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Abstract When subjects navigate through spatial environments, grid cells exhibit firing fields that 
are arranged in a triangular grid pattern. Direct recordings of grid cells from the human brain are 
rare. Hence, functional magnetic resonance imaging (fMRI) studies proposed an indirect measure of 
entorhinal grid-cell activity, quantified as hexadirectional modulation of fMRI activity as a function 
of the subject’s movement direction. However, it remains unclear how the activity of a population of 
grid cells may exhibit hexadirectional modulation. Here, we use numerical simulations and analyt-
ical calculations to suggest that this hexadirectional modulation is best explained by head-direction 
tuning aligned to the grid axes, whereas it is not clearly supported by a bias of grid cells toward a 
particular phase offset. Firing-rate adaptation can result in hexadirectional modulation, but the avail-
able cellular data is insufficient to clearly support or refute this option. The magnitude of hexadirec-
tional modulation furthermore depends considerably on the subject’s navigation pattern, indicating 
that future fMRI studies could be designed to test which hypothesis most likely accounts for the 
fMRI measure of grid cells. Our findings also underline the importance of quantifying the proper-
ties of human grid cells to further elucidate how hexadirectional modulations of fMRI activity may 
emerge.

Editor's evaluation
This computational work represents a valuable and long overdue assessment of the potential mech-
anisms associating patterns of activity of entorhinal grid cells, recorded mostly in rodents, with 
the population property of hexasymmetry detected in non-invasive human studies. The methodic 
comparison of alternative hypotheses is compelling, and the conclusions are important for the future 
design of experiments assessing the neural correlates of human navigation across physical, virtual, or 
conceptual spaces.

Introduction
The neural basis of spatial navigation comprises multiple specialized cell types such as place cells 
(O’Keefe and Dostrovsky, 1971), head-direction (HD) cells (Taube et  al., 1990), and grid cells 
(Hafting et al., 2005), whose activity profiles result from intricate mechanisms of microcircuits in the 
medial temporal lobes (Tukker et al., 2022). Grid cells are neurons that activate whenever an animal 
or human traverses the vertices of a triangular grid tiling the entire environment into equilateral trian-
gles (Hafting et al., 2005; Jacobs et al., 2013). Grid cells may allow the navigating organism to 
perform vector computations and may thus constitute an essential neural substrate for different types 
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of spatial navigation including path integration, though their exact functional role still remains unclear 
(Stemmler et al., 2015; Bush et al., 2015; Moser et al., 2017; Stangl et al., 2018; Gil et al., 2018; 
Banino et al., 2018; Bierbrauer et al., 2020; Ginosar et al., 2023).

In rodents, grid cells can be recorded using electrodes inserted into the medial entorhinal cortex 
(EC). In humans, measuring grid cells using invasive methods is only rarely possible, e.g., by recording 
single-neuron activity in epilepsy patients who are neurosurgically implanted with intracranial depth 
electrodes (Jacobs et al., 2013; Nadasdy et al., 2017). Hence, to enable the detection of grid cells 
in healthy humans, a functional magnetic resonance imaging (fMRI) method has been developed 
that tests for a hexadirectional modulation of the blood-oxygen-level-dependent signal as a function 
of the subject’s movement direction through a virtual environment (Doeller et al., 2010). We here 
refer to this phenomenon of a hexadirectional modulation of the fMRI signal as ‘macroscopic grid-
like representations’, which has been replicated repeatedly in recent years (e.g. Kunz et al., 2015; 
Bellmund et al., 2016; Horner et al., 2016; Constantinescu et al., 2016; Bierbrauer et al., 2020). 
The mechanisms underlying the emergence of such macroscopic grid-like representations remain still 
unclear, however.

To provide possible explanations for the emergence of macroscopic grid-like representations, 
previous studies presented several qualitatively different hypotheses on how the activity of single 
grid cells translates into a macroscopically visible hexadirectional fMRI signal (Doeller et al., 2010; 
Kunz et al., 2019). Three main hypotheses have been developed: (i) the ‘conjunctive grid by HD 
cell hypothesis’; (ii) the ‘repetition suppression hypothesis’; and (iii) the ‘structure-function mapping 
hypothesis’ (Figure 1).

The conjunctive grid by HD cell hypothesis rests on two key findings: first, the existence of 
conjunctive grid by HD cells, which were found in the deeper layers of the entorhinal cortex and in 
pre- and parasubiculum (Sargolini et al., 2006); second, the observation that the directional tuning 
of grid cells within the entorhinal cortex is aligned with the grid axes (Doeller et al., 2010), though 
further studies are needed to corroborate this observation. Assuming that the directional tuning 
width of these conjunctive grid by HD cells is not too broad, movements aligned with the grid axes 
(as compared to misaligned movements) result in increased spiking activity of the conjunctive grid 
by HD cell population. Given some correlation between population spiking activity and the fMRI 
signal, this systematic difference in the firing of conjunctive grid by HD cells when moving aligned 
versus misaligned with the grid axes may thus cause a macroscopically visible fMRI signal with 
hexadirectional modulation (Figure 1B). We note that the conjunctive grid by HD cell hypothesis 
does not necessarily depend on an alignment between the preferred head directions with the grid 
axes.

The repetition suppression hypothesis (Figure 1C) is based on the assumption that the phenom-
enon of repetition suppression—i.e., neural activity being reduced for repeated stimuli (Grill-Spector 
et al., 2006)—also applies to grid cells (Doeller et al., 2010; Killian et al., 2012). Critical to this 
hypothesis is that relatively fewer different grid cells are activated more often during movements 
aligned with the grid axes, and relatively more different grid cells are activated less often during 
misaligned movements. Due to this systematic difference in how many grid cells are activated how 
often, a higher degree of repetition suppression at the level of spiking activity or the fMRI signal (i.e. 
fMRI adaptation) during aligned movements as compared with misaligned movements can emerge, 
again resulting in a hexadirectional modulation of fMRI activity as a function of the subject’s move-
ment direction through the spatial environment.

Regarding the structure-function mapping hypothesis (Figure 1D), studies in rodents have demon-
strated that the firing fields of anatomically adjacent grid cells do not only have similar spacing and 
orientation (Stensola et al., 2012), but also a similar grid phase offset to a reference location (Heys 
et al., 2014; Gu et al., 2018). Studies in rodents observed that grid cells also cluster anatomically 
(Obenhaus et al., 2022; Naumann et al., 2018), which may lead to stronger grid-like representa-
tions in some voxels (with an increased percentage of grid cells) than in others (with a decreased 
percentage of grid cells). Therefore, recordings from a small area of the EC (e.g. a sufficiently small 
voxel of an fMRI scan) may sample grid cells with similar firing fields, which basically behave similarly. 
It has been suggested that such a grid cell population might show higher average firing rates during 
aligned movements (because more firing fields are traversed) versus misaligned movements, again 
resulting in macroscopically visible grid-like representations (Kunz et al., 2019).

https://doi.org/10.7554/eLife.85742
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Figure 1. Qualitative hypotheses on the emergence of macroscopic grid-like representations in the human 
entorhinal cortex. (A) Grid-cell properties comprise grid orientation, grid spacing, and grid phase offset. 
(B) Conjunctive grid by head-direction cell hypothesis. Macroscopic grid-like representations (right) may emerge 
from the firing of conjunctive grid by head-direction cells (left and middle) that exhibit increased firing when the 
subject moves aligned as compared to misaligned with the grid axes (right) (Doeller et al., 2010). (C) Repetition 
suppression hypothesis. In a grid cell population with similar grid orientations and grid spacings but with 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.85742
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In this study, we aimed at quantitatively evaluating the three hypotheses on the emergence of 
macroscopic grid-like representations using a modeling approach. Our results show that all three 
hypotheses can result in macroscopic grid-like representations under ideal and specific conditions, but 
that the strength of the hexadirectional modulation varies by orders of magnitude. Key findings are 
also that the subjects’ type of navigation paths through the spatial environments and the exact biolog-
ical characteristics of grid cells determine to what extent a given hypothesis can explain a hexadirec-
tional population signal in the EC. In this way, our results help understand how grid cells may have a 
specific correlate in fMRI, make predictions on how future fMRI studies could establish evidence in 
favor of or against one of the three hypotheses, and suggest that the biological properties of grid 
cells in humans should be investigated in greater detail in order to support or weaken the plausibility 
of either of the three hypotheses.

Results
In what follows, we first describe the navigation strategies that we use in our model, then define a new 
measure to quantify neural hexasymmetry and path hexasymmetry, and finally calculate neural hexas-
ymmetries for the three hypotheses, which we model for idealized as well as more realistic choices of 
parameters.

Navigation strategies
To evaluate the different hypotheses on the emergence of grid-like representations, we considered 
three different types of navigation trajectories: ‘star-like walks’, ‘piecewise linear walks’, and ‘random 
walks’. We opted for this approach in order to test whether a subject’s navigation pattern—which 
in itself comes with a certain degree of hexasymmetry (‘path hexasymmetry’)—influences the emer-
gence of hexadirectional sum signals of neuronal activity.

During each path segment of star-like walks, the simulated agent started from the same (x/y)--
coordinate and navigated along 1 of 360 predefined allocentric navigation directions (0° to 359° in 
steps of 1°; Figure 2B, left). This ensured that the navigation trajectory itself exhibited a hexasym-
metry that was essentially zero. Each path had a length of 300 cm, which was 10 times the grid scale 
(see Table 1 for a summary of all model parameters). After each path segment was traversed, the 
agent was ‘teleported’ back to the initial (x/y)-coordinate and completed the next path segment. For 

distributed phases (left; colored circles represent firing fields of different grid cells), aligned movements (horizontal 
pink arrow) lead to more frequent activation (shorter distance between firing fields) of a smaller number of different 
grid cells, whereas misaligned movements (diagonal gray arrow) lead to less frequent activation (larger distance 
between firing fields) of a higher number of different grid cells (Doeller et al., 2010). Thus, aligned movements 
may lead to more pronounced repetition suppression as compared to misaligned movements (middle), resulting in 
a hexadirectional modulation of population spiking activity and thus in the emergence of grid-like representations 
(right). (D) Structure-function mapping hypothesis. Because anatomically adjacent grid cells exhibit similar grid 
phase offsets (in addition to similar grid orientations and grid spacings) (Gu et al., 2018), recordings from a 
limited number of grid cells with a non-random distribution of phase offsets may lead to macroscopic grid-like 
representations. The left panel shows the grid phase offset of four different grid cells, whose anatomical locations 
are illustrated in the middle panel. Depending on the subject’s starting location relative to the phase offset of the 
grid fields, movements aligned or misaligned with the grid axes lead to higher sum grid cell activity as compared 
to misaligned or aligned movements (right panel). Furthermore, the orientation of hexadirectional modulation may 
shift when recording from neighboring voxels in anatomical space due to a shift in the clustered phase offsets. D, 
dorsal; L, lateral; M, medial; V, ventral. Figure 1 has been adapted from Figure 3 from Kunz et al., 2019.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Effect of tortuosity on the hexasymmetry for the repetition suppression hypothesis with 
random walks (‍∆t = 0.01‍ s, ‍T = 9000 s‍, ‍τr = 3 s‍, ‍wr = 1‍).

Figure supplement 2. Effect of size and shape of finite environments on hexasymmetry.

Figure supplement 3. Effect of rotation of finite environments on hexasymmetry.

Figure supplement 4. Hexasymmetry of random-walk trajectories.

Figure 1 continued

https://doi.org/10.7554/eLife.85742
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real-world experiments, this type of navigation including teleportation is unusual, but it can be imple-
mented in virtual-reality experiments (Vass et al., 2016; Deuker et al., 2016).

During piecewise linear walks, the subject also completed 360 path segments of 300 cm length 
along the same 360 predefined allocentric navigation directions, as in the star-like walks. In this case, 

Figure 2. Conjunctive grid by head-direction (HD) cell hypothesis. (A) Left: The preferred head direction (red arrow) of a single conjunctive cell is 
aligned to one of the grid axes (Doeller et al., 2010). Two factors add noise to this relation: the HD tuning has a certain width (‍1/

√
κc ‍) and the 

alignment of grid orientation to HD tuning angle is jittered (‍σc‍). Middle: Distribution of the tuning width ‍1/
√
κc ‍ around all possible grid axes for two 

example values. Right: Convolution (gray) between the distributions of the jitter ‍σc = 5◦‍ and tuning width ‍1/
√
κc ≈ 8.1◦‍ (‍κc = 50 rad−2‍) to obtain 

the effective HD tuning of a single conjunctive cell around one grid axis. (B–D) Simulation of the conjunctive hypothesis using ‘ideal’ parameters 
of ‍κc = 50 rad−2‍ and ‍σc = 0◦‍. The scale bars (red) represent a distance of 120 cm. (B) Left: Illustration of a star-like walk (path segments are cut 
for illustration purposes), overlaid onto the firing pattern of a single grid cell. Right: Population firing rate as a function of the subject’s movement 
direction (which is identical with heading direction in our simulations) for star-like runs with mean firing rate ‍̃A0 = 1279.7‍ spk/s (for 1024 cells) and 
path hexasymmetry ‍|T̃6| < 10−10‍; see Methods for definitions of ‍̃A0‍ and ‍̃T6‍. (C) Left: Illustration of a piecewise linear walk (cut for illustration purposes), 
overlaid onto the firing pattern of a single grid cell. Right: Population firing rate as a function of movement direction for piecewise linear walks with 

‍̃A0 = 1279.3‍ spk/s and ‍|T̃6| < 10−10‍. (D) Left: Illustration of a random walk (cut for illustration purposes), overlaid onto the firing pattern of a single grid 

cell. Right: Population firing rate as a function of movement direction for random walks with ‍̃A0 = 1281.0‍ spk/s and ‍|T̃6| = 6.7 · 10−3
‍. (E) Hexasymmetry 

(color coded) as a function of HD tuning width and alignment jitter for star-like walk trajectories at an offset of ‍(0, 0)‍. Higher hexasymmetry values are 
achieved for stronger HD tuning and tighter alignment of the preferred head directions to the grid axes. The red symbols correspond to the three 
parameter combinations used in subplots (B–D) and (F–H) for further illustration. Large tuning widths (‍κc → 0‍) correspond to cosine tuning for which 
the hexasymmetry approaches 0. (F) Population firing rate as a function of movement direction for a random-walk trajectory with jitter ‍σc = 0‍ and 
concentration parameter ‍κc = 50 rad−2‍ (tuning width ‍≈ 8.1◦‍). (G) Population firing rate as a function of movement direction for a random walk with 
jitter ‍σc = 1.5◦‍ and concentration parameter ‍κc = 10 rad−2‍ (tuning width ‍≈ 18.1◦‍). (H) Population firing rate as a function of movement direction for a 
random walk with jitter ‍σc = 3◦‍ and concentration parameter ‍κc = 4 rad−2‍ (tuning width ‍≈ 28.6◦‍). The hexasymmetry for the case of ‍pc = 33‍% is stated 
in brackets. All other simulations presented in this figure use ‍pc = 100‍% conjunctive (‍N = 1024‍) cells, which is higher than in empirical studies (Sargolini 
et al., 2006; Boccara et al., 2010). In subplots (B–D) and (F–H), the black solid lines and magenta dashed lines represent the results from the numerical 
simulations of Equation 8 and the analytical derivation in Equation 40, respectively. The radial subplots in (F–H), right, illustrate the effective HD tuning 
width around a single grid axis analogous to A, right. H, neural hexasymmetry; spk/s, spikes per second.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison between the ‘ideal’ tuning width and ‘realistic’ tuning widths found in existing literature for the conjunctive grid by 
head-direction (HD) cell hypothesis.

Figure supplement 2. Dependence of the hexasymmetry on the proportion of conjunctive grid by head-direction cells.

https://doi.org/10.7554/eLife.85742
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however, the path segments were ‘unwrapped’ such that the starting location of a path segment was 
identical with the end location of the preceding path segment (Figure 2C, left). The sequence of 
allocentric navigation directions was randomly chosen. As for star-like walks, piecewise linear walks do 
not exhibit hexasymmetry a priori.

For random walks, we modeled navigation trajectories following Kropff and Treves, 2008; Si et al., 
2012; D’Albis and Kempter, 2017 (for details, see Methods around Equation 1), which allowed us to 
vary the tortuosity of the paths. For a certain value of the tortuosity parameter (‍σθ = 0.5‍ rad/s1/2) and 
a time step ‍∆t = 0.01‍ s, this led to navigation paths that we considered similar to those seen in rodent 
studies (Figure 2D, left; Figure 1—figure supplement 1E). Tortuosity describes how convoluted a 
navigation path is (the higher the tortuosity, the more convoluted the path). A value of 0.5 rad/s1/2 
means that in 1 s of time the standard deviation of movement direction change is about 0.5 rad = 29° 
(see Figure 1—figure supplement 1E, and Equation 42 for ‍m∆t = 1‍ s).

Table 1. Parameters: descriptions and values.
For a more detailed motivation of the values used, see section ‘Parameter estimation’.

Parameter Description Values (unless varied) or range

Trajectories

‍∆t‍ Simulation time step 0.01 s

‍T ‍ Simulated duration 9000 s

‍v‍ Movement speed 10 cm/s

‍σθ‍ Movement tortuosity 0.5 rad/s1/2

‍rmax‍ Length of a linear path in the star-like run 300 cm

‍Nθ‍ Number of angles to sample in the star-like run 360

Grid cells

‍N ‍ Number of grid cells in a voxel 1024

‍s‍ Grid scale 30 cm

‍γ ‍ Grid orientation 0°

‍Amax‍ Maximum firing rate for one grid cell 8 spk/s

‍(xoff, yoff)‍ Grid phase (two-dimensional) ([0,1], [0,1])

Conjunctive grid by head-direction cell hypothesis

‍µc‍ Preferred head direction ‍[0, 2π)‍ (multiples of 60° for ‍σc = 0‍)

‍κc‍
Concentration parameter for direction tuning for the ideal and ‘realistic’ 

cases {50, 4} rad-2

‍σc‍
Alignment jitter of direction tuning to grid axis for the ideal and ‘realistic’* 

cases {0, 3}°

‍pc‍
Fraction of conjunctive cells in a population for the ideal and ‘realistic’* 

cases {1, 1/3}

Repetition suppression hypothesis

‍τr‍ Adaptation time constant for the ideal and ‘weaker’ cases {3, 1.5} s

‍wr‍ Adaptation weight for the ideal and ‘weaker’ cases {1, 0.5}

Structure-function mapping hypothesis

‍µs‍ Central phase of cluster (0, 0)

‍κs‍ Concentration parameter for clustering for the ideal and ‘realistic’† cases {10, 0.1}

*Boccara et al., 2010; Sargolini et al., 2006.
†Gu et al., 2018.

https://doi.org/10.7554/eLife.85742
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Apart from random walks in basically infinite environments, we also simulated random walks 
in finite enclosures (circles and squares) with different sizes and orientations; we found that these 
restrictions had a negligible effect on path hexasymmetry (Figure  1—figure supplement 2C and 
Figure 1—figure supplement 3C; for a definition of path hexasymmetry, see the paragraph after the 
next one). Because the allocentric navigation directions are not predefined for random walks, they 
exhibit varying degrees of path hexasymmetry. The longer the simulated random walks, the smaller 
the path hexasymmetry (Figure 1—figure supplement 4). We simulated random walks with a total 
length of typically 900 m (‍M = 9 · 105‍ steps).

As we describe below, the emergence of grid-like representations based on the conjunctive 
hypothesis is robust against the specific type of navigation strategy, whereas the other two hypoth-
eses are sensitive to particular navigation strategies. Future studies on hexadirectional signals should 
thus consider the kind of navigation paths subjects will use during a given task.

Quantifying neural hexasymmetry generated by the three hypotheses
To test how the activity of grid cells could give rise to hexasymmetry of a macroscopic signal, we used 
a firing-rate model of grid cell activity (Equation 2). Furthermore, we developed a new measure ‍H ‍ 
to quantify neural hexasymmetry (see Methods, Equation 12), which is the magnitude of the hexa-
directional modulation of the summed activity of many cells. The hexasymmetry ‍H ‍ has a value ‍H = 0‍ 
if there is no hexadirectional modulation, e.g., if the population firing rate does not depend on the 
movement direction. Conversely, if the population firing rate has a hexadirectional sinusoidal modula-
tion, half of its amplitude (in units of the firing rate) equals the value of the hexasymmetry ‍H ‍. Using the 
same approach, we quantified the hexasymmetry of a trajectory and called this path hexasymmetry 
(see Methods after Equation 14).

Conjunctive grid by HD cell hypothesis
The conjunctive grid by HD cell hypothesis (Doeller et al., 2010) suggests that hexadirectional activity 
in the EC emerges due to grid cells whose firing rate is additionally modulated by head direction, 
whereby the preferred head direction is closely aligned with one of the grid axes (Figure 2A). By 
modulating the activity of individual grid cells with an HD tuning term aligned with the grid axes 
(Methods, Equation 3), our simulations indeed showed that these properties resulted in a clear hexa-
directional modulation of sum grid-cell activity (Figure 2B–D). When considering different types of 
navigation trajectories, we found that they led to similar distributions of sum grid-cell activity as a 
function of movement direction and, accordingly, to similar hexasymmetry values (Figure 2B–D). In all 
three cases, the directions of maximal activity were aligned with the grid axes.

These results were obtained using ideal values for the preciseness of the HD tuning (i.e. large 
concentration parameter of HD tuning, ‍κc‍) and for the alignment of the preferred head directions to 
the grid axes (i.e. small alignment jitter of the HD tuning to the grid axes, ‍σc‍; Figure 2A). We were thus 
curious how the hexasymmetry changed when using a wide range of parameter values that would also 
include biologically plausible values. We varied ‍κc‍ between values corresponding to narrow tuning 
widths (‍κc = 50 rad−2‍, which corresponds to an angular variability of ‍1/

√
κc ≈ 8◦‍) and wide tuning 

widths (‍κc = 4 rad−2‍, i.e. an angular variability of approximately ‍29◦‍), and we varied ‍σc‍ between values 
of no jitter (‍σc = 0‍) and significant jitter (‍σc = 3◦‍); see also Table 1 for a summary of parameters. We 
found that a combination of narrow HD tuning widths and no jitter resulted in the largest hexasym-
metry ‍H ‍ (Figure 2E–H), while wider tuning widths with non-zero jitter resulted in smaller values for 
the hexasymmetry (for larger tuning widths and a comparison to experimental values, see Figure 2—
figure supplement 1).

Repetition suppression hypothesis
Next, we performed simulations to understand whether the repetition suppression hypothesis (Doeller 
et al., 2010) results in a hexadirectional modulation of population grid-cell activity. This hypothesis 
proposes that grid-cell activity is subject to firing-rate adaptation and thus leads to reduced grid-
cell activity when moving along the grid axes as compared to when moving along other directions 
than the grid axes (Figure 3A). This difference is due to the fact that when the subject moves along 
the grid axes the grid fields of fewer grid cells are traversed relatively more often (strong repetition 

https://doi.org/10.7554/eLife.85742
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suppression), whereas when moving not along the grid axes the grid fields of more grid cells are 
traversed relatively less often (weak repetition suppression) (Doeller et al., 2010).

In our model, the repetition suppression hypothesis depends on two adaptation parameters: the 
adaptation time constant ‍τr‍ and the adaptation weight ‍wr‍ (Equation 5). We explored a large range of 
adaptation time constants and found that the time constant that leads to the largest hexasymmetry 
is roughly the subject’s speed ‍v‍ divided by the grid scale ‍s‍ (Figure 3B). We constrained values of the 
adaptation weight to the full range of reasonable values (‍0 < wr ≤ 1‍) and found that the larger the 
value of the adaptation weight the larger is the hexasymmetry (Figure 3B). When examining how the 
different types of navigation trajectories affected hexadirectional modulations based on repetition 
suppression, we found that star-like and piecewise linear walks resulted in clear and significant hexas-
ymmetry values (Figure 3C and D), which is driven by the long linear segments in these trajectory 
types. In contrast, random walks did not result in a significant hexadirectional modulation of sum 
grid-cell activity because the tortuosity of the random walk that we typically used (‍σθ = 0.5‍ rad/s1/2) is 
too large (i.e. trajectories turn too much between two adjacent firing fields of a grid cell) to be able 
to exploit the movement-direction dependence of repetition suppression (Figure 3E). Examining in 
more detail which tortuosity values would still lead to some hexadirectional modulation due to repe-
tition suppression, we found that ‍σθ ≲ 0.25‍ rad/s1/2 was the upper bound. For smaller values of the 

Figure 3. Repetition suppression hypothesis. (A) Left: Tuning of an example grid cell with aligned (pink arrow) and misaligned (gray arrow) movement 
directions. Right: Examples of firing-rate adaptation (dashed lines, adaptation weight ‍wr = 1‍ and time constant ‍τr = 3‍ s) for an aligned run (pink) and 
a misaligned run (gray). More firing-rate adaptation (i.e. stronger repetition suppression) occurs along the aligned run compared to the misaligned 
run (attenuation of peaks: 24% and 18% respectively). For both runs, firing rates are reduced compared to the case without adaptation (solid lines). 
(B) Simulations of hexasymmetry as a function of the weight (‍wr‍) and time constant (‍τr‍) of adaptation for star-like runs. The red dot marks the optimal 
parameters (‍wr = 1‍ and ‍τr = 3‍ s) used in panels A and C–E. (C) Population firing rate as a function of the subject’s movement direction for a star-
like run at an offset of ‍(0, 0)‍. The solid line represents firing rates for single runs where adaptation does not carry over when sampling different 
movement directions, i.e., the ‘teleportation’ between path segments resets the repetition suppression effects, and movement directions are sampled 
consecutively from ‍0◦‍ to ‍359◦‍ in steps of ‍1◦‍ (mean firing rate ‍̃A0 = 866.4‍ spk/s, path hexasymmetry ‍|T̃6| < 10−10‍). The dashed line represents firing rates 
for single runs with adaptation carry-over and randomly sampled movement directions without replacement (‍̃A0 = 839.8‍ spk/s, path hexasymmetry 

‍|T̃6| < 10−10
‍, the corresponding hexasymmetry is shown in brackets). (D) Population firing rate as a function of movement direction for a piecewise 

linear walk (‍̃A0 = 839.0‍ spk/s, ‍|T̃6| < 10−10‍). (E) Population firing rate as a function of movement direction for a random walk (‍̃A0 = 839.7‍ spk/s, 

‍|T̃6| = 6.7 · 10−3
‍). spk/s, spikes per second. For all repetition suppression simulations, the grid phase offsets of 1024 grid cells were sampled randomly 

from a uniform distribution across the unit rhombus, and the hexasymmetries were averaged over 20 realizations. The scale bars (red) in panels C–E 
represent a distance of 120 cm.

https://doi.org/10.7554/eLife.85742
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tortuosity parameter trajectories are straight enough to allow for a hexadirectional modulation of sum 
grid-cell activity (Figure 1—figure supplement 1).

A notable difference of the repetition suppression hypothesis compared to the conjunctive grid 
by HD cell hypothesis is that the apparent preferred grid orientation (i.e. the movement directions 
resulting in the highest sum grid-cell activity) is shifted by ‍30◦‍ and is thus exactly misaligned with 
the grid axes of the individual grid cells (Figure 3C and D). This is due to the fact that the adapta-
tion mechanism suppresses grid-cell activity more strongly when moving aligned with a grid axis as 
compared to when moving misaligned with a grid axis (Figure 3A).

Structure-function mapping hypothesis
We next investigated the structure-function mapping hypothesis, according to which a hexadirec-
tional modulation of EC activity emerges in situations when a population of grid cells is recorded 
whose grid phase offsets are biased toward a particular offset (Kunz et al., 2019). In the ideal case, all 
grid phase offsets are identical, and thus all grid cells behave like a single grid cell. This hypothesis is 
called ‘structure-function mapping hypothesis’ because of a direct mapping between the anatomical 
locations of the grid cells in the EC and their functional firing fields in space.

We found indeed that highly clustered grid phase offsets (‘ideal’ concentration parameter for clus-
tering ‍κs = 10‍) resulted in significant hexadirectional modulations of sum grid-cell activity when the 
subject performed star-like walks starting at a phase offset of ‍(0, 0)‍, i.e., the center of the cluster of 
firing fields of grid cells (Figure 4A). Interestingly, the hexasymmetry values during star-like walks 
were strongly dependent on the subject’s starting location relative to the locations of the grid fields as 
only particular starting phases (within the unit rhombus of grid phase offsets) such as ‍(0, 0)‍ or ‍(0.3, 0.3)‍ 
led to clear hexasymmetry whereas others, e.g., ‍(0.6, 0)‍, did not (Figure 4D, left). Additionally, the 
‘apparent preferred grid orientation’ (i.e. the movement directions associated with the highest sum 
grid-cell activity) was shifted by ‍30◦‍ for certain offsets in the unit rhombus illustrating the subject’s 
starting locations relative to the firing-field locations (Figure 4D, right). It was furthermore notable 
that the summed grid-cell activity as a function of movement direction exhibited relatively sharp peaks 
at multiples of ‍60◦‍ with additional small peaks in between (Figure 4A, right). This pattern is clearly 
distinct from the more sinusoidal modulation of sum grid-cell activity resulting from the conjunctive 
grid by HD cell hypothesis (Figure 2) and the more full-wave rectified sinusoidal modulation resulting 
from the repetition suppression hypothesis (Figure 3).

When examining the structure-function mapping hypothesis for piecewise linear walks and random 
walks, hexasymmetry appeared to be considerably lower as compared to simulations with star-like 
walks (Figure 4B and C). For piecewise linear walks (but not for random walks), population grid-cell 
activity as a function of movement direction again exhibited sharp peaks at multiples of ‍60◦‍, in both 
positive and negative directions (Figure 4B). For both piecewise linear walks and random walks, the 
hexasymmetry values did not show a systematic dependency on the starting location of the subject’s 
navigation trajectory relative to the locations of the grid fields (Figure 4E and F, left), which is due 
to the fact that these navigation trajectories randomize the starting locations of all path segments. 
Accordingly, the apparent preferred grid orientations varied randomly as a function of the starting 
location of the very first path segment and did not exhibit systematic shifts (Figure 4E and F, right), 
which is in contrast to the clear shifts in the apparent preferred grid orientations for star-like walks 
(Figure 4D).

In the above-mentioned simulations for the structure-function mapping hypothesis, we chose high 
values for the clustering of the grid phase offsets from all grid cells. Specifically, we set the clus-
tering concentration parameter to ‍κs = 10‍, due to which the centers of the firing fields of different 
grid cells were very close to each other (insets in Figure 4A–C, right). However, previous empirical 
studies (Gu et al., 2018; Heys et al., 2014) suggest that the clustering is much weaker. We thus 
performed numerical simulations to obtain a more realistic estimation of the clustering concentration 
parameter, ‍κs‍. We observed that our numerically determined clustering concentration parameter that 
matched the empirical clustering was in fact closer to randomly distributed grid phase offsets (‍κs < 0.1‍; 
Figure 4G–S) than to strong, ideal clustering ‍(κs = 10)‍. Specifically, we implemented a ‘simple’ clus-
tering using a Gaussian kernel that led to a clustering concentration parameter ‍κs ≈ 0.014‍ (Figure 4M). 
The clustering concentration parameter remained low when we added an empirically guided ‘higher-
order’ spatial clustering of grid phase offsets by adding some longer-range spatial autocorrelations to 

https://doi.org/10.7554/eLife.85742
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Figure 4. Structure-function mapping hypothesis. (A–C) Left: Short example trajectories (white) overlaid onto the firing-rate pattern of an example grid 
cell (colored). Shown trajectories are for illustration purposes only, and do not reflect the full length of the simulation. The scale bars (red) represent 
a distance of 120 cm. Right: Population firing rates of 1024 grid cells as a function of the movement direction. Black and light gray lines represent the 
results from the numerical simulations of Equation 8 and the analytical derivation in Equation 32, respectively. Grid phase offsets cells are strongly 
clustered at ‍(0, 0)‍ with ‍κs = 10‍ (left insets). (A) Left: Subsegment of a star-like walk. Right: Population firing rate as a function of the movement direction 
for star-like runs originating at phase offset ‍(0, 0)‍ with mean firing rate ‍̃A0 = 1362.4‍ spk/s (spikes/second) and path hexasymmetry ‍|T̃6| < 10−10‍. 
(B) Left: Subsegment of a piecewise linear walk. Right: Population firing rate as a function of the movement direction for a piecewise linear trajectory. 

‍̃A0 = 1244.3‍ spk/s, ‍|T̃6| < 10−10‍. (C) Left: Subsegment of a random walk. Right: Population firing rate as a function of movement direction for a random 

walk. ‍̃A0 = 1305.4‍ spk/s, ‍|T̃6| = 6.7 · 10−3
‍. (D) Left: Hexasymmetry as a function of the subject’s starting location (relative to grid phase offset). 

Right: Movement direction associated with the highest sum grid-cell activity, i.e., the phase of peaks in (A, right), has a bimodal distribution (0 or 30°). 
(E) Same as (D) but for piecewise linear walks. (F) Same as (D) but for random walks. (G) Example of a two-dimensional slice of a three-dimensional 

Figure 4 continued on next page
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the grid-phase offsets (Figure 4N–Q; Gu et al., 2018), which led to a clustering concentration param-
eter ‍κs ≈ 0.052‍ (Figure 4Q). Accordingly, we found that these more ‘realistic’ clustering concentra-
tion parameters resulted in substantially reduced hexasymmetries for the structure-function mapping 
hypothesis (described in the next section and in Figure 5). Furthermore, the neuronal hexaysymme-
tries were much lower than the ones for the ‘realistic’ conjunctive grid by HD cell hypothesis and for 
the ‘realistic’ repetition suppression hypothesis.

Our above-mentioned results for the structure-function mapping hypothesis indicate that the 
navigation pattern has a strong influence on the neuronal hexasymmetry ‍H ‍ (Figure 4A–C). We thus 
wondered how much the hexasymmetries of the associated navigation paths contributed to the 
neuronal hexasymmetries. We first considered random walks and found that the path hexasymmetry 
was proportional to ‍1/

√
M ‍ for a large number ‍M ‍ of steps (Figure 1—figure supplement 4). For the 

random walk in Figure 4C with tortuosity ‍σθ = 0.5‍ rad/s1/2, we derived from Figure 1—figure supple-
ment 4 that the expected path hexasymmetry for 9000  s simulation time (‍M = 0.9 · 106‍ steps for 
‍∆t = 0.01‍ s) is about 0.007, which results in a contribution to the neural hexasymmetry of ‍H ≈ 7‍ spk/s 
for a population rate of about 1024 spk/s. This number is close to the obtained neural hexasymmetry 
(‍H = 8.0‍ spk/s) in Figure 4C. We thus believe that for random walks the hexasymmetry ‍H ‍ obtained in 
the structure-function mapping case is mainly determined by the path hexasymmetry.

We then turned to piecewise linear walks and examined neural hexasymmetries ‍H ‍ across a broad 
range of total trajectory distances. Surprisingly, we observed that ‍H ‍ also decreased as ‍1/

√
M ‍ (Figure 4T) 

even though the path hexasymmetry of piecewise linear walks is basically zero by construction. This 
indicates that the apparent neural hexasymmetry ‍H ‍ of sum grid-cell activity for piecewise linear walks 
(e.g. in Figure  4B) is driven by random subsamples of all path segments—specifically those path 
segments crossing through grid fields. These subsamples of path segments necessarily exhibit higher 
path hexasymmetries than the full set of path segments that has zero path hexasymmetry. We thus 

(3D) random-field simulation with a spatial resolution of 15 μm. The simulated volume of 3 × 3 × 3 mm3 represents the approximate spatial extent of a 
voxel in functional magnetic resonance imaging (fMRI) experiments (for details, see Methods). (H) The pairwise phase distance in the rhombus is shown 
as a function of the pairwise anatomical distance for all pairs of simulated cells from (G). Since no spatial correlation structure is induced, the pairwise 
phase distance between grid cells remains constant when varying the pairwise anatomical distance between them. (I) The resulting phase clustering 
for 2003 simulated grid cells in a 3 × 3 × 3 mm3 voxel. Brighter colors indicate a higher prevalence of a particular grid phase offset. The distribution 
of grid phases appears to be homogeneous with a clustering concentration parameter of ‍κs = 0.001‍. (J–M) Same as (G–I) but for a convolution 
of the 3D random field with the 3D Gaussian correlation kernel of width 30 μm shown in (K). Grid cells located next to each other in anatomical 
space (‍≲ 30 µm‍) exhibit similar grid phase offsets (L). No clear clustering is visible, and the fitted clustering concentration parameter was ‍κs = 0.014‍ 
(M). (N–Q) Same as (J–M) but for the grid-like correlation kernel with projections shown in (O), which adds some longer-range spatial autocorrelation 
to the grid phase offsets of different grid cells. The red bars in (O) measures a distance of 300 μm, which corresponds to the separation between two 
peaks of the correlation kernel lying on the same plane. The pairwise phase distance (P) exhibits a dip around 300 μm. Note in (Q) that the prevalence 
of particular grid phase offsets is more biased than in (M), with a fitted clustering concentration parameter of ‍κs = 0.052‍. (R) Dependence of the 
clustering concentration parameter ‍κs‍ on the number ‍N ‍ of grid cells in a voxel. A random distribution of grid cells in anatomical space was obtained 
by subsampling from the 2003 grid cells simulated in (G–Q) over 300 realizations. We found ‍κs ≈ 0.05‍ for 103 grid cells in a voxel, and that ‍κs‍ decreases 
monotonically as ‍N ‍ is increased. Convolution of grid phase offsets with a correlation kernel (as in J–Q) leads to saturation of ‍κs‍ for large ‍N ‍. Note that 
the range of values of ‍κs‍ here is three orders of magnitude smaller than the strong clustering considered in (A–C). The dashed-dotted line depicts the 
line ‍1/

√
N ‍ for comparison. The vertical dotted line at ‍N = 203‍ corresponds to the empirically estimated count of grid cells in a 3 × 3 × 3 mm3 fMRI 

voxel. The secondary lower horizontal axis shows the average distance between regularly distributed grid cells in anatomical space. (S) The distribution 
of the clustering concentration parameter ‍κs‍ when using either no kernel, a Gaussian kernel, or a grid-like kernel for 203 grid cells subsampled from the 
2003 grid cells simulated in (G–Q) over 300 realizations. The grid-like kernel results in a larger maximum value of the clustering concentration parameter, 
and a large number of realizations results in relatively low clustering. ***, p<0.001. (T) The dependence of the hexasymmetry ‍|Ã6|‍ on the number of 
angles sampled when unwrapping the star for the piecewise linear walk, averaged over 20 trajectories for each data point. Each additional angle 
sampled adds 300 cm to the total length of the path. A line proportional to ‍c /

√
M ‍ is plotted for comparison, where ‍c‍ is an offset parameter (‍c = 4000‍ 

spk/s) chosen such that the slope of ‍|Ã6|‍ can be compared to the slope of ‍1/
√

M ‍, which is proportional to the path hexasymmetry ‍|T̃6|‍ (Equation 67). 
The close fit between the solid and dashed lines indicates that the neural hexasymmetry ‍|Ã6|‍ is highly correlated with the path hexasymmetry ‍|T̃6|‍. The 
vertical dotted line at 360 sampled angles corresponds to the number of angles sampled in the star-like run and the piecewise linear run for all main 
figures. The value of the clustering concentration parameter used was ‍κs = 10‍.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of hexasymmetry resulting from the standard grid cell model (‘standard’) and the structure-function mapping 
hypothesis (‘Gu’, identical to Figure 5).

Figure 4 continued
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conclude that, for piecewise linear walks, hexasymmetry values were driven by a subsampling of the 
movement directions due to the sparsity of the grid-field locations.

Taken together, the structure-function mapping hypothesis with very strong (‘ideal’) clustering 
produces neural hexasymmetry values that are larger than expected from path hexasymmetries 
only with respect to star-like walks, including a strong dependence on the subject’s starting location 
(Figure 4D, left). This range of hexasymmetry values is comparable to those of the repetition suppres-
sion hypothesis with ‘ideal’ parameters (Figure  3), but values are at least an order of magnitude 
smaller than in the ‘ideal’ conjunctive grid by HD cell case (Figure 2). When using realistic clustering 
concentration parameters, neural hexasymmetry values are further reduced as compared to simula-
tions with ideal clustering (Figure 5).

Figure 5. Comparison of hexasymmetry resulting from the three hypotheses. Each of the three hypotheses is implemented for three different types 
of navigation trajectories: star-like walks (‘star’), piecewise linear walks (‘p-l’), and random walks with small step size (‘rand’). For each setting, we show 
the average neural hexasymmetry ‍|Ã6|‍ for 1024 cells (dark blue bars) and the average contribution of the trajectory ‍|T̃6| · Ã0‍ (light blue bars) where 

‍̃A0‍ is the (variable) average population activity and ‍|T̃6|‍ is the hexasymmetry of the trajectory; see Methods for definitions of symbols. The violin plots 
depict the distributions for firing-rate hexasymmetry (red) and path hexasymmetry (orange). For each hypothesis, we calculate the hexasymmetry for 
‘ideal’ parameters (conjunctive: ‍pc = 1‍, ‍κc = 50 rad−2‍, tuning width ‍1/

√
κc = 8.1◦‍, ‍σc = 0‍; repetition suppression: ‍τr = 3‍ s, ‍wr = 1‍; clustering: ‍κs = 10‍) 

as well as more realistic parameters (conjunctive ‘Doeller’: ‍pc = 0.33‍, ‍κc = 4 rad−2‍, tuning width ‍1/
√
κc = 29◦‍, ‍σc = 3◦‍ motivated by Doeller et al., 

2010; Boccara et al., 2010; Sargolini et al., 2006; repetition suppression ‘weaker’: ‍τr = 1.5‍ s, ‍wr = 0.5‍; clustering ‘Gu’: ‍κs = 0.1‍ motivated by Gu 
et al., 2018). For clustering, we also simulated grid phase offsets randomly sampled from a uniform distribution with ‍κs = 0‍ and found that neural 
hexasymmetries were reduced (compared to ‘Gu’) by ‍∼ 30%‍ (Figure 4—figure supplement 1). The parameters for the random-walk scenario are 
‍T = 9000‍ s and ‍∆t = 0.01‍ s; see Table 1 for a summary of parameters. Each hypothesis condition was simulated for 300 realizations. ***, p<0.001; 
n.s., not significant; (***), a seemingly significant result (p<0.001) that we think is spurious (see Results section). For pairwise comparisons of the 
hexasymmetry values from different trajectory types for each set of parameters, see Figure 5—figure supplement 1. For a quantification of path 
hexasymmetry as a function of the percentage of subsampled path segments, see Figure 5—figure supplement 2. For a comparison between our 
method and previously used methods for evaluating hexasymmetry, see Figure 5—figure supplement 4.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Pairwise comparisons of the hexasymmetry values from different trajectory types for each set of parameters.

Figure supplement 2. Hexasymmetry resulting from piecewise linear walks (‘p-l’) and random walks (‘rand’) as a function of the percentage of 
subsampled path segments for the structure-function mapping hypothesis.

Figure supplement 3. Comparison of the hexasymmetry resulting from the three hypotheses when using trajectories from rats and humans.

Figure supplement 4. Comparison of hexasymmetry resulting from the three hypotheses when using different methods to calculate the hexasymmetry.

https://doi.org/10.7554/eLife.85742
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Overall evaluation of the three hypotheses
To provide a systematic evaluation of the three hypotheses, we computed 300 realizations of each 
hypothesis (using the simulated activity of 1024 cells), separately for each type of navigation and for 
both ideal and more realistic parameter settings (see Table 1 for a summary of parameter values and 
section ‘Parameter estimation’ for their justification). This resulted in 18 different hypothesis condi-
tions (Figure 5; see also Figure 5—figure supplement 1 for pairwise comparisons). For each hypoth-
esis condition, we assessed its statistical significance by performing nonparametric Mann-Whitney U 
tests between the neural hexasymmetries (‍H := |Ã6|‍; see also Equation 12) and the product ‍|T̃6| · Ã0‍ 
with the multipliers path hexasymmetry ‍|T̃6|‍ and average population activity ‍̃A0‍.

For the conjunctive hypothesis, we found that all three types of navigation led to significant neural 
hexasymmetries. This was the case for both ideal parameters (Mann-Whitney U tests, all U=0, all 
p<0.001) and for more realistic parameters (Mann-Whitney U tests, all U=0, all p<0.001). For star-like 
walks and piecewise linear walks, the path hexasymmetries multiplied with the average population 
activities were near zero because we designed these navigation paths to equally cover all different 
movement directions. For random walks, the path hexasymmetries multiplied with the average popu-
lation activities were at values of about 7 spk/s and showed larger variability because the directions 
of the random walks were not predefined and could thus vary with regard to their hexasymmetries. 
If the conjunctive hypothesis was true, fMRI studies should thus see a hexadirectional modulation of 
entorhinal fMRI activity for all three types of the subjects’ navigation paths.

For the repetition suppression hypothesis, we found that star-like walks and piecewise linear 
walks resulted in significant neural hexasymmetries for both ideal and weaker parameters (Mann-
Whitney U tests, all U=0, all p<0.001), whereas random walks did not (Mann-Whitney U tests, both 
U>1753, both p>0.405). For random walks, the path hexasymmetries multiplied with the average 
population activities were lower as compared to the other two hypotheses because the repetition 
suppression necessarily leads to lower average population activities. If the repetition suppression 
hypothesis was true, fMRI studies should thus observe significant neural hexasymmetries only for 
star-like walks and piecewise linear walks with long enough segments, whereas random walks (with 
large enough tortuosities, Figure 1—figure supplement 1) should not lead to significant neural 
hexasymmetries.

Regarding the structure-function mapping hypothesis, the statistical tests showed that most of 
the hypothesis conditions resulted in significant neural hexasymmetries as compared to the path 
hexasymmetries multiplied with the average population activities. This was the case for both ideal 
parameters (Mann-Whitney U tests, all U<736, all p<0.001) and more realistic parameters (Mann-
Whitney U tests for star-like walks and piecewise linear walks, all U=0, all p<0.001). Only the hypoth-
esis condition with random walks and more realistic parameters exhibited no significant neural 
hexasymmetries (Mann-Whitney U test, U=1786, p=0.472). However, these results regarding the 
structure-function mapping hypothesis should be treated with great caution. First, the neural hexas-
ymmetries for star-like walks heavily depend on the starting location of the subject relative to the 
grid fields, and different starting locations lead to different apparent grid orientations (Figure 4D). 
Second, the significant results for the navigation conditions with piecewise linear walks and random 
walks actually result from an inhomogeneous sampling of movement directions through the grid 
fields and therefore do not reflect true neural hexasymmetries (Figure 4T; see also Figure 5—figure 
supplement 2 for path hexasymmetry as a function of the number of subsampled path segments). 
Only the structure-function mapping hypothesis is susceptible to this effect because the grid fields 
are clustered at similar spatial locations (whereas the grid fields are homogeneously distributed in 
the case of the conjunctive hypothesis and the repetition suppression hypothesis). In simulations with 
infinitely long paths, the neural hexasymmetries (for the navigation types of piecewise linear walks 
and random walks) would not be significantly higher than the path hexasymmetries multiplied with 
the average population activities. In empirical studies, this effect can be detected by correlating the 
subject-specific path distances with the subject-specific neural hexasymmetries: if there is a generally 
negative relationship, this will hint at the fact that the neural hexasymmetries are basically due to 
relevant path hexasymmetries of path segments crossing the grid fields. In essence, we therefore 
believe that the structure-function mapping hypothesis leads to true neural hexasymmetry only in 
the case of star-like walks.

https://doi.org/10.7554/eLife.85742
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Influence of other factors
Our simulations above were performed in an infinite spatial environment, which is different from 
empirical studies in which subjects navigate finite environments. We were thus curious whether the 
size and shape of finite environments could affect the strength of hexadirectional modulations of 
population grid-cell activity.

Our simulations showed that for both circular and square environments, hexasymmetry strengths 
did not considerably depend on the size of the environment when the subject performed random 
walks (Figure 1—figure supplement 2). Similarly, rotating the navigation trajectories relative to the 
grid patterns did not affect the hexasymmetry strengths (Figure 1—figure supplement 3). These 
results thus suggest that experiments in animals and humans can use various types and sizes of the 
environments to investigate hexadirectional modulations of sum grid-cell activity.

Discussion
We performed numerical simulations and analytical estimations to examine how the activity of grid 
cells could potentially lead to a neural population signal in the EC. Such a neural population signal has 
been observed in multiple fMRI studies including Doeller et al., 2010; Kunz et al., 2015; Constan-
tinescu et al., 2016; Horner et al., 2016; Bellmund et al., 2016; Stangl et al., 2018; Nau et al., 
2018; Julian et al., 2018; Bierbrauer et  al., 2020; Julian and Doeller, 2021; Bongioanni et  al., 
2021; Moon et al., 2022, and in multiple iEEG/MEG studies including Maidenbaum et al., 2018; 
Chen et al., 2018; Staudigl et al., 2018; Chen et al., 2021; Wang and Wang, 2021; Convertino 
et al., 2023. The recorded population signals showed a hexadirectional modulation of the entorhinal 
fMRI/iEEG signal as a function of the subject’s movement direction through its spatial environment. 
We note though that some studies did not find evidence for neural hexasymmetry. For example, a 
surface EEG study with participants ‘navigating’ through an abstract vowel space did not observe 
hexasymmetry in the EEG signal as a function of the participants’ movement direction through vowel 
space (Kaya et al., 2020). Another fMRI study did not find evidence for grid-like representations in 
the ventromedial prefrontal cortex while participants performed value-based decision-making (Lee 
et al., 2021). This raises the question whether the detection of macroscopic grid-like representations 
is limited to some recording techniques (e.g. fMRI and iEEG but not surface EEG) and to what extent 
they are present in different tasks.

Potential mechanisms underlying hexadirectional population signals in 
the EC
We examined three hypotheses that have been previously suggested as potential mechanisms under-
lying the emergence of the hexadirectional population signal in the EC (Doeller et al., 2010; Kunz 
et al., 2019) and found that all three hypotheses can—in principle and in ideal situations—lead to a 
hexadirectional modulation of EC population activity. However, none of the three hypotheses described 
here may be true and another mechanism may explain macroscopic grid-like representations. This 
includes the possibility that neural hexasymmetry is completely unrelated to grid-cell activity, previ-
ously summarized as the ‘independence hypothesis’ (Kunz et al., 2019). For example, a population of 
HD cells whose preferred head directions occur at offsets of 60° from each other could result in neural 
hexasymmetry in the absence of grid cells. The conjunctive grid by HD cell hypothesis thus also works 
without grid cells, which may explain why grid-like representations have been observed (using fMRI) 
in regions outside the EC (Doeller et al., 2010; Constantinescu et al., 2016), where rodent studies 
have not yet identified grid cells except for some evidence of grid cells in the primary somatosensory 
cortex of foraging rats (Long and Zhang, 2021). In that case, however, another mechanism would be 
needed that could explain why the preferred head directions of different HD cells occur at multiples of 
60°. Attractor-network structures may be involved in such a mechanism, but this remains speculative 
at the current stage.

Navigation paths have a major influence on the hexadirectional 
population signal
A major observation of this study is that the way how subjects navigate through the environment has 
a major influence on whether a hexadirectional population signal can be observed. We distinguished 
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three major types of navigation: navigation with random-walk trajectories in which straight paths are 
quite short, which resembles the navigation pattern in rodents; navigation with piecewise linear trajec-
tories in which the subject navigates along straight paths combined with random sharp turns between 
the straight segments; and navigation with star-like trajectories in which the subject starts each path 
from a fixed center location and navigates along a straight path with a predetermined allocentric direc-
tion and distance. Critically, we found that the conjunctive hypothesis leads to a hexadirectional popu-
lation signal irrespective of the specific type of navigation; that the repetition suppression hypothesis 
leads to hexadirectional population signals only in the case of star-like trajectories and piecewise linear 
trajectories (but not for random trajectories); and that for the structure-function mapping hypothesis 
‘true’ hexadirectional population signals can only be observed for star-like trajectories.

The finding that the type of navigation paths influences whether a hypothesis can lead to hexadirec-
tional population signals of the EC is informative to future fMRI/iEEG studies, which could empirically 
evaluate which of the three hypotheses is most likely to be true: By asking or requiring the subjects to 
navigate in different ways through the task environments (in a star-like fashion, in a piecewise linear 
fashion, and in a random fashion), these future fMRI/iEEG studies could demonstrate whether hexa-
directional population signals are present in all three navigation conditions (speaking in favor of the 
conjunctive hypothesis); whether they are present only during star-like or piecewise linear trajectories 
(in favor of the repetition suppression hypothesis); or whether they are mainly visible for star-like 
trajectories and exhibit a systematic decrease with increasing total trajectory length for piecewise 
linear and random walks (in this case speaking in favor of the structure-function mapping hypothesis). 
We note that in our simulations, each linear path segment of a piecewise linear walk has a length that 
is 10 times larger than the grid scale. While humans performing navigation tasks exhibit straighter 
trajectories than those of rats (Doeller et al., 2010; Kunz et al., 2015; Horner et al., 2016), they 
are still more similar in scale to random walks than piecewise linear walks. Thus, when using empirical 
navigation paths from previous studies, neural hexasymmetries were significant only for the conjunc-
tive hypothesis (Figure 5—figure supplement 3). In contrast to this major effect of navigation type 
on the presence of hexadirectional signals, the size and shape of the environment did not influence 
the strength of the hexadirectional signals in a relevant manner (Figure 1—figure supplement 2 and 
Figure 1—figure supplement 3).

The structure-function mapping hypothesis predicts that in fMRI studies involving star-like walks, 
there may be up to 30° shifts in the orientation of hexadirectional modulation between neighboring 
voxels (Figure 4D). This is in contrast with the other two hypotheses, where the preferred grid orien-
tations are similar between voxels, and may differ only slightly when recording distinct grid modules 
with different grid orientations (Stensola et al., 2012).

A note on our choice of the values of model parameters
Another insight of this study is that the exact biological properties of grid cells play a major role 
regarding the question whether hexadirectional population signals can be observed. For example, 
the conjunctive hypothesis cannot lead to hexadirectional population signals if the tuning width of 
the conjunctive grid by HD cells is too broad (Figure 2E). Here, the percentage of strongly tuned 
conjunctive cells also plays a relevant role. Empirical studies in rodents found a wide range of tuning 
widths among grid cells ranging from broad to narrow (Doeller et al., 2010; Sargolini et al., 2006). 
The percentage of conjunctive cells in the EC with a sufficiently narrow tuning may thus be low. Such 
distributions (with a proportionally small amount of narrowly tuned conjunctive cells) lead to low 
values in the absolute hexasymmetry. The neural hexasymmetry in this case would be driven by the 
subset of cells with sufficiently narrow tuning widths. If this causes the neural hexasymmetry to drop 
below noise levels, the statistical evaluation of this hypothesis would change.

We also found that hexadirectional population signals emerge only if the preferred directions of the 
conjunctive cells are aligned precisely enough with the grid axes of the grid cells (Figure 2E). Further-
more, no hexadirectional population activity will emerge if the preferred head directions of conjunc-
tive grid by HD cells exhibit other types of rotational symmetry such as 10-fold rotational symmetry 
reported in recordings from rats (Keinath, 2016). Additionally, while we assumed that all conjunctive 
grid cells maintain the same preferred head direction between different firing fields, conjunctive grid 
cells have also been shown to exhibit different preferred head directions in different firing fields 
(Gerlei et al., 2020). This could lead to hexadirectional modulation if the different preferred head 
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directions are offset by 60° from each other, but will not give rise to hexadirectional modulation if the 
preferred head directions are randomly distributed. To the best of our knowledge, the distribution 
of preferred head directions was not quantified by Gerlei et al., 2020, thus this remains an open 
question. Together, it currently seems possible that grid cells and conjunctive grid by HD cells meet 
the necessary biological properties for the conjunctive hypothesis (Doeller et al., 2010), but further 
studies on the characteristics of conjunctive grid by HD cells (also in humans) will be useful because 
they may find tuning widths which are too wide or tuning curves which are not aligned with the grid 
axes.

The exact biological properties of grid cells also play a major role for the structure-function 
mapping hypothesis, which heavily relies on the property of neighboring grid cells to share a similar 
grid phase offset (i.e. a high spatial autocorrelation of grid phases) and whether there might be 
longer-range spatial autocorrelations between the grid phases (Heys et al., 2014; Gu et al., 2018). 
With the evidence at hand, it seems unlikely to us that the grid phases are clustered strongly enough 
to facilitate a hexadirectional population signal. Specifically, we found that the clustering concen-
tration parameters of grid phase offsets gleaned from existing empirical studies (Gu et al., 2018) 
produced the smallest neural hexasymmetry when compared to the other conditions we considered, 
while the neural hexasymmetries obtained from simulations randomly sampling grid phase offsets 
from a uniform distribution on the unit rhombus (that one might refer to as the ‘standard grid cell 
model’) were only slightly smaller.

Regarding realistic parameters for the repetition suppression hypothesis, we are currently not 
aware of detailed measurements of the relevant grid-cell properties (i.e. the adaptation time constant 
‍τr‍ and the adaptation weight ‍wr‍) so that it remains unclear to us to what extent the repetition suppres-
sion hypothesis is biologically plausible. Future studies may thus quantify the relevant properties of 
(human) grid cells in greater depth to help clarify which hypothesis regarding the emergence of hexa-
directional population signals may most likely be true.

Influence of grid scale on hexasymmetry
In this study, we assumed that all grid cells have the same grid spacing of 30 cm. For rats, this is at 
the lower end of grid spacing values, corresponding to the dorsal region of the medial EC (Sten-
sola et al., 2012). How would the three hypotheses perform for larger values of grid spacing? The 
conjunctive hypothesis would remain unchanged as it does not depend on grid spacing. In contrast, 
the repetition suppression hypothesis depends on the grid scale. Here, the strongest hexasymmetry 
is achieved when the adaptation time constant is similar to the average time that it takes the subject 
to move between neighboring grid fields (Figure 3B). Altering the grid scale changes this traversal 
time between grid fields and thus hexasymmetry. In Figure 3, we chose the ‘ideal’ adaptation time 
constant to maximize hexasymmetry. A change in grid scale would thus reduce hexasymmetry for 
this particular value of the adaptation time constant. As there are different grid-cell modules in the 
EC that exhibit different grid spacings (Stensola et  al., 2012), repetition suppression effects may 
vary across modules (if the adaptation time constant is not tuned in accordance with the grid scale). 
Regarding the structure-function mapping hypothesis and star-like walks, different grid spacings can 
have a major effect on neural hexasymmetry if the path segments are short compared to the grid 
scale, similar to effects of the starting location (Figure 4D); for longer path segments, altering the 
grid scale should have a smaller effect on neural hexasymmetry. For the structure-function mapping 
hypothesis, random walks and piecewise-linear walks do not lead to real neural hexasymmetries, and 
different grid spacings are thus irrelevant. Overall, different grid spacings are thus most important in 
the context of the repetition suppression hypothesis.

Another factor that might complicate the picture is an interaction of different grid scales: rodent 
grid cells have been found to be organized into four to five discrete modules with different grid scales 
(Stensola et al., 2012) and this may also be true in humans. Together with the anatomical dorsoventral 
length of the human EC (≈2 cm, Behuet et al., 2021), this means that a module might cover roughly 
4–5 mm. A typical voxel of 3 × 3 × 3 mm3 would thus either contain one or two grid modules. The case 
of a voxel containing a single module was already discussed. If a voxel contained two modules, there 
would be two subpopulations of grid cells with different grid spacings: For the structure-function 
mapping hypothesis, significant neural hexasymmetry can be achieved only for star-like trajectories. In 
this scenario, the hexasymmetry depends on the starting position of the trajectories, i.e., the center 
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position of the star (Figure 4D). Two subpopulations of grid cells from different modules essentially 
act like two individual grid cells in the context of the structure-function mapping hypothesis. Thus, 
they can either add their hexasymmetry values (e.g. when the star center is in the middle of a grid 
field for both subpopulations) or suppress each other (when the star center is in a regime of 0° grid 
phase for one subpopulation and in a regime of ±30° grid phase for the other). For the repetition 
suppression hypothesis, two populations of grid cells with the same adaptation time constant but 
different grid spacing would result in two different values of hexasymmetry, depending on the inter-
action between grid-field traversal time and adaptation time constant. The joint hexasymmetry value 
would then depend on the two subpopulation sizes. We note that the adaptation time constant might 
be tuned to match the grid spacing. This would result in high hexasymmetry values for both subpop-
ulations, and thus also for the full population.

Sources of noise
The neural hexasymmetry as defined by Equation 12 also contains contributions from the path hexas-
ymmetry of the underlying trajectory. Star-like walks and piecewise linear walks have a path hexas-
ymmetry of zero by construction. Therefore, these trajectory types do not contribute to the neural 
hexasymmetry. For random walks, the path hexasymmetry depends on the number of time steps 
‍M ‍ and the tortuosity parameter ‍σθ‍ (Figure 1—figure supplement 4). To compare the path hexas-
ymmetry to the neural hexasymmetry, the path hexasymmetry needs to be multiplied by the time-
averaged population activity. Since the path hexasymmetry ranges from 0 to 1 (Equation 14), its 
contribution to the neural hexasymmetry ranges from 0 (for a uniform sampling of movement direc-
tions) to the time-averaged population activity. For M=900,000 time steps and a tortuosity of ‍σθ = 0.5‍ 
rad/s1/2, random-walk trajectories contribute ∼0.8% of the time-averaged population activity to the 
neural hexasymmetry (Figure 1—figure supplement 4). In our simulations with an average population 
activity in the range of 103 spk/s, the 0.8% noise floor leads to a path hexasymmetry of about 8 spk/s 
(Figure 5).

Another factor that contributes noise is the finite sampling of grid phase offsets. For all our simu-
lations of the conjunctive grid by HD cell hypothesis and the repetition suppression hypothesis (and 
for control simulations of the structure-function mapping hypothesis), we sample a finite number 
of grid phase offsets from a two-dimensional von Mises distribution with a clustering concentration 
parameter ‍κs = 0‍ (equivalent to a uniform distribution on the unit rhombus). In this scenario, random 
fluctuations give rise to realizations with a non-zero sample mean clustering concentration parameter 
‍̂κs‍, which led to a corresponding mean neural hexasymmetry of 0.7 spk/s (labeled ‘standard’ and ‘star’ 
in Figure 4—figure supplement 1), even in the absence of conjunctive tuning and repetition suppres-
sion. For 1024 grid cells, this contribution is 10 times smaller than the neural hexasymmetry resulting 
from the ‘realistic’ parameters for both the conjunctive grid by HD cell hypothesis and the repetition 
suppression hypothesis (Figure 5). In the case of the structure-function mapping hypothesis, these 
fluctuations would not be considered as ‘noise’ as they directly contribute to the hexasymmetry from 
the clustering of grid phase offsets.

On the relation of firing rates and fMRI/iEEG signals
A topic that this study did not investigate is the question of how the sum signal of single neurons 
translates into fMRI and iEEG signals. In neocortical regions such as the auditory cortex, a clear linear 
relationship between single-neuron activity and fMRI activity has been observed (Mukamel et al., 
2005), but it remains elusive whether this linear relationship also applies to the EC in general and 
to entorhinal grid cells in particular. In the neighboring hippocampus, for example, the relationship 
between single-neuron activity and the fMRI signal is highly complex (Ekstrom, 2010; Kunz et al., 
2019). Future studies are needed to detail the relationship between single-neuron firing and fMRI/
iEEG signals in the EC. This would allow us to clarify whether a hexadirectional modulation of sum 
grid-cell activity directly results in a hexadirectional modulation of fMRI/iEEG activity or whether 
currently unknown factors modulate the expression of hexadirectional fMRI/iEEG signals.

Conclusion
Using numerical simulations and analytical derivations we showed that a hexadirectional neural popu-
lation signal can emerge from the activity of grid cells given the ideal conditions of three different 
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hypotheses. Whether a given hypothesis leads to a hexadirectional population signal is significantly 
influenced by the subjects’ type of navigation through the spatial environment and by the exact 
biological properties of human grid cells.

Methods
Trajectory modeling
To describe grid-cell activity as a function of time ‍t‍ during which a subject (animal or human) is exploring 
an environment, we model three distinct trajectory types. We first describe trajectory types in envi-
ronments without bounds, which are quasi-infinite, and then add rules that account for boundaries.

Environments without boundaries
The first trajectory type is a random walk ‍Xt = [xt, yt]‍, which is defined by

	﻿‍
dXt
dt

= v
[
cos(θt), sin(θt)

]
‍�

(1)

with ‍θt = σθ · Wt‍, where ‍σθ‍ controls the tortuosity of the trajectory and ‍Wt‍ is a standard Wiener 
process. In a numerical simulation with a time step ‍∆t‍, the angle is updated in each time step by 

‍θt+∆t = θt + σθ ·∆W ‍, where ‍∆W ‍ is a normally distributed random variable with variance ‍∆t‍. The vari-
able ‍v‍ depicts the (constant) speed.

The second type of navigation is a star-like walk, where the subject moves radially outward from 
a predefined origin in space at a certain angle ‍θ‍ on a straight line to a maximum distance ‍rmax‍ at a 
constant speed ‍v‍. In simulations, this movement is repeated (with the same predefined origin) for ‍Nθ‍ 
angles that are equally spaced on the interval ‍[0, 2π)‍. Within each individual radial path, the subject 
does not turn around and move back to the origin, i.e., the entire trajectory of ‍Nθ‍ radial paths is not 
continuous.

Finally, we introduce a piecewise linear walk, which is constructed by placing all the radial paths of 
the star-like walk end-to-end such that they form one single continuous trajectory of length ‍Nθ rmax‍. 
The trajectory thus consists of successive straight runs for the simulated subject, which can be inter-
preted as a random walk with a time step ‍∆t = rmax/v‍ and directions that are sampled uniformly 
without replacement from a predetermined set of angles. In comparison to the random walk and the 
star-like walk, this procedure presumably reflects the situation in human virtual-reality setups most 
closely, as participants often move along straight trajectories with intermittent turns (Doeller et al., 
2010; Kunz et al., 2015; Horner et al., 2016).

Environments with boundaries
Most virtual-reality studies in humans use finite instead of infinite spatial environments to examine 
grid-like representations. We wondered whether the size and the shape of these finite environments 
might modulate the strength of macroscopic grid-like representations obtained through one or more 
of the three hypotheses. Hence, we performed simulations not only in infinite but also in finite envi-
ronments with a given size (between one and six times the grid spacing) and shape (circle and square).

For random-walk trajectories, we enforce that the navigating subject stays within the circular or 
square environment by performing an ‘out-of-bounds check’ at each time point. This means that, after 
every time step ‍∆t‍, we measure the distance that the subject has moved outside of the boundary. 
This is done differently in square and circular environments, both of which are centered at the origin 

‍(x = 0, y = 0)‍. In the square environment, we define the variables ‍∆x‍ and ‍∆y‍ as the distance the subject 
has moved out of bounds in the ‍x‍ and ‍y‍ coordinates, respectively. Let ‍L‍ be the half of the length of 
the square’s sides. ‍∆x‍ and ‍∆y‍ are then defined as ‍∆x = max

[
|x| − L, 0

]
‍ and ‍∆y = max

[
|y| − L, 0

]
‍. For 

circular environments, let ‍R‍ be the radius of the circle, and let ‍⃗r = (x, y)‍ be the position vector of the 
subject. We then introduce the measure ‍∆r := max

[
||⃗r|| − R, 0

]
‍, such that ‍∆r‍ is non-zero only when 

the subject has moved outside of the circular boundary. If at any time point either ‍∆x‍, ‍∆y‍, or ‍∆r‍ are 
non-zero, the out-of-bounds check fails. In this case, we reject the movement in this time step and 
keep resampling a new angle ‍θt‍ (Kropff and Treves, 2008; Si et al., 2012) until the check succeeds, 
meaning that the subject has made a move that is within the boundaries of the environment. If ‍∆x‍, ‍∆y‍, 
or ‍∆r‍ remain non-zero for 50 consecutive samples of ‍θt‍, we temporarily increase the tortuosity ‍σθ‍ by 
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a factor 1.1. Without this increase in tortuosity, the subject tends to get stuck when approaching the 
boundary at angles close to the perpendicular or at the corners of the square boundary. The tortuosity 
is reset to its initial value once a valid move is made. We visually checked the random-walk trajectories, 
which show some oversampling along the boundaries, and found that they were comparable to the 
navigation trajectories in rodent studies (e.g. Hafting et al., 2005).

Implementation of grid cell activity
Following Burgess et al., 2007, the activity profile ‍Gi‍ of grid cell i (for ‍i = 1, ..., N ‍ in a population of 
‍N ‍ grid cells) is modeled as the product of three cosine waves rotated by 60° (‍= π/3‍) from each other:

	﻿‍
Gi(x, y) = Amax

8

2∏
k=0

(
1 + cos

[
4π√
3si

sin
(π

3
k + γi

) (
x − si xoff,i

)
+ 4π√

3si
cos

(π
3

k + γi

) (
y − si yoff,i

)])

‍�
(2)

where ‍Amax‍ is the grid cell’s maximal firing rate, ‍si‍ depicts the cell’s grid spatial scale (‘grid spacing’), 

‍xoff,i‍ and ‍yoff,i‍ are the phase offsets of the grid (‘grid phase’) in the two spatial dimensions (called ‍x‍ 
and ‍y‍ here), and ‍γi‍ is the orientation of the grid (‘grid orientation’); see Table 1 for numerical values 
of parameters and Figure 1A for an illustration of the three grid characteristics.

To describe the activity of many grid cells (e.g. in a voxel for an MRI scan), we sum up the firing 
rates of ‍N ‍ grid cells in Equation 2. For a given trajectory ‍Xt = [xt, yt]‍, the macroscopic activity as a 
function of time ‍t‍ is then simply described by the sum ‍

∑N
i=1 Gi(xt, yt)‍.

Implementation of the three hypotheses to explain macroscopic grid-
like representations
Here, we summarize how the activity in a population of ‍N ‍ grid cells can be described if they also 
exhibit (i) HD tuning, (ii) repetition suppression (i.e. firing-rate adaptation), or (iii) grid phases that are 
clustered across grid cells.

In all our models, the activity ‍Gi‍ of a grid cell is described by Equation 2. Different grid cells typi-
cally have different phase offsets (‍xoff,i‍, ‍yoff,i‍) but the same grid spacing ‍si := s, ∀i‍ and grid orientation 

‍γi := γ, ∀i‍ (Hafting et al., 2005; Boccara et al., 2010; Stensola et al., 2012; Gardner et al., 2022). 
We assumed that all grid cells have the same grid spacing of 30 cm.

Conjunctive grid by HD cell hypothesis
To include HD tuning in our model, we note that a given trajectory ‍Xt‍ has an angle ‍θt‍ at time ‍t‍. 
The summed firing rate, i.e., the population activity, ‍Ac‍ from ‍N ‍ such conjunctive cells can then be 
described by

	﻿‍
Ac(t) =

N∑
i=1

Gi(xt, yt) hi(θt)
‍�

(3)

where the upper index ‘c’ indicates ‘conjunctive’ and where we incorporate conjunctive grid-HD 
tuning via the (scaled by factor ‍2π‍) von Mises distribution

	﻿‍
h(θ) = 1

I(κc)
exp(κc cos(θ − µc))

‍�
(4)

with concentration parameter ‍κc‍ and preferred angle ‍µc‍. The symbol ‍I ‍ represents the modified Bessel 
function of the first kind of order 0. The parameter ‍κc‍ describes the width of the HD tuning: if ‍κc −→ ∞‍, 
the HD tuning is sharpest; the smaller ‍κc‍, the wider the HD tuning (see Figure 2); for ‍κc = 0‍, there is 
no HD tuning, and our scaling leads to ‍h(θ) ≡ 1‍. We choose the preferred angle as 

‍
µc = π

3
k + η

‍
, where 

‍k‍ is randomly drawn from ‍{0, 1, 2, 3, 4, 5}‍ and ‍η‍ is randomly drawn from a normal distribution with mean 
0 and standard deviation ‍σc‍. For ‍σc = 0‍, the directional tuning is thus centered around a multiple of 
60°. The parameter ‍σc‍ introduces jitter in the alignment of directional tuning to one of the grid axes.

We modeled the cases in which all grid cells show HD tuning (‘ideal’ case, fraction of conjunc-
tive cells: ‍pc = 1‍) as well as a more ‘realistic’ case in which only a third of the cells is conjunctive 
(‍pc = 1/3‍; Boccara et al., 2010; Sargolini et al., 2006). We note that this is an approximation, since the 
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proportion of conjunctive cells is highly variable across layers of the EC, with up to 90% conjunctive 
cells in layer V.

Repetition suppression hypothesis
To incorporate repetition suppression in the model, we add an explicit dependence of grid-cell activity 
on time ‍t‍. Specifically, we subject the firing rate ‍Gi‍ of a grid cell to an adaptation mechanism:

	﻿‍

Gr
i (xt, yt, t) = max

[
Gi(xt, yt) − wr a(t), 0

]

τr
da
dt

= Gi(xt, yt, t) − a(t) ,
‍�

(5)

where ‍a‍ depicts the adaptation variable, and ‍τr‍ and ‍wr‍ are the repetition suppression time constant 
and the weight of the suppression, respectively. The upper index ‘r’ in ‍G

r
i ‍ indicates ‘repetition 

suppression’.
The adaptation time constant ‍τr‍ is on the order of seconds. We restrict the adaptation weight ‍wr‍ 

to the interval ‍[0, 1]‍ (Figure 3B). The maximum operation ‘‍max‍’ in Equation 5 ensures that the output 
firing rate ‍G

r
i ‍ is always positive. Together, the summed firing rate ‍Ar‍ from ‍N ‍ such adapting cells can 

then be described by

	﻿‍
Ar(t) =

N∑
i=1

Gr
i (xt, yt, t) .

‍�
(6)

We note that the explicit dependence of the firing rate ‍G
r
i ‍ of grid cell i on time ‍t‍ needs to be 

considered separately for every cell for repetition suppression, which makes numerical simulations 
more computationally expensive. In contrast, the functions ‍Gi‍ (in Equation 3) and ‍hi‍ (in Equation 4) 
for the conjunctive hypothesis depend also on time but only implicitly via the location ‍[xt, yt]‍ and the 
direction ‍θt‍ of movement at time ‍t‍—and therefore the explicit time dependence of individual cells can 
be disregarded, which makes numerical simulations computationally cheaper.

Structure-function mapping hypothesis
The structure-function mapping hypothesis relies on a preferred grid phase for neighboring cells. We 
use two possible choices for the set of grid phases ‍(xoff,i, yoff,i)‍: they are either drawn from a uniform 
distribution on the unit rhombus or clustered. For clustered spatial phases, we draw ‍xoff,i‍ and ‍yoff,i‍ 
independently, each from a univariate von Mises distribution (with a defined central phase ‍µs‍ and 
concentration parameter ‍κs‍). For a grid phase drawn from a uniform distribution, we note that random 
fluctuations lead to a certain degree of clustering of the grid-phase sample (Figure 4—figure supple-
ment 1). We can describe the resulting summed activity of ‍N ‍ grid cells simply by

	﻿‍
As(t) =

N∑
i=1

Gi(xt, yt)
‍�

(7)

with the upper index ‘s’ representing ‘structure-function’.

Quantification of hexasymmetry of neural activity and trajectories
Combining the mathematical descriptions of grid cell activity for the three hypotheses (‘conjunctive’, 
‘repetition suppression’, and ‘structure-function’), we can denote the resulting population activity ‍A‍ 
of ‍N ‍ grid cells by

	﻿‍
A(t) =

N∑
i=1

Gr
i (xt, yt, t) hi(θt)

‍�
(8)

where ‍Ai(t) := Gr
i (xt, yt, t) hi(θt)‍ is the firing rate of cell i. To derive from ‍A‍ the activity as a function of 

movement (or heading) direction ‍θt‍, we focus on time steps of length ‍∆t‍ in which the trajectory is 
linear. In time step ‍m‍, i.e., for time ‍t‍ in the time interval ‍[tm, tm+1)‍ where ‍tm = m∆t‍ and ‍m‍ is an integer, 
the trajectory has the fixed angle ‍θm‍. The time-discrete mean activity ‍̄A(tm)‍ associated to this interval 
is the average of ‍A(t)‍ along the linear segment of the trajectory:
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	﻿‍
Ā(tm) = 1

∆t

ˆ tm+1

tm
dt

N∑
i=1

Gr
i (xt, yt, t) hi(θm) =

N∑
i=1

hi(θm) 1
∆t

ˆ tm+1

tm
dt Gr

i (xt, yt, t).
‍�

(9)

The integral in Equation 9 is either calculated analytically, as derived in the following section, or 
numerically. For a total number of ‍M ‍ time steps in a trajectory, the (normalized) mean activity ‍̃A(ϕ)‍ as 
a function of some head direction ‍ϕ‍ is then

	﻿‍
Ã(ϕ) = 1

M

M−1∑
m=0

δ(ϕ− θm) Ā(tm).
‍�

(10)

where ‍δ‍ is the Dirac delta distribution. With complex Fourier coefficients ‍cn‍ (with ‍n ∈ N‍) defined as

	﻿‍
cn =

ˆ 2π

0
dϕ c(ϕ) exp(−njϕ)

‍�
(11)

we can quantify the hexasymmetry ‍H ‍ of the activity of a population of grid cells as

	﻿‍
H :=

��Ã6
��=
ˆ 2π

0
dϕ Ã(ϕ) exp(−6jϕ)=

�����
1
M

M−1∑
m=0

Ā(tm) exp(−6jθm)

����� =

�����
N∑

i=1
Ãi6

�����
‍�

(12)

where ‍Ãi6‍ is the sixth Fourier coefficient of cell i. The hexasymmetry is nonnegative (‍H ≥ 0‍) and it has 
the unit spk/s (spikes per second). Furthermore, the average (over time) population activity can be 
expressed as

	﻿‍
Ã0 = 1

M

M−1∑
m=0

Ā(tm) .
‍�

(13)

The hexasymmetry ‍H ‍ could be generated by various properties of the cells, but ‍H ‍ as defined 
above contains also contributions from the hexasymmetry of the underlying trajectory. This is due to 
the fact that we sum up in Equation 10 the population activities ‍̄A(tm)‍ without taking into account the 
distribution of movement directions ‍θm‍. In this way, a hexasymmetry that is potentially contained in 
the subject’s navigation trajectory contributes to the hexasymmetry ‍H ‍ of the neural activity.

Empirical (fMRI/iEEG) studies (e.g. Doeller et al., 2010; Kunz et al., 2015; Maidenbaum et al., 
2018) addressed this problem of trajectories spuriously contributing to hexasymmetry by fitting a 
generalized linear model (GLM) to the time-discrete fMRI/EEG activity. In contrast, our new approach 
to hexasymmetry in Equation 12 quantifies the contribution of the path to the neural hexasymmetry 
explicitly, and has the advantage that it allows an analytical treatment (see next section). Comparing 
our new method with previous methods for evaluating hexasymmetry led to qualitatively identical 
statistical effects (Figure 5—figure supplement 4).

To nevertheless be able to quantify how much a specific trajectory contributed to the neural hexas-
ymmetry ‍H =

∣∣Ã6
∣∣
‍, we also explicitly quantified the hexasymmetry of navigation trajectories and inter-

preted ‍H ‍ relative to the path hexasymmetry. To quantify the hexasymmetry of a trajectory, we used 
the same approach as in Equation 10 and defined the distribution of movement directions of the 
trajectory by

	﻿‍
T̃(ϕ) = 1

M

M−1∑
m=0

δ(ϕ− θm).
‍�

(14)

The path hexasymmetry of the trajectory is then 
‍
|T̃6| :=

��� 1
M
∑M−1

m=0 exp(−6jθm)
���
‍
, which is similar to 

Equation 12. The path hexasymmetry is a unitless quantity, and ranges from 0 (for a uniform sampling 
of movement directions) to 1 (when only one movement direction is sampled).

To be able to estimate how much of the hexasymmetry ‍H ‍ of neuronal activity is due to the hexas-
ymmetry of the trajectory, we compare the relative hexasymmetry of the activity, ‍

∣∣Ã6/Ã0
∣∣
‍, with the 

relative hexasymmetry of the trajectory, ‍
∣∣T̃6/T̃0

∣∣
‍, noting that ‍̃T0 ≡ 1‍. The two terms being similar in 

magnitude, i.e., ‍
∣∣Ã6/Ã0

∣∣ ≈ ∣∣T̃6
∣∣
‍, indicates that the trajectory is a major source of hexasymmetry whereas 

‍H =
∣∣Ã6

∣∣ ≫ Ã0
∣∣T̃6

∣∣
‍ suggests that hexasymmetry has a neural origin.

https://doi.org/10.7554/eLife.85742
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Analytical derivation of mean activity
In the following, we provide derivations that allow us to analytically integrate Equation 9 for the 
conjunctive grid by HD cell hypothesis and the structure-function mapping hypothesis but not for the 
repetition suppression hypothesis. The respective results are shown in Figure 2B–H and Figure 4A–C, 
demonstrating that they are very similar to the numerical results.

We analytically calculate the mean activity ‍̄A‍ by averaging ‍A‍ along a linear segment of a trajectory 
(Equation 9). For convenience, the following abbreviations are used in Equation 2 with the same grid 
spacing, ‍si = s‍, and the same grid orientation, ‍γi = γ‍, for all cells i:

	﻿‍
a := 4π√

3s‍�
(15)

	﻿‍ bx,i := s xoff,i, by,i := s yoff,i‍� (16)

	﻿‍
ck,x := sin

(π
3

k + γ
)

, ck,y := cos
(π

3
k + γ

)
.
‍� (17)

A single grid cell
We start with a single grid cell without HD tuning and without repetition suppression. Equation 2 can 
be described in polar coordinates

	﻿‍
Gi(rt,ψt) = Amax

8

2∏
k=0

(
1 + cos

[
a ck,x

(
rt cos(ψt) − bx,i

)
+ a ck,y

(
rt sin(ψt) − by,i

)])
.
‍�

(18)

In order to integrate along a piece of a straight line through the origin (similarly to the star-like 
walk), the angle ‍ψt ≡ ψ̄‍ can now be kept fixed (for that particular straight line) and we only have to 
consider ‍Gi(rt, ψ̄)‍. If we define ‍rm‍ and ‍rm+1‍ as the distances from zero that the subject is located at 
times ‍tm‍ and ‍tm+1‍ respectively, integration by substitution gives us

	﻿‍

ˆ tm+1

tm
dt r′t Gi(rt, ψ̄) =

ˆ rm+1

rm

dr Gi(r, ψ̄).
‍�

(19)

Since the speed of movement ‍r
′
t ≡ v‍ is assumed to be constant along the whole trajectory and 

‍∆r = v∆t‍, for ‍∆r := rm+1 − rm‍, we obtain

	﻿‍

1
∆t

ˆ tm+1

tm
dt Gi(rt, ψ̄) = 1

∆t
· 1

v

ˆ rm+1

rm

dr Gi(r, ψ̄) = 1
∆r

ˆ rm+1

rm

dr Gi(r, ψ̄).
‍�

(20)

Thus, we have

	﻿‍
Ā(tm) = 1

∆r

ˆ rm+1

rm

dr Gi(r, ψ̄) =
‍�

(21)

	﻿‍
= 1

∆r
Amax

8

ˆ rm+1

rm

dr
2∏

k=0

(
1 + cos

[
a ck,x

(
r cos(ψ̄) − bx,i

)
+ a ck,y

(
r sin(ψ̄) − by,i

)])
=

‍�
(22)

	﻿‍

= 1
∆r

Amax
8

( ˆ rm+1

rm

dr 1
� �� �

=:(A)

+
2∑

k=0

ˆ rm+1

rm

dr zk(r)
� �� �

=:(Bk)

+
ˆ rm+1

rm

dr z0(r)z1(r)
� �� �

=:(C0,1) ‍�

(23)

	﻿‍

+
ˆ rm+1

rm

dr z0(r)z2(r)
� �� �

=:(C0,2)

+
ˆ rm+1

rm

dr z1(r)z2(r)
� �� �

=:(C1,2)

+
ˆ rm+1

rm

dr z0(r)z1(r)z2(r)
� �� �

=:(D)

)
,

‍�

(24)

where ‍zk(r) := cos
[
a ck,x

(
r cos(ψ̄) − bx,i

)
+ a ck,y

(
r sin(ψ̄) − by,i

)]
‍. The four parts (A)–(D) are integrated 

separately. We obtain

	﻿‍
(A) = r

∣∣∣
rm+1

rm ‍�
(25)

https://doi.org/10.7554/eLife.85742
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	﻿‍

(Bk) =





sin(r dk − ek) · 1
dk

∣∣∣
rm+1

rm
if dk ̸= 0

cos(ek)r
∣∣∣
rm+1

rm
if dk = 0

‍�

(26)

	﻿‍

(Ck,l) =





1
2

[
sin(r(dk + dl) − (ek + el))

1
dk + dl

+ sin(r(dk − dl) − (ek − el))
1

dk − dl

] ���rm+1

rm
if dk ̸= ±dl

[
sin(2r dk − ek − el) + 2r dk cos(ek − el)

]
·

1
4dk

���rm+1

rm
if dk = dl ̸= 0

[
sin(2r dk − ek + el) + 2r dk cos(ek + el)

]
·

1
4dk

���rm+1

rm
if dk = −dl ̸= 0

r cos(ek) cos(el)
���rm+1

rm
if dk = dl = 0

‍�

(27)

	﻿‍

(D) =
1
4
∑

ϵ1,ϵ2∈{−1,1}

[(
1 − [[d0 + ϵ1d1 + ϵ2d2 = 0]]

)
sin

(
(d0 + ϵ1d1 + ϵ2d2)r − (e0 + ϵ1e1 + ϵ2e2)

) 1
d0 + ϵ1d1 + ϵ2d2

+ [[d0 + ϵ1d1 + ϵ2d2 = 0]] cos(e0 + ϵ1e1 + ϵ2e2)r
] ����

rm+1

rm ‍�

(28)

where 

‍

[[Q]] :=





1 if Q is true

0 else
‍

 is the Iverson bracket, and with the abbreviations

	﻿‍ dk = a
(
ck,x cos(ψ̄) + ck,y sin(ψ̄)

)
‍� (29)

	﻿‍ ek = a (ck,x bx,i + ck,y by,i)‍.� (30)

Note that ‍ek‍ actually depends on the cell index i which is omitted in Equation 25 and Equation 28 
in order to keep the notation simpler.

HD tuning
For a conjunctive grid by HD cell, the HD tuning depends only on the angle (which is fixed when inte-
grating along a straight line through zero) and not at all on the distance from zero. The mean activity 
is thus obtained from the mean activity of a grid cell without HD tuning by multiplying it with ‍h(θ)‍ 
defined in Equation 4:

	﻿‍

1
∆r

ˆ rm+1

rm

dr Gi(r, ψ̄)hi(ψ̄) = 1
∆r

hi(ψ̄)
ˆ rm+1

rm

dr Gi(r, ψ̄).
‍�

(31)

Many cells
For more than one cell, the total mean activity (population rate) can simply be calculated as the sum 
of the mean activities of the single cells

	﻿‍

1
∆r

ˆ rm+1

rm

dr
N∑

i=1
Gi(r, ψ̄)hi(ψ̄) = 1

∆r

N∑
i=1

hi(ψ̄)
ˆ rm+1

rm

dr Gi(r, ψ̄).
‍�

(32)

Trajectories
The derived analytical description of the mean activity can be applied only to pieces of linear trajec-
tories through zero. For the star-like walk, we can simply integrate

	﻿‍

1
rmax

ˆ rmax

0
dr Gi(r, θ) for θ ∈

{
0, 2π

Nθ
, 2 2π

Nθ
. . .

}
.
‍�

(33)

Piecewise linear trajectories and random-walk trajectories consist of segments of straight lines that 
do not necessarily pass through zero. In order to integrate along the ‍m‍-th segment of a trajectory 
from ‍(xtm , ytm )‍ to ‍(xtm+1 , ytm+1 )‍ with movement direction ‍θm‍, we shift this path segment to the origin by 
subtracting ‍(xtm , ytm )‍ from the grid offset ‍(xoff, yoff)‍ and then integrating

	﻿‍

1
rm+1

ˆ rm+1

0
dr Gi(r, θm),

‍�
(34)

where ‍rm+1 =
√

(xtm+1 − xtm )2 + (ytm+1 − ytm )2 ‍.

https://doi.org/10.7554/eLife.85742
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Upper bound for hexasymmetry of path trajectories
In the following we derive approximations for the expected value of the hexasymmetry ‍

∣∣T̃6
∣∣
‍ of a path 

trajectory described by the number of time steps ‍M ‍, the movement tortuosity ‍σθ‍, and the time step 
size ‍∆t‍. These approximations can be used to assess the contribution of the underlying trajectory to 
the overall hexasymmetry of neural activity.

From the definition of the Fourier coefficients in Equation 11 and the movement direction distri-
bution in Equation 14, we get the sixth Fourier coefficient of a trajectory:

	﻿‍

T̃6 =
´ 2π

0 dϕ 1
M

M−1∑
m=0

δ(ϕ− θm) exp(−6jϕ)

= 1
M

M−1∑
m=0

exp(−6jθm) = 1
M

(
M−1∑
m=0

cos(6 θm) − j
M−1∑
m=0

sin(6 θm)

)
.
‍�

(35)

The hexasymmetry of the trajectory can thus be expressed as

	﻿‍

��T̃6
�� = 1

M

�����
(M−1∑

m=0
cos(6 θm)

)2

+

(M−1∑
m=0

sin(6 θm)

)2

.
‍�

(36)

We simplify the sum of squares in Equation 36

	﻿‍

(
M−1∑
m=0

cos(6 θm)

)2

+

(
M−1∑
m=0

sin(6 θm)

)2

=
M−1∑
m=0

(cos(6 θm))2 + 2
M−1∑
m1=0

M−1∑
m2=m1+1

cos(6 θm1 ) cos(6 θm2 )

+
M−1∑
m=0

(sin(6 θm))2 + 2
M−1∑
m1=0

M−1∑
m2=m1+1

sin(6 θm1 ) sin(6 θm2 )

= M +
M−1∑
m1=0

M−1∑
m2=0

m2 ̸=m1

cos(6 (θm1 − θm2 ))

‍�

(37)

with the help of the multinomial theorem and the trigonometric identity 

‍cos(α− β) = cos(α) cos(β) + sin(α) sin(β)‍. If ‍E
(
cos(6(θm1 − θm2 ))

)
‍ is known, we can compute the 

expected value of the square of the hexasymmetry of the path trajectory as

	﻿‍

E
(��T̃6

��2) = E


 1

M2


M +

M−1∑
m1=0

M−1∑
m2=0

m2 ̸=m1

cos(6 (θm1 − θm2 ))







= 1
M2


M +

M−1∑
m1=0

M−1∑
m2=0

m2 ̸=m1

E
(
cos(6(θm1 − θm2 ))

)



‍�

(38)

As ‍E(X2) = (E(X))2 + Var(X)‍ for any random variable ‍X ‍, we can use the result in Equation 38 to 
obtain the upper bound

	﻿‍
E
(��T̃6

��) ≤
√

E
(��T̃6

��2).
‍�

(39)

In the following, we focus on the derivation of ‍E
(
cos(6(θm1 − θm2 ))

)
‍. Using the movement statistics

	﻿‍ ∆W ∼ N (0,∆t)‍� (40)

	﻿‍ θt+∆t = θt + σθ∆W ‍� (41)

that were introduced below Equation 1, the distribution of ‍θm‍ (after ‍m‍ time steps) can be derived 
when we start at some angle ‍θ0‍:

https://doi.org/10.7554/eLife.85742
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	﻿‍

θ1 = θ0 + σθ∆W ∼ WN
(
θ0,σ2

θ∆t
)

,

θ2 = θ1 + σθ∆W ∼ WN
(
θ0, 2σ2

θ∆t
)

...

θm ∼ WN
(
θ0, mσ2

θ∆t
)

‍�

(42)

where ‍WN (µ,σ2)‍ denotes the wrapped normal distribution with parameters μ and ‍σ2‍, which corre-
spond to the mean and variance of the corresponding unwrapped distribution (Jammalamadaka and 
SenGupta, 2001).

In the following, we will derive the probability distribution of ‍θm1 − θm2‍. We first define 

‍Xm1 ∼ N (θ0, m1σ
2
θ∆t)‍ and ‍Xm2 ∼ N (θ0, m2σ

2
θ∆t)‍ as the unwrapped versions of ‍θm1‍ and ‍θm2‍, respectively, 

and ‍GXm1−Xm2‍ as the distribution function of their difference ‍Xm1 − Xm2‍. Then, the distribution function 
(Fisher, 1995) of ‍θm1 − θm2‍ reads as

	﻿‍
Fθm1−θm2

(z) =
∞∑

k=−∞

[
GXm1−Xm2

(z + 2πk) − GXm1−Xm2
(2πk)

)

‍�
(43)

	﻿‍

=
∞∑

k=−∞




¨

x−y≤z+2πk

fXm1 ,Xm2
(x, y)dx dy −

¨

x−y≤2πk

fXm1 ,Xm2
(x, y)dx dy



‍�

(44)

	﻿‍
=

∞∑
k=−∞

[ˆ ∞

−∞

ˆ z+2πk+y

−∞
fXm1 ,Xm2

(x, y)dx dy −
ˆ ∞

−∞

ˆ 2πk+y

−∞
fXm1 ,Xm2

(x, y)dx dy

]

‍�
(45)

	﻿‍
=

∞∑
k=−∞

ˆ ∞

−∞

ˆ z+2πk+y

2πk+y
fXm1 ,Xm2

(x, y) dx dy
‍�

(46)

where ‍fXm1 ,Xm2
(x, y)‍ is the joint probability distribution.

In order to calculate the distribution of ‍θm1 − θm2‍, we have to take the dependence between the 
two angles ‍θm1‍ and ‍θm2‍ into account. We will first consider the case ‍m1 > m2‍. In this case, the condi-
tional distribution of ‍θm1‍ given ‍θm2 = y‍ is wrapped normal with conditional mean ‍E(θm1 |θm2 = y) = y‍ and 
conditional variance ‍Var(θm1 |θm2 = y) = (m1 − m2)σ2

θ∆t‍. The same can be said about the unwrapped 
versions of ‍θm1‍ and ‍θm2‍. We will use this result to calculate the joint probability distribution

	﻿‍ fXm1 ,Xm2
(x, y) = fXm1

(x|Xm2 = y)fXm2
(y).‍� (47)

By applying the Leibniz integral rule in ‍(∗)‍ we obtain the probability density of ‍θm1 − θm2‍:

	﻿‍
fθm1−θm2

(z) = d
dz

Fθm1−θm2
(z) = d

dz

∞∑
k=−∞

ˆ ∞

−∞

ˆ z+2πk+y

2πk+y
fXm1 ,Xm2

(x, y) dx dy
‍�

(48)

	﻿‍

(∗)=
∞∑

k=−∞

ˆ ∞

−∞
fXm1 ,Xm2

(z + 2πk + y, y) dy
‍�

(49)

	﻿‍
=

∞∑
k=−∞

ˆ ∞

−∞
fXm1

(z + 2πk + y|Xm2 = y)fXm2
(y) dy

‍�
(50)

	﻿‍
=

∞∑
k=−∞

ˆ ∞

−∞

1
σθ

√
2π(m1 − m2)∆t

exp

(
− (z + 2πk + y − y)2

2(m1 − m2)σ2
θ∆t

)

‍�
(51)

	﻿‍
· 1
σθ

√
2πm2∆t

exp

(
− (y − θ0)2

2m2σ
2
θ∆t

)
dy

‍�
(52)

	﻿‍

=
∞∑

k=−∞

[
1

σθ
√

2π(m1 − m2)∆t
exp

(
− (z + 2πk)2

2(m1 − m2)σ2
θ∆t

)]
·
ˆ ∞

−∞
fXm2

(y) dy.
� �� �

=1 ‍�

(53)

For ‍m2 > m1‍, we derive in the same way as above

https://doi.org/10.7554/eLife.85742
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	﻿‍

fθm1−θm2
(z) =

∑∞
k=−∞

´∞
−∞ fXm1

(z + 2πk + y)fXm2
(y|Xm1 = z + 2πk + y) dy

=
∑∞

k=−∞
1

σθ
√

2π(m2 − m1)∆t
exp

(
− (z + 2πk)2

2(m2 − m1)σ2
θ∆t

)
.

‍�

(54)

Finally, for ‍m2 = m1‍, we have ‍θm2 = θm1‍. Altogether, we thus get

	﻿‍
θm1 − θm2 ∼ WN

(
0, |m1 − m2|σ2

θ∆t
)

.
‍� (55)

In order to calculate an upper bound for the average path hexasymmetry, we will now use Equa-
tion 55 in Equation 38. Since ‍E(ℜ(Z)) = ℜ(E(Z))‍ for a complex random variable ‍Z ‍ and the ‍n‍ th moment 
of a wrapped normal distribution with parameters μ and ‍σ2‍ is ‍E(exp(j X)n) = exp(j nµ− 1

2 n2σ2)‍, we can 
derive

	﻿‍

E
(
cos(6(θm1 − θm2 ))

)
= E

(
ℜ
(
exp(j 6 (θm1 − θm2 ))

))
= ℜ

(
E
(

exp(j (θm1 − θm2 ))6
))

= ℜ
(

exp
(

j 6µm1,m2 −
1
2

36σ2
m1,m2

))
= exp

(
−1

2
36σ2

m1,m2

)
,
‍�

(56)

where ‍µm1,m2 := 0‍ and ‍σ
2
m1,m2 := |m1 − m2|σ2

θ∆t‍. We thus obtain

	﻿‍

E
(��T̃6

��2) = 1
M2


M +

M−1∑
m1=0

M−1∑
m2=0

m2 ̸=m1

exp
(
−1

2
36σ2

m1,m2

)



= 1
M2

(
M +

∑M−1
m1=0

∑M−1
m2=0

m2 ̸=m1

exp
(
−1

2
36

��m1 − m2
��σ2

θ∆t
))

.
‍�

(57)

The solid lines in Figure 1—figure supplement 4 show the square root of Equation 57 (Equation 
39).

From Equation 57 we can derive simplified approximations for two limiting cases. For convenience, 
we use ‍α := 1

2 36σ2
θ∆t‍. First, if ‍α ≫ 1‍, i.e., if the new direction after one step is almost uniformly 

distributed or independent of the previous direction, we can neglect the double sum and we have

	﻿‍
E
(��T̃6

��) ≤ 1√
M

.
‍�

(58)

The corresponding line is shown in red in Figure 1—figure supplement 4. Note that in Figure 1—
figure supplement 4 (with simulation step size ‍∆t = 0.01‍ s), ‍α ≫ 1‍ corresponds to ‍σθ ≫ 2.36‍. A 
comparison with results from numerical simulations shows that for any ‍σθ > 3.5‍ Equation 58 consti-
tutes a viable upper bound of the mean path hexasymmetry.

Second, we assume ‍Mα ≫ 1‍, i.e., the direction after ‍M ‍ steps is almost independent from the orig-
inal direction. The double sum in Equation 57 can then be approximated:

	﻿‍

M−1∑
m1=0

M−1∑
m2=0

m2 ̸=m1

exp
(
−α

��m1 − m2
��) = 2
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m1=0
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(
−α

��m1 − m2
��)

‍�

(59)

	﻿‍
= 2
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m=1

(M − m) exp
(
−αm

)
≈ 2

∞∑
m=1

(M − m) exp
(
−αm

)
‍�

(60)

	﻿‍
= 2

(
M

( ∞∑
m=0

(
exp

(
−α

))m − 1

)
−

∞∑
m=1

m
(
exp(−α)

)m
)

‍�
(61)

	﻿‍
= 2

(
M

exp(α) − 1
− exp(α)(

exp(α) − 1
)2

)
,
‍�

(62)

where the first series in Equation 61 is a geometric series and the second series is the polylogarithm 
function of order –1. We further approximate
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	﻿‍
2

(
M

exp(α) − 1
− exp(α)(

exp(α) − 1
)2

)
≈ 2M

exp(α) − 1
.
‍�

(63)

For ‍α ≪ 1‍, the error in the last approximation is 
‍

exp(α)(
exp(α)−1

)2 ≈ 1+α
α2

‍
, which, if ‍Mα ≫ 1‍, is negligible 

compared to the remaining term ‍
M

exp(α)−1‍. Since ‍
exp(α)

exp(α)−1‍ is a strictly monotonically decreasing function 
of ‍α‍, this approximation does not only hold for ‍α ≪ 1‍ but is good in general.

Inserting Equation 63 into Equation 57 gives

	﻿‍
E
(��T̃6

��2) = 1
M2

(
M + 2M

exp(α) − 1

)
= 1

M

(
1 + 2

exp(α) − 1

)
.
‍�

(64)

Hence, we get the approximation (for ‍Mα ≫ 1‍)

	﻿‍
E
(��T̃6

��) ≲
√

1
M

(
1 + 2

exp(α) − 1

)
.
‍�

(65)

This expression is used to compute the dashed lines in Figure 1—figure supplement 4, which all 
have slope ‍1/

√
M ‍ but a prefactor that depends on ‍α = 18σ2

θ∆t‍.
For ‍α ≪ 1‍ (but still ‍Mα ≫ 1‍), we can use in Equation 64 the first-order Taylor expansion of the 

exponential function at 0 to obtain

	﻿‍

1
M

(
1 + 2

exp(α) − 1

)
≈ 1

M

(
1 + 2

α

)
≈ 1

M
· 2
α

= 1
M

· 1
9σ2

θ∆t
.
‍�

(66)

Hence, the path hexasymmetry for ‍α ≪ 1‍ and ‍Mα ≫ 1‍ can be approximated by

	﻿‍
E
(��T̃6

��) ≲ 1√
M

· 1
3σθ

√
∆t

,
‍�

(67)

which allows us to see how the key variables ‍M ‍, ‍σθ‍, and ‍∆t‍ interact in this limiting case. For instance, 
given a certain trajectory ‍A‍ with ‍MA‍ steps and random-walk parameters ‍σθA‍ and ‍∆tA‍, we can use 
Equation 67 to derive how many steps ‍MB‍ are necessary in a second trajectory ‍B‍ with parameters 

‍σθB‍ and ‍∆tB‍ to achieve the same mean path hexasymmetry. From Equation 67, we know that the two 
path hexasymmetries will have the same upper bound if

	﻿‍

1√
MA

· 1
3σθA

√
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= 1√
MB

· 1
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√
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⇔ MB
MA

=
σ2
θA∆tA

σ2
θB∆tB

.
‍�

(68)

Hence, the number of time steps ‍MA‍ has to be multiplied by a factor 
‍
∆M := σ2

θA∆tA
σ2
θB∆tB ‍

:

	﻿‍ MB = ∆M · MA.‍� (69)

We illustrate the above considerations with an example: Let ‍σθA = 1rad/s1/2
‍, ‍σθB = 0.5rad/s1/2

‍, and 

‍∆tA = ∆tB = 0.01‍ s. From the given values, we obtain

	﻿‍
∆M =

σ2
θA∆tA

σ2
θB∆tB

= 1
0.25

= 4.
‍�

(70)

Thus, the mean hexasymmetry value of a trajectory with ‍σθA = 1‍ after ‍MA‍ time steps is the same as 
the mean hexasymmetry value of a trajectory with ‍σθB = 0.5‍ after ‍MB = 4 · MA‍ time steps. Results from 
numerical simulations of path hexasymmetries, shown in Figure 1—figure supplement 4, support the 
derived theoretical approximations.

Random-field simulations
To quantitatively evaluate the structure-function mapping hypothesis, we set out to simulate a set 
of grid cells in three-dimensional anatomical space. The grid phases associated with these grid cells 
follow the correlation structure suggested by Gu et al., 2018, and Heys et al., 2014. Our aim is to 
quantify the clustering of grid phases for a realistically sized fMRI voxel given this correlation structure.
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We use a three-dimensional representation of a voxel with a volume of 3 × 3 × 3 mm3. Within 
this voxel, we define a grating of 2003 potential grid cells that are equally spaced in the voxel, with 
a distance between neighboring cells of 15 μm along the axes of the grating. To generate a set of 
random but spatially correlated grid phases on this area, we first define two random unit vectors in 
the complex plane, ‍Z1‍ and ‍Z2‍, for each of the 2003 potential grid cells in the voxel; angles of the 
unit vectors are thus drawn from a uniform distribution on the interval ‍[0, 2π)‍. ‍Z1‍ and ‍Z2‍ are further 
resolved into their real and imaginary components ‍Re(Zi)‍ and ‍Im(Zi)‍, respectively, where ‍i ∈ {1, 2}‍. 
To generate correlations between grid phases, we then convolve the two resulting gratings of 2003 
components separately with either a Gaussian kernel (Figure 4K) or a grid kernel (Figure 4O) to yield 
the convolved components ‍Re(Ẑi)‍ and ‍Im(Ẑi)‍. The grid phases can be obtained by first calculating the 
angles of the new set of complex numbers and normalizing the result by ‍2π‍:

	﻿‍

x̂off = arg(Ẑ1)
2π

ŷoff = arg(Ẑ2)
2π

.
‍�

(71)

We note that ‍̂xoff ‍ and ‍̂yoff ‍ are defined on the interval ‍[0, 1)‍ and correspond to the grid phases of a 
single grid cell mapped to the unit square. Transforming the result to the unit rhombus yields the grid 
phases ‍xoff ‍ and ‍yoff ‍ in the ‍x‍ and ‍y‍ direction respectively:

	﻿‍

xoff = x̂off + ŷoff
2

yoff =
√

3
2

ŷoff ‍�

(72)

To find the average pairwise grid phase distances as a function of the pairwise anatomical distances, 
108 pairs of grid cells are sampled randomly from the uniform distribution defined on the discrete 
space of grating cell positions. The Euclidean distance in anatomical space between the two grid cells 
in each pair is calculated and sorted into 50 bins of equal width on the interval [10, 500] μm. Then, for 
each pair of grid cells, ‍n1‍ and ‍n2‍, eight copies of the grid phase ‍(xoff,2, yoff,2)‍ of the second cell ‍n2‍ are 
made, which are offset from the initial position of the grid phase such that they are positioned at the 
same phase within unit rhombi laid end-to-end on a 3 × 3 grid. The minimum distance between the 
grid phase of the cell ‍n1‍ and the grid phase of each of the copies of the cell ‍n2‍ is taken as the pairwise 
phase distance. Finally, the pairwise distance between grid phase offsets per distance bin is obtained 
by taking the mean over all grid cell pairs whose Euclidean distance in anatomical space falls into the 
corresponding bin (Figure 4H, L, and P).

To estimate the clustering concentration parameter ‍κs‍ in Figure 4, the phases ‍̂xoff ‍ and ‍̂yoff ‍ are mapped 
to a circular distribution by multiplying them with ‍2π‍. The sets of grid phases 

‍

{
2πx̂i

off | i ∈ {1, 2, ..., N}
}

‍
 

and 
‍

{
2πŷi

off | i ∈ {1, 2, ..., N}
}

‍
 are then each separately fit to a one-dimensional von Mises distribution 

to obtain a clustering concentration parameter for each axis. The final value of ‍κs‍ is taken as the 
average of these two values.

Parameter estimation
The hexasymmetry values of the tested hypotheses depend on the respective parameters. We inves-
tigate two scenarios for each hypothesis: an ‘ideal’ set of parameters that results in a large (basically 
maximal) hexasymmetry value and a ‘realistic’ set of parameters that we try to derive from experi-
mental data. All sets of parameters are summarized in Table 1, i.e., the symbols are introduced and 
defined, and parameter values and units are stated. We comment here on the ‘realistic’ sets of param-
eters and how we derived them.

Conjunctive grid by HD hypothesis
For the ‘realistic’ value of ‍σc = 3◦‍, we use the 95% confidence interval of 12.4° from the third row 
of the table in the Supplementary Figure 5b of Doeller et al., 2010, and translate this value to a 
Gaussian standard deviation, assuming a 95% confidence interval of ‍4σc‍.

For the ‘realistic’ value of ‍κc = 4‍, we refer to the Supplementary Figure 3 of Doeller et al., 2010. 
Visually, the tuning curves usually cover between one sixth and one third of the circle. Stronger HD 
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tuning contributes the most to the resulting hexasymmetry, so we choose a value of ‍κc = 4‍, which 
corresponds to a tuning width of roughly one sixth of the circle. For further discussion on ‍κc‍, see also 
Figure 2—figure supplement 1.

The ‘realistic’ value of ‍pc = 1/3‍ was chosen based on the values reported by Sargolini et al., 2006, 
and Boccara et  al., 2010. In our simulations, we observed that the hexasymmetry shows a linear 
dependence on the fraction of conjunctive cells up to a noise floor (Figure 2—figure supplement 2).

Repetition suppression hypothesis
To obtain ‘realistic’ parameter values, we simply divide the ‘ideal’ ones by two, which results in a ‘real-
istic’ adaptation time constant ‍τr = 1.5‍ s and a ‘realistic’ adaptation weight ‍wr = 0.5‍. ‘Ideal’ parameter 
values attenuate the firing rate by ≈20% (Figure 3A, with 24% when running aligned with the grid 
axes and 18% when running misaligned to the grid axes). ‘Realistic’ parameter values attenuate firing 
rates by ≈16% (for a dependence of hexasymmetry on the two parameters, see Figure 3B). Such a 
decrease has a similar order of magnitude as the attenuation of 5% of firing rates in Reber et al., 2023 
(their Figure 2B, right). The value of the ‘realistic’ time constant is also comparable to the time scales 
found in two electrophysiological studies: first, Giocomo and Hasselmo, 2008, showed that the time 
constant in the slow component of the hyperpolarization-activated current (‍Ih‍) in the ventral mEC is 
2–3 s (their Figure 2F). Second, Magistretti and Alonso, 1999, found a second-long inactivation of a 
persistent sodium current in EC layer II cells.

Structure-function mapping hypothesis
The ‘realistic’ value of the concentration parameter for clustering, ‍κs = 0.1‍, is derived from the random-
field simulations in Figure 4G–S and a comparison to results in Gu et al., 2018, and Heys et al., 2014. 
Figure 4G in Gu et al., 2018, shows for grid cells in the rat mEC the relationship between their pairwise 
physical distance and their pairwise phase distance. Similarly, for grid cells in the mouse mEC, Heys 
et al., 2014, in their Figure 4B show the correlation of (one-dimensional) grid firing maps as a function 
of anatomical pairwise distance between grid cells. Together, these data serve as evidence for more 
similar grid cell firing for anatomically close grid cells (distance <100 μm)—with decreasing similarity 
for increasing anatomical distance. In our random-field simulations (Figure 4), we mimic these exper-
imental results by choosing the width of a spatial correlation kernel accordingly (Figure 4K, Gaussian 
kernel with standard deviation: 30 μm). Consequently, in the simulations, the initial rise of phase 
distance as a function of anatomical distance (Figure 4L) reflects the experimental curves. In Gu et al.’s 
Figure 4G there is a slight increase in grid-firing similarity (decrease of phase distance) for anatomical 
distances of approximately 300 μm. In our simulations, we reflect such a non-monotonous behavior 
by introducing a grid-like correlation kernel (Figure 4O) with a grid spacing of 300 μm. Applying this 
grid-like correlation kernel to the random field in Figure 4G results in a phase-distance curve with a 
slight dip around 300 μm (Figure 4P), just like in the experimental curves in Gu et al., 2018. For both 
cases, the Gaussian kernel and the grid-like kernel, we find that the resulting phase clustering for an 
anatomical voxel of realistic size is quite low, i.e., ‍κs‍ is well below 0.1 (Figure 4M and Q). As it poses 
an upper bound for the realistic values of ‍κs‍, we use 0.1 as an estimate of the ‘realistic’ value for ‍κs‍ in 
our further simulations. For the central phase of the cluster, we always use (without loss of generality) 
the origin: ‍µs = (0, 0)‍.

Implementation of previously used metrics
We applied three previously used metrics to our framework: the GLM method by Doeller et al., 2010; 
the GLM method with binning by Kunz et al., 2015, the circular-linear correlation method by Maid-
enbaum et al., 2018; Figure 5—figure supplement 4.

In brief, in the GLM method (e.g. used in Doeller et al., 2010), the hexasymmetry is found in 
two steps: the orientation of the hexadirectional modulation is first estimated on the first half of the 
data by using the regressors ‍β1 cos(6θt)‍ and ‍β2 sin(6θt)‍ on the time-discrete fMRI activity (Equation 
9), with ‍θt‍ being the movement direction of the subject in time step ‍t‍. The amplitude of the signal 
is then estimated on the second half of the data using the single regressor ‍β cos[6(θt − ϕ)]‍, where 

‍ϕ = arctan(β2/β1)/6‍. The hexasymmetry is then evaluated as ‍H = β/2‍.
The GLM method with binning (e.g. used in Kunz et al., 2015) uses the same procedure as the 

GLM method for estimating the grid orientation in the first half of the data, but the amplitude is 
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estimated differently on the second half by a regressor that has a value 1 if ‍θt‍ is aligned with a peak 
of the hexadirectional modulation (aligned if ‍|θt − ϕ| % 60◦ < 15◦‍, % modulo operator) and a value of 
−1 if ‍θt‍ is misaligned. The hexasymmetry is then calculated from the amplitude in the same way as the 
GLM method.

The circular-linear correlation method (e.g. used in Maidenbaum et al., 2018) is similar to the GLM 
method in that it uses the regressors ‍β1 cos(6θt)‍ and ‍β2 sin(6θt)‍ on the time-discrete mean activity, but 

instead of using ‍β1‍ and ‍β2‍ to estimate the orientation of the hexadirectional modulation, the beta 

values are directly used to estimate the hexasymmetry using the relation ‍H =
√

β2
1 + β2

2 /2‍.
Regarding the statistical evaluation, each method evaluates the size of the neural hexasymmetry 

differently. Specifically, the new method developed in our manuscript compares the neural hexasym-
metry to path hexasymmetry to test whether neural hexasymmetry is significantly above path hexas-
ymmetry. For the two GLM methods, we compare the hexasymmetry to zero (using the Mann-Whitney 
U test) to establish significance. Hexasymmetry values can be negative in these approaches, allowing 
the statistical comparison against 0. Negative values occur when the estimated grid orientation from 
the first data half does not match the grid orientation from the second data half. Regarding the 
statistical evaluation of the circular-linear correlation method, we calculated a z-score by comparing 
each empirical observation of the hexasymmetry to hexasymmetries from a set of surrogate distribu-
tions (as in Maidenbaum et al., 2018). We then calculate a p-value by comparing the distribution of 
z-scores versus zero using a Mann-Whitney U test. We use the z-scores instead of the hexasymmetry 
for the circular-linear correlation method to match the procedure used in Maidenbaum et al., 2018. 
We obtained the surrogate distributions by circularly shifting the vector of movement directions rela-
tive to the time-dependent vector of firing rates. For random walks, the vector is shifted by a random 
number drawn from a uniform distribution defined with the same length as the number of time points 
in the vector of movement directions. For the star-like walks and piecewise linear walks, the shift is 
a random integer multiplied by the number of time points in a linear segment. Circularly shifting the 
vector of movement directions scrambles the correlations between movement direction and neural 
activity while preserving their temporal structure.

Tuning widths and the large-‍κ‍ approximation
The numerical values of our tuning width of HD modulated cells should not be directly compared to 
the numbers reported by Sargolini et al., 2006, with values in the range of 55° because Sargolini 
et al., 2006 reported the tuning widths as the angular standard deviation ‍σ‍ of the mean vector of 
HD-dependent firing rates whereas we derive the tuning width from the large-‍κc‍ approximation of 
a von Mises distribution: ‍σ = 1/

√
κc ‍. This simple approximation is reasonably good only for large 

enough ‍κc‍ (or small enough ‍σ‍), and 55° is already beyond the range where the approximation is 
reasonable (Figure 2—figure supplement 1B).

To examine the range of values where the large-‍κc‍ approximation holds, we can compare it to the 
angular standard deviation expressed as ‍σ =

√
−2 ln[I1(κc)/I0(κc)]‍, where ‍In(κc)‍ is the modified Bessel 

function of the first kind of order ‘n’. This equation is valid for all values of the concentration parameter 
‍κc‍. The results of this comparison are summarized in Figure 2—figure supplement 1B. In brief, the 
large-‍κc‍ approximation closely matches the angular standard deviation for ‍κc > 4‍, which corresponds 
to ‍σ < 29◦‍. The angular standard deviation ‍σ = 55◦‍ reported by Sargolini et al., 2006 corresponds 
to a concentration parameter ‍κc‍ of about 1.7 and (in our large-‍κc‍ approximation) to a tuning width 

‍1/
√
κc = 44◦‍ (upward triangle in Figure 2—figure supplement 1B and C).

Numerical simulations
All simulations were implemented in Python 3.10 using the packages NumPy, SciPy, Numba, and 
JobLib. Matplotlib was used for plotting. Inkscape was used for the final adjustment to the figures.
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