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Abstract Memory formation depends on neural activity across a network of regions, including 
the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions 
have been studied indirectly using functional MRI, but the bases for interregional communication at 
a cellular level remain poorly understood. Here, we evaluate the hypothesis that oscillatory currents 
in the hippocampus synchronize the firing of neurons both within and outside the hippocampus. We 
recorded extracellular spikes from 1854 single- and multi-units simultaneously with hippocampal 
local field potentials (LFPs) in 28 neurosurgical patients who completed virtual navigation exper-
iments. A majority of hippocampal neurons phase-locked to oscillations in the slow (2–4 Hz) or 
fast (6–10 Hz) theta bands, with a significant subset exhibiting nested slow theta × beta frequency 
(13–20 Hz) phase-locking. Outside of the hippocampus, phase-locking to hippocampal oscillations 
occurred only at theta frequencies and primarily among neurons in the entorhinal cortex and amyg-
dala. Moreover, extrahippocampal neurons phase-locked to hippocampal theta even when theta did 
not appear locally. These results indicate that spike-time synchronization with hippocampal theta is 
a defining feature of neuronal activity in the hippocampus and structurally connected MTL regions. 
Theta phase-locking could mediate flexible communication with the hippocampus to influence the 
content and quality of memories.

Editor's evaluation
Large sample size electrophysiology in human brains is rare, and thus this work is an important 
contribution to the field. The mesoscopic descriptive analyses provide a convincing bridge to work 
done in other species and will likely further contribute to its long term value to the field.

Introduction
The hippocampus is the operational hub of a spatially distributed episodic memory system that 
enables us to remember past experiences in rich detail, together with the place and time at which they 
occurred (Eichenbaum, 2000; Moscovitch et al., 2016). To serve in this capacity, the hippocampus 
must maintain precise but flexible connections with the rest of the memory system. Understanding the 
mechanisms that govern connections among regions supporting episodic memory is a major concern 
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of systems neuroscience, and could accelerate efforts to develop treatments for memory disorders 
and age-related memory decline.

A leading hypothesis is that theta (2–10 Hz) oscillations within the hippocampus facilitate inter-
actions between the hippocampus and other brain regions (Buzsáki, 2010; Fell and Axmacher, 
2011; Moscovitch et al., 2016). Hippocampal neurons are more receptive to synaptic excitation at 
specific theta phases (Kamondi et al., 1998), so well-timed inputs can more effectively drive activity 
than inputs at random phases (Fries, 2005). Long-term potentiation and long-term depression in 
the rodent hippocampus also depend on theta phase (Pavlides et al., 1988; Huerta and Lisman, 
1995; Hyman et al., 2003), offering a possible link between the phase at which inputs arrive and 
the strength of their encoding. Experimental evidence for this hypothesis comes largely from studies 
in the rat medial prefrontal cortex (mPFC), a downstream target of hippocampal area CA1. mPFC 
neurons phase-lock to hippocampal theta during short-term memory tasks (Siapas et  al., 2005; 
Hyman et al., 2005; Sirota et al., 2008), and stronger phase-locking predicts better performance 
(Jones and Wilson, 2005; Hyman et al., 2010; Benchenane et al., 2010; Fujisawa and Buzsáki, 
2011) and greater information transfer between mPFC and hippocampal neurons (Ito et al., 2018; 
Padilla-Coreano et al., 2019). Phase-locking to hippocampal theta is also prevalent among cells in 
many other regions, including the entorhinal cortex (EC), amygdala, parietal cortex, thalamic nucleus 
reuniens, and some subcortical and brainstem nuclei (Kocsis and Vertes, 1992; Sirota et al., 2008; 
Fujisawa and Buzsáki, 2011; Bienvenu et al., 2012; Fernández-Ruiz et al., 2017; Ito et al., 2018). 
Theta phase-synchronization could thus be a general mechanism for relaying information between the 
hippocampus and a broad network of memory-related regions.

In humans, macroelectrode LFP recordings in epilepsy patients have revealed sporadically occur-
ring theta oscillations in the hippocampus and cortex during spatial navigation and episodic memory 
engagement (Ekstrom et al., 2005; Watrous et al., 2011; Lega et al., 2012; Watrous et al., 2013a; 
Zhang and Jacobs, 2015; Vass et al., 2016; Aghajan et al., 2017; Stangl et al., 2021). Macroscale 
theta phase-synchronization within the MTL and PFC has consistently correlated with better memory 
performance (Babiloni et al., 2009; Watrous et al., 2013b; Solomon et al., 2017; Zheng et al., 
2019; Kunz et al., 2019). Considerably less is known about how oscillations relate to neuronal firing in 
humans than in rodents. An early study in epilepsy patients found that a large percentage of MTL and 
neocortical neurons phase-locked to locally recorded theta oscillations (among other frequencies) as 
subjects navigated through a virtual environment (Jacobs et al., 2007), and another study found that 
MTL neurons phase-locked more strongly to locally recorded theta oscillations while subjects viewed 
images that they later recognized than those that they forgot (Rutishauser et al., 2010). These findings 
indicate that neural activity within the human episodic memory system is organized in part by a theta 
phase code. However, few studies in humans have examined interregional relations between spiking 
and LFP oscillation phase. A recent study found that increased coupling between spikes and distal 
theta oscillations in the MTL during an associative image encoding task predicted better subsequent 
recognition (Roux et al., 2022). Yet it remains unclear if distal spike–LFP interactions are mediated 

Table 1. Neurons by region.
Table shows how many subjects had at least one neuron in each brain region, how many neurons 
were recorded in each region, and the median, lower-, and upper-quartile firing rates for these 
neurons.

Region Subjects Neurons Firing rate (Hz)

Hippocampus 27 391 1.6 (0.6, 4.7)

Entorhinal cortex 19 341 2.3 (1.0, 5.5)

Amygdala 23 439 1.5 (0.6, 3.7)

Parahippocampal gyrus 15 217 2.2 (0.8, 4.5)

Superior temporal gyrus 5 139 3.4 (1.4, 8.6)

Orbitofrontal cortex 15 193 2.0 (0.9, 4.9)

Anterior cingulate cortex 8 134 3.1 (1.4, 6.8)

Total 28 1854 2.0 (0.8, 5.0)

https://doi.org/10.7554/eLife.85753
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by, or occur independently of, phase-locking to 
locally recorded oscillations. Regional differences 
in phase-locking prevalence to hippocampal 
oscillations are also underexplored. To address 
these questions, we leveraged the rare oppor-
tunity to record single- and multi-neuron activity 
simultaneously with LFP oscillations in multiple 
brain regions, including the hippocampus, in 28 
neurosurgical patients implanted with intracranial 
electrodes.

Results
Subjects were implanted with depth electrodes 
in the hippocampus, EC, amygdala, parahippo-
campal gyrus (PHG), superior temporal gyrus 
(STG), orbitofrontal cortex (OFC), and anterior 
cingulate cortex (ACC). From microwires that 
extended from the tips of these depth probes, 
we recorded extracellular spikes from 1,854 
single- and multi-units (hereafter called ‘neurons’ 
Table 1) as subjects navigated through a virtual 
environment while completing one of several 
spatial memory tasks whose data we pooled 
for this analysis (see ‘Materials and methods’). 
In total, we identified 10–71 (median = 30.0) 
neurons per session across 55 recording sessions, 
and the firing rates of these neurons were log-
normally distributed (median = 2.0 Hz). In addi-
tion, every subject had at least one microwire 
bundle implanted in the hippocampus, permitting 
neuronal firing to be analyzed simultaneously with 
oscillatory activity in the hippocampal LFP.

Identifying oscillations in 
hippocampal microwire LFPs
Earlier studies that have reported oscillatory 
properties of the human hippocampus during 
navigation have primarily utilized implanted macroelectrodes that integrate activity over hundreds 
of thousands of neurons (Ekstrom et al., 2005; Watrous et al., 2011; Aghajan et al., 2017; Vass 
et al., 2016). As the microwires used in the present study record at far smaller spatial scales, we first 
considered whether microwires exhibit oscillatory properties comparable to those observed in macro-
electrode LFPs. We focused on 1–30 Hz signals for this analysis, avoiding higher frequencies at which 
spike-related artifacts can complicate LFP interpretation (Manning et al., 2009; Buzsáki et al., 2012; 
Ray, 2015). Many individual electrodes showed peaks in spectral power that rose above the back-
ground 1/f line in session-averaged LFP spectrograms (Figure 1A), indicating the potential presence 
of oscillatory activity (Donoghue et al., 2020). The frequency and magnitude of these spectral peaks 
varied considerably across subjects (compare Figure 1A subpanels) yet appeared nearly exclusively 
between 2–20 Hz.

To determine if spectral peaks were associated with sustained oscillations versus asynchronous, 
high-amplitude events, we used the BOSC (Better OSCillation) detection method to identify time-
resolved oscillatory ‘bouts’ in each hippocampal microwire recording (Whitten et al., 2011). Briefly, 
BOSC (alternatively called ‘‍Pepisode‍’) defines an oscillatory bout according to two threshold criteria: 
Spectral power at a given frequency must exceed (1) a statistically defined amplitude above the 1/f 
spectrum, for (2) a minimum defined duration (we used 3 cycles; see ‘Materials and methods’ for more 

Figure 1. Neural oscillations in the hippocampus. 
(A) Spectral power across the recording session is 
shown for hippocampal local field potentials (LFPs) 
from three example subjects. Arrows indicate spectral 
peaks above the background 1/f spectrum. (B) A 
hippocampal LFP trace (gray line = raw LFP, cyan line 
= 6 Hz–filtered LFP) is shown immediately before 
and during a Better OSCillation (BOSC)–detected 
theta oscillation, highlighted in pink. (C) Mean ± 
SEM percent time, across 28 subjects, that BOSC-
detected oscillations were present in hippocampal LFPs 
at each frequency from 1 to 30 Hz.

The online version of this article includes the following 
figure supplement(s) for figure 1:

Figure supplement 1. Neural oscillations outside the 
hippocampus.

Figure supplement 2. Oscillatory bout co-occurrence 
and waveform asymmetry at 3 Hz, 7 Hz, and 15 Hz.

https://doi.org/10.7554/eLife.85753
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details). Figure 1B shows an example hippocampal LFP in which an initially aperiodic, ‘1/f-like’ signal 
transitioned into a strong, 6 Hz oscillation that persisted for 6 cycles, with the BOSC-defined oscilla-
tory bout highlighted in pink.

Across subjects, hippocampal oscillatory bouts were present ∼1–6% of the time at the examined 
frequencies (Figure 1C; Figure 1—figure supplement 2 shows oscillatory prevalence in other regions 
for comparison). The prevalence of these oscillations was not uniform across frequencies, but instead 
clustered around three, well-separated bands with peaks at 3 Hz, 7 Hz, and 15 Hz. These frequencies 
are consistent with the hippocampal slow theta (alternatively ‘delta’ 2–4 Hz), fast theta (6–10 Hz), and 
beta band rhythms (13–20 Hz) previously described in macroelectrode recordings, and the prevalence 
of oscillatory bouts in our data was comparable to these earlier studies (Ekstrom et al., 2005; Lega 
et al., 2012; Watrous et al., 2013a; Goyal et al., 2020).

As peaks at 3 Hz, 7 Hz, and 15 Hz could reflect harmonic resonance or waveform asymmetries 
of a single oscillation, we sought to verify whether oscillatory bouts at these frequencies occurred 
independently. Mean LFP waveforms during the first three cycles of each oscillatory bout showed 
symmetrical, sinusoidal shapes at each peak frequency, without any apparent harmonics (Figure 1—
figure supplement 1A). We computed an asymmetry index for each waveform and confirmed that, 
on average across subjects, the 3 Hz and 7 Hz oscillations were nearly perfectly symmetrical, while 
the 15 Hz oscillation showed a very small asymmetry associated with a longer (by <1 ms) ascending 
than descending period (Figure 1—figure supplement 1B). Finally, we examined the extent to which 
oscillatory bouts at each peak frequency occurred at overlapping times, measuring the Dice simi-
larity coefficient between oscillatory bouts at each peak frequency and all remaining frequencies. 
We found that the 3 Hz, 7 Hz, and 15 Hz oscillations occurred at largely separable times (Figure 1—
figure supplement 1C). We concluded that hippocampal oscillatory bouts occur in three independent 
bands, centered at 3 Hz, 7 Hz, and 15 Hz.

Oscillatory prevalence varied between these frequency bands (‍χ
2(2) = 13.9‍, ‍p < 0.0001‍, likelihood 

ratio test between linear mixed-effects models testing frequency band as a fixed effect and holding 
subject as a random effect), such that slow theta was more prevalent than fast theta (‍z = 2.4‍, ‍p = 0.0336‍, 
post-hoc pairwise z-tests, Bonferroni-Holm–corrected for multiple comparisons) or beta oscillations 
(‍z = 3.9‍, ‍p = 0.0002‍), while fast theta and beta oscillations occurred at similar rates (‍z = 1.5‍, ‍p = 0.1218‍). 
These findings indicate that the human hippocampus exhibits several distinct, low-frequency oscilla-
tions that are conserved across spatial scales spanning several orders of magnitude, from microwire to 
macroelectrode fields. Moreover, theta oscillations are the predominant oscillatory component of the 
hippocampal LFP during virtual navigation.

Individual neuron phase-locking to hippocampal oscillations
Having confirmed the presence of hippocampal theta and beta oscillations, we next asked how these 
oscillations interacted with the timing of neuronal firing throughout recorded regions (Table 1). We 
quantified the phase-locking strength of individual neurons to ipsilateral hippocampal oscillations at a 
range of frequencies, 1–30 Hz. A neuron’s phase-locking strength was defined as the mean resultant 
length (MRL) of hippocampal LFP phases across spike times at a given frequency, z-scored against 
a null distribution of MRLs obtained by circularly shifting the neuron’s spike train 10,000 times at 
random (see ‘Materials and methods’). To control for the possibility that some neurons might phase-
lock to asynchronous events in the hippocampal LFP, such as sharp waves or interictal discharges 
(Skelin et  al., 2021; Reed et  al., 2020), we restricted our analysis to spikes that coincided with 
BOSC-detected oscillatory bouts at each frequency, excluding 11% of neurons for which the number 
of included spikes did not suffice to accurately gauge phase-locking (see ‘Materials and methods’).

Figure 2A illustrates the phase-locking of an EC neuron whose spikes appear in raster format above 
a simultaneously recorded, 3 s hippocampal LFP trace exhibiting slow theta rhythmicity. The neuron 
fired in bursts of 2–8 spikes on a majority of theta cycles, with each burst generally aligned with the 
theta cycle peak, while nearly no spikes occurred near the theta trough. Next, we examined the popu-
lation phase-locking statistics for this neuron across the recording session (Figure 2C). Computing 
the mean hippocampal LFP trace surrounding each spike (the ‘spike-triggered average LFP’), we 
confirmed that the neuron preferentially fired just after the theta peak, with synchronous theta oscil-
lations extending more than a full cycle before and after spike onset (Figure 2C, left subpanel, blue 
line). As a control, we also examined a spike-triggered average LFP drawn at random from the null 

https://doi.org/10.7554/eLife.85753
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distribution, which showed a nearly flat line consistent with absent phase-locking (Figure  2C, left 
subpanel, gray line). Graphing this neuron’s phase-locking strength at frequencies from 1 to 30 Hz 
revealed that phase-locking to hippocampal oscillations occurred only in the slow theta band, peaking 
at 3 Hz (Figure 2C, middle subpanel). Finally, the circular histogram of spike-coincident, 3 Hz hippo-
campal LFP phases showed that most spikes occurred within a quarter-cycle after the theta peak 
(Figure 2C, right subpanel). Figure 2B and D–J applies this analysis to representative neurons in the 
hippocampus, EC, amygdala, and OFC that phase-locked to LFP oscillations in the hippocampus. 
Most neurons exhibited unimodal peaks in phase-locking strength, most commonly in the theta range.

Regional differences in hippocampal phase-locking
We next examined phase-locking at the population level, first considering the percentage of neurons 
in each region that significantly phase-locked to ipsilateral hippocampal LFP oscillations, irrespec-
tive of frequency. For each neuron, we derived an empirical phase-locking p-value by comparing the 
neuron’s maximum phase-locking strength, across frequencies, to its null distribution of maximum 
phase-locking strengths (see ‘Materials and methods’). We then applied false discovery rate (FDR) 
correction at ‍α = 0.05‍ to the distribution of p-values within each region. Finally, for each region 
outside the hippocampus, we performed the same analyses and statistical corrections with respect 
to LFP oscillations in each neuron’s local region, proximal to the electrode from which a neuron was 
recorded. This last step allowed us to directly compare phase-locking rates to local versus remote 
hippocampal oscillations.

Figure 2. Example phase-locking to hippocampal oscillations. (A) Spikes from an EC neuron (top, vertical lines) are shown alongside local field potential 
(LFP) activity in the hippocampus during a slow theta oscillation (gray line = raw LFP, cyan line = 3 Hz–filtered LFP). Panel (C) shows phase-locking 
statistics for this neuron across the recording session. (B–J) Shown are nine neurons in the HPC (left column), EC (middle column), AMY (right column, 
top two rows), and OFC (right column, bottom row) that phase-locked to oscillatory signals in the hippocampus while subjects navigated through a 
virtual environment. The left subpanel for each neuron shows the mean hippocampal LFP centered on the time of each spike. The middle subpanel 
shows the phase-locking strength at each frequency relative to a null distribution of circularly shifted spikes. The right subpanel shows the spike–phase 
distribution at the maximum phase-locking frequency. Dark gray (HPC), blue (EC), red (AMY), and purple (OFC) lines correspond to true spike times, 
while light gray lines correspond to circularly shifted spike times from a single draw from the null distribution. HPC = hippocampus; EC = entorhinal 
cortex; AMY = amygdala; OFC = orbitofrontal cortex.

https://doi.org/10.7554/eLife.85753
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Figure 3A illustrates these analyses. As expected, neurons within the hippocampus phase-locked 
to hippocampal oscillations at the highest rate among recorded regions, with 59% of hippocampal 
neurons significantly phase-locked after FDR correction. High phase-locking rates to the hippocampus 
were also found for neurons in the EC (41%) and amygdala (29%), with phase-locking rates in the EC 
significantly higher than those in the amygdala (‍z = 3.6‍, ‍p = 0.0004‍, post-hoc pairwise z-test from a 
logistic mixed-effects model testing neuron region as a fixed effect and holding subject as a random 
effect). Whereas amygdala neurons phase-locked to local oscillations at significantly higher rates 
(46%) than to oscillations in the hippocampus (‍χ

2(1) = 32.6‍, ‍p < 0.0001‍), neurons in the EC phase-
locked to local (40%) and hippocampal oscillations at indistinguishable rates (‍χ

2(1) = 0.2‍, ‍p = 0.6672‍, 
likelihood ratio tests between logistic mixed-effects models testing oscillation region as a fixed effect 
and holding subject as a random effect).

These results stood in stark contrast to all remaining regions, where phase-locking to the hippo-
campus occurred at rates below 5%. Phase-locking to local oscillations was nonetheless prevalent in 
the PHG (24%) and STG (49%), indicating that many of these neurons fired at specific phases of LFP 
oscillations — just not those recorded in the hippocampus. In two regions of the prefrontal cortex, 
local phase-locking rates were relatively low (16% of OFC neurons and 6% of ACC neurons) although 
still significantly higher than phase-locking rates to the hippocampus (OFC: ‍χ

2(1) = 20.9‍, ‍p < 0.0001‍; 
ACC: ‍χ

2(1) = 5.6‍, ‍p = 0.0178‍; likelihood ratio tests between logistic mixed-effects models, as above). 
Altogether, these results highlight a triad of regions — the hippocampus, EC, and amygdala — that 

Figure 3. Phase-locking to hippocampal oscillations by region and frequency. (A) Bars show the percentage of neurons in each region that phase-locked 
to locally recorded local field potential (LFP) oscillations (light gray) and hippocampal LFP oscillations (dark gray). (Note that local and hippocampal 
LFP is identical for hippocampal neurons.) Phase-locking significance was set at false discovery rate (FDR)–corrected ‍p < 0.05‍ within each bar group. 
(B) Heatmaps show the phase-locking strength (z-MRL; color scale intensity) by hippocampal LFP oscillation frequency (x-axis) for all significantly phase-
locked neurons (y-axis; each row = one neuron) in the HPC, EC, AMY, and remaining regions (CTX), respectively. Neurons in each region are sorted from 
top to bottom by frequency of maximum phase-locking strength. Neurons depicted match the dark gray bars in (A). (C) Mean ± SEM phase-locking 
strength by hippocampal oscillation frequency is shown for all neurons in each region, regardless of their individual phase-locking significance as 
depicted in (A) and (B). HPC = hippocampus; EC = entorhinal cortex; AMY = amygdala; PHG = parahippocampal gyrus; STG = superior temporal gyrus; 
OFC = orbitofrontal cortex; ACC = anterior cingulate cortex.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Phase-locking to local oscillations.

https://doi.org/10.7554/eLife.85753
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features strong spike-time synchronization to hippocampal oscillations, while neurons in more remote, 
cortical regions that are known to interact with hippocampus-dependent processes (Eichenbaum, 
2000; Squire, 2011; Ranganath and Ritchey, 2012) phase-locked minimally to hippocampal rhythms.

Frequencies of hippocampal phase-locking
Individual neuron examples suggested that phase-locking to the hippocampus occurred most 
commonly at theta frequencies (Figure  2), although our analysis of hippocampal LFPs revealed 
oscillations extending up to ∼20 Hz (Figure 1). Does this observation of preferential theta phase-
locking hold at the population level, and does the frequency of hippocampal phase-locking vary by 
a neuron’s region of origin? To answer these questions, we generated heatmaps of phase-locking 
strength by frequency for all neurons that phase-locked significantly to hippocampal oscillations at 
any frequency, as defined in the previous section (Figure 3B; these neurons correspond to the dark 
gray bars in Figure 3A). We made separate heatmaps for neurons in the hippocampus, EC, amygdala, 
and remaining regions, sorting the neurons in each region by frequency of maximum phase-locking 
strength. Figure 3—figure supplement 1 shows analogous heatmaps for neurons in each region with 
respect to local, rather than hippocampal, oscillations, matching the population of neurons repre-
sented by the light gray bars in Figure 3A.

In the hippocampus, neurons phase-locked to local oscillations predominantly between 2–20 Hz. 
Only a few neurons phase-locked weakly at higher frequencies, which may be largely attributable 
to false discoveries (Figure 3B, far-left subpanel). Within the 2–20 Hz range, phase-locking was not 
unimodal, but instead clustered around three distinct peaks in the slow theta, fast theta, and beta 
bands. Most hippocampal neurons phase-locked only to a single band, with the exception of neurons 
that phase-locked maximally to beta oscillations, which also showed a near-universal tendency to 
phase-lock strongly to slow theta (see for example Figure 2H). These neurons may best be classified 
as nested slow theta × beta phase-locking neurons, which to our knowledge have not previously been 
reported. In contrast, we did not observe nested phase-locking between fast theta and beta oscilla-
tions or between any other pair of frequency bands.

Among neurons outside the hippocampus, phase-locking to hippocampal oscillations occurred 
within a more constrained frequency range, between 2–10 Hz (Figure 3B, right three subpanels). In 
the EC, similar numbers of neurons showed preferential phase-locking to slow and fast hippocampal 
theta, respectively. In the amygdala and remaining cortical regions, this balance shifted: Only a few 
neurons phase-locked to fast hippocampal theta, while most neurons coupled exclusively to slow 
theta. Thus, while hippocampal neurons phase-locked to both theta and beta bands, for neurons 
outside the hippocampus, spike-time synchronization with hippocampal oscillations was restricted to 
theta frequencies.

We confirmed these conclusions in a secondary analysis that examined the mean phase-locking 
strength at each frequency across all neurons in each region, regardless of individual phase-locking 
significance (Figure 3C). This approach benefited from not requiring an explicit significance threshold 
to be defined. Instead, we assumed that if the neurons in a given region did not phase-lock measur-
ably to the hippocampus, then the mean phase-locking strength across these neurons would approach 
zero with increasing sample size, since they would exhibit no difference against the null distribution. 
Indeed, population phase-locking strengths were close to zero across frequencies for neurons in the 
PHG, STG, OFC, and ACC, consistent with the relative absence of individually phase-locked neurons 
in these regions. In contrast, neurons in both the EC and the amygdala phase-locked strongly to slow 
hippocampal theta frequencies, while neurons in the EC, but not the amygdala, exhibited a secondary 
rise in phase-locking strength to fast hippocampal theta. Finally, neurons in the hippocampus showed 
stronger phase-locking to hippocampal oscillations at all frequencies than neurons in any other region, 
with peaks in phase-locking strength at all three oscillatory bands: slow theta, fast theta, and beta.

Local oscillation effects on remote hippocampal phase-locking
Our data reveal that neurons not only within the hippocampus, but in remote regions — particu-
larly the entorhinal cortex and amygdala — phase-lock to hippocampal theta oscillations. How do 
these remote spike–phase associations occur? One possibility, given the strength of phase-locking 
to local oscillations (Figure 3—figure supplement 1), is that phase-locking to the hippocampus is 
an indirect phenomenon, facilitated by transient phase coupling between oscillations in different 

https://doi.org/10.7554/eLife.85753
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regions (Figure 4—figure supplement 1, blue arrows). In rodents, however, neurons in some regions 
phase-lock to hippocampal theta even in the absence of a local theta rhythm (Siapas et al., 2005), 
suggesting that interregional oscillatory coupling is not a strict requirement for remote spike–phase 
associations (Figure 4—figure supplement 1, red arrow).

To examine how interregional oscillatory coupling contributed to remote spike–phase associations, 
we first considered the co-occurrence of oscillatory bouts in the hippocampus and in each extrahip-
pocampal region. We reasoned that if remote spike–phase associations were mediated by oscillatory 
coupling, then regions where neurons phase-locked to the hippocampus at higher rates should also 
show higher levels of oscillatory co-occurrence. Consistent with this hypothesis, hippocampal oscil-
lations overlapped more with oscillations in the EC and amygdala than with oscillations in the STG, 
OFC, and ACC at most frequencies (Figure 4A; overlap calculated using the Dice similarity coef-
ficient). However, hippocampal and PHG oscillations also overlapped strongly despite the relative 
absence of PHG neuron phase-locking to the hippocampus (Figure 3A) and abundant PHG neuron 
phase-locking to local theta (Figure 3—figure supplement 1). Moreover, the overlap between local 
and hippocampal oscillations never exceeded 20% in any region at any frequency, indicating that 

Figure 4. Phase-locking to hippocampal oscillations with and without co-occurring local oscillations. (A) Mean ± SEM (across 28 subjects) Dice 
coefficient across subjects shows the percent overlap between oscillatory bouts in the hippocampus and in each extrahippocampal region. (B) Bars 
show the percentage of neurons in each region that phase-locked to hippocampal oscillations when local oscillations were present (light gray) or 
absent (dark gray). Phase-locking significance was set at false discovery rate (FDR)-corrected ‍p < 0.05‍ within each bar group. (C) Heatmaps show the 
phase-locking strength by hippocampal LFP oscillation frequency for all significantly phase-locked neurons in the EC (top row), AMY (middle row), and 
remaining regions (CTX; bottom row), when hippocampal and local oscillations co-occurred (left column) versus when only hippocampal oscillations 
occurred (middle column). The right column shows the left column minus middle column values. Neurons in each region are sorted from top to bottom 
by frequency with the maximum phase-locking strength, and the sorting order is constant across columns within each row. Neurons depicted match the 
union of light gray and dark gray bars in (B). (D) Phase-locking to the hippocampus is shown during co-occurring local and hippocampal oscillations (left) 
or only hippocampal oscillations (right). Each subpanel shows the mean ± SEM (across 28 subjects) phase-locking strength by hippocampal oscillation 
frequency for all neurons in each region, regardless of their individual phase-locking significance as depicted in (B) and (C). HPC = hippocampus; EC 
= entorhinal cortex; AMY = amygdala; PHG = parahippocampal gyrus; STG = superior temporal gyrus; OFC = orbitofrontal cortex; ACC = anterior 
cingulate cortex.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Two explanations for remote phase-locking to hippocampal theta.

Figure supplement 2. Phase-locking to local oscillations with and without co-occurring hippocampal oscillations.
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neurons could, in principle, phase-lock to hippocampal oscillations independent of local oscillations, 
and vice versa. Overall, these results provide a mixed view for the hypothesis that interregional oscil-
latory coupling and remote spike–phase associations are interchangeable.

Next, we directly compared how remote phase-locking to the hippocampus varied as a function of 
local phase-locking effects. For each extrahippocampal neuron, we divided spikes into two categories: 
(1) spikes that occurred when an oscillation was present in both the hippocampus and a neuron’s local 
region, and (2) spikes that occurred when an oscillation was present in the hippocampus but not the 
neuron’s local region. As chance-level phase-locking values depend on sample size, for each neuron 
we matched the number of spikes in each group, at each frequency, excluding neurons with insuffi-
cient sample size (<50 spikes at any frequency; see ‘Materials and methods’). We then applied the 
same methods for determining phase-locking strength and significance as described in the previous 
section.

Figure 4B shows the results from these analyses. FDR-corrected phase-locking rates during co-oc-
curring local and hippocampal oscillations were comparable to phase-locking rates when all spikes 
were included (see Figure 3A), with high phase-locking to hippocampal oscillations among neurons in 
the EC and amygdala and minimal phase-locking among neurons in other regions. In contrast, when 
hippocampal oscillations occurred without co-occurring local oscillations, phase-locking rates to the 
hippocampus declined by nearly two-thirds in the EC (from 39% to 14% of neurons) and by half in 
the amygdala (from 28% to 15%), while phase-locking to the hippocampus in other regions mostly 
vanished. Phase-locking strength to the hippocampus decreased specifically at theta frequencies, and 
even neurons that remained significantly phase-locked in the absence of local oscillations showed 
reduced phase-locking strength (Figure  4C). We also considered the converse question, asking 
whether phase-locking to local oscillations depended on the presence of co-occurring oscillations in 
the hippocampus. While hippocampal oscillation presence did not affect local phase-locking rates in 
the amygdala and neocortex, in the EC the percentage of locally phase-locked neurons was reduced 
by more than half when hippocampal oscillations were absent (Figure 4—figure supplement 2).

Finally, we confirmed these findings at the population level by computing the mean phase-locking 
strength across all neurons in each region, without regard to phase-locking significance, while still 
matching the number of spikes at each frequency between conditions in which local and hippocampal 
oscillations co-occurred, or in which only hippocampal oscillations occurred. As in Figure 3C, when 
local and hippocampal oscillations co-occurred, EC and amygdala neurons both phase-locked strongly 
to slow hippocampal theta, phase-locking to fast hippocampal theta was restricted to EC neurons, 
and other regions showed negligible phase-locking to hippocampal oscillations at any frequency 
(Figure 4D, left subpanel). When local theta was absent, the strength of EC and amygdala neuron 
phase-locking to hippocampal theta was reduced by half, while still remaining well above chance 
(Figure 4D, right subpanel). Collectively, these results provide direct evidence that interregional LFP–
LFP theta coupling augments but is not strictly required for extrahippocampal neuron phase-locking 
to hippocampal theta.

Discussion
By combining datasets of single- and multi-neuron recordings in human subjects, we provide an 
empirical test of the hypothesis that LFP oscillations in the hippocampus synchronize the timing of 
neuronal firing both within the hippocampus and in functionally associated regions. Consistent with 
prior studies, we identify sporadic, oscillatory bouts in hippocampal LFPs within slow theta (2–4 Hz), 
fast theta (6–10 Hz), and beta (13–20 Hz) bands while subjects engaged in virtual navigation. Indi-
vidual hippocampal neurons phase-lock to oscillations in each of these bands, including a previously 
undiscovered group of neurons that phase-lock to nested slow theta and beta rhythms. Outside the 
hippocampus, phase-locking to hippocampal oscillations occurs in both a region-specific (primarily EC 
and amygdala neurons) and frequency-specific (theta-preferring) manner. We further show a dissocia-
tion between region and frequency in the selective phase-locking of EC neurons to fast hippocampal 
theta, whereas neurons in all regions outside the hippocampus show some level of phase-locking to 
slow hippocampal theta. Finally, we provide the first direct evidence in humans that LFP–LFP coupling 
enhances spike-time synchronization between regions, as extrahippocampal neurons phase-lock 
approximately twice as strongly to hippocampal theta when local theta oscillations co-occur, as when 
local theta is absent. Taken together, these findings reveal a fundamental relationship between MTL 
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neuron firing and hippocampal theta phase that underscores a hypothesized role for theta oscillations 
in routing the information contents of memory.

We note a particularly striking difference between phase-locking rates to hippocampal theta in the 
EC and amygdala (∼30–40% of neurons) relative to all other recorded regions, which phase-lock mini-
mally (<5%) despite their associations with hippocampus-dependent processes (Eichenbaum, 2000; 
Squire, 2011; Ranganath and Ritchey, 2012). This result is consistent with structural anatomy, as the 
hippocampus maintains strong, reciprocal connections with the EC and amygdala while connections 
to neocortex are sparser (Amaral, 2011). Still, given evidence in rodents that some mPFC neurons 
project directly to the hippocampus (Rajasethupathy et al., 2015), phase-lock to hippocampal theta 
(Siapas et  al., 2005; Hyman et  al., 2005; Sirota et  al., 2008; Ito et  al., 2018; Padilla-Coreano 
et al., 2019), and are critical for memory retrieval (Rajasethupathy et al., 2015; Yadav et al., 2022), 
we expected ACC and OFC neurons to show stronger associations with hippocampal theta than we 
observed. One possibility is that strong phase-locking to hippocampal theta occurs in the EC and 
amygdala at baseline, whereas phase-locking among neurons in the mPFC and other cortical areas 
is task-dependent. Consistently, a recent study in humans found that ACC and pre-supplementary 
motor area neurons phase-locked to hippocampal theta during a task-switching experiment in which 
subjects alternated between making recognition memory-based or categorization-based decisions 
(Minxha et al., 2017). It will be interesting for future work to consider how phase-locking rates vary 
by region under different task and stimulus conditions.

We find two differences in hippocampal phase-locking properties between the EC and amyg-
dala. First, as in neocortical regions, amygdala neurons phase-lock at higher rates to local than to 
hippocampal oscillations, and local and hippocampal phase-locking occur at least somewhat inde-
pendently. By contrast, EC neurons phase-lock to local and hippocampal theta oscillations at indis-
tinguishable rates, and phase-locking is greatly disrupted when EC and hippocampal theta bouts are 
asynchronous. It is worth noting that in rodents, EC and hippocampal theta are phase-shifted but 
otherwise largely interchangeable, with EC inputs playing a major role in hippocampal theta genera-
tion (Buzsáki, 2002). Theta phase-synchronization between these regions is critical in explaining many 
circuit-level phenomena in rodents, including grid cell and place cell interactions, phase precession, 
and encoding/retrieval phase separation (O’Keefe and Burgess, 2005; Hasselmo, 2005; Burgess 
et al., 2007; Bonnevie et al., 2013; Fernández-Ruiz et al., 2017). Theta occurs more sporadically 
in humans and other primates than in rodents, and may differ between mammals in other ways not 
yet well understood (Eliav et al., 2018; Trimper and Colgin, 2018; Bush and Burgess, 2019). Still, 
our results indicate that as in rodents, EC and hippocampal neurons in humans retain a uniquely high 
degree of spike-time synchronization with an overlapping theta rhythm.

The second difference between EC and amygdala neurons concerns the frequency of hippocampal 
phase-locking, with neurons in both regions phase-locking to slow hippocampal theta but only EC 
neurons phase-locking measurably to fast theta. This result may be placed in context with recent obser-
vations that hippocampal theta frequency varies along the longitudinal axis of the hippocampus, with 
faster theta occurring more posteriorly (Goyal et al., 2020; Penner et al., 2022), where the density of 
EC relative to amygdalar afferents is greater (Strange et al., 2014). While most of our hippocampal 
electrodes were located anteriorly, precluding a direct analysis of EC and amygdala phase-locking by 
hippocampal electrode position, this hypothesis may be worth examining in a different dataset.

We note an important difference in our methodological approach compared to prior studies that 
examined spike–LFP phase relations in humans (Jacobs et al., 2007; Rutishauser et al., 2010; Watrous 
et al., 2018; Kamiński et al., 2020; Minxha et al., 2020; Qasim et al., 2021; Roux et al., 2022). 
These studies typically analyzed either all spikes or a large majority of spikes during time windows of 
interest, sometimes excluding spikes when spectral power fell below a predefined threshold — e.g., 
the bottom 25th percentile. Here, we wished to strictly test the hypothesis that neurons phase-lock to 
neural oscillations in the hippocampus, as defined by intervals when spectral power exceeds the 1/f 
spectrum by a significant amount for a sustained duration (Whitten et al., 2011; Donoghue et al., 
2022). We considered this approach especially important given the sporadic nature of oscillatory 
bouts in human LFP recordings and the prevalence of asynchronous, high-power artifacts — inter-
ictal discharges (Reed et al., 2020), sharp-wave ripples (Skelin et al., 2021), duplicate spikes across 
channels (Dehnen et al., 2021), and movement or other non-neural artifacts that escape algorithmic 
detection. In our experience, phase-locking analyses that did not restrict spikes to verified oscillations 
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produced qualitatively similar group-level results as we report here, but included many individual 
cases of likely spurious phase-locking to non-oscillatory signals. This methodological difference might 
explain discrepancies between our results and earlier findings that hippocampal neurons phase-lock 
to local oscillations at a wider range of frequencies — e.g., 20–30 Hz — that we did not observe 
(Jacobs et al., 2007).

This study has several important limitations. First, all subjects had pharmacoresistant epilepsy, and 
we cannot rule out that some results might stem from pathological activity. However, we sought to 
attenuate this possibility by analyzing spikes only during oscillatory bouts, and we are encouraged by 
the general agreement between our results and those in rodents. A second limitation concerns the 
quality of unit isolation, as we recorded spikes from single microwires with limited ability to resolve 
spiking contributions from different neurons. Although some studies in humans have attempted to 
distinguish between single-units and multi-units and between excitatory and inhibitory neurons, unit 
quality metrics from microwires do not instill high confidence in the accuracy with which these distinc-
tions can be made, while the potential for higher-quality unit recordings using tetrodes or Neuropixels 
may soon provide clarity with respect to differences specific to cell type (Despouy et al., 2020; Chung 
et al., 2022). In the meantime, we believe it is unlikely that this limitation would change any of our 
main conclusions, which do not depend on knowing if a unit is truly ‘single’ or a combination of several 
neighboring cells.

Still little is known about the relations between theta phase-locking and human cognition (Herweg 
et al., 2020). Prior studies have focused on the behavioral correlates of phase-locking to local theta 
rhythms within the MTL; according to one, for example, successful image encoding depended on 
theta phase-locking strength among hippocampal and amygdala neurons (Rutishauser et al., 2010), 
while another study found that MTL neurons can represent contextual information in their theta firing 
phase (Watrous et  al., 2018). Here, we show that hippocampal theta oscillations also inform the 
timing of neuronal firing in regions beyond the hippocampus, positioning theta oscillations at the 
interplay between local circuit computations and interregional communication. In light of these results, 
brain and behavioral or physiological dissociations between local and interregional phase-locking, and 
between spike–LFP and LFP–LFP phase-synchronization, merit further investigation. Such analyses 
could unite findings from animal and human studies and advance a more mechanistic account of 
hippocampus-dependent processes across multiple scales, from single neurons to macroscopic fields.

Materials and methods
Participants
Subjects were 28patients with pharmacoresistant epilepsy who were implanted with depth elec-
trodes to monitor seizure activity. Clinical teams determined the location and number of implanted 
electrodes in each patient. We conducted bedside cognitive testing on a laptop computer. Subjects 
completed one of two experiments (see ‘Spatial navigation tasks’): Yellow Cab (18 subjects) or Gold-
mine (10 subjects). Demographic information was unavailable for Yellow Cab participants and is given 
below in aggregate for 11 Goldmine subjects, including the 10 analyzed subjects plus 1 pilot subject 
for whom technical problems prevented successful data collection.

Sex Race Age

Female 7 Asian 1 20–25 5

Male 4 Black 1 25–31 1

White 6 32–37 2

Unknown or Not Reported 3 38–43 3

All testing was completed under informed consent. Institutional review boards at the University of 
California, Los Angeles, and the University of Pennsylvania approved all experiments. The number of 
the UCLA IRB protocol on which the Goldmine experiment was conducted is #10–000973.

Spatial navigation tasks
We analyzed data from 55 recording sessions (1–4 sessions per subject, mean duration = 33.6 min). 
During each session, subjects played one of two first-person navigation games, Yellow Cab or 
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Goldmine, in which they freely explored a virtual environment and retrieved objects or navigated to 
specific locations. Previous studies have described the details of these experiments (Ekstrom et al., 
2003; Jacobs et al., 2010; Schonhaut et al., 2023); for the present study, we pooled data across 
these studies to generate a large sample for conducting electrophysiological analyses. We analyzed 
intervals in which subjects could freely navigate through the virtual environment.

Recording equipment
Each subject was implanted with 6–12 Behnke-Fried depth electrodes that feature macroelectrode 
contacts for clinical monitoring and 40  µm–diameter, platinum-iridium microwires for measuring 
microscale LFPs and extracellular action potentials (Fried et  al., 1999). Electrode localizations 
were confirmed by the clinical team from post-operative structural MRIs or post-operative CT scans 
co-registered to pre-operative structural MRIs. Microwires were packaged in bundles of eight high-
impedance recording wires and one low-impedance wire that served as the recording reference. Each 
microwire bundle was threaded through the center of a depth probe and extended 5 mm from the 
implanted end. As microwires splay out during implantation and cannot reliably be visualized on post-
operative scans, electrode localizations are regarded with a ∼5 mm radius of uncertainty that preclude 
analyses at the level of regional substructures or hippocampal layers or subfields. Microwire LFPs were 
amplified and sampled at 28–32 kHz on a Neuralynx Cheetah (Neuralynx, Tucson, AZ) or Blackrock 
NeuroPort (Blackrock Microsystems, Salt Lake City, UT) recording system.

Spike sorting
We performed semi-automatic spike sorting and quality inspection on each microwire channel using 
the WaveClus software package in Matlab (Quiroga et al., 2004), as previously described (Ekstrom 
et al., 2003; Schonhaut et al., 2023). We isolated 0–8 units on each microwire channel, retaining 
both single-units and multi-units for subsequent analysis while removing units with low-amplitude 
waveforms relative to the noise floor, non-neuronal waveforms, inconsistent firing across the recording 
session, or other data quality issues. Spikes that clustered into separate clouds in reduced dimensional 
space were retained as separate units, while spikes that clustered into single clouds were merged. 
Repeated testing sessions occurred on different days, and we spike-sorted and analyzed these data 
separately.

LFP preprocessing and spectral feature extraction
Microwire LFPs were downsampled to 1000 Hz, bandpass-filtered between 0.1–80 Hz using a zero-
phase Hann window, and notch-filtered at 60 Hz to remove electrical line noise. Bandpass frequencies 
were selected to reduce signal drift at the low end and spike waveform artifacts (or other high-
amplitude noise) at the high end, while maintaining sufficient distance from frequencies of interest for 
analysis. Lastly, we identified and removed a small number of dead or overly noisy channels, identified 
as those for which the mean, cross-frequency spectral power differed by >2 standard deviations from 
the mean spectral power across channels in each microwire bundle. The remaining LFP channels 
were manually inspected prior to further analysis as a secondary quality inspection step. Lastly, we 
extracted instantaneous spectral power and phase estimates for each preprocessed LFP channel by 
convolving the time domain signal with five-cycle complex wavelets at 30 frequencies, linearly spaced 
from 1 to 30 Hz.

Oscillatory bout identification
For each LFP channel, we identified time-resolved oscillatory bouts at the 30 frequencies defined 
in the previous section using the BOSC (Better OSCillation) detection method, as described previ-
ously (Whitten et al., 2011). BOSC defines an oscillatory bout according to two threshold criteria: a 
power threshold, ‍PT ‍, and a duration threshold, ‍DT. PT ‍ is set to the 95th percentile of the theoretical 

‍χ
2
‍ probability distribution of power values at each frequency, under the null hypothesis that powers 

can be modeled as a straight power law decaying function (the ‘1/f’ spectrum). Defining ‍PT ‍ for each 
frequency of interest requires first finding a best fit for 1/f. We obtained this fit by implementing the 
recently developed FOOOF (Fitting Oscillations & One-Over F) algorithm, which uses an iterative 
fitting procedure to decompose the power spectrogram into oscillatory components and a 1/f back-
ground fit (Donoghue et al., 2020). To avoid assuming that the 1/f spectrum was stationary across 
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the recording session, we divided the LFP into 30 s epochs and re-fit 1/f (and ‍PT ‍, by extension) in 
each epoch. Finally, we set ‍DT = 3/f ‍, consistent with the convention used in previous studies (Ekstrom 
et al., 2005; Watrous et al., 2011; Aghajan et al., 2017) that power at a given frequency ‍f ‍ must 
exceed ‍PT ‍ for a minimum of three cycles for an oscillatory bout to be detected.

Oscillatory prevalence was calculated within three frequency bands of interest, defined as slow 
theta (2–4 Hz), fast theta (6–10 Hz), and beta (13–20 Hz). For each subject, we calculated the average 
oscillatory bout percentage across recording sessions, hippocampal microwire channels, and frequen-
cies within each band. The resulting matrix provided a single measure of hippocampal LFP oscillation 
prevalence within each band, from each subject. Differences between bands were assessed using a 
linear mixed-effects model to account for repeated samples within subjects.

Waveform asymmetry
Waveform asymmetry analyses were confined to oscillatory bouts as identified in the previous section. 
An inspection of the 3 Hz, 7 Hz, and 15 Hz oscillations averaged during the time windows corre-
sponding to the first three cycles of each bout — 1000 ms, 428 ms, and 200 ms, respectively — qualita-
tively assessed asymmetries in these waveforms. Then, an asymmetry index was computed in keeping 
with previously established methods (Roux et al., 2022) for 3 Hz, 7 Hz, and 15 Hz waveforms. After 
initial preprocessing of the microwire LFPs (see ‘LFP preprocessing and spectral feature extraction’), 
we applied a bandpass linear-phase Hamming-windowed FIR filter within a window of ±2 Hz centered 
at the frequency of interest, and identified local maxima and minima in windows equivalent to a half-
cycle at this frequency. After aligning these extrema in the filtered LFP trace to the nearest peaks 
and troughs within a quarter-cycle in the raw, unfiltered LFP trace, we found the average difference 
between the time taken to ascend from a trough to the next peak and to descend from the peak to 
the subsequent trough. We normalized this average difference to the range ‍(−1, 1)‍ by dividing by 

the cycle length 
‍

fs
f ‍
, where ‍fs‍ is the sampling frequency, and ‍f ‍ is the frequency of interest, giving the 

asymmetry index value. The asymmetry index values for each hippocampal recording were averaged 
first within subjects and then across subjects.

Phase-locking strength and significance
We computed phase-locking strengths at 30 frequencies (1–30 Hz with 1 Hz spacing) between each 
neuron’s spike times and oscillations in the hippocampus, as well as between each neuron’s spike 
times and oscillations in the neuron’s local region (other microwires in the same bundle, excluding 
the neuron’s own recording wire due to spike contamination of the LFP). For both of these compari-
sons, we retained only spikes that coincided with BOSC-detected oscillatory bouts to avoid reporting 
spike–phase associations with non-oscillatory LFP phenomena. Phase-locking strength was then calcu-
lated as follows. First, at each frequency, we calculated the MRL of hippocampal LFP phases across 
spike times. The MRL is equal to the sum of phase angle unit vectors divided by the total number 
of samples, yielding a measure from 0 to 1 that indicates the extent to which the phase distribution 
is unimodal. This metric depends on sample size, with low ‍n‍ yielding artificially high values due to 
chance clustering of phases. For this reason, we excluded neurons with <50 spikes at all frequencies of 
interest. Several other factors can artificially inflate the MRL, including nonuniform phase distributions 
in an underlying LFP signal, or autocorrelated spike times (Siapas et al., 2005). To control for these 
potential confounds, we used a permutation-based procedure in which we circularly shifted each 
neuron’s spike train at random and then recalculated MRLs at each frequency, repeating this process 
10,000 times per neuron to generate a null distribution. At each frequency, we then calculated phase-
locking strength as the true MRL z-scored against null distribution MRLs at the same frequency.

To determine which neurons phase-locked significantly to local or hippocampal oscillations, we 
compared a neuron’s maximum phase-locking strength across frequencies to a null distribution of 
maximum phase-locking strengths generated by taking the maximum of the null MRLs’ z-scores across 

frequencies. We calculated an empirical p-value for each neuron with the formula 
‍
p = r + 1

n + 1‍
, where ‍r‍ 

is the number of permuted values ‍≥‍ the true value for a given test statistic, and ‍n‍ is the total number 
of permutations (North et  al., 2002). Finally, we FDR–corrected p-values with the adaptive linear 
step-up procedure, which controls the expected proportion of true null hypotheses among rejected 
nulls for both independent and positively dependent test statistics, and has greater statistical power 
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than the commonly used Benjamini-Hochberg procedure (Benjamini et al., 2006). FDR correction 
was applied separately to p-values from each neuron region × LFP region (local or hippocampal) pair 
to control the expected proportion of false positives within each of these groups. Neurons with FDR-
corrected ‍p < 0.05‍ were deemed significantly phase-locked.

Interregional oscillatory co-occurrence
Co-occurrence rates were determined between hippocampal and extrahippocampal oscillatory bouts 
by quantifying the Dice coefficient between each hippocampal electrode and each ipsilateral, extra-
hippocampal electrode. The Dice coefficient measures the similarity from 0 to 1 between two sets 
‍A‍ and ‍B‍, with 0 indicating that the sets do not overlap and 1 indicating that ‍A‍ and ‍B‍ are equal: 

‍
Dice = 2|A ∩ B|

|A| + |B| ‍
, where ‍|A|‍ and ‍|B|‍ correspond to the number of elements in each set and ‍|A ∩ B|‍ is the 

number of elements common to both sets. We calculated these values using binarized oscillation 
detection vectors (oscillation present or absent) as defined in ‘Oscillatory bout identification,’ sepa-
rately at each 1–30 Hz frequency.

Phase-locking to hippocampal oscillations during co-occurring or absent 
local oscillations
We divided spikes from each extrahippocampal neuron into two groups according to the following 
criteria: (1) BOSC-detected oscillations were present in both the hippocampus and a neuron’s local 
region, or (2) BOSC-detected oscillations were present in the hippocampus but not the neuron’s 
local region (Figure 4). These spike subsets were determined separately for each 1–30 Hz frequency. 
Phase-locking strengths were then calculated separately within each spike group, at each frequency, 
and significance determined relative to null distributions as described in ‘Phase-locking strength 
and significance.’ As chance-level phase-locking values depend on sample size, for each neuron we 
matched the number of spikes in each group, at each frequency, excluding neurons with insufficient 
sample size (<50 spikes at any frequency). For example, for neuron ‍i‍ at frequency ‍j‍, if 200 spikes 
occurred when local and hippocampal oscillations were both present and 150 spikes occurred when 
only hippocampal oscillations were present, we selected 150 spikes from the first group at random 
and proceeded to calculate phase-locking strength in each group. The same analytical approach was 
applied to a supplemental analysis (Figure  4—figure supplement 2) in which extrahippocampal 
spikes were subdivided as: (1) local and hippocampal oscillations were both present, or (2) local oscil-
lations were present but hippocampal oscillations were absent.

Statistics
Linear and logistic mixed-effects models with fixed slopes and random intercepts were performed 
using the lme4 package in R (Baayen et al., 2008). All models included a single random effect of 
subject and a single fixed effect of interest, as specified in each result. p-values were obtained from 
likelihood ratio tests between nested models (with versus without inclusion of the fixed effect). We 
adopted this approach to control for inter-subject differences in our data that conventional methods 
such as linear regression would overlook, as they assume independence between neurons. This 
approach was particularly important for comparing effects between regions, as each subject had elec-
trodes in only a subset of the regions that we analyzed. For models in which the independent variable 
was a categorical measure with three or more levels, if the likelihood ratio test revealed a significant 
effect (‍p < 0.05‍), we performed post-hoc, pairwise z-tests on the fitted model terms with Bonferroni-
Holm correction for multiple comparisons were noted in the Results.

Software
Mixed-effects models were fit using the lme4 package in R (Baayen et al., 2008). Spike sorting was 
performed using the Wave_clus software package in Matlab (Quiroga et al., 2004). All additional 
analyses were performed, and plots were generated, using code that was developed in-house in 
Python 3, utilizing standard libraries and the following publicly available packages: astropy (The 
Astropy Collaboration et al., 2022), fooof (Donoghue et al., 2020), matplotlib (Hunter, 2007), mne 
(Gramfort et al., 2013), numpy (Harris et al., 2020), pandas (McKinney, 2010), seaborn (Waskom, 
2021), scipy (Virtanen et al., 2020), statsmodels (Seabold and Perktold, 2010), and xarray (Hoyer 
and Hamman, 2017).
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