-Go categories, as would be predicted by hypothesis (a). To do so, we used 
Go/No-Go classifiers trained with correct trials (as in Figure 2a) and reported the classifiers’ perfor-
mance in predicting the expected (and not actual) behavioral categories. If false alarms were fully 
behaving like hits, and misses like correct rejections, we should observe below-chance decoding accu-
racy. That was not the case, but instead we found a decrease in decoding accuracy during the sound 
period and a decoding performance at chance level during the delay (Figure 5a and b, Figure 5—
figure supplement 1 for separate projections of false alarm and miss trials; decoding accuracy during 
delay for incorrect trials: p=0.99, permutation test). As a control, we noted that decoding accuracy 
dipped below chance during the response window confirming that motor information was confined 

Figure 5. Sensory and categorical responses during error trials. (a) Encoding of behavioral choices: here we trained the active classifier on correct 
behavioral choices (hit and correct rejection) and used the decoding weights to compute the accuracy using incorrect behavioral choices (false alarm 
and miss) as shown in the purple curve (n = 35 sessions from ferret P). Gray curve indicated the performance by shuffling labels in task engagement. 
Error bars show 1 SD. (b) Accuracy of the active decoder for correct and error trials during sound and delay period (n = 35 sessions from ferret P). 
(c) Category index and sensory index computed from the projections of trial-averaged correct and error trials onto category axis trained during sound 
period (see ‘Methods’). (d) Category index for delay period (see Figure 5—figure supplement 2 for both animals).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Projection of trial-averaged activity of error trials (average number of error trials in ferret P: 55.1 ± 14.9 and in ferret T: 66.2 ± 13.2) 
in both Go and No-Go categories onto the classifiers trained on correct trials during stimulus presentation (a), delay (b), and response window (c).

Figure supplement 2. Sensory and Category index per animal.

https://doi.org/10.7554/eLife.85706
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to this late time period (Figure 5a). This indicates that incorrect decisions could be traced back to the 
stimulus period, excluding hypothesis (b) in which only the delay activity was incorrect during error 
trials.

We then further tested the hypothesis (c) of a degradation of sensory information during the stim-
ulus period. In line with this interpretation, we found that sensory responses were lower in incorrect 
compared to correct trials (Figure 5c, Figure 5—figure supplement 2a and b; stimulus period-sensory 
index: ferret P: p<10–5, n = 35 sessions; ferret T: p<10–3, n = 39 sessions; stimulus period-category 
index: ferret P: p=0.01, n = 35 sessions; ferret T: p=0.35, n = 39 sessions; paired t-test across sessions, 
individual boxes were tested with permutation test). Categorical responses were further degraded 
during the delay period (delay-category index [Figure 5d and Figure 5—figure supplement 2b and 
c] for both animals; paired t-test across sessions; ferret P: p<10–4, n = 35 sessions; ferret T: p<10–5, n = 
39 sessions). Altogether, this suggests that errors likely originated from an improper encoding of the 
stimulus that subsequently led to an incorrect categorization and behavioral response.

Discussion
Categorical perception of real-world signals is a key cognitive function in all sensory modalities, one 
that is thought to be implemented at higher cortical levels (Swaminathan and Freedman, 2012; 
Folstein et al., 2013; Yin et al., 2020; Freedman and Assad, 2006; Roy et al., 2010; Bizley and 
Cohen, 2013). In this work, we examined if and how population responses in primary auditory cortex 
could contribute to and reflect the categorical encoding of sounds during passive listening or engage-
ment in a Go/No-Go categorization task. The study resulted in four main findings. First, we isolated 
an encoding of behavioral categories in the population-average during stimulus presentation in both 
task-engaged and passive listening. This was not observed in a naive animal (Figure 2i). We interpret 
this observation as an effect of long-term memory (Elgueda et al., 2019). Second, we found that 
population-level categorical responses to No-Go sounds were suppressed during task engagement 
during the stimulus period (Figure 3). Third, the population-level categorical representation changed 
at stimulus offset but still correlated at the single-trial level with categorical responses observed 
during the stimulus period (Figures 3 and 4). Fourth, incorrect behavioral choices were traced back 
to degraded categorical encoding during the stimulus period, resulting in a degraded categorical 
representation during the subsequent delay period (Figure 5). Altogether, these results suggest that 
behavior-dependent categorical information emerged during the stimulus period, influenced popula-
tion dynamics beyond the stimulus period itself, and persisted throughout the delay period until the 
behavioral response.

Neuronal selectivity to behavioral categories during task engagement
Previous findings have found categorical responses in A1 with a marked increase of response 
contrast at category boundaries (Yin et al., 2020; Xin et al., 2019) ⁠. Here, we focused on revealing 
the temporal dynamics and evolution of categorical encoding both in the population average and 
in the population code. Regression analyses allowed us to disentangle the binary categorical repre-
sentation from the more graded representation of the sensory properties (i.e., click train rates) 
(Figure 3—figure supplement 2). Similar to a previous study in the mouse (Xin et al., 2019 ⁠), we 
found that the encoding of stimulus sensory properties within behavioral categories was stable 
across behavioral states. In Xin et al., 2019 ⁠, the authors found that categorical representations in 
A1 matched behavioral decision as early as at stimulus offset, and was maintained during several 
seconds. Such choice-related activity has been demonstrated to be the result of feedforward and 
feedback flow between primary sensory cortices and downstream regions (Dehaene and Changeux, 
2011; Yang et al., 2016 ⁠). Our observations are consistent with this view as we found that perceptual 
choice influenced the category decoded during the response window (Figure 5a). Nevertheless, we 
used longer stimulus followed by a long delay in our study, which allowed us to decouple the early 
categorical information building up during stimulus presentation from the late choice report of the 
animal. In addition, categorical information declined during stimulus and delay periods, suggesting 
that incorrect trials were due to a lack of proper categorical information early on during the stimulus 
itself.

https://doi.org/10.7554/eLife.85706
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Population-level suppression of No-Go categorical responses
Our analyses showed that, even though categorical encoding was present in passive and active states 
in trained animals, task engagement induced a suppression of No-Go responses during the stimulus. 
This was not due to a lack of sound-evoked responses to No-Go sounds, as shown by the average 
population peristimulus time histogram (PSTH) (Figure  1d) and its sensory responses (Figure  3—
figure supplement 2). Instead, this asymmetry in the categorical representation stems from a task-
induced population-level enhancement of Go and suppression of No-Go categorical responses, 
consistent with our previous findings (Bagur et al., 2018) in these Go/No-Go paradigms. To elabo-
rate, No-Go sounds instruct the animal to maintain the same behavioral output (lick inhibition) as in 
periods of silence when spontaneous activity is measured. We therefore proposed that the alignment 
of the No-Go population responses with the spontaneous activity reflects the identical behavioral 
meaning of these two epochs. Here, we found a similar mechanism (suppression of No-Go responses) 
which was confined to the categorical responses extracted through linear regression. This suggests an 
interesting mechanism in which population dynamics could multiplex behavior-independent sensory 
representations and task-modulated categorical encoding. Intriguingly, this is reminiscent of popula-
tion dynamics found in prefrontal cortex (PFC) (Mante et al., 2013), where sensory information and 
decision formation were represented along different neural dimensions.

In line with a role of A1 in the category build-up, we found that categorical information was 
degraded in error trials, which is consistent with an early mapping of individual stimulus into generic 
categories at the level of primary sensory areas. We thus propose that A1 has an initial contribution 
in the feedfoward formation of behavior-dependent categories. During behavior, higher areas would 
access an explicit representation of the behaviorally relevant categories by reading out the asym-
metrical population-level encoding of Go and No-Go sounds in A1 (Bagur et al., 2018). These areas 
would then utilize the A1 categorical representation to amplify and strengthen the ongoing category, 
possibly passing or gating it to motor-related regions depending on the behavioral state (Atiani et al., 
2014).

Possible roles for sustained activity after Go sounds
Categorical responses changed at stimulus offset to maintain a Go-specific prolonged activity during 
the delay period, consistent with other studies showing choice-related activity in A1 (Bizley et al., 
2013; Niwa et al., 2012b; Niwa et al., 2012a; Guo et al., 2019⁠). We do not interpret this activity as 
efferent copies directly sent from motor regions (Schneider et al., 2018), as one would expect such 
motor-related activity to have shorter latencies (~100–300 ms; Bagur et al., 2018; Orlandi et al., 
2023⁠). Here, sound category was decodable throughout the entire delay period (Figure 2a), which 
does not match with short-latency efference copies. We have also found that the delay activity is not 
closely locked in time to licks since false alarm trials, in which the animals licked during the response 
window, were not decoded as hit trials during the delay period (Figure 5b).

Other studies investigating the role of A1 in auditory Go/No-Go tasks with a delay did not analyze 
neuronal responses after Go sounds (Yu et al., 2021; Huang et al., 2016), which may explain why this 
sustained activity has not been previously reported. Interestingly, delay activity in sensory cortices is 
thought not to be causally involved in the behavioral response of trained animals (causal inactivations 
in V1 [Goard et al., 2016⁠] and A1 [Yu et al., 2021⁠]). We note that this sustained activity after Go 
sounds can be caused by at least three different factors.

First, delay activity in A1 could be the result of a feedback signal from higher-order decision-related 
areas signaling the chosen category and maintaining it in memory by engaging A1 in a network of 
parietal and frontal areas (Goard et  al., 2016)⁠. In this framework, previous works in the somato-
sensory system have shown that choice-related information flows bidirectionally between primary 
and secondary somatosensory cortices, with choice-related information emerging in primary sensory 
cortex, then fed to downstream areas that further feedback enriched choice-related information to 
the primary field (Kwon et al., 2016⁠). Consistent with this hypothesis, we have demonstrated that 
trial-to-trial fluctuations of categorical responses during the sound period correlate with the ampli-
tude of the delay categorical signal (Figure 4b), possibly suggesting that category-related information 
during the stimulus and delay periods is part of this communication loop.

A second interpretation is that delay activity is the result of motor preparation that would unfold 
over several hundreds of milliseconds (Musall et al., 2019⁠). The pattern of activity observed during 

https://doi.org/10.7554/eLife.85706
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early trials is consistent with this view, with faster build-up when the animals licked earlier. However, 
a similar pattern was not observed on false alarm trials, contrary to what would be predicted for this 
interpretation.

A last possibility is that delay activity signals reward expectation (Chubykin et al., 2013⁠), a type of 
response which increases through learning (Musall et al., 2019; Poort et al., 2015⁠). This delay activity 
would then reflect post-learning residual top-down feedback, or alternatively may be the signature of 
an eligibility trace, that is, a persistent activity necessary for bridging the gap between the sound and 
the response window (Raybuck and Lattal, 2014 ⁠). Overall, disentangling these different interpreta-
tions will require further experiments.

Methods
Animals
Adult female ferrets (Mustela putorius furo) obtained from Marshall BioResource were used for this 
study. The animals were 1–3 years of age, weighing 500–800 g, and were housed in pairs or trios with 
a normal day–night light cycle and free access to water during weekends. Ferrets were on a water-
controlled protocol in which their water intake is restricted during the weekdays. Water was delivered 
during behavioral sessions as a reward. To maintain a stable weight, we provided ad libitum water 
for 1–2 hr post behavior. The animals’ weights were daily monitored and maintained at 80% of pre-
experiment weight.

Behavioral task and training
Two adult female ferrets (M. putorius furo) were trained on an appetitive Go/No-Go delayed catego-
rization task and one additional ferret was used for naive recording. The animals were head-fixed in 
a custom-made tube during training and recording sessions, and the stimuli were presented from a 
calibrated earphone (Sennheiser IE800, HDVA 600 amplifier). Ferrets had to classify click trains into 
two categories: target (Go) and non-target (No-Go) depending on the rates of click trains. Six rates 
were used, from 4 to 24 Hz in 4 Hz steps, and with a category boundary fixed at 14 Hz. To ensure the 
dissociation between categories and stimulus rates, one animal was trained with low rates as the Go 
sounds, while the second animal classified high rates as the Go sounds. Clicks were monopolar, rect-
angular pulses of 1 ms duration with amplitude set at 70 dB sound pressure level. A trial started with 
a pre-stimulus silence of 0.5 s followed by a click train (Go or No-Go) of 1.1 s (Figure 1). The animals 
were trained to wait for a response window that started after a delay of 1 s following stimulus offset. 
A hit (lick on the response window for Go stimuli) was rewarded with 0.2 ml of water. An LED attached 
to the water spout emphasized the delay period in which the animal had to restrain from licking. Early 
trials (lick during stimulus and delay period) and false alarms (lick on the response window of a No-Go 
sound) were punished with a timeout of 10 s. In each session, Go and No-Go stimuli were presented 
in a pseudo-random manner. In the absence of delay, ferrets learned to associate the categories in 
1 wk, and we then slowly increased the delay between stimulus offset and response window. It took 
several weeks for the ferrets to be trained on the full task structure. Initially we trained with extreme 
categorical stimuli (4 and 24 Hz) that were easy to learn, and after reaching a consistent performance 
(d’ > 1), we progressively introduced other stimuli.

Surgery
To head restrain during training and obtain stable neurophysiological recordings, we implanted the 
ferrets with a stainless steel headpost. The day prior to the surgery ferrets were injected with antibi-
otics (Baytril, 12.5 mg/kg subcutaneous) to minimize infections arising from the surgery. On the day of 
surgery, ferrets were deprived of water and food 90 min prior to the surgery. After sedation (medeto-
midine, 0.08 mg/kg, subcutaneous), anesthesia was induced with ketamine (5 mg/kg, intramuscular). 
Animals were kept under deep anesthesia (1–2% isoflurane) throughout the surgery and vitals (ECG, 
pulse, oxygenation, and rectal temperature) were continuously monitored. We also medicated the 
animals with atropine sulfate (0.2 mg/kg) to stabilize salvation and control arrhythmia arising from 
anesthesia. Using a complete sterile procedure, the animal skull was surgically exposed by an incision 
to the skin along the media crest down to the neck. The temporal muscles were carefully removed 
from the medial crest to the beginning of the zygomatic arch and the lateral wing at the lateral end of 
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the nuchal crest. Using a stereotaxic apparatus, the headpost was mounted on the skull using methyl 
methacrylate-based dental adhesive resin cement. Stainless steel screws were anchored along the 
areas surrounding the auditory cortex, leaving a cavity for easy access to the auditory cortex. The 
typical horseshoe shape of the auditory cortex was marked with nail polish. Finally, the surrounding 
areas were filled with poly-methyl methacrylate-based bone cement to stabilize the implant. Antibi-
otics (Baytril, 12.5 mg/kg, subcutaneous) and analgesic (meloxicam, 0.05 mg/kg, oral) were adminis-
tered to the animal following the surgery.

We allowed a 2-week postoperative care for the animals to recover from the surgery. Antibiotics 
were continued for 7 d and anti-inflammatory and analgesics were administered for 4 d. Animals were 
habituated to a head-restrained custom-made horizontal plastic tube a few days prior to training 
session. Experiments were approved by the French Ministry of Agriculture (protocol authorization: 
21022) and strictly comply with the European directives on the protection of animals used for scientific 
purposes (2010/63/EU).

Neurophysiological recordings
In a separate surgery, we chronically implanted 32-channel metal electrodes arrays (MEA; Pt-Ir, Micro-
Probes, 8 × 4, electrode of impedance 2.5 MΩ with 0.4 μm distance between the electrodes) over 
the prior marked auditory cortex. We custom-designed the chronic implant with MEA inserted in a 
drive-shuttle system having a flexible control of the array vertical movement. The base of the drive was 
sealed with a stretchable silicon membrane sheet to stop flowing any residues into the drive. Before 
the implantation, the electrodes were moved down such that the apex popped out of the silicon 
membrane. Under surgical anesthesia (isoflurane 1 %), we removed the cement above the location 
marked during the surgery. We then performed a 4 mm × 4 mm craniotomy. This craniotomy allowed 
us to identify the core regions of the auditory cortex (middle ectosylvian gyrus) by visual inspection 
of the tip of the ectosylvian gyrus. We carefully removed the transparent dura to ensure that the 
array penetrated the brain without additional strain. The drive-shuttle system was placed on the brain 
surface using a stereotaxic apparatus and the entire system was fixed to the skull using bone cement. 
To minimize vibrations that could be caused by shocks on the drive, the chronic implant was enclosed 
in a custom-made tube cemented to the implant. Immediately after the surgery we slowly lowered 
the electrodes and observed physiological activity, allowing us to verify the electrodes moved inside 
the brain.

Each recording session consisted of passive and active sessions. Recordings were performed head-
fixed in a soundproof chamber. In the passive sessions, the water spout was removed. Continuous 
electrophysiological recordings were digitized (31,250  Hz), amplified (15,000×), and band-passed 
between 300 Hz and 7000 Hz using a digital acquisition system (Blackrock Cereplex). Band-passed 
signals were monitored online and units (including multi- and single-) were identified by spikes 
crossing a threshold of 3 SD of baseline noise. The data acquisition was done using an open-source 
suite MANTA v. 1.0 (Englitz et al., 2013). We used a custom-made open-source software Behavioral 
Auditory PHYsiology (BAPHY) written in MATLAB for sound delivery, recording, behavioral monitor 
and online analysis.

To identify units, we presented band-pass noise (0.2  s duration, 1 octave bandwidth) and pure 
tone stimuli to the animal using earphones (Sennheiser IE 800). Primary auditory cortical responses 
were identified by analyzing tuning properties to 100 ms tone pips of random frequencies spanning 4 
octaves and temporally orthogonal ripple combinations (STRF) (Depireux et al., 2001). A1 responses 
show sharp tuning to random tones and single-peak, short-latency STRFs (Atiani et al., 2014; Fritz 
et al., 2003; Elgueda et al., 2019)⁠. Finally assessing the STRFs, we continued with the experimental 
protocols to record the neuronal responses.

Table 1. Number of recorded units.

Ferret Recorded Units Units used for population analysis Sessions

Ferret P 575 395 35

Ferret T 241 203 39

https://doi.org/10.7554/eLife.85706
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Unit identification and spike sorting
We performed offline spike sorting on thresholded signals using PCA-based customized spike sorting 
routines written in MATLAB. Single- and multi-unit responses were identified by spiking shape and 
manually adjusting the PCA clusters (Fritz et al., 2003)⁠. A total of 575 (ferret P) and 241 (ferret T) 
multi-units were identified and used for further analysis (Table 1). Spike sorting was done on concate-
nated passive and active sessions. We obtained 11.3 ± 4.9 neurons per session (± SD; n = 35 sessions) 
for ferret P and 5.2 ± 3.2 neurons per session (± SD; n = 39 sessions) for ferret T.

Data analysis
Preprocessing
Offline data analysis was performed using custom-written scripts in MATLAB (R2016a). All units were 
preprocessed to identify stable units that were kept under recording for both the active and passive 
sessions. We used a firing rate-based threshold to find stable units with non-zero firing rate for >80% 
of the trials, and the difference between time-averaged maximum and minimum firing rates is less than 
tenfold across trials. We only analyzed units with >2 spikes/s firing rate. This procedure yielded 395 
units in ferret P and 203 units in ferret T. Spike counts were constructed for 100 ms non-overlapping 
time bins and thus used for further analysis. All population analyses were done at the single-session 
level, and therefore individual sessions were used as samples in statistical tests. This also allowed us 
to use all trials in each session, despite the difference in the number of correct trials across sessions 
due to variable behavior.

Neurons with sustained activity during the delay period
To identify neurons with sustained activity during the delay, we z-scored spike counts from the base-
line period (500 ms pre-stimulus) and then applied a threshold of 1.5 to the z-scored firing rate aver-
aged over the delay period.

Modulation index
For each unit, the modulation index of activity for quantifying modulation of delay activity was 
computed using

	﻿‍
MI = Delay − Spont

Delay + Spont ‍�

where Delay is the firing rate during the delay and Spont is the spontaneous activity over the pre-
stimulus period.

Population decoding
In each recording session, we constructed time-based binary linear discriminant classifiers (Bagur 
et al., 2018; Bishop, 2006; Meyers et al., 2008⁠) to decode stimulus categories (Go vs No-Go) with 
100 ms binning. In brief, for each recording sessions, population vectors were constructed at each 
time bin and trained with equal number of random Go and No-Go trials (‍V

Go
t , VNo−Go

t ‍). Then the popu-
lation decoding vector is given by

	﻿‍ Wt = VGo
t − VNo−Go

t ‍�

where ‍V
Go
t , VNo−Go

t ‍ are trial-averaged population vectors for Go and No-Go categories, respectively. 
The threshold is defined by

	﻿‍
bt =

−
(

WtxVGo
t + WtxVNo−Go

t

)

2 ‍�

For each test trial population vector ‍Vtest
t ‍, the linear discriminant function is given by

	﻿‍ Yt = Wt × Vtest
t + bt‍�
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The test trial ‍Vtest
t ‍ is assigned to the Go category if ‍Yt ≥ 0‍ and to the No-Go category otherwise. 

The assigned category is compared to the ground truth and the proportion correct defines the accu-
racy of the classifier. Cross-validation was performed 200 times by randomly choosing train (70% of 
data) and test trials (30% of data).

Random classifier performance was obtained with 200 label shuffling permutations (the lower bound 
for the p-value being 1/200 = 0.005) and the comparison was statistically evaluated through permu-
tation tests, comparing the actual performance with the chance-level distribution. Unless mentioned 
otherwise, all analyses were done using only correct trials (correct rejection No-Go trials and hit Go 
trials). Temporal evolution of the decoder was computed as the correlation between decoding weight 
vectors at one time bin against others, and time points below-chance correlation values are shown in 
gray in Figure 2b. We also projected the trial-averaged activity of test trials onto the unit decoders 
trained at sound and delay period as shown in Figure 2—figure supplement 4.

Linear regression
A linear decoder trained on classifying categories inherently mixed sensory and category information 
to decode categories. To disentangle the contributions from sensory features and categories in the 
population code, we opted for linear regression models to capture the unique contribution of each 
feature.

At each time bin, the design matrix for linear regression consists of sensory (click rates 4, 8, 12, 16, 
20, and 24 Hz) and category (–1 for No-Go and +1 Go) regressors as follows:

	﻿‍ ri
(
t
)

= β0
(
t
)

+ β1
(
t
)
∗ Sensory + β2

(
t
)
∗ Category‍�

where ‍β1,2
(
t
)
‍ are the regressor weights, ‍β0

(
t
)
‍ a constant, and Sensory and Category are the regressor 

values.
The model was fitted for each neuron on correct trials (hit Go trials and correct rejections No-Go 

trials). We used ridge regression to minimize overfitting and diminish the impact of correlated vari-
ables. The ridge parameter is calculated using a cross-validated marginal maximum likelihood method 
(Karabatsos, 2018⁠). To fit the model, we used the ridgeMML function from http://churchlandlab.​
labsites.cshl.edu (Musall et al., 2019⁠).

In order to make sure that the sensory and category regressor weights were not contaminated 
by other task variables, we included lick and reward variables in a separate model fitted on correct 
and incorrect trials. At each time bin, the lick regressor consisted of either 1 or 0 corresponding to 
the presence or absence of licks. During the hit trials, the reward regressor was set to 1 the time 
bins in response window when the animal licked and was 0 otherwise. We found that the category 
and sensory axes were similar in the two-regressor and the four-regressor models (Figure 2—figure 
supplement 5).

Coefficient of partial determination
To capture the contribution of each feature into neuronal activity, we computed a CPD as the fraction 
of variance lost by shuffling one of the features with respect to the full original model (Fisher et al., 
2019)⁠. Doing so, CPD captured the unique contribution of that feature (Musall et al., 2019)⁠. We thus 
fitted reduced linear models with one of the variables being shuffled in the design matrix in order to 
destroy the contribution arising from that particular task variable. We used fivefold cross-validation to 
compute the mean square error (MSE) for the full and reduced models. CPD was defined as

	﻿‍
CPD =

MSEred − MSEfull
MSEred ‍�

where ‍MSEred‍ is obtained by cross-validating the following reduced models with fivefold cross-validation:

•	 For estimating the unique contribution of sensory regressor:

	﻿‍ ri
(
t
)

= β0
(
t
)

+ β1
(
t
)
∗ Sensoryshuffled + β2

(
t
)
∗ Category‍�

•	 For estimating the unique contribution of category regressor:
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(
t
)

= β0
(
t
)

+ β1
(
t
)
∗ Sensory + β2

(
t
)
∗ Categoryshuffled‍�

Time windows for computing average CPD in each period were 0–1.1 s for the stimulus period, 
1.1–2.1 s for the delay period, and 2.1–3.1 s for the response window period.

Projections of population activity onto sensory and category neural axes
We assessed the time evolution of population activity along sensory- and category-related neural axes 
defined by the linear regression (Figure 3). This was done by projecting baseline-corrected population 
activity specific to the feature of interest onto category or sensory regressor weights. Therefore, any 
deviation from zero represents the deviation of population activity along the regression axis away 
from the projection of baseline activity.

Regression weights for the active sensory and category neural axes were correlated during the 
stimulus period (ρ = 0.37, p<10–2, n = 35 sessions in ferret P; ρ = 0.17, p=0.04, n = 38 sessions in 
ferret T; Pearson correlation). We made sure to separate the contribution of each variable before 
projecting on the regression weights. For restricting the projections of activity along each axis (say 
feature X, which could be category), we first subtracted the response predicted by the model for the 
other regressor (say feature Y, in this case sensory: ‍β1

(
t
)
∗ Sensory‍) from the single-trial population 

activity. We then projected the residual population activity onto the regression weights of feature X. 
Projections are therefore computed as follows:

	﻿‍
Proj1/2

(
t
)

=
β1/2

(
t
)

��β1/2
(
t
)�� ∗

(
rtest

(
t
)
− β2/1

(
t
)
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)
‍�

where 1/2 corresponds to weights for sensory and category regressors.
Before projecting, the test trial activity at each time bin was baseline-corrected, so that projections 

of baseline activity lie at zero. We could then project population activity corresponding to individual 
click rates (Figure 3a–d) or averaging across click trains of the same category (Figures 3e and 4). Time 
windows for computing average projection axis in each period were 0.2–0.9 s for the stimulus period 
and 1.3–2.1 s for the delay period.

Categorization and sensory indices
We quantified the amount of category information present in the projections using a category index 
(CI). CI is an index comparing the distance between categorical responses of stimulus pairs within and 
between categories:

	﻿‍ CI = d
(
between

)
− d

(
within

)
‍�

‍d
(
within

)
‍ was averaged over all possible successive pairs belonging to the same category (4–8 Hz, 

8–12 Hz, 16–20 Hz, and 20–24 Hz) while ‍d
(
between

)
‍ was measured at the category boundary (12–16 Hz).

Similarly, a sensory index (SI) measured the distance between the projections of successive click 
rates within the same category (4–8 Hz, 8–12 Hz, 16–20 Hz, and 20–24 Hz) onto the sensory regressor 
weights:

	﻿‍ SI = average
(
d
(
within

))
‍�

where ‍d
(
within

)
‍ is the projection distance between successive click rates within the category.

Statistics and data availability
We performed both population decoding and linear regression analysis session-wise with simulta-
neously recorded neurons. All statistics across passive and active states were done with paired t-
tests. Correlations were linearly assessed (Pearson correlation). Unless specified otherwise, error bars 
showed ± 1 SEM over sessions. The codes for reproducing the analysis are available on the following 
repository: https://github.com/rupeshjnu/A1-Category, (copy archived at Rupesh, 2023). The electro-
physiological data is publicly available at https://zenodo.org/records/8371084.
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